Low Temperature Induced Highly Stable Zn Metal Anodes for Aqueous Zinc-ion Batteries

Huibing He^{a, *}, Hongyu Qin^a, Fang Shen^a, Nan Hu^a, Jian Liu^{b, *}

 ^a School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004, PR China
 ^b School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC V1V 1V7 Canada

Experimental Section

1. Zn foil pretreatment

Zinc foil (0.2 mm in thickness) was cut into round plates ($\Phi = 14$ mm) and cleaned by sonication sequentially in deionized water and absolute alcohol for 15 minutes, followed by nature drying before using as Zn metal anodes for ZIBs.

2. Structural characterizations

The crystal structure of the Zn foils before and after cycling was examined by Powder Xray diffraction (XRD, Bruker D8-Advance X-ray diffractometer) using Cu K α radiation (1.54056 Å). The morphology was observed by using a scanning electron microscope (SEM, Tescan MIRA3 FEGESEM) equipped with an energy-dispersive X-ray spectrometer (EDX). The Zn anodes were thoroughly washed with deionized water to remove residual salt and glass fiber before SEM observations. The optical images were obtained on a DMM-900C (Shanghai Caikon Optical Instrument Co., Ltd) metallographic microscope by using an *in-situ* optical electrochemical cell (Hefei in-situ Technology Co., Ltd). The contact angle between Zn and the electrolyte was measured by using a contact angle goniometer (Ramé Hart 260) with an electrolyte droplet of 5 µL.

3. Electrochemical measurements

CR2032 coin cells were assembled in air to evaluate electrochemical performance by testing on a Neware BTS 4000 battery tester. Zn|Zn symmetric cells were assembled with the same two zinc plates, glass fibers (separator, $\Phi = 5/8$ inch) and 3 M Zn(SO₃CF₃)₂ aqueous electrolyte. The electrolyte loading of Zn|Zn symmetric cells was set to be 120 μ L. Electrochemical Impedance Spectroscopy (EIS) and linear polarization (corrosion test) were performed on a Biologic VSP Potentiostat/Galvanostat Station. EIS was conducted in a frequency range of 100 kHz to 0.01 Hz with a voltage amplitude of 5 mV. For the corrosion test, the working (WE), counter (CE), and reference (REF) electrodes were zinc, platinum, and Ag/AgCl, respectively. The linear polarization technique was applied to the system by scanning between -0.7 and 0.4 V vs. Ag/AgCl/KCl (3.5 M) from its open-circuit voltage (OCV) at a rate of 2 mV s⁻¹ in 3 M Zn(SO₃CF₃)₂ solution. The hydrogen evolution performance was collected through LSV with a potential range of -0.9~-1.6 V (*vs*. Ag/AgCl) at a scan rate of 1 mV s⁻¹. The surface area of the working electrode was 1 (1 × 1) cm².

Symmetric cell configuration	Current density (mA cm ⁻²)	Lifespan (h)	Cumulative Specific Capacity (mAh cm ⁻²)	Overpotential (mV)	Columbic efficiency (%)	Ref.
Sc ₂ O ₃ @Zn	1	200	200	48	99.85 (1.13 mA cm ⁻² , 0.56 mAh cm ⁻²)	[1]
3D ZnF ₂ @Zn	1	800	800	71.5	99.5 (5 mA cm ⁻² , 1 mAh cm ⁻²)	[2]
ZnS@Zn	2	1100	2200	65	99.2 (2 mA cm ⁻² , 1 mAh cm ⁻²)	[3]
PAM/PVP@Zn	0.2	2220	440	180	98.8 (1 mA cm ⁻² , 0.17 mAh cm ⁻²)	[4]
β-PVDF@Zn	0.25	2000	500	80	96.5 (0.36 mA cm ⁻² , 0.18 mAh cm ⁻²)	[5]
PANZ@Zn	1	1145	1145	150	99.8 (1 mA cm ⁻² , 1 mAh cm ⁻²)	[6]
CNT@Zn	0.15	400	60	80	/	[7]
HsGDY@Zn	0.5	2400	1200	60	/	[8]
rGO@Zn	1	1200	1200	40	/	[9]
Bare Zn (0 °C)	1	>2500	> 2500	120	98.3 (0.5 mA cm ⁻² , 0.5 mAh cm ⁻²)	This work

 Table S1. Comparison of the electrochemical performance of Zn anodes in this work and others.

Temperatur e		0	5 th	10 th	15 th
0 °C	$R_s(\Omega)$	1.4	1.7	4.2	2.0
	$R_{SEI}(\Omega)$	1978.0	15.6	15.1	13.8
	$R_{CT}(\Omega)$	2075.0	81.7	59.0	35.9
20 °C	$R_s(\Omega)$	1.2	1.5	1.6	1.5
	$R_{SEI}(\Omega)$	389.9	1.8	0.6	0.6
	$R_{CT}(\Omega)$	537.5	29.0	19.0	16.1
50 °C	$R_s(\Omega)$	1.5	2.0	2.0	2.3
	$R_{SEI}(\Omega)$	18.4	0.2	0.2	0.8
	$R_{CT}(\Omega)$	186.0	4.9	4.2	5.1

Table S2. EIS parameters obtained by fitting the data with the equivalent circuit inFigure 2a and Figure S5-S7.

Table S3 Electrochemical corrosion parameters of Zn metal foils at 0, 20, and 50 °C.

Samples	E _{corr} (mV)	I _{corr} (µA cm ⁻²)	β _a (mV dec ⁻¹)	β_c (mV dec ⁻¹)
0 °C	-877.2	2.69	148.9	149.6
20 °C	-895.8	5.75	155.5	155.7
50 °C	-909.3	19.05	169.8	160.6

Fig. S1 Zn stripping/plating performance (a) and ZNO (b) of Zn anode cycled at -10 °C.

As expected (**Fig. S1**), the bare Zn anode at a lower temperature of -10 °C also exhibits an extended cycling life of 400 h without failure, but with the highest ZNO of -218.6 mV to initiate the Zn nucleation compared to that cycling at 0 °C (-152.8 mV), 20 °C (-121.5 mV), and 50 °C (-113.7 mV). This might be due to the sluggish Zn²⁺ transportation kinetics at low temperatures, which would intensify the Zn electrode polarization but help induce facile Zn-ion stripping/plating, contributing to the high stability and reversibility of Zn metal anodes.

Fig. S2. SEM images of the glass-fiber separators recovered from the Zn|Zn cells at 0 °C, 20 °C, and 50 °C.

Fig. S3 Optical images of Zn foils stored at 0 °C (a), 20 °C (b) and 50 °C (c) in 3 M Zn(CF₃SO₃)₂ aqueous electrolyte for one week

Fig. S4 HER curve of Zn anode measured at 0, 20, and 50 °C.

Fig. S5 EIS spectra of Zn symmetric cells cycled at 0 °C.

Fig. S6 EIS spectra of Zn symmetric cells cycled at 20 °C.

Fig. S7 EIS spectra of Zn symmetric cells cycled at 50 °C.

- M. Zhou, S. Guo, G. Z. Fang, H. M. Sun, X. X. Cao, J. Zhou, A. Q. Pan and S. Q. Liang, *J. Energy Chem.*, 2021, 55, 549.
- Y. Yang, C. Liu, Z. Lv, H. Yang, Y. Zhang, M. Ye, L. Chen, J. Zhao and C. C. Li, *Adv. Mater.*, 2021, **33**, e2007388.
- J. Hao, B. Li, X. Li, X. Zeng, S. Zhang, F. Yang, S. Liu, D. Li, C. Wu and Z. Guo, *Adv. Mater.*, 2020, **32**, e2003021.
- Z. Li, W. Deng, C. Li, W. Wang, Z. Zhou, Y. Li, X. Yuan, J. Hu, M. Zhang, J. Zhu, W. Tang, X. Wang and R. Li, *J. Mater. Chem. A*, 2020, 8, 17725.
- 5. L. T. Hieu, S. So, I. T. Kim and J. Hur, Chem. Eng. J., 2021, 411, 128584.
- P. Chen, X. Yuan, Y. Xia, Y. Zhang, L. Fu, L. Liu, N. Yu, Q. Huang, B. Wang, X. Hu,
 Y. Wu and T. van Ree, *Adv. Sci.*, 2021, 8, e2100309.
- M. Li, Q. He, Z. L. Li, Q. Li, Y. X. Zhang, J. S. Meng, X. Liu, S. D. Li, B. K. Wu, L. N. Chen, Z. Liu, W. Luo, C. H. Han and L. Q. Mai, *Adv. Energy Mater.*, 2019, 9, 1901469.
- Q. Yang, Y. Guo, B. Yan, C. Wang, Z. Liu, Z. Huang, Y. Wang, Y. Li, H. Li, L. Song, J. Fan and C. Zhi, *Adv. Mater.*, 2020, **32**, e2001755.

9. A. Xia, X. Pu, Y. Tao, H. Liu and Y. Wang, Appl. Surf. Sci., 2019, 481, 852-859.