Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Nickel-Catalyzed Cyclization of 1,7-Enynes for the Selective Synthesis of Dihydrocyclobuta[*c*]quinolin-3-ones and Benzo[*b*]azocin-2-ones

Qiao Li,^{a, b †} Yun Cai,^{a †} Yuanyuan Hu,^a Hongwei Jin,^a Fener Chen,^{b, c *} Yunkui Liu,^{a *} and Bingwei Zhou^{a *} ^aCollege of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China. E-mail: <u>ykuiliu@zjut.edu.cn</u>; zhoubw@zjut.edu.cn

^bInstitute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China.

^cEngineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China. E-mail: rfchen@fudan.edu.cn

[†]These authors contributed equally.

Table of Contents

1.	General Information	S2
2.	Preparation of 1,7-Enynes	S3
3.	Nickel-Catalyzed Divergent Cyclization of 1,7-Enynes	S 9
	3.1 Optimization of reaction conditions	S 9
	3.2 Experimental details and characterization of products	S10
	3.3 Gram-scale reaction	S28
4	Mechanistic experiments	S29
	4.1 Radical inhibition reaction	S29
	4.2 Time evaluation for the model reaction	S30
	4.3 Formation of 3a from 2a	S30
5.	X-Ray Crystallography of 2i	S31
6.	References	S38
7.	¹ H and ¹³ C NMR Spectra	S39

1. General Information

Unless otherwise noted, all reactions were carried out in flame-dried reaction vessels with Teflon screw caps under nitrogen. Solvents were purified and dried according to standard methods prior to use. All commercially available reagents were obtained from chemical suppliers and used after proper purification if necessary. Flash column chromatography was performed on silica gel (200-300 mesh) with the indicated solvent mixtures. TLC analysis was performed on pre-coated, glass-backed silica gel plates and visualized with UV light.

The ¹H NMR and ¹³C NMR spectra were recorded on a Bruker 500 AV spectrometers. Chemical shifts (δ) were reported as parts per million (ppm) downfield from tetramethylsilane and the following abbreviations were used to identify the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, dq = doublet of quartets, br = broad and all combinations thereof can be explained by their integral parts. Coupling constant (*J*) was reported in hertz unit (Hz). The high resolution mass spectra (HRMS) were recorded on an Agilent 6210 LC/TOF spectrometer.

2 Preparation of 1,7-Enynes

1, 7-Enynes are prepared according to the reported procedures¹⁻⁴.

General procedure for synthesis of **S1**: To the suspension of $Pd(PPh_3)_2Cl_2$ (0.1 mmol, 1 mol%) and CuI (0.2 mmol, 2 mol%) in a mixture of THF (20 mL) and Et₃N (20 mL), was added aryl iodide (10 mmol) and phenylacetylene (12 mmol). The mixture was allowed to react for 12 h at 70 °C. Then the crude mixture was filtered through a shot pad of celite and washed with CH_2Cl_2 (10 mL) for three times, and the combined organic layer was concentrated under reduced pressure. The resulting crude mixture was purified by flash chromatography using ethyl acetate and petroleum ether as eluent.

General procedure for synthesis of **S2**: To a stirred solution of **S1** (1.0 equiv.) in CH_2Cl_2 (5 mL) was added methacryloyl chloride (1.5 equiv.) and Et_3N (2.0 equiv.). The resulted mixture was stirred at room temperature for 12 h. Then the reaction was quenched by saturated NaHCO₃ solution and the reaction mixture was extracted with CH_2Cl_2 (3 × 5 mL). The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated in vacuo. The resulting crude mixture was purified by flash chromatography using ethyl acetate and petroleum as eluent.

General procedure for the synthesis of substrates 1: To a solution of NaH (2.0 equiv.) in THF (5 mL) at 0 °C was added a solution of S2 (1.0 equiv.) in THF dropwise and the reaction mixture was stirred for 30 min. Afterwards iodomethane or alkyl bromide (1.5 equiv.) was added and the reaction mixture was stirred at room temperature followed by TLC. The reaction was quenched by water and the reaction

mixture was extracted with CH_2Cl_2 for three times. The combined organic layer was washed with brine and dried over anhydrous Na_2SO_4 . The solvent was removed under vacuum and the residue was purified by a flash column chromatography on silica gel using ethyl acetate and petroleum as eluent.

Characterization of new compounds:

N-(4, 5-dichloro-2-(phenylethynyl)phenyl)-N-methylmethacrylamide (1f) white solid, mp: 117-118 °C.

¹**H NMR (500 MHz, CDCl3)** δ 7.64 (s, 1H), 7.54-7.51 (m, 2H), 7.40-7.37 (m, 3H), 7.31 (s, 1H), 5.08 (d, *J* = 34.5 Hz, 2H), 3.36 (s, 3H), 1.89 (s, 3H).

¹³C NMR (125 MHz, CDCl3) δ 172.03, 145.55, 140.02, 133.82, 132.87, 131.74, 131.66, 129.98, 129.32, 128.59, 122.31, 121.85, 119.76, 96.54, 83.74, 37.00, 20.05.

1f HRMS(ESI) Calculated for $C_{19}H_{16}Cl_2NO^+$ ([M+H]⁺): 344.05307, found: 344.06035.

N-(2-((4-ethylphenyl)ethynyl)phenyl)-N-methylmethacrylamide (1g)

white solid, mp: 97-98 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.55 (dd, J₁ = 7.4, J₂ = 1.2 Hz, 1H), 7.46 (d, J = 8.1 Hz, 2H), 7.34-7.27 (m, 2H), 7.19 (t, J = 7.2 Hz, 3H), 5.02 (d, J = 16.6 Hz, 2H), 3.38 (s, 3H), 2.67 (q, J = 7.6 Hz, 2H), 1.85 (s, 3H), 1.25 (t, J = 7.6 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 172.31, 146.28, 145.32, 140.50, 132.84, 131.66, 129.01, 128.20, 128.06, 127.45, 122.54, 119.78, 118.90, 95.10, 85.13, 36.86, 28.87, 20.15, 15.32.

HRMS(ESI) Calculated for C₂₁H₂₁NONa + ([M+Na]⁺): 326.16231, found: 326.1515

N-(2-([1,1'-biphenyl]-4-ylethynyl)phenyl)-N-methylmethacrylamide (1h)

white solid, mp: 121-123 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.65-7.61 (m, 7H), 7.48 (t, *J* = 7.5 Hz, 2H), 7.42-7.32 (m, 3H), 7.23 (d, *J* = 7.6 Hz, 1H), 5.06 (d, *J* = 9.8 Hz, 2H), 3.42 (s, 3H), 1.89 (s, 3H).
¹³C NMR (125 MHz, CDCl3) δ 172.42, 146.38, 141.53, 140.43, 140.23, 132.92, 132.12, 129.32, 128.93, 128.25, 127.79, 127.56, 127.20, 127.08, 122.31, 121.45, 119.19, 94.74, 86.45, 37.01, 20.24.

HRMS(ESI) Calculated for C₂₅H₂₂NO⁺ ([M+H]⁺): 352.16231, found: 352.16959.

N-methyl-N-(2-((4-(methylthio)phenyl)ethynyl)phenyl)methacrylamide (1j) white solid, mp: 96-99 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.54 (d, J = 7.4 Hz, 1H), 7.45 (d, J = 8.3 Hz, 2H), 7.36-7.29 (m, 2H), 7.21 (t, J = 7.5 Hz, 3H), 5.02 (s, 2H), 3.38 (s, 3H), 2.51 (d, J = 0.9 Hz, 3H), 1.85 (s, 3H).

¹³C NMR (125 MHz, CDCl3) δ 172.38, 146.24, 140.36, 140.16, 132.77, 131.90, 129.17, 128.19, 127.51, 125.77,

122.31, 119.16, 118.68, 94.64, 85.86, 36.97, 20.17, 15.26.

HRMS(ESI) Calculated for C₂₀H₂₀NOS⁺ ([M+H]⁺): 322.11873, found: 322.12601.

Tert-butyl(4-((2-(N-methylmethacrylamido)phenyl)ethynyl)phenyl)carbamate (1k)

white solid, mp: 168-169 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.52 (d, J = 6.5 Hz, 1H), 7.43 (dd, $J_1 = 18.2$, $J_2 = 8.6$ Hz, 4H), 7.32-7.27 (m, 2H), 7.18 (d, J = 7.5 Hz, 1H), 5.30 (s, 1H), 5.01 (d, J = 9.0 Hz, 2H), 3.37 (s, 3H), 1.84 (s, 3H), 1.52 (s, 9H).

¹³C NMR (125 MHz, CDCl₃) δ 172.43, 152.51, 140.39, 139.24, 132.74, 132.48, 128.93, 128.13, 127.48, 122.56, 119.07, 118.19, 116.60, 94.94, 84.95, 80.77, 53.43, 36.95, 28.31, 20.12.

HRMS(ESI) Calculated for $C_{24}H_{26}N_2O_3Na^+$ ([M+Na]⁺): 413.19434, found:

413.18356.

N-(2-((4-(dimethylamino)phenyl)ethynyl)phenyl)-N-methylmethacrylamide (11)

white solid, mp: 127-129 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 7.54-7.49 (m, 1H), 7.41 (d, *J* = 8.7 Hz, 2H), 7.28-7.25 (m, 2H), 7.19-7.13 (m, 1H), 6.66 (d, *J* = 8.8 Hz, 2H), 5.02 (d, *J* = 26.3 Hz, 2H), 3.38 (s, 3H), 3.00 (s, 6H), 1.86 (s, 3H).

¹³C NMR (125 MHz, CDCl3) δ 172.38, 150.42, 145.78, 140.57, 132.86, 132.36, 128.19, 128.11, 127.37, 123.23, 118.72, 111.83, 109.27, 96.48, 83.98, 40.15, 36.78, 20.17.

HRMS(ESI) Calculated for C₂₁H₂₂N₂ONa⁺ ([M+Na]⁺): 341.17321, found: 341.16243.

N-(2-((2-methoxyphenyl)ethynyl)phenyl)-N-methylmethacrylamide (1q)

white solid, mp: 85-87 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.59 (dd, $J_1 = 7.3$, $J_2 = 1.7$ Hz, 1H), 7.49 (dd, $J_1 = 7.5$, $J_2 = 1.6$ Hz, 1H), 7.34-7.28 (m, 3H), 7.15 (d, J = 7.1 Hz, 1H), 6.94 (dd, $J_1 = 10.9$, $J_2 = 4.0$ Hz, 1H), 6.90 (d, J = 8.3 Hz, 1H), 5.04 (d, J = 64.7 Hz, 2H), 3.91 (s, 3H), 3.40 (s,

3H), 1.84 (s, 3H).

¹³C NMR (125 MHz, CDCl3) δ 172.15, 160.27, 146.20, 140.66, 133.34, 132.91, 130.25, 128.95, 128.24, 127.43, 122.67, 120.47, 118.36, 111.97, 110.66, 91.60, 89.72, 55.69, 36.60, 20.20.

HRMS(ESI) Calculated for C₂₀H₁₉NO₂Na⁺ ([M+Na]⁺): 328.14158, found: 328.13080.

N-(2-((2-chlorophenyl)ethynyl)phenyl)-N-methylmethacrylamide (1r)

¹**H NMR (500 MHz, CDCl3)** δ 7.61 (dd, $J_1 = 7.5$, $J_2 = 1.1$ Hz, 1H), 7.57 (dd, $J_1 = 7.3$, $J_2 = 1.9$ Hz, 1H), 7.44-7.41 (m, 1H), 7.38-7.34 (m, 1H), 7.32-7.25 (m, 3H), 7.17 (d, J = 7.6 Hz, 1H), 5.04 (d, J = 40.4 Hz, 2H), 3.39 (s, 3H), 1.84 (s, 3H).

¹³C NMR (125 MHz, CDCl3) δ 172.12, 146.37, 140.48, 135.93, 133.44, 133.32, 129.76, 129.66, 129.37, 128.32, 127.53, 126.60, 122.64, 121.91, 118.84, 91.44, 90.65, 36.92, 20.20.

HRMS(ESI) Calculated for C₁₉H₁₇ClNO⁺ ([M+H]⁺): 310.09204, found: 310.09932.

N-methyl-N-(2-(naphthalen-2-ylethynyl)phenyl)methacrylamide (1t)

white solid, mp: 102-104 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.08 (s, 1H), 7.88-7.83 (m, 3H), 7.64-7.58 (m, 2H), 7.55-7.51 (m, 2H), 7.39-7.31 (m, 2H), 7.23 (d, J = 7.5 Hz, 1H), 5.07 (d, J = 15.0 Hz, 2H), 3.45 (s, 3H), 1.89 (s, 3H).

π 13C NMR (125 MHz, CDCl3) δ 172.44, 146.38, 140.43, 133.03, 132.95, 131.67, 129.34, 128.24, 128.23, 127.95, 127.82, 127.57, 126.98, 126.72, 122.29, 119.86, 119.21, 95.23, 86.08, 37.06, 20.24.

HRMS(ESI) Calculated for C₂₃H₂₀NO⁺ ([M+H]⁺): 326.14666, found: 326.15394.

N-(2-(cyclohex-1-en-1-ylethynyl)phenyl)-N-methylmethacrylamide (1v)

white solid, mp: 57-60 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 7.43 (d, *J* = 7.0 Hz, 1H), 7.28-7.21 (m, 2H), 7.11 (d, *J* = 7.5 Hz, 1H), 6.23 (s, 1H), 4.98 (d, *J* = 9.9 Hz, 2H), 3.30 (s, 3H), 2.21-2.12 (m, 4H), 1.82 (s, 3H), 1.69-1.59 (m, 4H).

¹³C NMR (125 MHz, CDCl3) δ 172.21, 145.94, 140.41, 136.36, 132.74, 128.63, 128.08, 127.41, 122.71, 120.36, 118.69, 96.84, 83.06, 36.66, 28.91, 25.78, 22.19, 21.40, 20.18.

HRMS(ESI) Calculated for C₁₉H₂₂NO⁺ ([M+H]⁺): 280.16231, found: 280.16959.

3 Nickel-Catalyzed Divergent Cyclization of 1,7-Enynes

3.1 Optimization of reaction conditions

	Survey of the reaction parameters ^a					
	1 1	Catalyst Ligand	Ţ	_	\ <u>0</u>	
		Reductant	→ N.		N-K	
	Ö	Solvent, Temp.		- + L		
	` Ph		/ Ph		Ph	
	1a		2a		3a	
Entry	Catalyst	Ligand	Reducant	Solvent	Temp.	Yield/ 2a/3a
	(mol%)	(mol%)	(equiv.)		(°C)	(%)
1	$NiBr_2/10$	L1 /10	Zn/1	THF	60	99/0
2	$NiBr_2/10$	L1 /10	Zn/0.5	THF	60	98/0
3	$NiBr_2/10$	L1 /10	Zn/0.2	THF	60	98/0
4	$NiBr_2/10$	L1 /10	_b	THF	60	0/0
5	NiCl ₂ /10	L1 /10	Zn/0.2	THF	60	89/0
6	$Ni(acac)_2/10$	L1 /10	Zn/0.2	THF	60	0/0
7	$Ni(PPh_3)_2Br_2/10$	L1 /10	Zn/0.2	THF	60	0/0
8	$NiCl_2$.glyme/10	L1 /10	Zn/0.2	THF	60	0/0
9	Ni(dppe)Cl ₂ /10	L1 /10	Zn/0.2	THF	60	0/0
10	$Ni(OAc)_2/10$	L1 /10	Zn/0.2	THF	60	0/0
11	Ni(OTf) ₂ /10	L1 /10	Zn/0.2	THF	60	5/0
12	Ni(cod) ₂ /10	L1 /10	_b	THF	60	98/0
13	NiBr ₂ /10	L2 /10	Zn/0.2	THF	60	0/0
14	NiBr ₂ /10	L3 /10	Zn/0.2	THF	60	0/0
15	NiBr ₂ /10	L4 /10	Zn/0.2	THF	60	0/0
16	NiBr ₂ /10	L5 /10	Zn/0.2	THF	60	0/0
17	NiBr ₂ /10	L6 /20	Zn/0.2	THF	60	0/0
18	NiBr ₂ /10	L7 /20	Zn/0.2	THF	60	0/0
19	NiBr ₂ /10	L8 /10	Zn/0.2	THF	60	0/0
20	NiBr ₂ /10	L9 /10	Zn/0.2	THF	60	0/0
21	NiBr ₂ /10	L1 /10	Zn/0.2	Toluene	60	86/0
22	NiBr ₂ /10	L1 /10	Zn/0.2	CH ₃ CN	60	0/0
23	NiBr ₂ /10	L1 /10	Zn/0.2	DMF	60	35/0
24	NiBr ₂ /10	L1 /10	Zn/0.2	Dioxane	60	94/0
25	NiBr ₂ /10	L1 /10	Fe/0.2	THF	60	0/0
26	NiBr ₂ /10	L1 /10	Mn/0.2	THF	60	95/0
27	NiBr ₂ /5	<i>L1/5</i>	Zn/0.2	THF	60	98/0
28	_c	L1/5	Zn/0.2	THF	60	0/0
29	NiBr ₂ /5	_d	Zn/0.2	THF	60	0/0
30	$NiBr_2/1^e$	L1 /1	Zn/0.2	THF	60	63/0
31	NiBr ₂ /5	L1/5	Zn/0.2	THF	80	81/18
32	$NiBr_2/5$	L1/5	Zn/0.2	THF	100	50/47

S9

33	NiBr ₂ /5	L1/5	Zn/0.2	THF	120	8/91
34	NiBr ₂ /5	L1/5	Zn/0.2	THF	140	0/98

^aReaction conditions unless otherwise noted: **1a** (0.1 mmol), catalyst, ligand, reducant, solvent (1 mL), 60-140 °C, 6 h under N₂ atmosphere. Isolated yields were given. ^bNo reducant. ^cNo catalyst. ^dNo ligand. ^eFor 24 h.

3.2 Experimental details and characterization of products

General procedure for the synthesis of dihydrocyclobuta[*c*]quinolin-3-ones **2**: In a 25 mL flame-dried Schlenk tube, 1, 7-Enynes (0.4 mmol), NiBr₂ (5 mol%, 0.02 mmol), L1 (5 mol%, 0.02 mmol), Zn (0.2 equiv, 0.08 mmol), THF (4 mL) were added sequentially under nitrogen. The tube was sealed and stirred at 60 °C for 6 h. After completion, the reaction mixture was filtered through a short pad of silica gel and washed with ethyl acetate (20 mL). The combined organic phase was concentrated and purified by silica gel column chromatography (Petroleum ether : Ethyl acetate = 50 : 1) to provide the product **2**.

General procedure for the synthesis of benzo[*b*]azocin-2-ones **3**: In a 25 mL flamedried Schlenk tube, 1, 7-Enynes (0.4 mmol), NiBr₂ (5 mol%, 0.02 mmol), L1 (5 mol%, 0.02 mmol), Zn (0.2 equiv, 0.08 mmol), THF (4 mL) were added sequentially under nitrogen. The tube was sealed and stirred at 140 °C for 6 h. After completion, the reaction mixture was filtered through a short pad of silica gel and washed with ethyl acetate (20 mL). The combined organic phase was concentrated and purified by silica gel column chromatography (Petroleum ether : Ethyl acetate = 10 : 1) to provide the product **3**.

2a,4-dimethyl-1-phenyl-2,4-dihydrocyclobuta[c]quinolin-3(2aH)-one (2a)

Yield: 98% (107.8 mg), white solid, mp: 78-79 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, J = 7.4 Hz, 1H), 7.55 (d, J = 7.6 Hz, 2H), 7.42-7.28 (m, 4H), 7.17 (t, J = 7.5 Hz, 1H), 7.09 (d, J = 8.2 Hz, 1H), 3.38 (s, 3H), 3.35 (d, J = 13.7 Hz, 1H), 2.90 (d, J

= 13.5 Hz, 1H), 1.36 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 174.06, 141.66, 138.47, 137.26, 134.55, 128.70, 128.53, 128.43, 125.83, 125.78, 122.70, 121.89, 115.70, 43.03, 39.59, 30.13, 21.79. HRMS(ESI) Calculated for C₁₉H₁₈NO⁺ ([M+H]⁺): 276.13101, found: 276.13829.

2a,4,7-trimethyl-1-phenyl-2,4-dihydrocyclobuta[c]quinolin-3(2aH)-one (2b)

Yield: 90% (140.1 mg), white solid, mp: 136-137 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 7.6-7.53 (m, 2H), 7.50 (d, J = 1.4 Hz, 1H), 7.39 (t, J = 7.5 Hz, 2H), 7.31 (t, J = 7.4 Hz, 1H), 7.16 (dd, $J_1 = 8.3$, $J_2 = 1.4$ Hz, 1H), 6.99 (d, J = 8.3 Hz, 1H), 3.36 (d,

4H, overlap), 2.90 (d, *J* = 13.4 Hz, 1H), 2.43 (s, 3H), 1.37 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 173.98, 139.40, 138.18, 137.52, 134.67, 132.26, 129.28, 128.55, 128.37, 126.25, 125.83, 121.85, 115.63, 43.07, 39.53, 30.12, 21.80, 20.83.

HRMS(ESI) Calculated for C₂₀H₂₀NO⁺ ([M+H]⁺): 290.14666, found: 290.15394.

Methyl 2a,4-dimethyl-3-oxo-1-phenyl-2,2a,3,4-tetrahydrocyclobuta[*c*]quinoline-6-carboxylate (2c)

Yield: 80% (106.6 mg), white solid, mp: 155-156 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.36 (d, J = 1.9 Hz, 1H), 8.03 (dd, $J_1 = 8.6, J_2 = 1.9$ Hz, 1H), 7.59-7.52 (m, 2H), 7.39 (t, J =7.5 Hz, 2H), 7.32 (t, J = 7.4 Hz, 1H), 7.13 (d, J = 8.7 Hz, 1H), 3.97 (s, 3H), 3.41 (s, 3H), 3.38 (d, J = 13.6 Hz, 1H), 2.93 (d, J

= 13.6 Hz, 1H), 1.36 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) 174.02, 166.41, 145.23, 139.85, 135.76, 134.22, 130.31, 128.80, 128.68, 127.04, 126.00, 124.37, 121.60, 115.35, 52.22, 42.94, 39.78, 30.35, 21.72.

HRMS(ESI) Calculated for $C_{21}H_{20}NO_3^+$ ([M+H]⁺): 334.13649, found: 334.14377.

2a,4-dimethyl-3-oxo-1-phenyl-2,2a,3,4-tetrahydrocyclobuta[*c*]quinoline-7carbonitrile (2d)

Yield: 87% (104.4 mg), white solid, mp: 164-167 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 1.9 Hz, 1H), 7.55 (dd, J₁ = 8.6, J₂ = 1.9 Hz, 1H), 7.43-7.39 (m, 2H), 7.36-7.31 (m, 2H), 7.30-7.24 (m, 1H), 7.07 (d, J = 8.6 Hz, 1H), 3.30 (d, 4H, overlap), 2.86 (d, J = 13.8 Hz, 1H), 1.28 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 173.66, 144.99, 141.56, 134.11, 133.82, 132.58, 129.30, 129.07, 128.83, 126.05, 122.47, 118.77, 116.13, 105.93, 42.86, 40.02, 30.35, 21.71.

HRMS(ESI) Calculated for $C_{20}H_{17}N_2O^+$ ([M+H]⁺): 301.12626, found: 301.13354.

6-chloro-2a,4-dimethyl-1-phenyl-2,4-dihydrocyclobuta[c]quinolin-3(2aH)-one (2e)

Yield: 75% (92.7 mg), white solid, mp: 111-112 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, J = 8.1 Hz, 1H), 7.56-7.50 (m, 2H), 7.38 (t, J = 7.4 Hz, 2H), 7.34-7.29 (m, 1H), 7.16 (dd, $J_I =$

8.1, *J*₂ = 1.9 Hz, 1H), 7.09 (d, *J* = 1.8 Hz, 1H), 3.37 (s, 3H), 3.37 (d, *J* = 13.5 Hz, 1H), 2.91 (d, *J* = 13.6 Hz, 1H), 1.37 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 173.81, 142.80, 139.22, 135.93, 134.34, 134.20, 128.68, 128.63, 126.62, 125.88, 122.59, 120.23, 116.13, 42.93, 39.74, 30.21, 21.82. HRMS(ESI) Calculated for C₁₉H₁₇ClNO⁺ ([M+H]⁺): 310.09204, found: 310.09932.

6,7-dichloro-2a,4-dimethyl-1-phenyl-2,4-dihydrocyclobuta[c]quinolin-3(*2aH*)-one (2f)

Yield: 82% (112.5 mg), white solid, mp: 182-184 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.70 (s, 1H), 7.51-7.47 (m, 2H), 7.42-7.36 (m, 2H), 7.36-7.31 (m, 1H), 7.16 (s, 1H), 3.35 (d, J =13.7 Hz, 1H), 3.35 (s, 3H), 2.90 (d, J = 13.7 Hz, 1H), 1.35 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 173.45, 141.13, 140.59, 134.51, 134.02, 132.06, 129.04, 128.75, 126.74, 126.07, 126.00, 121.63,

117.57, 42.91, 39.87, 30.33, 21.77.

HRMS(ESI) Calculated for $C_{19}H_{16}Cl_2NO^+$ ([M+H]⁺): 343.05307, found: 344.06035.

1-(4-ethylphenyl)-2a,4-dimethyl-2,4-dihydrocyclobuta[c]quinolin-3(2aH)-one (2g)

Yield: 91% (110.4 mg), white solid, mp: 52-53 °C.

¹**H NMR (500 MHz, CDCl₃)** ¹H NMR (500 MHz, CDCl₃) δ 7.70 (dd, $J_1 = 7.5, J_2 = 1.4$ Hz, 1H), 7.50 (d, J = 8.2 Hz, 2H), 7.42-7.31 (m, 1H), 7.26-7.13 (m, 3H), 7.10 (d, J = 8.2 Hz, 1H), 3.40 (s, 3H), 3.37 (d, J =13.4 Hz, 1H), 2.91 (d, J = 13.4 Hz, 1H), 2.67 (q, J = 7.6 Hz, 2H), 1.38 (s, 3H), 1.25 (t, J = 7.6 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 174.16, 144.93, 141.63, 138.59, 136.08, 132.18, 128.52, 128.08, 125.93, 125.77, 122.68, 122.07, 115.69, 42.96, 39.64, 30.14, 28.83, 21.85, 15.55.

HRMS(ESI) Calculated for C₂₁H₂₂NO⁺ ([M+H]⁺): 304.16231, found: 304.16959

1-([1,1'-biphenyl]-4-yl)-2a,4-dimethyl-2,4-dihydrocyclobuta[*c*]quinolin-3(*2aH*)one (2h)

Yield: 78% (109.6 mg), white solid, mp: 181-183 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.75 (d, J = 6.8 Hz, 1H), 7.63 (d, J = 7.8 Hz, 6H), 7.47 (t, J = 6.6 Hz, 2H), 7.38 (t, J = 6.2 Hz, 2H), 7.22 (t, J = 6.8 Hz, 1H), 7.13 (d, J = 7.8 Hz, 1H), 3.42 (s, 4H, overlap), 2.96 (d, J = 13.3 Hz, 1H), 1.42 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 174.04, 141.72, 141.08, 140.50,

138.13, 137.48, 133.58, 128.89, 128.79, 127.57, 127.22, 126.97, 126.35, 125.82, 122.78, 121.95, 115.79, 43.20, 39.66, 30.18, 21.90.

HRMS(ESI) Calculated for C₂₅H₂₂NO⁺ ([M+H]⁺): 352.16231, found: 352.16959.

1-(4-methoxyphenyl)-2a,4-dimethyl-2,4-dihydrocyclobuta[*c*]quinolin-3(*2aH*)-one (2i)

Yield: 97% (118.4 mg), white solid, mp: 127-129 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.56 (dd, $J_1 = 7.5$, $J_2 = 1.4$ Hz, 1H), 7.45-7.37 (m, 2H), 7.27-7.19 (m, 1H), 7.08-7.01 (m, 1H), 6.98 (d, J =8.2 Hz, 1H), 6.84-6.73 (m, 2H), 3.71 (s, 3H), 3.28 (s, 3H), 3.23 (d, J =13.4 Hz, 1H), 2.77 (d, J = 13.4 Hz, 1H), 1.25 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 174.17, 159.84, 141.58, 138.20, 134.37, 128.36, 127.71, 127.33, 125.58, 122.66, 122.16, 115.69, 113.99, 55.31, 42.81, 39.65, 30.14, 21.82.

HRMS(ESI) Calculated for $C_{20}H_{20}NO_2^+$ ([M+H]⁺): 306.14158, found: 306.14886.

2a,4-dimethyl-1-(4-(methylthio)phenyl)-2,4-dihydrocyclobuta[c]quinolin-3(2aH)one (2j)

Yield: 86% (110.5 mg), white solid, mp: 145-147 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.66 (dd, J = 7.4, 1.2 Hz, 1H), 7.47 (d, J = 8.4 Hz, 2H), 7.38-7.32 (m, 1H), 7.23 (d, J = 8.4 Hz, 2H), 7.17 (t, J = 7.2 Hz, 1H), 7.10 (d, J = 8.2 Hz, 1H), 3.39 (s, 3H), 3.34 (d, J = 13.4 Hz, 1H), 2.88 (d, J = 13.4 Hz, 1H), 2.50 (s, 3H), 1.36 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 174.03, 141.62, 139.18, 137.92, 136.52, 131.41, 128.63, 126.20, 125.71, 122.70, 121.95, 115.73, 43.04, 39.54, 30.15, 21.81, 15.57.

HRMS(ESI) Calculated for $C_{20}H_{20}NOS^+$ ([M+H]⁺): 322.11873, found: 322.12601.

Tert-butyl(4-(2a,4-dimethyl-3-oxo-2,2a,3,4-tetrahydrocyclobuta[c]quinolin-1-yl)

phenyl)carbamate (2k)

Yield: 83% (129.5 mg), white solid, mp: 175-177 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 7.65 (dd, *J*₁ = 7.5, *J*₂ = 1.4 Hz, 1H), 7.52-7.45 (m, 2H), 7.39 (d, *J* = 8.4 Hz, 2H), 7.36-7.31 (m, 1H), 7.21-7.13 (m, 1H), 7.09 (d, *J* = 8.1 Hz, 1H), 6.79 (s, 1H), 3.39 (s, 3H), 3.33 (d, *J* = 13.4 Hz, 1H), 2.87 (d, *J* = 13.4 Hz, 1H), 1.52 (s, 9H), 1.35 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 174.17, 152.52, 141.57, 138.69, 138.10, 135.31, 129.51, 128.46, 126.68, 125.63, 122.70, 122.06, 118.22, 115.70, 80.72, 42.90, 39.58, 30.15, 28.34, 21.80.

HRMS(ESI) Calculated for $C_{24}H_{27}N_2O_3^+$ ([M+H]⁺): 391.19434, found: 391.20162.

1-(4-(dimethylamino)phenyl)-2a,4-dimethyl-2,4-dihydrocyclobuta[*c*]quinolin-3(*2aH*)-one (2l)

yield: 87% (110.7 mg), white solid, mp: 130-131 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 7.68 (dd, $J_1 = 7.5$, $J_2 = 1.3$ Hz, 1H), 7.47 (d, J = 8.8 Hz, 2H), 7.38-7.28 (m, 1H), 7.20-7.11 (m, 1H), 7.08 (d, J = 8.2 Hz, 1H), 6.71 (d, J = 7.4 Hz, 2H), 3.39 (s, 3H), 3.33 (d, J = 13.4 Hz, 1H), 3.00 (s, 6H), 2.87 (d, J = 13.4 Hz, 1H), 1.34 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 174.44, 150.41, 141.46, 138.96,

127.79, 127.15, 126.64, 125.54, 123.31, 122.68, 122.54, 115.58, 111.94, 42.61, 40.34, 39.59, 30.14, 21.93.

HRMS(ESI) Calculated for $C_{21}H_{23}N_2O^+$ ([M+H]⁺): 319.17321, found: 319.18049.

1-(4-chlorophenyl)-2a,4-dimethyl-2,4-dihydrocyclobuta[c]quinolin-3(2aH)-one (2m)

Yield: 68% (84.1 mg), white solid, mp: 100-102 °C.

¹**HNMR (500 MHz, CDCl₃)** δ 7.70 (dd, J_1 = 7.5, J_2 = 1.4 Hz, 1H), 7.59-7.53 (m, 2H), 7.42-7.34 (m, 2H), 7.34-7.28 (m, 1H), 7.22-7.16 (m, 1H), 7.11 (d, J = 8.2 Hz, 1H),

3.40 (s, 3H), 3.37 (d, *J* = 13.5 Hz, 1H), 2.91 (d, *J* = 13.4 Hz, 1H), 1.38 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 174.09, 141.67, 138.48, 137.27, 134.56, 128.71, 128.55, 128.45, 125.84, 125.80, 122.72, 121.91, 115.72, 43.04, 39.60, 30.15, 21.80.

HRMS(ESI) Calculated for $C_{19}H_{17}CINO^+$ ([M+H]⁺): 310.09204, found: 310.09932.

4-(2a,4-dimethyl-3-oxo-2,2a,3,4-tetrahydrocyclobuta[c]quinolin-1-yl)benzonitrile

(2n)

Yield: 90% (108.0 mg), white solid, mp: 155-156 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 7.68-7.57 (m, 5H), 7.46-7.36 (m, 1H), 7.23-7.18 (m, 1H), 7.13 (d, *J* = 8.2 Hz, 1H), 3.39 (s, 3H), 3.35 (d, *J* = 13.4 Hz, 1H), 2.91 (d, *J* = 13.4 Hz, 1H), 1.39 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 173.47, 142.30, 141.80, 138.43, 136.21, 132.39, 129.69, 126.13, 125.73, 122.95, 121.08, 118.84,

115.99, 111.26, 43.70, 39.39, 30.19, 21.79.

HRMS(ESI) Calculated for $C_{20}H_{17}N_2O^+$ ([M+H]⁺): 301.12626, found: 301.13354.

2a,4-dimethyl-1-(4-(trifluoromethyl)phenyl)-2,4-dihydrocyclobuta[*c*]quinolin-3(*2aH*)-one (20)

Yield: 95% (130.4 mg), white solid, mp: 98-100 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.67 (dd, $J_1 = 7.5$, $J_2 = 1.3$ Hz, 1H), 7.66-7.60 (m, 4H), 7.45-7.37 (m, 1H), 7.24-7.18 (m, 1H), 7.13 (d, J =8.2 Hz, 1H), 3.40 (s, 3H), 3.38 (d, J = 13.5 Hz, 1H), 2.93 (d, J = 13.4Hz, 1H), 1.40 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 173.70, 141.78, 140.53, 137.67,

136.75, 129.87 (d, ${}^{2}J_{C-F}$ = 32.5 Hz), 129.35, 125.92, 125.71, 125.53 (q, ${}^{3}J_{C-F}$ = 3.8 Hz), 124.04 (d, ${}^{1}J_{C-F}$ = 272.0 Hz), 122.86, 121.32, 115.90, 43.48, 39.53, 30.17, 21.78. **HRMS(ESI)** Calculated for C₂₀H₁₇F₃NO⁺ ([M+H]⁺): 344.11840, found: 344.12568.

Methyl 4-(2a,4-dimethyl-3-oxo-2,2a,3,4-tetrahydrocyclobuta[*c*]quinolin-1-yl)benzoate (2p)

yield: 95% (126.6 mg), white solid, mp: 158-160 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, *J* = 8.4 Hz, 2H), 7.69 (dd, *J* = 7.5, 1.3 Hz, 1H), 7.60 (d, *J* = 8.4 Hz, 2H), 7.41-7.36 (m, 1H), 7.22-7.17 (m, 1H), 7.12 (d, *J* = 8.2 Hz, 1H), 3.92 (s, 3H), 3.38 (d, *J* = 15.6 Hz, 4H), 2.92 (d, *J* = 13.4 Hz, 1H), 1.39 (s, 3H).

^{2p} ¹³C NMR (125 MHz, CDCl₃) δ 173.70, 166.66, 141.78, 140.63, 138.56, 137.26, 129.88, 129.49, 129.28, 125.80, 125.62, 122.84, 121.46, 115.84, 52.14, 43.50, 39.55, 30.15, 21.79.

HRMS(ESI) Calculated for $C_{21}H_{20}NO_3^+$ ([M+H]⁺): 334.13649, found: 334.14377.

1-(2-methoxyphenyl)-2a,4-dimethyl-2,4-dihydrocyclobuta[c]quinolin-3(2aH)-one (2q)

Yield: 93% (113.5 mg), light yellow oil.

¹H NMR (500 MHz, CDCl₃) δ 7.59-7.47 (m, 2H), 7.37-7.24 (m, 2H), 7.16-7.11 (m, 1H), 7.07 (d, *J* = 8.2 Hz, 1H), 6.99-6.93 (m, 1H), 6.89 (d, *J* = 8.2 Hz, 1H), 3.77 (s, 3H), 3.42 (d, *J* = 13.7 Hz, 1H), 3.40 (s, 3H), 3.03 (d, *J* = 13.7 Hz, 1H), 1.35 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 174.39, 157.28, 141.72, 137.62, 135.23, 129.63, 128.33, 128.17, 127.40, 123.79, 122.94, 122.17, 120.35, 115.29, 110.79, 54.68, 43.69, 41.68, 30.15, 21.73.

HRMS(ESI) Calculated for C₂₀H₂₀NO₂⁺ ([M+H]⁺): 306.14158, found: 306.14886.

1-(2-chlorophenyl)-2a,4-dimethyl-2,4-dihydrocyclobuta[c]quinolin-3(2aH)-one (2r)

Yield: 75% (92.7 mg), light yellow oil.

¹H NMR (500 MHz, CDCl₃) δ 7.74-7.64 (m, 1H), 7.59-7.48 (m, 1H), 7.43-7.32 (m,

2H), 7.24-7.15 (m, 2H), 7.15-7.05 (m, 2H), 3.58 (d, J = 13.9 Hz, 1H), 3.41 (s, 3H), 3.23 (d, J = 13.9 Hz, 1H), 1.40 (s, 3H).
¹³C NMR (125 MHz, CDCl₃) δ 173.89, 141.75, 141.03, 136.84, 133.09, 132.68, 130.57, 129.16, 129.01, 128.77, 126.44, 125.76, 122.60, 121.42, 115.69, 44.48, 43.88, 30.12, 22.02.

HRMS(ESI) Calculated for C₁₉H₁₇ClNO⁺ ([M+H]⁺): 310.09204, found: 310.09932.

1-(3-methoxyphenyl)-2a,4-dimethyl-2,4-dihydrocyclobuta[c]quinolin-3(2aH)-one (2s)

Yield: 92% (112.3 mg), light yellow oil.

¹**H NMR (500 MHz, CDCl₃)** δ 7.59 (dd, *J*₁ = 7.5, *J*₂ = 1.4 Hz, 1H), 7.29-7.22 (m, 1H), 7.21-7.15 (m, 1H), 7.09-7.04 (m, 2H), 7.01-6.97 (m, 2H), 6.75 (dd, *J* = 8.2, 2.0 Hz, 1H), 3.72 (s, 3H), 3.29 (s, 3H), 3.25 (d, *J* = 13.4 Hz, 1H), 2.79 (d, *J* = 13.4 Hz, 1H), 1.27 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 174.00, 159.71, 141.71, 138.36, 137.66, 135.88, 129.61, 128.78, 125.76, 122.72, 121.83, 118.47, 115.76, 114.15, 111.20, 55.26, 43.03, 39.68, 30.14, 21.79.

HRMS(ESI) Calculated for $C_{20}H_{20}NO_2^+$ ([M+H]⁺): 306.14158, found: 306.14886.

2a,4-dimethyl-1-(naphthalen-2-yl)-2,4-dihydrocyclobuta[c]quinolin-3(2aH)-one (2t)

Yield: 94% (122.2 mg), white solid, mp: 128-130 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.90-7.85 (m, 2H), 7.85-7.77 (m, 4H), 7.56-7.45 (m, 2H), 7.44-7.34 (m, 1H), 7.23 (t, *J* = 7.2 Hz, 1H), 7.13 (d, *J* = 8.2 Hz, 1H), 3.48 (d, *J* = 13.3 Hz, 1H), 3.42 (s, 3H), 3.04 (d, *J* = 13.3 Hz, 1H), 1.43 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 174.06, 141.76, 138.47, 137.80, 133.35, 133.22, 132.18, 128.80, 128.31, 128.18, 127.77, 126.50, 126.40, 125.80, 125.19, 123.60, 122.79, 122.02, 115.80, 43.17, 39.68, 30.19, 21.86. HRMS(ESI) Calculated for C₂₃H₂₀NO⁺ ([M+H]⁺): 326.14666, found: 326.15394.

2a,4-dimethyl-1-(thiophen-3-yl)-2,4-dihydrocyclobuta[c]quinolin-3(2aH)-one (2u)

Yield : 95% (106.8 mg), white solid, mp: 103-104 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.60 (dd, *J*₁ = 7.4, *J*₂ =1.2 Hz, 1H), 7.40-7.30 (m, 4H), 7.16 (t, *J* = 7.3 Hz, 1H), 7.08 (d, *J* = 8.2 Hz, 1H), 3.39 (s, 3H), 3.36 (d, *J* = 13.4 Hz, 1H), 2.88 (d, *J* = 13.4 Hz, 1H), 1.38 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 173.94, 141.62, 136.88, 134.91, 133.52, 128.57, 126.28, 125.57, 125.35, 122.96, 122.75, 121.72, 115.68, 43.67, 40.31, 30.13, 21.94.
HRMS(ESI) Calculated for C₁₇H₁₆NOS⁺ ([M+H]⁺): 282.08743, found: 282.09471.

1-(cyclohex-1-en-1-yl)-2a,4-dimethyl-2,4-dihydrocyclobuta[c]quinolin-3(2aH)one (2v)

Yield: 97% (108.3 mg), white solid, mp: 109-110 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 7.50-7.39 (m, 1H), 7.30-7.20 (m, 1H), 7.14-6.99 (m, 2H), 5.87 (t, *J* = 4.0 Hz, 1H), 3.35 (s, 3H), 3.09 (d, *J* = 13.3 Hz, 1H), 2.61 (d, *J* = 13.3 Hz, 1H), 2.49-2.38 (m, 1H), 2.31-2.23 (m, 1H), 2.17 (d, *J* = 1.7 Hz, 2H), 1.82-1.71 (m, 1H), 1.72-1.61 (m,

1H), 1.61-1.51 (m, 2H), 1.25 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 174.38, 141.54, 140.96, 133.99, 133.73, 128.87, 127.95, 126.24, 122.45, 122.26, 115.47, 42.16, 38.79, 30.11, 26.88, 25.71, 22.36, 21.88, 21.60.

HRMS(ESI) Calculated for C₁₉H₂₂NO⁺ ([M+H]⁺): 280.16231, found: 280.16959.

1-butyl-4-methyl-2,4-dihydrocyclobuta[c]quinolin-3(2aH)-one (2w)

yield: 92% (93.9 mg), light yellow oil.

¹H NMR (500 MHz, CDCl₃) δ 7.30-7.23 (m, 2H), 7.07-7.01 (m, 2H), 3.35 (s, 3H), 3.01 (d, J = 13.8 Hz, 1H), 2.53 (d, J = 13.8 Hz,

1H), 2.26 (t, *J* = 7.5 Hz, 2H), 1.50 (dt, *J*₁ = 12.5, *J*₂ = 7.0 Hz, 2H), 1.34 (dd, *J*₁ = 15.0, *J*₂ = 7.6 Hz, 2H), 1.26 (s, 3H), 0.91 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 174.54, 144.00, 141.33, 137.12, 127.80, 125.00, 122.48, 121.48, 115.34, 43.06, 41.97, 29.98, 29.49, 22.59, 21.97, 13.84.

HRMS(ESI) Calculated for C₁₇H₂₂NO⁺ ([M+H]⁺): 256.16231, found: 256.16959.

1-cyclopropyl-2a,4-dimethyl-2,4-dihydrocyclobuta[c]quinolin-3(2aH)-one (2x)

Yield: 91% (87.0 mg), white solid, mp: 55-56 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 7.44-7.28 (m, 1H), 7.31-7.23 (m, 1H), 7.15-6.95 (m, 2H), 3.36 (s, 3H), 2.81 (d, *J* = 13.5 Hz, 1H), 2.32 (d, *J* = 13.5 Hz, 1H), 1.79-1.60 (m, 1H), 1.25 (s, 3H), 0.89-0.80 (m, 1H), 0.80-0.69 (m, 2H), 0.65-0.54 (m, 1H).

¹³C NMR (125 MHz, CDCl₃) δ 174.34, 144.52, 141.07, 135.18, 127.64, 124.90, 122.58, 121.56, 115.42, 41.92, 38.77, 30.04, 21.91, 11.35, 6.78, 5.37.

HRMS(ESI) Calculated for C₁₆H₁₈NO⁺ ([M+H]⁺): 240.13101, found: 240.13829.

4-methyl-1-phenyl-2,4-dihydrocyclobuta[c]quinolin-3(2aH)-one (2y)

yield: 94% (98.2 mg), light yellow oil.

¹H NMR (500 MHz, CDCl₃) δ 7.54-7.51 (m, 1H), 7.45 (dd, $J_1 = 8.0$, $J_2 = 1.3$ Hz, 1H), 7.41-7.37 (m, 3H), 7.33-7.30 (m, 3H), 7.09-7.06 (m, 1H), 6.77 (s, 1H), 5.94 (d, J = 0.6 Hz, 1H), 5.45 (s, 1H), 3.79 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 162.17, 150.82, 145.52, 140.09, 138.77, 130.53, 128.69, 128.34, 127.92, 126.31, 121.95, 121.84, 120.26, 116.87, 114.35, 29.46.
HRMS(ESI) Calculated for C₁₈H₁₆NO⁺ ([M+H]⁺): 262.11536, found: 262.12264.

4-methyl-1,2a-diphenyl-2,4-dihydrocyclobuta[c]quinolin-3(2aH)-one (2z)

yield: 81% (109.2 mg), white solid, mp: 160-161 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.83 (dd, J = 7.5, 1.3 Hz, 1H), 7.66-

7.62 (m, 2H), 7.43-7.38 (m, 4H), 7.36-7.31 (m, 2H), 7.27-7.18 (m, 4H), 7.03 (d, J = 8.2 Hz, 1H), 3.79 (d, J = 13.4 Hz, 1H), 3.41 (s, 3H), 3.14 (d, J = 13.4 Hz, 1H).
¹³C NMR (125 MHz, CDCl₃) δ 171.51, 141.74, 141.08, 140.02, 134.66, 134.19, 128.84, 128.81, 128.63, 128.49, 127.21, 126.11, 126.04, 125.42, 123.03, 122.84, 115.97, 49.73, 42.70, 30.50.

HRMS(ESI) Calculated for $C_{24}H_{20}NO^+$ ([M+H]⁺): 338.14666, found: 338.15394.

4-(methoxymethyl)-2a-methyl-1-phenyl-2,4-dihydrocyclobuta[*c*]quinolin-3(*2aH*)one (2A)

yield: 95% (116.0 mg), white solid, mp: 110-111 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.72 (dd, $J_1 = 7.5$, $J_2 = 1.4$ Hz, 1H), 7.61-7.57 (m, 2H), 7.45 (d, J = 8.1 Hz, 1H), 7.42-7.35 (m, 3H), 7.35-7.29 (m, 1H), 7.26-7.17 (m, 1H), 5.84 (d, J = 10.7 Hz, 1H), 4.89 (d, J = 10.7 Hz, 1H), 3.43 (s, 3H), 3.39 (d, J = 13.5 Hz, 1H), 2.94 (d, J =

13.5 Hz, 1H), 1.45 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 174.89, 140.96, 138.49, 136.82, 134.49, 129.02, 128.60, 128.57, 125.90, 125.67, 123.42, 121.62, 116.72, 74.34, 56.00, 43.05, 39.45, 21.68.

HRMS(ESI) Calculated for C₂₀H₁₉NO₂Na⁺ ([M+Na]⁺): 328.14158, found: 328.13080.

4-ethyl-2a-methyl-1-phenyl-2,4-dihydrocyclobuta[c]quinolin-3(2aH)-one (2B)

yield: 91% (105.2 mg), white solid, mp: 103-104 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.72 (dd, J = 7.5, 1.5 Hz, 1H), 7.607.57 (m, 2H), 7.41-7.34 (m, 3H), 7.33-7.29 (m, 1H), 7.21-7.15 (m, 1H), 7.12 (d, J = 8.3 Hz, 1H), 4.19-4.11 (m, 1H), 3.94-3.86 (m, 1H),
3.39 (d, J = 13.5 Hz, 1H), 2.91 (d, J = 13.5 Hz, 1H), 1.37 (s, 3H),

1.26 (t, J = 7.1 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 173.57, 140.55, 138.34, 137.47, 134.65, 128.75, 128.55, 128.40, 126.08, 125.87, 122.49, 122.02, 115.46, 42.92, 39.45, 37.62, 21.65,

12.76.

HRMS(ESI) Calculated for C₂₀H₂₀NO⁺ ([M+H]⁺): 290.14666, found: 290.15394.

4-benzyl-2a-methyl-1-phenyl-2,4-dihydrocyclobuta[c]quinolin-3(2aH)-one (2C)

yield: 83% (116.6 mg), white solid, mp: 149-150 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.74 (dd, J₁ = 7.4, J₂ = 1.5 Hz, 1H),
7.65-7.62 (m, 2H), 7.44-40 (m, 2H), 7.37-7.33 (m, 3H), 7.29-7.24 (m,
3H), 7.23-7.20 (m, 1H), 7.17-7.13 (m, 1H), 7.01-6.98 (m, 1H), 5.69 (d, J = 16.4 Hz, 1H), 4.75 (d, J = 16.4 Hz, 1H), 3.50 (d, J = 13.5 Hz,

1H), 3.00 (d, *J* = 13.5 Hz, 1H), 1.55 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 174.23, 141.22, 138.62, 137.31, 137.19, 134.62, 128.84, 128.77, 128.63, 128.55, 127.07, 126.17, 125.96, 125.87, 122.86, 121.93, 116.52, 46.69, 43.13, 39.70, 22.01.

Yield: 98% (107.9 mg), white solid, mp: 122-124 °C.

HRMS(ESI) Calculated for C₂₅H₂₂NO⁺ ([M+H]⁺): 352.16231, found: 352.16959.

(3Z,5E)-1,3-dimethyl-5-phenylbenzo[b]azocin-2(1H)-one (3a)

¹H NMR (500 MHz, CDCl₃) δ 7.58-7.56 (m, 1H), 7.52-7.48 (m, 1H), 7.41-7.37 (m, 3H), 7.33-7.29 (m, 3H), 7.14-7.10 (m, 1H), 6.16

(s, 1H), 5.25 (s, 1H), 3.84 (s, 3H), 2.19 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 162.73, 146.28, 143.88, 138.76, 137.98, 129.38, 128.75, 128.31, 127.75, 127.40, 125.81, 122.01, 120.91, 115.88, 113.92, 29.92, 15.04. HRMS(ESI) Calculated for C₁₉H₁₈NO⁺ ([M+H]⁺): 276.13101, found: 276.13829.

(3Z,5E)-1,3,8-trimethyl-5-phenylbenzo[b]azocin-2(1H)-one (3b)

Yield: 93% (107.6 mg), colorless oil.

¹H NMR (500 MHz, CDCl₃) δ 7.40-7.35 (m, 3H), 7.34-7.28 (m, 5H), 6.15 (s, 1H), 5.23 (s, 1H), 3.82 (s, 3H), 2.31 (s, 3H), 2.16 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 162.59, 146.08, 143.91, 138.04, 136.80, 131.44, 130.62, 128.74, 128.25, 127.60, 127.09, 125.82, 120.87, 115.73, 113.85, 29.91, 20.79, 15.04.

HRMS(ESI) Calculated for $C_{20}H_{20}NO^+$ ([M+H]⁺): 290.14666,

found: 290.15394.

Methyl(3*Z*,5*E*)-1,3-dimethyl-2-oxo-5-phenyl-1,2-dihydrobenzo[*b*]azocine-8carboxylate (3c)

Yield: 84% (111.9 mg), white solid, mp: 120-122 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.27 (d, J = 1.9 Hz, 1H),

8.17-8.11 (m, 1H), 7.42 (d, J = 8.9 Hz, 1H), 7.38-7.28 (m,

⁵ 5H), 6.19 (s, 1H), 5.27 (s, 1H), 3.86 (s, 3H), 3.84 (s, 3H),

2.17 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 166.41, 162.76, 146.45, 143.31, 141.76, 137.90, 130.25, 129.43, 128.82, 128.55, 128.43, 125.84, 123.85, 120.53, 116.53, 113.96, 52.08, 30.20, 15.06.

HRMS(ESI) Calculated for $C_{21}H_{20}NO_3^+$ ([M+H]⁺): 334.13649, found: 334.14377.

(3*Z*,5*E*)-1,3-dimethyl-2-oxo-5-phenyl-1,2-dihydrobenzo[*b*]azocine-8-carbonitrile (3d)

Yield: 92% (110.4 mg), white solid, mp: 160-162 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, *J* = 1.8 Hz, 1H), 7.73-7.68 (m, 1H), 7.45 (d, *J* = 8.8 Hz, 1H), 7.34-7.30 (m, 5H), 6.20 (s, 1H), 5.26 (s, 1H), 3.82 (s, 3H), 2.17 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 162.42, 145.31, 142.77, 141.34, 137.12, 131.98, 131.97, 129.99, 129.00, 128.78, 125.67, 121.12, 118.69, 116.74, 114.92, 105.50, 30.21, 15.15.

HRMS(ESI) Calculated for $C_{20}H_{17}N_2O^+$ ([M+H]⁺): 301.12626, found: 301.13354.

(3Z,5E)-1,3-dimethyl-5-(p-tolyl)benzo[b]azocin-2(1H)-one (3e)

Yield: 94% (108.7 mg), colorless oil.

¹**H NMR (500 MHz, CDCl₃)** δ 7.57 (d, *J* = 8.0 Hz, 1H), 7.49 (t, *J* = 7.8 Hz, 1H), 7.39 (d, *J* = 8.5 Hz, 1H), 7.27 (d, *J* = 7.9 Hz, 2H), 7.11 (m, 3H), 6.11 (s, 1H), 5.19 (s, 1H), 3.84 (d, *J* = 0.5 Hz, 3H), 2.34 (s, 3H), 2.19 (s, 3H).

¹³C NMR (125MHz, CDCl₃) δ 162.77, 146.50, 143.67, 138.73,

138.27, 135.13, 129.46, 129.35, 127.63, 127.45, 125.71, 122.01, 120.96, 114.85, 113.90, 29.91, 21.13, 15.03.

HRMS(ESI) Calculated for C₂₀H₂₀NO⁺ ([M+H]⁺): 290.14666, found: 290.15394.

(3Z,5E)-5-([1,1'-biphenyl]-4-yl)-1,3-dimethylbenzo[b]azocin-2(1H)-one (3f)

Yield: 97% (127.8 mg), white solid, mp: 133-135 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.62-7.57 (m, 3H), 7.56-7.50 (m, 3H), 7.47-7.40 (m, 5H), 7.38-7.33 (m, 1H), 7.17-7.12 (m, 1H), 6.22 (s, 1H), 5.28 (s, 1H), 3.86 (s, 3H), 2.23 (s, 3H).

3f ¹¹ ¹³C NMR (125 MHz, CDCl₃) δ 162.74, 146.23, 143.45, 141.13, 140.38, 138.79, 136.84, 129.45, 128.82, 127.82, 127.51, 127.45, 127.42, 126.96, 126.25, 122.07, 120.92, 115.80, 113.98, 29.96, 15.12.

HRMS(ESI) Calculated for C₂₅H₂₂NO⁺ ([M+H]⁺): 352.16231, found: 352.16959.

(3Z,5E)-5-(4-methoxyphenyl)-1,3-dimethylbenzo[b]azocin-2(1H)-one (3g)

Yield: 96% (117.2 mg), colorless oil.

¹**H NMR (500 MHz, CDCl₃)** δ 7.59-7.55 (m, 1H), 7.52-7.47 (m, 1H), 7.39 (d, *J* = 8.1 Hz, 1H), 7.32-7.28 (m, 2H), 7.14-7.10 (m, 1H), 6.85-6.81 (m, 2H), 6.03 (s, 1H), 5.13 (s, 1H), 3.83 (s, 3H), 3.79 (s, 3H), 2.18 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 162.76, 159.73, 146.55, 143.21, 138.74, 130.57, 129.33, 127.58, 127.45, 127.09, 121.98, 120.92, 114.11, 113.88, 113.70, 55.25, 29.89, 14.98.

HRMS(ESI) Calculated for $C_{20}H_{20}NO_2^+$ ([M+H]⁺): 306.14158, found: 306.14886.

Tert-butyl(4-((3Z,5E)-1,3-dimethyl-2-oxo-1,2-dihydrobenzo[b]azocin-5yl)phenyl)carbamate (3h)

Yield: 89% (138.9 mg), white solid, mp: 204-206 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.56-7.52 (m, 1H), 7.50-7.45 (m, 1H), 7.39-7.32 (m, 3H), 7.29-7.26 (m, 2H), 7.11-7.08 (m, 1H), 7.02 (s, 1H), 6.06 (s, 1H), 5.14 (s, 1H), 3.82 (s, 3H), 2.17 (s, 3H), 1.49 (s, 9H).

¹³C NMR (125 MHz, CDCl₃) δ 162.77, 152.75, 146.46, 143.22, 138.79, 138.68, 132.48, 129.39, 127.58, 127.46, 126.46, 122.04, 120.89, 118.67, 114.34, 113.90, 80.53, 31.56, 29.94, 28.30, 22.62, 15.02, 14.09.

HRMS(ESI) Calculated for $C_{24}H_{25}N_2O_3^+$ ([M-H]⁺): 389.19434, found: 389.18707.

Methyl 4-((3*Z*,5*E*)-1,3-dimethyl-2-oxo-1,2-dihydrobenzo[*b*]azocin-5-yl)benzoate

(3i)

Yield: 88% (117.2 mg), colorless oil.

¹H NMR (500 MHz, CDCl₃) δ 7.97 (d, J = 8.5 Hz, 2H), 7.537.48 (m, 2H), 7.44-7.39 (m, 3H), 7.13-7.09 (m, 1H), 6.26 (s, 1H), 5.37 (s, 1H), 3.90 (s, 3H), 3.83 (s, 3H), 2.16 (s, 3H).
¹³C NMR (125 MHz, CDCl₃) δ 166.59, 162.58, 145.51, 143.16,

142.27, 138.79, 130.10, 129.87, 129.56, 127.97, 127.11, 125.76,

122.09, 120.64, 118.18, 114.05, 52.11, 29.95, 15.04.

HRMS(ESI) Calculated for $C_{21}H_{20}NO_3^+$ ([M+H]⁺): 334.13649, found: 334.14377.

(3Z,5E)-1,3-dimethyl-5-(naphthalen-2-yl)benzo[b]azocin-2(1H)-one (3j)

Yield: 95% (123.56 mg), colorless oil.

¹**H NMR (500 MHz, CDCl₃)** δ 7.86-7.80 (m, 2H), 7.76-7.73 (m, 1H), 7.70-7.67 (m, 1H), 7.62-7.58 (m, 2H), 7.51-7.41 (m, 4H), 7.13-7.09 (m, 1H), 6.30 (s, 1H), 5.35 (s, 1H), 3.88 (s, 3H), 2.25 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 162.83, 146.35, 143.84, 138.82, 135.12, 133.43, 133.18, 129.44, 128.57, 128.38, 127.89, 127.55, 127.46, 126.39, 125.54, 123.17, 122.09, 120.96, 116.33, 113.99, 29.99, 15.12.

HRMS(ESI) Calculated for $C_{23}H_{20}NO^+$ ([M+H]⁺): 326.14666, found: 326.15394.

(3Z,5E)-1,3-dimethyl-5-(thiophen-3-yl)benzo[b]azocin-2(1H)-one (3k)

Yield: 96% (107.9 mg), colorless oil.

¹**H NMR (500 MHz, CDCl₃)** δ 7.61-7.46 (m, 2H), 7.42-7.27 (m, 3H), 7.13 (t, *J* = 7.6 Hz, 1H), 6.88-6.85 (m, 1H), 6.03 (s, 1H), 5.17 (s, 1H), 3.83 (s, 3H), 2.19 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 162.74, 146.20, 140.20, 139.13, 138.77, 129.42, 127.41, 127.32, 126.39, 124.87, 123.02, 122.00, 120.61, 114.67, 113.90, 29.91, 14.94.

HRMS(ESI) Calculated for $C_{17}H_{16}NOS^+$ ([M+H]⁺): 282.08743, found: 282.09471.

(3Z,5E)-5-(cyclohex-1-en-1-yl)-1-methyl-3-phenylbenzo[b]azocin-2(1H)-one (3l)

yield:80% (89.3 mg), colorless oil.

¹**H NMR (500 MHz, CDCl₃)** δ 7.51-7.45 (m, 2H), 7.34 (d, *J* = 8.1 Hz, 1H), 7.17-7.13 (m, 1H), 5.53 (s, 1H), 5.41 (s, 1H), 4.88 (s, 1H), 3.77 (s, 3H), 2.41-2.37 (m, 2H), 2.10 (d, *J* = 3.4 Hz, 3H), 2.01-1.93 (m, 2H), 1.78-1.73 (m, 2H), 1.60-1.54 (m, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 162.66, 147.19, 145.64, 138.40, 134.26, 129.20, 129.04, 127.46, 127.16, 121.74, 121.27, 113.68, 111.97, 29.75, 25.74, 24.76, 22.65, 21.96, 14.79.

HRMS(ESI) Calculated for C₁₉H₂₂NO⁺ ([M+H]⁺): 280.16231, found: 280.16959.

(3Z,5Z)-5-butyl-1,3-dimethylbenzo[b]azocin-2(1H)-one (3m)

Yield: 95% (96,7 mg), colorless oil.

¹**H NMR (500 MHz, CDCl₃)** δ 7.64-7.60 (m, 1H), 7.52-7.46 (m, 1H), 7.35 (d, *J* = 8.1 Hz, 1H), 7.22-7.16 (m, 1H), 5.46 (d, *J* = 1.5 Hz, 1H), 4.97 (d, *J* = 1.0 Hz, 1H), 3.77 (s, 3H), 2.36-2.25 (m, 2H), 2.21 (s, 3H), 1.53-1.45 (m, 2H), 1.40-1.31 (m, 2H), 0.89 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 162.74, 148.24, 145.49, 138.70, 129.18, 126.92, 125.91, 121.75, 120.34, 114.96, 113.95, 36.71, 29.78, 29.54, 22.65, 14.92, 13.91.
HRMS(ESI) Calculated for C₁₇H₂₂NO⁺ ([M+H]⁺): 256.16231, found: 256.16959.

(3Z,5Z)-5-cyclopropyl-1,3-dimethylbenzo[b]azocin-2(1H)-one (3n)

Yield: 94% (89.9 mg), colorless oil.

¹H NMR (500 MHz, CDCl₃) δ 7.69 (m, 1H), 7.49 (m, 1H), 7.34 (d, J = 8.3 Hz, 1H), 7.23-7.18 (m, 1H), 5.42 (d, J = 1.0 Hz, 1H), 4.87 (d, J = 1.0 Hz, 1H), 3.76 (s, 3H), 2.21 (s, 3H), 1.69 (m, 1H), 0.77-0.67

(m, 2H), 0.49-0.43 (m, 1H), 0.35-0.30 (m, 1H).

¹³C NMR (125 MHz, CDCl₃) δ 162.62, 146.35, 145.92, 138.53, 129.23, 127.51, 126.91, 121.77, 120.88, 113.83, 112.90, 29.78, 17.31, 15.31, 7.11, 6.82.

HRMS(ESI) Calculated for C₁₆H₁₈NO⁺ ([M+H]⁺): 240.13101, found: 240.13829.

(3Z,5E)-1-methyl-5-phenylbenzo[b]azocin-2(1H)-one (3o)

Yield: 96% (100.2 mg), white solid, mp: 89-91 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 7.53 (m, 1H), 7.46-7.35 (m, 4H), 7.35-7.28 (m, 3H), 7.09-7.05 (m, 1H), 6.77 (s, 1H), 5.94 (d, *J* = 0.5 Hz, 1H), 5.44 (d, *J* = 0.5 Hz, 1H), 3.79 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 162.16, 150.82, 145.54, 140.12, 138.78, 130.52, 128.67, 128.33, 127.92, 126.31, 121.93, 121.82, 120.27, 116.83, 114.33, 29.44.
HRMS(ESI) Calculated for C₁₈H₁₆NO⁺ ([M+H]⁺): 262.11536, found: 262.12264.

(3Z,5E)-1-methyl-3,5-diphenylbenzo[b]azocin-2(1H)-one (3p)

Yield: 80% (107.9 mg), colorless oil.

¹H NMR (500 MHz, CDCl₃) δ 7.71-7.67 (m, 1H), 7.61-7.56 (m, 1H), 7.47 (d, J = 8.1 Hz, 1H), 7.27-7.20 (m, 8H), 7.19-7.14 (m, 3H), 5.92 (s, 1H), 5.18 (s, 1H), 3.87 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 161.96, 147.50, 143.30, 139.50, 139.16, 136.08, 132.12, 130.32, 129.69, 128.36, 128.32, 127.87, 127.50, 127.10, 125.96, 122.10, 120.79, 117.55, 114.06, 30.04.

HRMS(ESI) Calculated for C₂₄H₂₀NO⁺ ([M+H]⁺): 338.14666, found: 338.15394.

(3Z,5E)-1-(methoxymethyl)-3-methyl-5-phenylbenzo[b]azocin-2(1H)-one (3q)

Yield: 97% (118.4 mg), colorless oil.

¹H NMR (500 MHz, CDCl₃) δ 7.62-7.54 (m, 2H), 7.50-7.45 (m, 1H), 7.41-7.37 (m, 2H), 7.35-7.28 (m, 3H), 7.15-7.11 (m, 1H), 6.16 (s, 1H), 5.92-5.80 (m, 2H), 5.27 (s, 1H), 3.53 (s, 3H), 2.19 (s,

3H).

¹³C NMR (125 MHz, CDCl₃) δ 163.27, 147.59, 143.84, 137.90, 137.82, 129.55, 128.81, 128.39, 127.37, 127.31, 125.80, 122.62, 120.96, 115.87, 115.00, 73.90, 56.80, 14.88.

HRMS(ESI) Calculated for $C_{20}H_{20}NO_2^+$ ([M+H]⁺): 306.14158, found: 306.14886.

(3Z,5E)-1-benzyl-3-methyl-5-phenylbenzo[b]azocin-2(1H)-one (3r)

Yield: 91% (127.8 mg), white solid, mp: 122-124 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.60-7.56 (m, 1H), 7.43-7.39 (m, 2H), 7.39-7.27 (m, 10H), 7.10-7.06 (m, 1H), 6.19 (s, 1H), 5.75 (d. *J* = 15.5 Hz, 1H), 5.59 (d, *J* = 15.5 Hz, 1H), 5.30 (s, 1H), 2.25 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 162.87, 146.87, 143.92, 138.26, 137.96, 136.69, 129.38, 128.80, 128.36, 127.70, 127.49, 127.23, 126.76, 125.82, 122.09, 121.15, 115.97, 114.80, 46.60, 15.09.

HRMS(ESI) Calculated for C₂₅H₂₂NO⁺ ([M+H]⁺): 352.16231, found: 352.16959.

3.3 Gram-scale reaction

In a 250 mL flame-dried Schlenk tube, 1, 7-Enynes (8 mmol, 2.2 g), NiBr₂ (5 mol%,), L1 (5 mol%), Zn (0.2 equiv), THF (25 mL) were added sequentially under nitrogen. The tube was sealed and stirred at 140 °C for 6 h. After completion, the reaction mixture was filtered through a short pad of silica gel and washed with ethyl acetate. The combined organic phase was concentrated and purified by silica gel column chromatography (Petroleum ether : Ethyl acetate = 10 : 1) to provide the product **3a** in 94% yield.

4 Mechanistic experiments

4.1 Radical inhibition reaction

(a) General procedure for the radical inhibition reaction: In a 25 mL flame-dried Schlenk tube, **1a** (0.4 mmol), NiBr₂ (5 mol%, 0.02 mmol), L**1** (5 mol%, 0.02 mmol), Zn (0.2 equiv, 0.08 mmol), radical scavenger (1 equiv, 0.4 mmol), THF (4 mL) were added sequentially under nitrogen. The tube was sealed and stirred at 60 °C for 6 h. After completion, the reaction mixture was filtered through a short pad of silica gel and washed with ethyl acetate (20 mL). The combined organic phase was concentrated and purified by silica gel column chromatography (Petroleum ether : Ethyl acetate = 50 : 1) to provide the product **2a**.

(b) General procedure for the radical inhibition reaction: In a 25 mL flame-dried Schlenk tube, **1a** (0.4 mmol), NiBr₂ (5 mol%, 0.02 mmol), **L1** (5 mol%, 0.02 mmol), Zn (0.2 equiv, 0.08 mmol), radical scavenger (1 equiv, 0.4 mmol), THF (4 mL) were added sequentially under nitrogen. The tube was sealed and stirred at 140 °C for 6 h. After completion, the reaction mixture was filtered through a short pad of silica gel and washed with ethyl acetate (20 mL). The combined organic phase was concentrated and purified by silica gel column chromatography (Petroleum ether : Ethyl acetate = 10 : 1) to provide the product **3a**.

4.2 Time evaluation for the model reaction

In a 25 mL flame-dried Schlenk tube, **1a** (0.4 mmol), NiBr₂ (5 mol%, 0.02 mmol), **L1** (5 mol%, 0.02 mmol), Zn (0.2 equiv, 0.08 mmol), THF (4 mL) were added sequentially under nitrogen. The tube was sealed and stirred at 140 °C for 0.5 h or 1 h. After completion, the reaction mixture was filtered through a short pad of silica gel and washed with ethyl acetate (20 mL). The combined organic phase was concentrated and purified by silica gel column chromatography (Petroleum ether : Ethyl acetate = 10 : 1) to provide the product **2a** and **3a**.

4.3 Formation of 3a from 2a

Conditions A: In a 25 mL flame-dried Schlenk tube, **2a** (0.4 mmol), NiBr₂ (5 mol%, 0.02 mmol), **L1** (5 mol%, 0.02 mmol), Zn (0.2 equiv, 0.08 mmol), THF (4 mL) were added sequentially under nitrogen. The tube was sealed and stirred at 140 °C for 0.5 h or 1 h. After completion, the reaction mixture was filtered through a short pad of silica gel and washed with ethyl acetate (20 mL). The combined organic phase was concentrated and purified by silica gel column chromatography (Petroleum ether : Ethyl acetate = 10 : 1) to provide the product **3a** in 17% and 44% yield, respectively.

Conditions B: In a 25 mL flame-dried Schlenk tube, 2a (0.4 mmol) in THF (4 mL), under nitrogen. The tube was sealed and stirred at 140 °C for 0.5 h or 1 h. After

completion, the reaction mixture was filtered through a short pad of silica gel and washed with ethyl acetate (20 mL). The combined organic phase was concentrated and purified by silica gel column chromatography (Petroleum ether : Ethyl acetate = 10:1) to provide the product **3a** in 18% and 46% yield, respectively.

5. X-Ray Crystallography of 2i

\bigcirc	с
	0
	н
	Ν

Figure S1. The X-Ray Crystallographic Structure of 2i

Identification code	2103027077		
Empirical formula	C20 H19 N O2		
Formula weight	305.36		
Temperature	173.0 K		
Wavelength	1.34139 Å		
Crystal system	Orthorhombic		
Space group	Pna2 ₁		
Unit cell dimensions	a = 36.302(4) Å	a= 90°.	
	b = 8.0420(10) Å	b=90°.	
	c = 5.3509(6) Å	$g = 90^{\circ}$.	
Volume	1562.1(3) Å ³		
Z	4		
Density (calculated)	1.298 Mg/m ³		
Absorption coefficient	0.427 mm ⁻¹		
F(000)	648		
Crystal size	0.07 x 0.06 x 0.05 mm ³		
Theta range for data collection	4.238 to 54.989°.		
Index ranges	-44<=h<=42, -6<=k<=9, -	-6<=l<=5	
Reflections collected	9828		
Independent reflections $2815 [R(int) = 0.0479]$			
Completeness to theta = 53.594°	99.6 %		
Absorption correction	Semi-empirical from equi	valents	
Max. and min. transmission	0.7508 and 0.4755		
Refinement method	rement method Full-matrix least-squares on F ²		
Data / restraints / parameters	2815 / 1 / 211		
Goodness-of-fit on F ²	1.061		
Final R indices [I>2sigma(I)]	R1 = 0.0424, wR2 = 0.102	24	
R indices (all data)	R1 = 0.0536, wR2 = 0.11	13	
Absolute structure parameter	0.2(3)		
Extinction coefficient	n/a		
Largest diff. peak and hole 0.137 and -0.181 e.Å ⁻³			

Table S1. Crystal data and structure refinement for 2i

Table S2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement

e				
Atom	X	У	Z	U(eq)
O(1)	2923(1)	8362(3)	677(4)	47(1)
O(2)	5509(1)	7045(3)	2423(4)	41(1)
N(1)	3001(1)	6458(3)	3795(5)	35(1)
C(1)	3424(1)	8795(4)	3526(6)	32(1)
C(2)	3742(1)	9340(4)	1744(6)	33(1)
C(3)	3985(1)	8177(3)	3284(6)	31(1)
C(4)	3699(1)	7634(4)	4691(6)	31(1)
C(5)	3571(1)	6303(4)	6320(6)	31(1)
C(6)	3765(1)	5569(4)	8275(6)	36(1)
C(7)	3611(1)	4303(4)	9685(7)	42(1)
C(8)	3259(1)	3758(4)	9140(7)	44(1)
C(9)	3056(1)	4479(4)	7226(6)	41(1)
C(10)	3207(1)	5761(4)	5802(6)	33(1)
C(11)	3101(1)	7859(4)	2463(6)	34(1)
C(12)	2649(1)	5682(4)	3125(8)	48(1)
C(13)	4377(1)	7857(3)	3022(6)	31(1)
C(14)	4577(1)	8618(4)	1109(6)	35(1)
C(15)	4953(1)	8392(4)	832(6)	36(1)
C(16)	5139(1)	7373(4)	2495(6)	33(1)
C(17)	4948(1)	6590(4)	4403(6)	37(1)
C(18)	4575(1)	6821(4)	4671(6)	36(1)
C(19)	5713(1)	7722(4)	379(7)	49(1)
C(20)	3277(1)	10172(4)	5225(7)	40(1)

parameters (Å² x 10³) for 2-11. U(eq) is defined as one third of the trace of the

orthogonalized U^{ij} tensor.

Table S3. Bond lengths [Å] for 2i

Atom 1,2	d 1,2 [Å]	Atom 1,2	d 1,2 [Å]
O(1)-C(11)	1.224(4)	C(8)-C(9)	1.389(5)
O(2)-C(16)	1.370(3)	C(9)-H(9)	0.9500
O(2)-C(19)	1.428(4)	C(9)-C(10)	1.394(4)

N(1)-C(10)	1.424(4)	C(12)-H(12A)	0.9800
N(1)-C(11)	1.382(4)	C(12)-H(12B)	0.9800
N(1)-C(12)	1.467(4)	C(12)-H(12C)	0.9800
C(1)-C(2)	1.562(4)	C(13)-C(14)	1.396(4)
C(1)-C(4)	1.504(4)	C(13)-C(18)	1.410(4)
C(1)-C(11)	1.503(4)	C(14)-H(14)	0.9500
C(1)-C(20)	1.528(4)	C(14)-C(15)	1.384(4)
C(2)-H(2A)	0.9900	C(15)-H(15)	0.9500
C(2)-H(2B)	0.9900	C(15)-C(16)	1.386(4)
C(2)-C(3)	1.528(4)	C(16)-C(17)	1.387(4)
C(3)-C(4)	1.355(4)	C(17)-H(17)	0.9500
C(3)-C(13)	1.453(4)	C(17)-C(18)	1.374(4)
C(4)-C(5)	1.456(4)	C(18)-H(18)	0.9500
C(5)-C(6)	1.392(4)	C(19)-H(19A)	0.9800
C(5)-C(10)	1.419(4)	C(19)-H(19B)	0.9800
C(6)-H(6)	0.9500	C(19)-H(19C)	0.9800
C(6)-C(7)	1.384(4)	C(20)-H(20A)	0.9800
C(7)-H(7)	0.9500	C(20)-H(20B)	0.9800
C(8)-H(8)	0.9500		

 Table S4.
 Bond angles[°] for 2i

Atom 1,2,3	Angle 1,2,3[°]	Atom 1,2,3	Angle 1,2,3[°]
C(16)-O(2)-C(19)	117.1(2)	O(1)-C(11)-N(1)	122.2(3)
C(10)-N(1)-C(12)	118.4(2)	O(1)-C(11)-C(1)	122.9(3)
C(11)-N(1)-C(10)	124.8(2)	N(1)-C(11)-C(1)	114.7(2)
C(11)-N(1)-C(12)	116.8(2)	N(1)-C(12)-H(12A)	109.5
C(4)-C(1)-C(2)	86.3(2)	N(1)-C(12)-H(12B)	109.5
C(4)-C(1)-C(20)	115.8(3)	N(1)-C(12)-H(12C)	109.5
C(11)-C(1)-C(2)	119.1(3)	H(12A)-C(12)-H(12B)	109.5
C(11)-C(1)-C(4)	111.3(2)	H(12A)-C(12)-H(12C)	109.5
C(11)-C(1)-C(20)	108.5(2)	H(12B)-C(12)-H(12C)	109.5
C(20)-C(1)-C(2)	114.7(2)	C(14)-C(13)-C(3)	120.2(3)
C(1)-C(2)-H(2A)	114.4	C(14)-C(13)-C(18)	117.0(2)
C(1)-C(2)-H(2B)	114.4	C(18)-C(13)-C(3)	122.8(3)
H(2A)-C(2)-H(2B)	111.5	C(13)-C(14)-H(14)	118.9
------------------	----------	---------------------	----------
C(3)-C(2)-C(1)	85.8(2)	C(15)-C(14)-C(13)	122.2(3)
C(3)-C(2)-H(2A)	114.4	C(15)-C(14)-H(14)	118.9
C(3)-C(2)-H(2B)	114.4	C(14)-C(15)-H(15)	120.3
C(4)-C(3)-C(2)	93.1(2)	C(14)-C(15)-C(16)	119.3(3)
C(4)-C(3)-C(13)	138.3(3)	C(16)-C(15)-H(15)	120.3
C(13)-C(3)-C(2)	128.5(3)	O(2)-C(16)-C(15)	125.1(3)
C(3)-C(4)-C(1)	94.6(2)	O(2)-C(16)-C(17)	115.2(3)
C(3)-C(4)-C(5)	144.5(3)	C(15)-C(16)-C(17)	119.8(2)
C(5)-C(4)-C(1)	119.4(2)	С(16)-С(17)-Н(17)	119.7
C(6)-C(5)-C(4)	126.9(2)	C(18)-C(17)-C(16)	120.6(3)
C(6)-C(5)-C(10)	119.1(3)	C(18)-C(17)-H(17)	119.7
C(10)-C(5)-C(4)	114.0(2)	C(13)-C(18)-H(18)	119.5
C(5)-C(6)-H(6)	119.4	C(17)-C(18)-C(13)	121.0(3)
C(7)-C(6)-C(5)	121.2(3)	C(17)-C(18)-H(18)	119.5
C(7)-C(6)-H(6)	119.4	O(2)-C(19)-H(19A)	109.5
C(6)-C(7)-H(7)	120.3	O(2)-C(19)-H(19B)	109.5
C(8)-C(7)-C(6)	119.4(3)	O(2)-C(19)-H(19C)	109.5
C(8)-C(7)-H(7)	120.3	H(19A)-C(19)-H(19B)	109.5
C(7)-C(8)-H(8)	119.5	H(19A)-C(19)-H(19C)	109.5
C(7)-C(8)-C(9)	120.9(3)	H(19B)-C(19)-H(19C)	109.5
C(9)-C(8)-H(8)	119.5	C(1)-C(20)-H(20A)	109.5
C(8)-C(9)-H(9)	119.9	C(1)-C(20)-H(20B)	109.5
C(8)-C(9)-C(10)	120.1(3)	C(1)-C(20)-H(20C)	109.5
C(10)-C(9)-H(9)	119.9	H(20A)-C(20)-H(20B)	109.5
C(5)-C(10)-N(1)	121.1(3)	H(20A)-C(20)-H(20C)	109.5
C(9)-C(10)-N(1)	119.7(2)	H(20B)-C(20)-H(20C)	109.5
C(9)-C(10)-C(5)	119.2(3)		

Table S5. Anisotropic displacement parameters (Å²x 10³) for 1-2l. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$

Atom	U11	U ²²	U33	U ²³	U13	U12
O(1)	35(1)	59(2)	47(2)	14(1)	-9(1)	1(1)
O(2)	30(1)	44(1)	48(1)	9(1)	6(1)	4(1)
N(1)	27(1)	40(2)	37(2)	4(1)	0(1)	-5(1)
C(1)	28(1)	33(2)	36(2)	4(1)	1(1)	3(1)
C(2)	31(1)	35(2)	33(2)	5(1)	1(1)	-1(1)
C(3)	33(1)	31(2)	28(2)	0(1)	-1(1)	0(1)
C(4)	29(1)	32(2)	32(2)	0(1)	-2(1)	0(1)
C(5)	32(1)	31(2)	30(2)	-1(1)	3(1)	1(1)
C(6)	36(1)	36(2)	35(2)	0(1)	0(1)	4(1)
C(7)	50(2)	39(2)	37(2)	6(2)	4(1)	7(1)
C(8)	50(2)	39(2)	44(2)	6(2)	9(2)	-2(2)
C(9)	40(2)	40(2)	43(2)	1(2)	6(1)	-3(1)
C(10)	33(1)	32(2)	32(2)	0(1)	4(1)	2(1)
C(11)	27(1)	39(2)	38(2)	4(1)	1(1)	2(1)
C(12)	31(2)	56(2)	58(2)	6(2)	0(2)	-8(1)
C(13)	30(1)	32(2)	30(2)	-3(1)	-2(1)	-1(1)
C(14)	31(1)	38(2)	36(2)	6(1)	-1(1)	3(1)
C(15)	32(1)	40(2)	35(2)	4(1)	3(1)	-1(1)
C(16)	27(1)	33(2)	39(2)	-3(1)	2(1)	1(1)
C(17)	33(1)	37(2)	39(2)	5(2)	-1(1)	5(1)
C(18)	33(1)	38(2)	35(2)	6(2)	4(1)	-2(1)
C(19)	33(2)	56(2)	57(2)	13(2)	13(2)	2(2)
C(20)	39(2)	37(2)	43(2)	1(2)	5(1)	6(1)

Table S6. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement

Х	У	Z	U(eq)
3709	8995	-18	40
3809	10530	1870	40
4007	5943	8649	43
3746	3814	11015	50
	x 3709 3809 4007 3746	x y 3709 8995 3809 10530 4007 5943 3746 3814	xyz37098995-1838091053018704007594386493746381411015

parameters (Å²x 10³) for 2i.

H(8)	3155	2877	10088	53
H(9)	2813	4099	6885	49
H(12A)	2686	4487	2870	73
H(12B)	2555	6183	1581	73
H(12C)	2471	5857	4475	73
H(14)	4451	9314	-43	42
H(15)	5082	8930	-484	43
H(17)	5075	5886	5536	44
H(18)	4448	6274	5989	43
H(19A)	5602	7357	-1199	73
H(19B)	5968	7336	463	73
H(19C)	5707	8939	468	73
H(20A)	3132	9678	6579	60
H(20B)	3121	10927	4251	60
H(20C)	3484	10794	5936	60

6. References

- J. T. M. Correia, G. Piva da Silva, E. André and M. W. Paixão, *Adv. Synth. Catal.* 2019, 361, 5558.
- 2. C. Wu, J. Liao and S. Ge, Angew. Chem. Int. Ed. 2019, 58, 8882.
- 3. H.-Y. Liu, Y. Lu, Y. Li and J.-H. Li, Organ. Lett. 2020, 22, 8819.
- 4. Y. Qu, W. Xu, J. Zhang, Y. Liu, Y. Li, H. Song and Q. Wang, J. Org. Chem. 2020, **85**, 5379.

7. ¹H-NMR and ¹³C-NMR Spectra

S78

S86

S98

S102

S108

S110

S112

S136

S140

S145

S146

S154