Supporting information for:

Lewis acid activation of Weiss' Reagents ([PhI(Pyr)₂]²⁺) with boranes and isolation of [PhI(DMAP)]²⁺

Aseel Bakro,^{a#} Lachlan Sharp-Bucknall,^{a#} Tiffany B. Poynder,^a Jack K. Clegg^b, David J. D. Wilson and Jason L. Dutton^a*

^a Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, Australia

^b School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia, 4072

these authors contributed equally

j.dutton@latrobe.edu.au

Experimental:

General Experimental:

Solvents used were dried using an Innovative Technologies Solvent Purification System. The dried solvents were stored under a N₂ atmosphere over 3 Å molecular sieves in the glovebox. Solvents for NMR spectroscopy were purchased from Cambridge Isotope Laboratories and dried by stirring for three days over CaH₂, distilled, and stored in the glovebox over 3 Å molecular sieves. 1Pyr,¹ 1DMAP,¹ pyr-BF₃,² and TMS-DMAP³ were synthesized via literature procedure; all other reagents were supplied by Sigma Aldrich and used as received. All reactions were performed in an N₂-filled glove box or Schlenk line under dry N₂ gas.

X-ray Crystallography Details:

Single crystals were selected under n-paratone oil, mounted on nylon loops, and placed into a cold stream (172 K) of N_2 on an AXT Supernova CCD diffractometer using Cu K α radiation. Structure solution and refinement were performed using the OLEX suite of software. CCDC Number 2103335 contains the supplementary crystallographic data for the structure of **2DMAP**

Synthesis of 2DMAP:

To a solution of PhI(OAc)₂ (69 mg, 0.21 mmol) in 1 mL CH₂Cl₂ was added TMS-OTf (82 μ L, 0.45 mmol). The solution was then cooled to -35 °C and 4-DMAP (24 mg, 0.20 mmol) in 4 mL of cooled CH₂Cl₂ was added dropwise whilst stirring vigorously to produce a yellow solution with a yellow precipitate. The precipitate was collected via filtration and washed with CH₂Cl₂ (3 x 5 mL) to receive **2DMAP** as a yellow solid (80 mg, 63%). Single crystals suitable for X-ray crystallography were grown via vapor diffusion of diethyl ether into a saturated CH₂Cl₂ solution at -35 °C.

¹H NMR (500 MHz, CD₃CN) δ (ppm): 8.46 (d, 2H, *J* = 8.1 Hz), 8.38 (d, 2H, *J* = 7.6 Hz), 7.86 (t, 1H, *J* = 7.5 Hz), 7.71 (t, 2H, *J* = 7.9 Hz), 6.68 (d, 2H, *J* = 7.6 Hz), 3.15 (s, 6H)

¹³C NMR (126 MHz, CD₃CN) δ (ppm): 147.88, 138.38, 136.45, 133.76, 131.45, 128.68, 111.45, 40.96

Synthesis of 2DMAP using TMS-DMAP:

To a solution of PhI(OAc)₂ (43 mg, 0.13 mmol) in 1 mL CH₂Cl₂ was added TMS-OTf (25 μ L, 0.14 mmol) where the reaction was allowed to stir for 1 minute before TMS-DMAP (46.4 mg, 0.13 mmol) in 1 mL CH₂Cl₂ was added dropwise to receive a yellow solution. Two drops of Et₂O were then added to the solution to induce precipitation of a yellow solid, which was collected via filtration and washed with CH₂Cl₂ (3 x 3 mL) to receive **2DMAP** as a yellow solid. (59 mg, 70%).

Reaction of TMS-DMAP and PhI(OAc)(OTf) for in situ analysis:

PhI(OAc)(OTf) was generated via the addition of TMS-OTf (17 μ l, 0.09 mmol) to a 1 mL CH₂Cl₂ solution of PhI(OAc)₂ (23 mg, 0.07 mmol), which was allowed to stir for 5 minutes. Volatiles were then removed *in vacuo* to give PhI(OAc)(OTf), with the residues redissolved in 0.5 mL CD₃CN. TMS-DMAP (24 mg, 0.07 mmol) in 0.5 mL CD₃CN was added dropwise to receive a yellow solution. The solution was then taken immediately for *in situ* ¹H NMR analysis.

General procedure for reactions between methyl substituted benzenes and 2DMAP:

In a typical experiment an NMR tube was charged with **2DMAP** (5 mg, 0.01 mmol) in CD₃CN, with the corresponding methyl substituted benzene subsequently added in excess (5 μ l). The tube was then shaken and subjected to *in situ* ¹H-NMR analysis until all **2DMAP** was consumed. A small aliquot of the reaction mixture was then taken for mass spectrometry analysis. Volatiles were removed *in vacuo* from the remaining solution, with the residue then dissolved in CDCl₃ to confirm the presence of the corresponding [Ph-I-Ar]⁺ species via ¹H NMR analysis.

General procedure for reactions between Weiss' reagents and BF₃.Et₂O with and without benzene:

In a typical experiment one equivalent of BF_3 . Et_2O was added to **1L** (0.030 mmol) in 0.6 mL CD₃CN and the solution was stirred vigorously for 1 minute before being taken for NMR analysis. For reactions containing benzene, one equivalent of benzene was added to the

solution containing Weiss' reagent prior to the addition of $BF_3.Et_2O$, which was then stirred vigorously for 1 minute before being taken for NMR analysis. One drop of the above solutions were diluted in 1 mL of CH_3CN for mass spectral analysis.

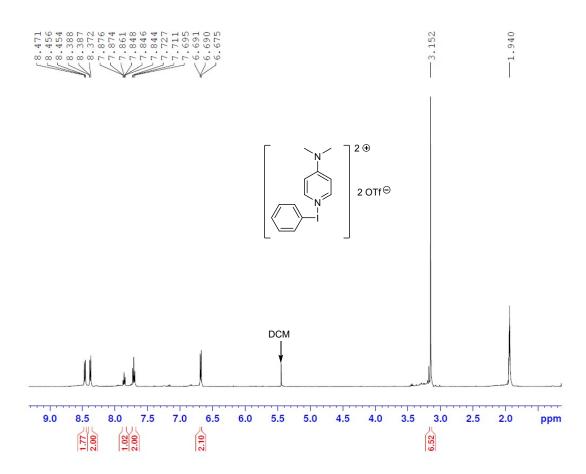


Figure S1. ¹H NMR spectrum of **2DMAP**.

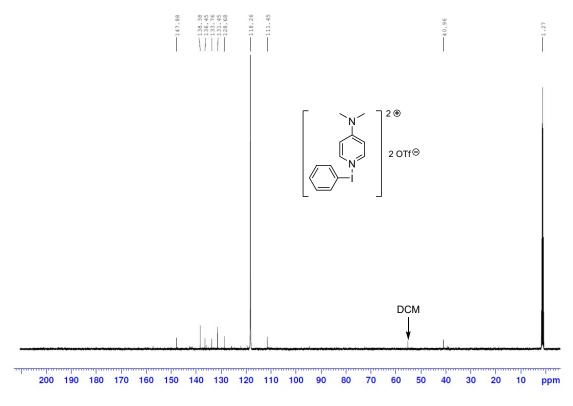


Figure S2. ¹³C NMR spectrum of **2DMAP**.

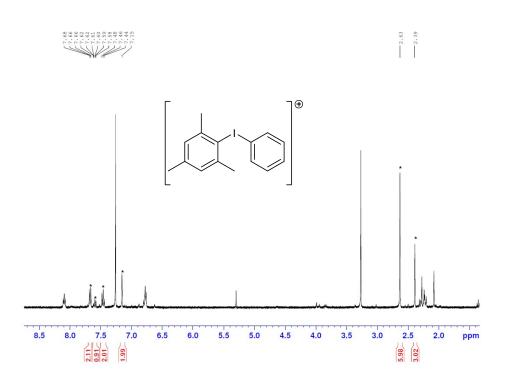


Figure S3. 1H NMR of reaction between **2DMAP** and toluene where * indicates shifts of [Ph-I-Mes]⁺.

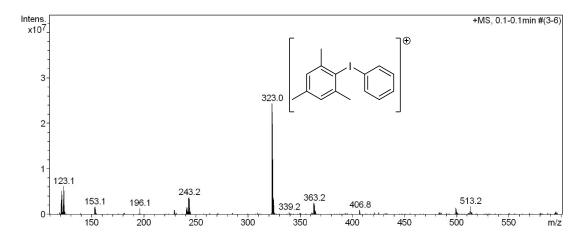


Figure S4. Mass spectrum of reaction between **2DMAP** and mesitylene.

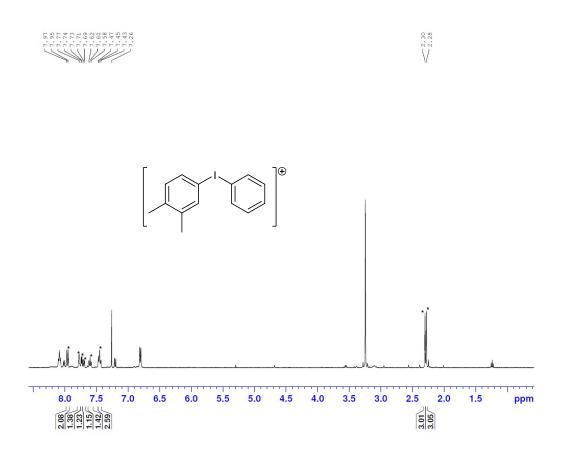


Figure S5. 1H NMR of reaction between **2DMAP** and 1,2-xylene where * indicates shifts of [Ph-I-3,4-dimethylbenzene]⁺.

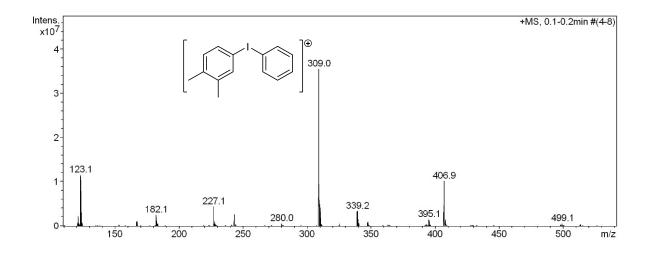


Figure S6. Mass spectrum of reaction between **2DMAP** and 1,2-xylene.

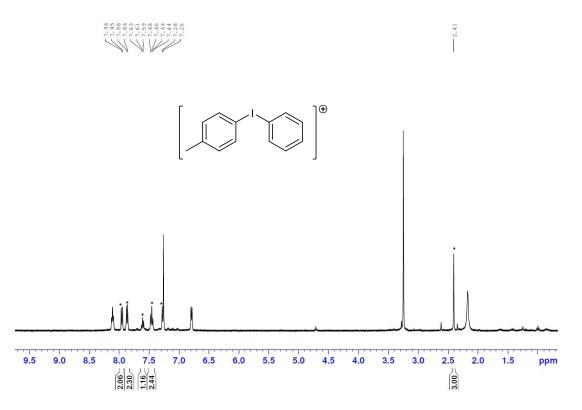


Figure S7. 1H NMR of reaction between **2DMAP** and mesitylene where * indicates shifts of [Ph-I-*p*-tol]⁺.

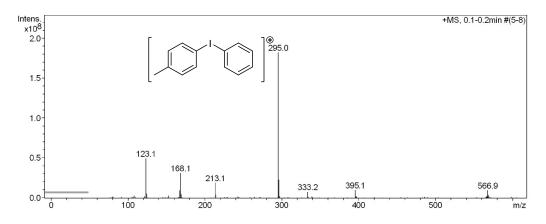


Figure S8. Mass spectrum for reaction between **2DMAP** and toluene.

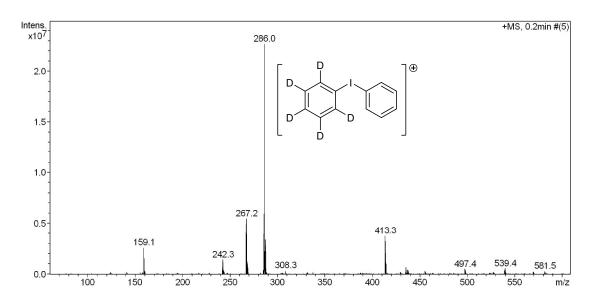


Figure S9. Mass spectrum for reaction between **1Pyr** and BF_3 .OEt₂ in C_6D_6 .

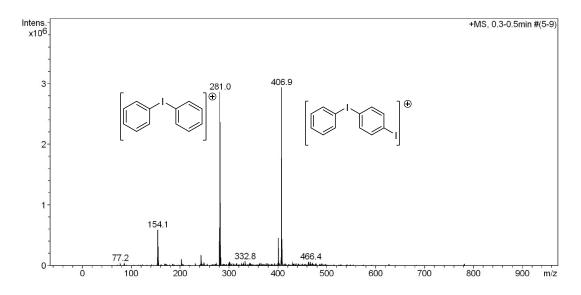


Figure S10. Mass spectrum for reaction between **1Pyr**, BF_3 .OEt₂ and C_6H_6 .

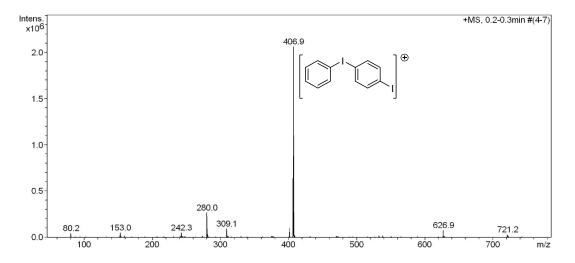


Figure S11. Mass spectrum for reaction between ${\bf 1Pyr}$ and ${\sf BF}_3.{\sf OEt}_2.$

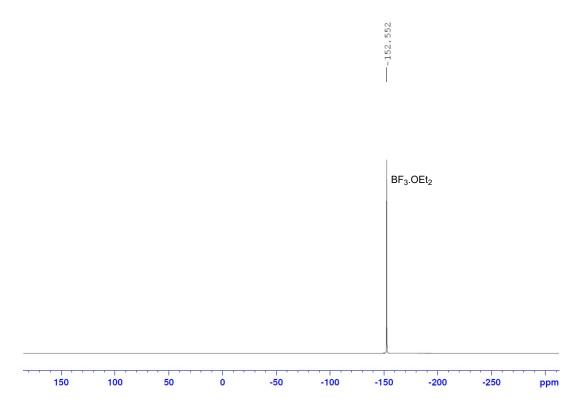


Figure S12. $^{19}\mathsf{F}$ NMR of $\mathsf{BF}_3.\mathsf{OEt}_2$ in $\mathsf{CD}_3\mathsf{CN}.$

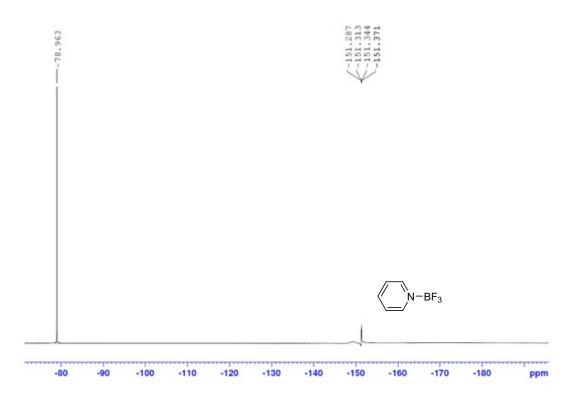


Figure S13. ^{19}F NMR from reaction between 1Pyr and $\text{BF}_3.\text{OEt}_2.$

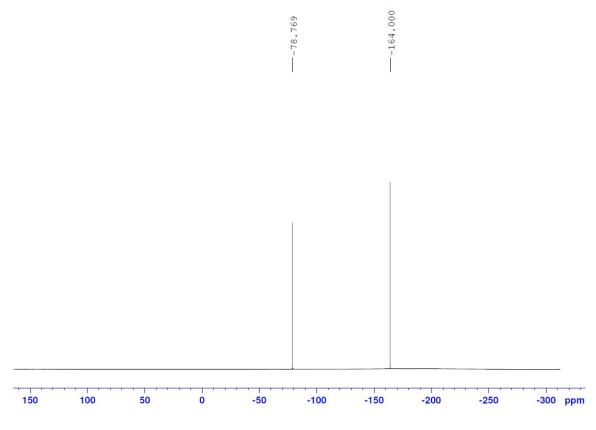


Figure S14. ¹⁹F NMR of TBA-OTf in CD₃CN with C_6F_6 as internal standard calibrated to –164 ppm.

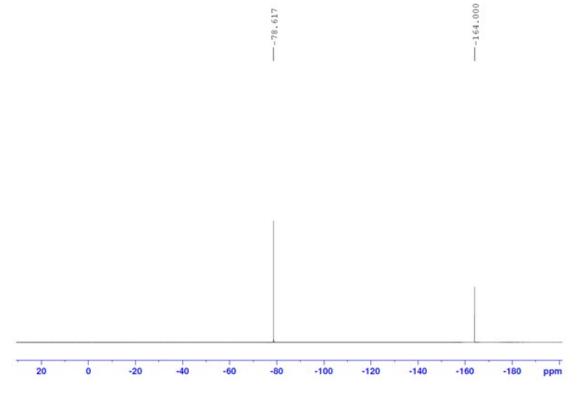


Figure S15. ¹⁹F NMR of **2DMAP** in CD₃CN with C_6F_6 as internal standard calibrated to –164 ppm.

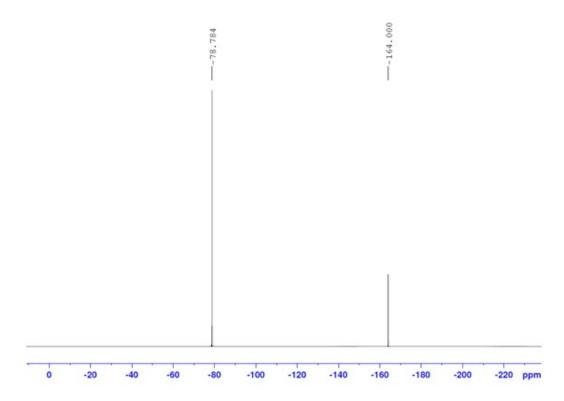


Figure S16. ¹⁹F NMR of **1DMAP** in CD₃CN with C_6F_6 as internal standard calibrated to –164 ppm.

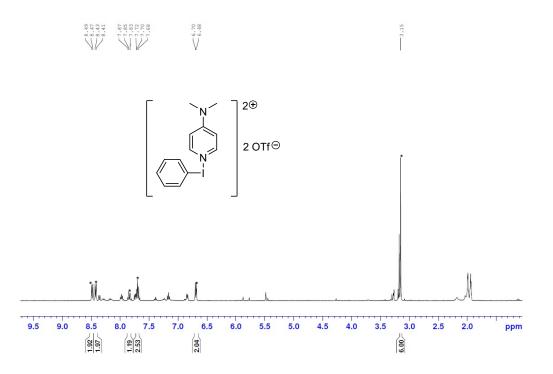


Figure S17. *In situ* ¹H NMR of reaction between PhI(OAc)(OTf) and TMS-DMAP, where * indicates shifts of **2DMAP**.

Theoretical Calculations

Unless noted, all calculations were carried out with Orca 5.0.1.⁴⁻⁵ Geometries were optimised using the B3LYP functional⁶⁻⁷ inclusive of D3(BJ) empirical dispersion⁸ together with the def2-TZVPPD basis set⁹⁻¹⁰ and associated ECPs for heavier atoms. Solvation was included in geometry optimizations with the CPCM solvation model¹¹⁻¹² with parameters for dichloromethane solvent. All calculations utilised the RIJCOSX.¹³ Harmonic frequency calculations were carried out analytically to confirm that optimized geometries were minima. Natural bond orbital (NBO) analysis was carried out with NBO 6.0¹⁴ coupled to Orca 5.0.1.

Cartesian Coordinates of Optimized Geometries (Å)

B3LYP-D3(BJ)/def2-TZVPPD (CPCM, dichloromethane)

1DMAP [PhI(DMAP)₂]²⁺

Ι	-0.756364	0.000385	-0.006075
Ν	-0.657408	-2.221404	-0.002243
Ν	-0.655047	2.222080	-0.011037
Ν	-0.442287	6.356603	-0.025973
Ν	-0.443642	-6.355894	0.005115
С	-0.604492	2.908977	1.151937
Η	-0.624430	2.326081	2.061820
С	1.355771	-0.000648	0.019556
С	-0.639436	-2.903672	1.164451
Н	-0.684457	-2.317041	2.071033
С	2.024863	0.005588	-1.195016
Н	1.492580	0.010653	-2.134576
С	-0.567373	-4.266373	1.208940
Н	-0.557854	-4.746374	2.173357
С	-0.531284	4.271830	1.188944
Н	-0.496301	4.755618	2.150877
С	-0.509243	-5.019907	0.002897
С	-0.507781	5.020615	-0.021255
С	3.415768	0.004926	-1.163415
Н	3.965952	0.009611	-2.094178
С	-0.438216	-7.096033	1.265049
Н	0.432149	-6.834363	1.869119
Н	-0.401661	-8.157254	1.046546
Н	-1.341730	-6.891352	1.841419
С	-0.388568	7.100674	1.230549
Н	-1.283614	6.921981	1.828669
Н	-0.327011	8.159678	1.007050
Н	0.488265	6.817576	1.814955
С	4.090486	-0.001920	0.053466
Н	5.171701	-0.002420	0.066869
С	-0.631457	2.901946	-1.179022
Η	-0.671427	2.313371	-2.084587
С	-0.600475	-2.905876	-1.166347

Η	-0.615680	-2.321044	-2.075087
С	1.994561	-0.007479	1.250303
Н	1.439260	-0.012052	2.176476
С	-0.526746	-4.268635	-1.205825
Н	-0.486343	-4.750380	-2.168559
С	-0.559848	4.264599	-1.225980
Η	-0.545648	4.742582	-2.191328
С	3.385833	-0.008124	1.253204
Η	3.912824	-0.013353	2.197285
С	-0.383271	-7.097214	-1.252731
Н	0.498142	-6.815054	-1.830721
Η	-0.326081	-8.156886	-1.031276
Н	-1.273881	-6.914826	-1.856282
С	-0.433397	7.094149	-1.287406
Н	-1.335300	6.888274	-1.865901
Н	-0.397360	8.155809	-1.070993
Н	0.438648	6.831252	-1.888498

1pyr [PhI(pyr)₂]²⁺

Ι	-0.873303	-0.000253	-0.005630
Ν	-0.778977	-2.252368	-0.005533
Ν	-0.778965	2.251958	-0.005448
С	-0.752205	2.909496	1.164619
Η	-0.778555	2.313694	2.065433
С	1.236575	0.000042	0.005603
С	-0.756150	-2.909745	1.164766
Η	-0.785023	-2.313835	2.065426
С	1.893590	0.002884	-1.215988
Η	1.354041	0.004859	-2.151329
С	-0.695554	-4.289379	1.194222
Η	-0.677084	-4.799045	2.146016
С	-0.690854	4.289139	1.193691
Η	-0.669234	4.798853	2.145394

С	-0.660695	-4.988734	-0.006633
С	-0.659416	4.988292	-0.007320
С	3.284186	0.003204	-1.192939
Н	3.828063	0.005346	-2.127272
С	3.966437	0.000775	0.019941
Н	5.047676	0.001078	0.025620
С	-0.752206	2.907953	-1.176461
Η	-0.778367	2.310899	-2.076444
С	-0.748859	-2.908531	-1.176328
Η	-0.771902	-2.311509	-2.076423
С	1.880711	-0.002489	1.234016
Η	1.331502	-0.004836	2.163735
С	-0.688158	-4.288191	-1.206885
Η	-0.663879	-4.796793	-2.159117
С	-0.690981	4.287549	-1.207412
Н	-0.669421	4.796050	-2.159763
С	3.271486	-0.002053	1.225562
Н	3.805536	-0.003920	2.165543
Н	-0.611327	6.068258	-0.008038
Н	-0.613115	-6.068723	-0.007022

2DMAP [PhI(DMAP)]²⁺

1.444358	-1.342908	-0.041232
0.715192	0.571124	-0.025278
-0.736650	4.416772	0.002012
-0.356246	-2.394108	-0.010555
0.499332	1.204056	1.169823
0.730574	0.651579	2.067350
-0.936795	-2.733024	-1.231002
-0.473736	-2.469986	-2.170524
0.016748	2.469632	1.202592
-0.132563	2.922943	2.168435
-0.276113	3.174453	-0.006494
-2.140196	-3.422591	-1.192785
-2.621228	-3.702253	-2.119430
-0.955494	5.124503	1.267019
-1.687915	4.598394	1.879077
-1.330458	6.116886	1.047879
-0.021507	5.215761	1.821972
-2.720401	-3.752805	0.030314
-3.658137	-4.290899	0.046559
0.443738	1.200316	-1.210876
0.632663	0.644704	-2.116278
-0.904339	-2.715406	1.229506
-0.416517	-2.439176	2.152602
-0.039805	2.465707	-1.225457
-0.232708	2.916087	-2.184917
-2.108559	-3.404537	1.232841
-2.565268	-3.670241	2.175767
-1.020123	5.117640	-1.254065
-1.767863	4.577577	-1.834374
-1.404098	6.103600	-1.021634
-0.111456	5.223501	-1.847353
	-0.736650 -0.356246 0.499332 0.730574 -0.936795 -0.473736 0.016748 -0.132563 -0.276113 -2.140196 -2.621228 -0.955494 -1.687915 -1.330458 -0.021507 -2.720401 -3.658137 0.443738 0.632663 -0.904339 -0.416517 -0.039805 -0.232708 -2.108559 -2.565268 -1.020123 -1.767863 -1.404098	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

2pyr [PhI(pyr)]²⁺

Ι	1.385136	-0.017217	-0.169667
Ν	0.017058	1.580027	-0.097836
С	0.037973	-1.584152	-0.069051
С	-0.157070	2.217097	1.080959
Η	0.417360	1.871632	1.926490
С	-0.427768	-2.120575	-1.271974

Η	-0.101256	-1.737015	-2.227300
С	-1.050353	3.263235	1.151066
Η	-1.183017	3.769080	2.095959
С	-1.755347	3.638496	0.012609
С	-1.330519	-3.168710	-1.189779
Η	-1.715088	-3.611103	-2.097766
С	-1.736909	-3.648017	0.054933
Η	-2.440962	-4.467140	0.104927
С	-0.646173	1.919015	-1.225659
Η	-0.438861	1.351382	-2.120205
С	-0.343280	-2.044526	1.193007
Η	0.048856	-1.603624	2.097432
С	-1.550177	2.957218	-1.182774
Η	-2.079009	3.222547	-2.086256
С	-1.247436	-3.092993	1.237381
Η	-1.567323	-3.478388	2.195056
Η	-2.459096	4.457695	0.056564

[PhI(DMAP)(OTf)]⁺

т	0 102250	0 450705	0 200519
I	-0.193350	-0.452785 -0.084489	-0.399518
0	-2.836739 -4.343496	-0.084489	1.638224 0.099345
0			
0	-2.430588	-0.093653	-0.780740
N	1.907094	-0.645037	-0.133016
N	5.993149	-0.898255	0.395783
S	-3.436684	0.048037	0.333394
F	-3.655647	-2.580402	0.192722
F	-5.012708	-1.504043	-1.116700
F	-5.394999	-1.578272	1.020931
С	-0.074956	1.639026	-0.183230
С	4.673585	-0.817860	0.225094
С	2.431044	-0.683028	1.119596
Η	1.731513	-0.638782	1.941105
С	-0.246168	2.173835	1.085164
Η	-0.447584	1.547126	1.940689
С	6.889677	-0.940155	-0.759146
Η	6.696603	-1.823938	-1.368804
Н	6.766880	-0.049663	-1.376400
Η	7.913306	-0.978680	-0.404956
С	2.732021	-0.690680	-1.211406
Н	2.264365	-0.655951	-2.184139
С	6.566828	-0.948171	1.740456
Н	6.331314	-0.040382	2.297691
Н	6.188263	-1.810344	2.290497
Н	7.643804	-1.035413	1.656620
С	0.165181	2.399836	-1.318352
Η	0.283011	1.944831	-2.290561
С	3.773132	-0.766604	1.328824
Η	4.127127	-0.792535	2.345882
С	-4.441118	-1.502510	0.089979
С	4.083071	-0.778160	-1.071521
Η	4.683639	-0.815610	-1.964919
С	-0.162282	3.556135	1.213650
Η	-0.293280	4.005514	2.188197
С	0.244452	3.778978	-1.160174
Н	0.428915	4.401150	-2.024912
С	0.082251	4.351431	0.098126
Η	0.142361	5.425356	0.209287

[PhI(pyr)(OTf)]⁺

I	11.770139	4.4452.58	13.252055
S	13.126057	5.195585	10.307474
F	10.620445	5.139146	9.479233
г	10.020445	5.159140	9.4/9233
0	14.386231	4.897271	9.689955
Ο	12.713805	4.086322	11.261939
Ν	10.969824	4.709591	15.277359
F	11.939172	3.773238	8.423667
F	12.036646	5.904992	8.020690
0	12.902676	6.503136	10.866568
С	13.716335	4.754847	13.987505
С	9.972167	5.035695	17.802697
С	10.742928	5.953366	15.736367
Η	10.970716	6.773320	15.071152
С	14.214507	6.049906	13.988650
Н	13.628231	6.883430	13.633229
С	10.717180	3.622232	16.027300
Η	10.927919	2.659119	15.586555
С	14.433750	3.645380	14.412430

Н	14.010350	2.652406	14.385707
С	10.241868	6.144074	17.007930
Н	10.066514	7.149615	17.360064
С	11.845903	4.986739	8.968457
С	10.212886	3.760492	17.304579
Н	10.016027	2.876538	17.892596
С	15.512273	6.233061	14.452525
Н	15.933236	7.228692	14.465166
С	15.729365	3.859492	14.868729
Η	16.318186	3.017020	15.203793
С	16.263054	5.144878	14.887541
Η	17.273474	5.299047	15.240308
Η	9.577742	5.164448	18.800800

References:

- 1. R. Weiss, J. Seubert, Angew. Chem. Int. Ed. 1994, 33, 891-893.
- E. Chénard, A. Sutrisno, L. Zhu, R. S. Assary, J. A. Kowalski, J. L. Barton, J. A. Bertke, D. L. Gray, F. R. Brushett, L. A. Curtiss, J. S. Moore, *J. Phys. Chem.* 2016, 120, 16, 8461–8471.
- 3. A. P. Robertson, S. S. Chitnis, S. Chhina, H.J. Cortes S, B. O. Patrick, H. A. Jenkins, N. Burford. *Can. J. Chem.* **2016**, 94(4), 424-429.
- 4. F. Neese, WIREs Comp. Mol. Sci., 2012, 2, 73-78
- 5. F. Neese, WIREs Comp. Mol. Sci., 2018, 8, e1327
- 6. A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.
- 7. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785-789.
- 8. S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465.
- 9. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
- 10. D. Rappoport, F. Furche, J. Chem. Phys. 2010, 133, 134105.
- 11. V. Barone, M. Cossi, J. Phys. Chem. A 1998, 102, 1995-2001.
- 12. M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 2003, 24, 669-681.
- 13. F. Neese, F. Wennmohs, A. Hansen, U. Becker, Chem. Phys., 2009, 356, 98.
- 14. E. D. Glendening, C. R. Landis, F. Weinhold, J. Comput. Chem. 2013, 34, 1429-1437