SUPPORTING INFORMATION

An asymmetric oxidative cyclization/Mannich-type addition cascade

reaction for direct access to chiral pyrrolidin-3-ones

Su Zhou, Xiongda Xie, Xinxin Xu, Shanliang Dong, Wenhao Hu, and Xinfang Xu*

Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China

E-mail: xuxinfang@mail.sysu.edu.cn.

Table of Contents

1. General Information	S2
2. General Procedure for the Preparation of Homopropargyl Amides 1	S2-S3
3. Condition Optimization	S3-S4
4. General Procedure for the Synthesis of 3	S4-S22
5. Procedure for the Scale Up and Synthetic Applications	S22-S24
6. 1D-NOE NMR Analysis of 5	S25
7. Control Experiments	S26
8. 1H and 13C NMR Spectra for Compounds 3, 5, and 6	S27-S62
9. HPLC Analyses Figures of Compounds 3, 5, and 6	S63-S96
10. Single-Crystal X-ray Diffraction of 3cu	S97
11. References	S97

General Information

All reactions were carried out in oven-dried glassware. Solvents were dried and distilled followed the standard methods before using. Chiral phosphoric acids (CPAs), gold catalysts were purchased from chemical vendors and used directly without any treatment. Flash column chromatography was performed using silica gel (200-300 mesh). Analytical thin-layer chromatography was performed using glass plates pre-coated with 200-300 mesh silica gel impregnated with a fluorescent indicator (254 nm). ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ on a 400 or 500 MHz spectrometer; chemical shifts were reported in ppm with the solvent signal as reference, and coupling constants (*J*) were given in Hertz. The peak information was described as: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, comp = composite. High-resolution mass spectra (HRMS) were recorded on a commercial apparatus (ESI or CI Source). Nitrones were prepared according to the known procedure and had physical and spectral properties identical to those earlier reported.¹

General Procedure for the Preparation of Homopropargyl Amides 1.²

<u>Synthesis of S-2:</u>² To a 50-mL over-dried flask containing a magnetic stirring bar, S-1 (8.0 mmol), propargyl alcohol (9.5 mmol, 1.2 equiv.), PPh₃ (9.5 mmol, 1.5 equiv.) and dry THF (15 mL) were added in sequence and cooling down to 0 °C, DIAD (9.5 mmol, 1.2 equiv.) was added slowly in 1 hour. The reaction mixture was stirred at room temperature overnight. Upon completion (monitored by TLC), the solvent was evaporated in *vacuo*. The residue was purified by column chromatography on silica gel (Hexanes : EtOAc = 15:1) to give the products S-2 as white solid in 70%-80% yields.

<u>Synthesis of 1:</u> To a 50-mL over-dried flask containing a magnetic stirring bar, S-2 (6.0 mmol) and DCM (25 mL) were added in sequence and cooling down to 0 °C, TFA (30 mmol, 5.0 equiv.) were added dropwise and the reaction mixture was stirred at room temperature overnight. Upon completion (monitored by TLC), the crude reaction mixture was quenched with saturated aqueous sodium bicarbonate (20.0 mL), the combined organic layer was washed with brine and dried over anhydrous Na₂SO₄ and then evaporated *in vacuo*. The residue was purified by column chromatography on silica gel (Hexanes : EtOAc : Dichloromethane = 5:1:1) to give the products **1** as white solid in >80% yields. The physical and spectral properties of these synthesized homopropargyl amides **1** are identical to those earlier reported.²

Condition Optimization

	NHMs + 0 [⊖] + 0 [⊖] ⊕ 1b 2a	∠ ^{Cl} [Au] (5.0 mol%) <u>ent-4d</u> (5.0 mol%) DCE, -10 °C, 4 Å MS	O HN- N Ms 3ba	
entry	[Au]	Yield (%) ^b	dr ^c	ee (%) ^c
1	L3 AuNTf ₂	72	>20:1	76
2 ^{<i>d</i>}	L3 AuNTf ₂	74	>20:1	70
3 ^e	L3 AuNTf ₂	82	>20:1	81
4 ^{ef}	L3 AuNTf ₂	65	>20:1	79
5 ^{eg}	L3 AuNTf ₂	76	>20:1	81
6 ^e	PPh ₃ AuNTf ₂	<5	-	-
7 ^e	L3PhosAuCl+AgOTf	18	>20:1	63
8 ^e	L3AuCl+AgSbF ₆	45	>20:1	20
9 ^e	L3 AuCl+AgBF ₄	<5	-	-
10 ^e	L3AuCl+NaBarF	36	>20:1	61

Table S1: Condition optimization for the synthesis of **3ba**^{*a*}

^oThe reactions were conducted on a 0.1 mmol scale: **1b** (19.1 mg, 0.13 mmol), **2a** (23.1 mg, 0.1 mmol) in the presence of chiral phosphoric acid *ent*-**4d** (4.4 mg, 5.0 mol%), gold catalyst (5.0 mol%), and 4 Å molecular sieve (50 mg) in DCM (2.0 mL) under argon atmosphere at corresponding temperature. ^bIsolated yields of **3ba**. ^cThe *dr* ratios were determined by ¹HNMR of crude reaction mixture and *ee* values were determined by chiral HPLC analysis. ^dThe volume of DCE was 1.0 mL. ^eThe volume of DCE was 4.0 mL. ^fThe alkyne **1b** was adding in 1 hour by syringe pump. ^gThe gold catalyst was adding in 1 hour by syringe pump.

Table S2: Condition optimization for the synthesis of 3ca^a

	NHSO ₂ /Bu C + N 1c	2a	(5.0 mol%) d (5.0 mol% , T, additive	$ \xrightarrow{(N)}_{D} \xrightarrow{(N)}_{N} \xrightarrow{(N)} \xrightarrow{(N)}_{N} \xrightarrow$		
entry	[Au]	additive	T/ºC	Yield $(\%)^b$	dr^{c}	<i>ee</i> (%) ^c
1	L3AuNTf ₂	4 Å MS	-10	84	>20:1	81
2	L3AuNTf ₂	4 Å MS	-20	75	>20:1	84
3	L3AuNTf ₂	4 Å MS	-30	66	>20:1	89
4^d	L3AuNTf ₂	4 Å MS	-20	79	>20:1	87
5^d	L3 AuNTf ₂	5 Å MS	-20	79	>20:1	84
6^d	L3AuNTf ₂	3 Å MS	-20	75	>20:1	84
7^d	L2 AuNTf ₂	4 Å MS	-20	77	>20:1	90
8^d	L4AuNTf ₂	4 Å MS	-20	65	>20:1	85

^{*a*}The reactions were conducted on a 0.1 mmol scale: **1c** (24.6 mg, 0.13 mmol), **2a** (23.1 mg, 0.1 mmol) in the presence of chiral phosphoric acid *ent*-**4d** (4.4 mg, 5.0 mol%), gold catalyst (5.0 mol%), and powdered molecular sieve (50 mg) in DCM (2.0 mL) under argon atmosphere at corresponding temperature. ^{*b*}Isolated yields of **3a**. ^{*c*}The *dr* ratios were determined by ¹HNMR of crude reaction mixture and *ee* values were determined by chiral HPLC analysis. ^{*d*}The reaction was conducted in 4.0 mL DCE.

General Procedure for the Synthesis of 3:

To a 10-mL over-dried vial with a magnetic stirring bar, homopropargyl amides **1** (0.13 mmol), nitrone **2** (0.1 mmol), chiral phosphoric acid **4e** (4.4 mg, 5.0 mol%), 4 Å molecular sieves (50 mg), Me₃OMe*t*BuXPhosAuNTf₂ (4.9 mg, 5.0 mol%), and anhydrous DCE (4.0 mL) were added in sequence under atmosphere of argon, and the reaction mixture was stirred at -20 °C for 24 hours. When the reaction was completed

(monitored by TLC), the solvent was evaporated in *vacuo* after filtration of the. The residue was purified by flash column chromatography on 200-300 mesh silica gel (Hexanes : EtOAc : Dichloromethane = 10:2:1) to give the pure products **3** in good to high yields with excellent stereoselectivity.

(*S*)-2-((*R*)-(4-Chlorophenyl)(phenylamino)methyl)-1-tosylpyrrolidin-3-one (3aa). White solid, 32.7 mg, 72% yield, >95:5 *dr*, 78% *ee*, mp: 149 – 151 °C ; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.69 (d, *J* = 8.0 Hz, 2H), 7.38 – 7.24 (comp, 6H), 7.16 (t, *J* = 7.7 Hz, 2H), 6.73 (t, *J* = 7.3 Hz, 1H), 6.68 (d, *J* = 7.9 Hz, 2H), 5.28 (d, *J* = 3.0 Hz, 2H), 3.86 (s, 1H), 3.36 – 3.15 (m, 2H), 2.43 (s, 3H), 2.10 – 1.94 (m, 1H), 1.71 – 1.60 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 212.1, 145.7, 144.9, 136.1, 134.0, 132.7, 130.4, 129.52, 129.48, 128.8, 127.0, 118.6, 114.3, 65.5, 58.8, 44.5, 36.9, 21.7; HRMS (TOF MS ESI⁺) calculated for C₂₄H₂₄ClN₂O₃S [M + H]⁺: 455.1191, found 455.1203; HPLC conditions for determination of enantiomeric excess: Chiral IC, λ = 254 nm, hexane : isopropanol = 90:10, flow rate =1.0 mL/min, *t*_{major} = 10.9 min, *t*_{minor} = 14.0 min.

(*S*)-2-((*R*)-(4-Chlorophenyl)(phenylamino)methyl)-1-(methylsulfonyl)pyrrolidin-3-one (3ba). Pale yellow oil, 28.7 mg, 76% yield, >95:5 *dr*, 83% *ee*; ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.27 (comp, 4H), 7.18 – 7.08 (comp, 2H), 6.70 (t, *J* = 7.3 Hz,

1H), 6.62 (d, J = 7.7 Hz, 2H), 5.27 (bs, 1H), 5.15 (d, J = 3.6 Hz, 1H), 4.13 (d, J = 4.6 Hz, 1H), 3.74 – 3.47 (m, 1H), 3.20– 3.13 (m, 1H), 2.90 (s, 3H), 2.47 – 2.38 (m, 1H), 1.89 – 1.80 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 211.8, 145.5, 136.0, 134.2, 129.5, 129.4, 129.0, 118.6, 114.0, 65.3, 58.8, 44.3, 37.2, 35.7; HRMS (TOF MS ESI⁺) calculated for C₁₈H₂₀ClN₂O₃S [M + H]⁺: 379.0878, found 379.0876; HPLC conditions for determination of enantiomeric excess: Chiral IC, $\lambda = 240$ nm, hexane : isopropanol = 92:8, flow rate =1.0 mL/min, $t_{major} = 19.0$ min, $t_{minor} = 20.6$ min.

(*S*)-2-((*R*)-(4-Chlorophenyl)(phenylamino)methyl)-1-(*o*-tolylsulfonyl)pyrrolidin-3 -one (3da). Colorless oil, 27.7 mg, 61% yield, >95:5 *dr*, 82% *ee*; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.87 (d, *J* = 7.7 Hz, 1H), 7.50 (t, *J* = 7.5 Hz, 1H), 7.38 – 7.25 (comp, 6H), 7.11 (t, *J* = 7.9 Hz, 2H), 6.69 (t, *J* = 7.3 Hz, 1H), 6.58 (d, *J* = 7.9 Hz, 2H), 5.23 (s, 1H), 5.10 (s, 1H), 4.14 (d, *J* = 4.5 Hz, 1H), 3.61 – 3.49 (m, 1H), 3.11 – 3.04 (m, 1H), 2.65 (s, 3H), 2.34 – 2.26 (m, 1H), 1.85 – 1.77 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 212.4, 145.6, 137.9, 136.3, 135.7, 134.1, 133.7, 133.4, 130.2, 129.41, 129.35, 128.9, 126.9, 118.5, 114.0, 65.7, 58.5, 44.3, 37.1, 21.3; HRMS (TOF MS ESI⁺) calculated for C₂₄H₂₄ClN₂O₃S [M + H]⁺: 455.1191, found 455.1196; HPLC conditions for determination of enantiomeric excess: Chiral IC, λ = 254 nm, hexane : isopropanol = 90:10, flow rate =1.0 mL/min, *t*_{major} = 11.0 min, *t*_{minor} = 12.5 min.

(*S*)-2-((*R*)-(4-Chlorophenyl)(phenylamino)methyl)-1-((4-chlorophenyl)sulfonyl)p yrrolidin-3-one (3ea). Colorless oil, 31.3 mg, 66% yield, >95:5 *dr*, 78% *ee*; ¹H NMR (500 MHz, CDCl₃) (δ , ppm) 7.75 (d, *J* = 8.5 Hz, 2H), 7.51 (d, *J* = 8.5 Hz, 2H), 7.35 – 7.30 (comp, 4H), 7.17 (t, *J* = 7.9 Hz, 2H), 6.75 (t, *J* = 7.3 Hz, 1H), 6.69 (d, *J* = 7.9 Hz, 2H), 5.29 – 5.24 (comp, 2H), 3.85 (d, *J* = 3.9 Hz, 1H), 3.33 – 3.22 (m, 2H), 2.12 – 2.06 (m, 1H), 1.73 – 1.64 (m, 1H);¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 211.4, 145.6, 140.6, 135.8, 134.2, 130.1, 129.54, 129.46, 129.2, 128.9, 118.8, 114.4, 65.4, 58.9, 44.6, 36.8; HRMS (TOF MS ESI⁺) calculated for C₂₃H₂₁Cl₂N₂O₃S [M + H]⁺: 475.0644, found 475.0644; HPLC conditions for determination of enantiomeric excess: Chiral IC, λ = 254 nm, hexane : isopropanol = 90:10, flow rate =1.0 mL/min, *t*_{major} = 12.7 min, *t*_{minor} = 16.3 min.

(*S*)-2-((*R*)-(4-Chlorophenyl)(phenylamino)methyl)-1-((4-nitrophenyl)sulfonyl)pyr rolidin-3-one (3fa). Yellow solid, 29.1 mg, 60% yield, >95:5 *dr*, 78% *ee*, mp: 181 – 183 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.38 (d, *J* = 8.7 Hz, 2H), 8.00 (d, *J* = 8.7 Hz, 2H), 7.46 – 7.27 (comp, 4H), 7.19 (t, *J* = 7.9 Hz, 2H), 6.78 (t, *J* = 7.3 Hz, 1H), 6.71 (d, *J* = 7.9 Hz, 2H), 5.32 (d, *J* = 4.3 Hz, 1H), 5.22 (s, 1H), 3.88 (d, *J* = 4.0 Hz, 1H), 3.31 (t, *J* = 7.8 Hz, 2H), 2.16 – 2.08 (m, 1H), 1.78 – 1.68 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 210.6, 150.8, 145.5, 141.6, 135.5, 134.4, 129.6, 129.4, 129.10,

129.05, 125.0, 119.1, 114.5, 65.2, 59.1, 44.7, 36.7; HRMS (TOF MS ESI⁺) calculated for C₂₃H₂₁ClN₃O₅S [M + H]⁺: 486.0885, found 486.0890; HPLC conditions for determination of enantiomeric excess: Chiral IC, $\lambda = 254$ nm, hexane : isopropanol = 90:10, flow rate =1.0 mL/min, $t_{major} = 33.2$ min, $t_{minor} = 54.3$ min.

(*S*)-2-((*R*)-(4-Chlorophenyl)(phenylamino)methyl)-1-(thiophen-2-ylsulfonyl)pyrr olidin-3-one (3ga). Yellow oil, 33.9 mg, 76% yield, >95:5 *dr*, 75% *ee*; ¹H NMR (500 MHz, CDCl₃) (δ , ppm) 7.65 (d, *J* = 4.9 Hz, 1H), 7.61 (d, *J* = 3.3 Hz, 1H), 7.35 (d, *J* = 8.2 Hz, 2H), 7.31 (d, *J* = 8.2 Hz, 2H), 7.16 (t, *J* = 7.6 Hz, 3H), 6.73 (t, *J* = 7.3 Hz, 1H), 6.68 (d, *J* = 7.9 Hz, 2H), 5.28 (d, *J* = 12.5 Hz, 2H), 3.95 (s, 1H), 3.43 – 3.37 (m, 1H), 3.31 – 3.26 (m, 1H), 2.15 – 2.08 (m, 1H), 1.76 – 1.67 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 211.6, 145.6, 135.9, 135.6, 134.1, 133.6, 133.3, 129.51, 129.48, 128.9, 128.2, 118.7, 114.2, 65.5, 58.8, 44.6, 36.9; HRMS (TOF MS ESI⁺) calculated for C₂₁H₂₀ClN₂O₃S₂ [M + H]⁺: 447.0598, found 447.0599; HPLC conditions for determination of enantiomeric excess: Chiral IC, λ = 254 nm, hexane : isopropanol = 90:10, flow rate =1.0 mL/min, *t*_{major} = 10.1 min, *t*_{minor} = 12.2 min.

(*S*)-1-((*tert*-Butylthio)peroxy)-2-((*R*)-(4-chlorophenyl)(phenylamino)methyl)pyrro lidin-3-one (3ca). Pale yellow oil, 33.2 mg, 79% yield, >95:5 *dr*, 93% *ee*; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.37 (d, *J* = 8.3 Hz, 2H), 7.31 (d, *J* = 8.4 Hz, 2H), 7.11 (t, *J* = 7.7 Hz, 2H), 6.68 (t, *J* = 7.3 Hz, 1H), 6.60 (d, *J* = 8.0 Hz, 2H), 5.32 (d, *J* = 6.4 Hz,

1H), 5.15 (bs, 1H), 4.47 (d, J = 4.7 Hz, 1H), 3.72 (t, J = 10.5 Hz, 1H), 2.65 – 2.58 (m, 1H), 2.54 – 2.43 (m, 1H), 2.01 – 1.95 (m, 1H), 1.45 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 213.5, 145.6, 136.9, 134.4, 129.4, 129.2, 118.3, 113.8, 66.4, 62.9, 58.9, 46.5, 37.8, 25.1; HRMS (TOF MS ESI⁺) calculated for C₂₁H₂₆ClN₂O₃S [M + H]⁺: 421.1347, found 421.1346; HPLC conditions for determination of enantiomeric excess: Chiral IC, $\lambda = 245$ nm, hexane : isopropanol = 90:10, flow rate =1.0 mL/min, $t_{major} = 9.5$ min, $t_{minor} = 14.4$ min.

(*S*)-1-((*tert*-Butylthio)peroxy)-2-((*R*)-(4-fluorophenyl)(phenylamino)methyl)pyrro lidin-3-one (3cb). Pale yellow oil, 31.1 mg, 77% yield, >95:5 *dr*, 93% *ee*; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.42 – 7.39 (comp, 2H), 7.11 (t, *J* = 7.8 Hz, 2H), 7.02 (t, *J* = 8.6 Hz, 2H), 6.68 (t, *J* = 7.3 Hz, 1H), 6.62 (d, *J* = 8.0 Hz, 2H), 5.34 (bs, 1H), 5.16 (d, *J* = 4.8 Hz, 1H), 4.46 (d, *J* = 4.5 Hz, 1H), 3.72 (t, *J* = 10.8 Hz, 1H), 2.62 – 2.43 (comp, 2H), 1.99 – 1.93 (m, 1H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 213.5, 162.8 (d, *J* = 247.4 Hz), 145.7, 134.0 (d, *J* = 3.2 Hz), 129.5 (d, *J* = 8.1 Hz), 129.4, 118.3, 116.0 (d, *J* = 21.4 Hz), 113.8, 66.4, 62.8, 58.8, 46.4, 37.8, 25.1; ¹⁹F NMR (376 MHz, CDCl₃) (δ , ppm) -113.5; HRMS (TOF MS ESI⁺) calculated for C₂₁H₂₆FN₂O₃S [M + H]⁺: 405.1643, found 405.1648; HPLC conditions for determination of enantiomeric excess: Chiral IA, λ = 240 nm, hexane : isopropanol = 85:15, flow rate =1.0 mL/min, *t*_{major} = 18.2 min, *t*_{minor} = 13.2 min.

(*S*)-2-((*R*)-(4-Bromophenyl)(phenylamino)methyl)-1-((*tert*-butylthio)peroxy)pyrr olidin-3-one (3cc). Pale yellow oil, 33.9 mg, 73% yield, >95:5 *dr*, 92% *ee*; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.46 (d, *J* = 8.3 Hz, 2H), 7.31 (d, *J* = 8.3 Hz, 2H), 7.11 (t, *J* = 7.8 Hz, 2H), 6.68 (t, *J* = 7.3 Hz, 1H), 6.60 (d, *J* = 8.0 Hz, 2H), 5.32 (bs, 1H), 5.14 (d, *J* = 4.5 Hz, 1H), 4.46 (d, *J* = 4.7 Hz, 1H), 3.72 (t, *J* = 10.4 Hz, 1H), 2.65 – 2.57 (m, 1H), 2.54 – 2.44 (m, 1H), 2.02 – 1.95 (m, 1H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 213.4, 145.6, 137.5, 132.2, 129.6, 129.4, 122.5, 118.4, 113.8, 66.3, 62.9, 59.0, 46.5, 37.8, 25.1; HRMS (TOF MS ESI⁺) calculated for C₂₁H₂₆BrN₂O₃S [M + H]⁺: 465.0842, found 465.0846; HPLC conditions for determination of enantiomeric excess: Chiral IC, λ = 240 nm, hexane : isopropanol = 85:15, flow rate =1.0 mL/min, *t*_{major} = 21.4 min, *t*_{minor} = 14.6 min.

Methyl 4-((*R*)-((*S*)-1-((*tert*-butylthio)peroxy)-3-oxopyrrolidin-2-yl)(phenylamino) methyl)benzoate (3cd). Pale yellow oil, 32.0 mg, 72% yield, >95:5 *dr*, 90% *ee*; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.00 (d, *J* = 8.1 Hz, 2H), 7.52(d, *J* = 8.1 Hz, 2H), 7.11 (t, *J* = 7.7 Hz, 2H), 6.68 (t, *J* = 7.3 Hz, 1H), 6.61 (d, *J* = 8.4 Hz, 2H), 5.37 (bs, 1H), 5.23 (d, *J* = 1.7 Hz, 1H), 4.52 (d, *J* = 4.8 Hz, 1H), 3.89 (s, 3H), 3.71 (t, *J* = 10.2 Hz, 1H), 2.56 – 2.43 (m, 2H), 2.98 – 1.92 (m, 1H), 1.46 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 213.3, 166.7, 145.6, 143.8, 130.3, 130.2, 129.4, 128.0, 118.4, 113.8, 66.3, 62.8, 59.4, 52.3, 46.5, 37.8, 25.1; HRMS (TOF MS ESI⁺) calculated for C₂₃H₂₉N₂O₅S [M + H]⁺: 445.1792, found 445.1798; HPLC conditions for determination of enantiomeric excess: Chiral IA, $\lambda = 254$ nm, hexane : isopropanol = 90:10, flow rate =1.0 mL/min, $t_{major} = 32.2$ min, $t_{minor} = 22.6$ min.

4-((*R*)-((*S*)-1-((*tert*-Butylthio)peroxy)-3-oxopyrrolidin-2-yl)(phenylamino)methyl) benzonitrile (3ce). White solid, 25.1 mg, 61% yield, >95:5 *dr*, 96% *ee*, mp: 168 – 160 °C ; ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.64 – 7.57 (comp, 4H), 7.12 (t, *J* = 7.2 Hz, 2H), 6.70 (t, *J* = 7.3 Hz, 1H), 6.58 (d, *J* = 7.8 Hz, 2H), 5.37 (s, 1H), 5.28 (d, *J* = 7.3 Hz, 1H), 4.49 (d, *J* = 4.6 Hz, 1H), 3.75 (t, *J* = 10.5 Hz, 1H), 2.70 – 2.62 (m, 1H), 2.590 – 2.49 (m, 1H), 2.040 – 1.97 (m, 1H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 212.7, 145.2, 144.2, 132.7, 129.5, 128.7, 118.7, 118.5, 113.7, 112.4, 66.5, 63.1, 59.1, 46.4, 37.6, 25.1; HRMS (TOF MS ESI⁺) calculated for C₂₂H₂₆N₃O₃S [M + H]⁺: 412.1689, found 412.1705; HPLC conditions for determination of enantiomeric excess: Chiral IC, λ = 254 nm, hexane : isopropanol = 90:10, flow rate =1.0 mL/min, *t*_{major} = 48.3 min, *t*_{minor} = 53.1 min.

(*S*)-1-((*tert*-Butylthio)peroxy)-2-((*R*)-(phenylamino)(4-(trifluoromethyl)phenyl)m ethyl)pyrrolidin-3-one (3cf). Colorless oil, 33.6 mg, 74% yield, >95:5 *dr*, 88% *ee*; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.59 (q, *J* = 8.2 Hz, 4H), 7.12 (t, *J* = 7.6 Hz, 2H), 6.69 (t, *J* = 7.2 Hz, 1H), 6.61 (d, *J* = 7.9 Hz, 2H), 5.38 (s, 1H), 5.26 (s, 1H), 4.51 (d, *J* = 4.1 Hz, 1H), 3.73 (t, *J* = 10.5 Hz, 1H), 2.62 – 2.46 (m, 2H), 2.01 – 1.95 (m, 1H), 1.46 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 213.1, 145.5, 142.7, 130.7 (q, *J* = 36.0 Hz), 129.5, 128.4, 125.9 (q, *J* = 3.2 Hz), 124.0 (q, *J* = 272.0 Hz), 118.5, 113.8, 66.5, 63.0, 59.1, 46.5, 37.8, 25.1; ¹⁹F NMR (376 MHz, CDCl₃) (δ , ppm) -62.6; HRMS (TOF MS ESI⁺) calculated for C₂₂H₂₆F₃N₂O₃S [M + H]⁺: 455.1611, found 455.1623; HPLC conditions for determination of enantiomeric excess: Chiral IC, λ = 254 nm, hexane : isopropanol = 90:10, flow rate =1.0 mL/min, *t*_{major} = 6.8 min, *t*_{minor} = 9.7 min.

(*S*)-1-((*tert*-Butylthio)peroxy)-2-((*R*)-phenyl(phenylamino)methyl)pyrrolidin-3-on e (3cg). Colorless oil, 23.9 mg, 62% yield, >95:5 *dr*, 92% *ee*; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.42 (d, *J* = 7.6 Hz, 2H), 7.36 – 7.27 (comp, 3H), 7.11 (t, *J* = 7.6 Hz, 2H), 6.69 – 6.64 (comp, 3H), 5.33 (s, 1H), 5.14 (d, *J* = 4.1 Hz, 1H), 4.50 (d, *J* = 4.6 Hz, 1H), 3.69 (t, *J* = 10.2 Hz, 1H), 2.55 – 2.38 (m, 2H), 1.96 – 1.94 (m, 1H), 1.46 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 213.9, 145.9, 138.3, 129.4, 129.0, 128.5, 127.8, 118.1, 113.9, 66.4, 62.7, 59.6, 46.4, 38.0, 25.1; HRMS (TOF MS ESI⁺) calculated for C₂₁H₂₇N₂O₃S [M + H]⁺: 387.1737, found 387.1746; HPLC conditions for determination of enantiomeric excess: Chiral IA, λ = 254 nm, hexane : isopropanol = 95:5, flow rate =1.0 mL/min, *t*_{major} = 22.3 min, *t*_{minor} = 19.7 min.

(*S*)-2-((*R*)-((4-Bromophenyl)amino)(*p*-tolyl)methyl)-1-((tert-Butylthio)peroxy)pyr rolidin-3-one (3ch). Colorless oil, 38.2 mg, 80% yield, >95:5 *dr*, 96% *ee*; ¹H NMR (500 MHz, CDCl₃) δ 7.18 (d, *J* = 7.6 Hz, 2H), 7.10 (d, *J* = 8.6 Hz, 2H), 7.05 (d, *J* = 7.8 Hz, 2H), 6.43 (d, *J* = 8.6 Hz, 2H), 5.29 (s, 1H), 4.95 (s, 1H), 4.37 (d, *J* = 4.6 Hz, 1H), 3.65 – 3.57 (m, 1H), 2.44 – 2.34 (m, 2H), 2.23 (s, 3H), 1.91 – 1.84 (m, 1H), 1.38 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 214.0, 145.0, 138.4, 134.5, 132.0, 129.8,

127.6, 115.4, 109.7, 66.1, 62.6, 59.3, 46.4, 38.0, 25.0, 21.2; HRMS (TOF MS ESI⁺) calculated for $C_{22}H_{28}BrN_2O_3S$ [M + H]⁺: 479.0999, found 479.1004; HPLC conditions for determination of enantiomeric excess: Chiral IA, $\lambda = 260$ nm, hexane : isopropanol = 90:10, flow rate =1.0 mL/min, $t_{major} = 20.8$ min, $t_{minor} = 19.4$ min.

(*S*)-1-((*tert*-Butylthio)peroxy)-2-((*R*)-(4-methoxyphenyl)((4-(trifluoromethyl)phen yl)amino)methyl)pyrrolidin-3-one (3ci). Colorless oil, 42.1 mg, 83% yield, >95:5 *dr*, 88% *ee*; ¹H NMR (500 MHz, CDCl₃) (δ , ppm) 7.33 (t, *J* = 8.5 Hz, 4H), 6.87 (d, *J* = 8.3 Hz, 2H), 6.62 (d, *J* = 8.3 Hz, 2H), 5.68 (s, 1H), 5.09 (s, 1H), 4.43 (d, *J* = 4.4 Hz, 1H), 3.78 (s, 3H), 3.70 (t, *J* = 10.4 Hz, 1H), 2.57 – 2.46 (m, 2H), 2.00 – 1.95 (m, 1H), 1.47 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 214.1, 159.9, 148.5, 132.1, 129.1, 128.8, 126.7 (q, *J* = 3.7 Hz), 125.0 (q, *J* = 270.4 Hz), 119.5 (q, *J* = 32.7 Hz), 114.6, 113.0, 66.1, 62.8, 58.7, 55.4, 46.4, 38.0, 25.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -61.2; HRMS (TOF MS ESI⁺) calculated for C₂₃H₂₈F₃N₂O₄S [M + H]⁺: 507.1536, found 507.1554; HPLC conditions for determination of enantiomeric excess: Chiral IC, λ = 254 nm, hexane : isopropanol = 90:10, flow rate =1.0 mL/min, *t*_{major} = 9.2 min, *t*_{minor} = 14.2 min.

(*S*)-1-((*tert*-Butylthio)peroxy)-2-((*R*)-(3-chlorophenyl)(phenylamino)methyl)pyrro lidin-3-one (3cj). Colorless oil, 35.3 mg, 84% yield, >95:5 *dr*, 95% *ee*; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.41 (s, 1H), 7.36 – 7.32 (m, 1H), 7.27 (d, *J* = 4.7 Hz, 2H), 7.12 (t, *J* = 7.6 Hz, 2H), 6.69 (t, *J* = 7.2 Hz, 1H), 6.61 (d, *J* = 8.2 Hz, 2H), 5.35 (bs, 1H), 5.11 (d, *J* = 4.9 Hz, 1H), 4.49 (d, *J* = 4.8 Hz, 1H), 3.75 (t, *J* = 10.7 Hz, 1H), 2.62

-2.45 (m, 2H), 2.05 -1.96 (m, 1H), 1.46 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 213.3, 145.6, 140.7, 135.0, 130.3, 129.4, 128.7, 127.9, 126.2, 118.4, 113.8, 66.3, 62.8, 59.1, 46.5, 37.8, 25.0; HRMS (TOF MS ESI⁺) calculated for C₂₁H₂₆ClN₂O₃S [M + H]⁺: 421.1347, found 421.1357; HPLC conditions for determination of enantiomeric excess: Chiral IC, $\lambda = 254$ nm, hexane : isopropanol = 90:10, flow rate =1.0 mL/min, *t*_{major} = 10.0 min, *t*_{minor} = 20.4 min.

(*S*)-1-((*tert*-Butylthio)peroxy)-2-((*R*)-(3-chlorophenyl)((3-chlorophenyl)amino)me thyl)pyrrolidin-3-one (3ck). Colorless oil, 38.6 mg, 85% yield, >95:5 *dr*, 97% *ee*; ¹H NMR (500 MHz, CDCl₃) δ 7.39 (s, 1H), 7.34 – 7.31 (m, 1H), 7.29 (d, *J* = 5.1 Hz, 2H), 7.02 (t, *J* = 8.0 Hz, 1H), 6.66 – 6.64 (m, 1H), 6.59 (t, *J* = 1.8 Hz, 1H), 6.48 – 6.46 (m, 1H), 5.47 (d, *J* = 8.9 Hz, 1H), 5.08 – 5.05 (m, 1H), 4.46 (d, *J* = 5.0 Hz, 1H), 3.77 – 3.72 (m, 1H), 2.61 – 2.46 (m, 2H), 2.04 – 1.97 (m, 1H), 1.47 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 213.3, 146.7, 140.1, 135.1, 130.4, 128.9, 127.7, 126.1, 118.3, 113.6, 111.8, 66.1, 62.9, 58.9, 46.5, 37.8, 25.0; HRMS (TOF MS ESI⁺) calculated for C₂₁H₂₅Cl₂N₂O₃S [M + H]⁺: 455.0957, found 455.0956; HPLC conditions for determination of enantiomeric excess: Chiral IA, λ = 254 nm, hexane : isopropanol = 95:5, flow rate =1.0 mL/min, *t*_{major} = 18.2 min, *t*_{minor} = 17.0 min.

(*S*)-1-((*tert*-Butylthio)peroxy)-2-((*R*)-(2-chlorophenyl)((3-chlorophenyl)amino)me thyl)pyrrolidin-3-one (3cl). Colorless oil, 37.2 mg, 82% yield, 94:6 *dr*, 90%(54%) *ee*; ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.43 – 7.33 (comp, 2H), 7.26 – 7.22 (comp, 2H), 6.99 (t, J = 8.1 Hz, 1H), 6.64 – 2 (m, 1H), 6.53 (t, J = 2.0 Hz, 1H), 6.40 – 6.38 (m, 1H), 5.43 (s, 1H), 5.18 (d, J = 7.3 Hz, 1H), 4.38 (d, J = 7.0 Hz, 1H), 4.12 – 4.01 (m, 1H), 3.45 – 3.27 (m, 1H), 2.70 – 2.60 (m, 1H), 2.51 – 2.44 (m, 1H), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 209.7, 147.1, 135.4, 135.1, 134.2, 130.4, 129.9, 129.8, 128.6, 127.8, 118.3, 113.6, 111.7, 67.3, 62.8, 55.1, 45.9, 37.6, 25.1; HRMS (TOF MS ESI⁺) calculated for C₂₁H₂₅Cl₂N₂O₃S [M + H]⁺: 455.0957, found 455.0962; HPLC conditions for determination of enantiomeric excess: Chiral IC, $\lambda = 254$ nm, hexane : isopropanol = 90:10, flow rate =1.0 mL/min, $t_{major} = 24.6$ min, $t_{minor} = 33.5$ min.

(*S*)-1-((*tert*-Butylthio)peroxy)-2-((*R*)-((4-chlorophenyl)amino)(2-fluorophenyl)met hyl)pyrrolidin-3-one (3cm). Pale yellow oil, 35.1 mg, 80% yield, >95:5 *dr*, 90% *ee*; ¹H NMR (500 MHz, CDCl₃) (δ , ppm) 7.29 (t, *J* = 7.2 Hz, 2H), 7.12 – 7.04 (comp, 4H), 6.53 (d, *J* = 8.0 Hz, 2H), 5.34 (bs, 1H), 5.19 (d, *J* = 5.2 Hz, 1H), 4.54 (d, *J* = 12.3 Hz, 1H), 3.94 (t, *J* = 11.0 Hz, 1H), 2.87 – 2.81 (m, 1H), 2.65 – 2.51 (m, 1H), 2.23 – 2.19 (m, 1H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 212.7, 161.3 (d, *J* = 246.8 Hz), 144.3, 130.3 (d, *J* = 8.4 Hz), 129.3, 128.8 (d, *J* = 3.5 Hz), 125.2 (d, *J* = 12.2 Hz), 125.0 (d, *J* = 3.3 Hz), 123.0, 115.9 (d, *J* = 22.9 Hz), 114.8, 66.0, 62.4, 53.1, 46.4, 37.9, 24.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -116.2; HRMS (TOF MS ESI⁺) calculated for C₂₁H₂₅ClFN₂O₃S [M + H]⁺: 439.1253, found 439.1258; HPLC conditions for determination of enantiomeric excess: Chiral IC, λ = 254 nm, hexane : isopropanol = 90:10, flow rate =1.0 mL/min, *t*_{major} = 17.3 min, *t*_{minor} = 21.9 min.

(*S*)-2-((*S*)-((4-Bromophenyl)amino)(furan-2-yl)methyl)-1-((*tert*-butylthio)peroxy) pyrrolidin-3-one (3cn). Yellow oil, 40.5 mg, 85% yield, >95:5 *dr*, 95% *ee*; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.36 (s, 1H), 7.26 (d, *J* = 9.0 Hz, 2H), 6.60 (d, *J* = 8.7 Hz, 2H), 6.34 (d, *J* = 13.5 Hz, 2H), 5.07 (bs, 2H), 4.50 (s, 1H), 3.88 (t, *J* = 9.9 Hz, 1H), 2.77 – 2.67 (m, 1H), 2.64 – 2.54 (m, 1H), 2.324 – 2.26 (m, 1H), 1.46 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 212.7, 151.2, 144.7, 142.4, 132.2, 115.6, 111.3, 110.5, 109.4, 63.0, 62.0, 54.0, 46.1, 38.2, 24.7; HRMS (TOF MS ESI⁺) calculated for C₁₉H₂₄BrN₂O₄S [M + H]⁺: 477.0454, found 477.0475; HPLC conditions for determination of enantiomeric excess: Chiral IC, λ = 254 nm, hexane : isopropanol = 90:10, flow rate =1.0 mL/min, *t*_{major} = 16.7 min, *t*_{minor} = 25.0 min.

(*S*)-2-((*R*)-((4-Bromophenyl)amino)(naphthalen-2-yl)methyl)-1-((*tert*-butylthio)pe roxy)pyrrolidin-3-one (3co). White solid, 33.4 mg, 65% yield, >95:5 *dr*, 96% *ee*, mp: 162 – 164 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.86 – 7.79 (comp, 4H), 7.53 – 7.46 (comp, 3H), 7.16 (d, *J* = 8.8 Hz, 2H), 6.54 (d, *J* = 8.7 Hz, 2H), 5.54 (bs, 1H), 5.25 (d, *J* = 2.3 Hz, 1H), 4.53 (d, *J* = 4.7 Hz, 1H), 3.66 – 3.58 (m, 1H), 2.48 – 2.35 (m, 2H), 1.93 – 1.83 (m, 1H), 1.47 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 213.9, 144.9, 135.2, 133.33, 133.30, 132.1, 129.0, 128.2, 127.9, 127.2, 126.7, 126.6, 125.2, 115.5, 109.8, 66.4, 62.8, 59.7, 46.5, 37.9, 25.1; HRMS (TOF MS ESI⁺) calculated for C₂₅H₂₇BrN₂O₃SNa [M + Na]⁺: 537.0818, found 537.0819; HPLC conditions for determination of enantiomeric excess: Chiral IA, λ = 254 nm, hexane : isopropanol = 90:10, flow rate =1.0 mL/min, *t*_{major} = 23.5 min, *t*_{minor} = 26.7 min.

(*S*)-1-((*tert*-Butylthio)peroxy)-2-((*R*)-((*4*-chlorophenyl)amino)(phenyl)methyl)pyr rolidin-3-one (3cp). Yellow oil, 35.7 mg, 85% yield, >95:5 *dr*, 94% *ee*; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.40 – 7.26 (comp, 5H), 7.05 (d, *J* = 8.4 Hz, 2H), 6.56 (d, *J* = 8.5 Hz, 2H), 5.38 (bs, 1H), 5.08 (d, *J* = 4.4 Hz, 1H), 4.46 (d, *J* = 4.7 Hz, 1H), 3.71 – 3.64 (m, 1H), 2.51 – 2.39 (m, 2H), 1.97 – 1.90 (m, 1H), 1.46 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 213.8, 144.5, 137.7, 129.2, 129.1, 128.6, 127.8, 122.7, 115.0, 66.2, 62.7, 59.7, 46.4, 37.9, 25.0; HRMS (TOF MS ESI⁺) calculated for C₂₁H₂₆ClN₂O₃S [M + H]⁺: 421.1347, found 421.1362; HPLC conditions for determination of enantiomeric excess: Chiral IC, λ = 254 nm, hexane : isopropanol = 90:10, flow rate =1.0 mL/min, *t*_{major} = 9.3 min, *t*_{minor} = 16.4 min.

(*S*)-1-((*tert*-Butylthio)peroxy)-2-((*R*)-(4-chlorophenyl)((4-fluorophenyl)amino)met hyl)pyrrolidin-3-one (3cq). Pale yellow oil, 30.7 mg, 70% yield, >95:5 *dr*, 93% *ee*; ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.39 – 7.27 (comp, 4H), 6.82 (t, *J* = 8.6 Hz, 2H), 6.56 – 6.52 (comp, 2H), 5.22 (bs, 1H), 5.10 (d, *J* = 4.4 Hz, 1H), 4.44 (d, *J* = 4.4 Hz, 1H), 3.72 (t, *J* = 9.9 Hz, 1H), 2.65 – 2.56 (m, 1H), 2.54 – 2.45 (m, 1H), 2.01 – 1.95 (m, 1H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 213.4, 156.2 (d, *J* = 236.1 Hz), 141.8 (d, *J* = 1.9 Hz), 136.6, 134.5, 129.3, 129.2, 115.9 (d, *J* = 21.4 Hz), 114.8 (d, *J* = 7.4 Hz), 66.3, 62.9, 59.5, 46.4, 37.8, 25.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -126.9; HRMS (TOF MS ESI⁺) calculated for C₂₁H₂₅CIFN₂O₃S [M + H]⁺: 439.1253, found 439.1263; HPLC conditions for determination of enantiomeric excess: Chiral IC, λ = 230 nm, hexane : isopropanol = 90:10, flow rate =1.0 mL/min, t_{major} = 8.6 min, t_{minor} = 11.2 min.

(*S*)-2-((*R*)-((4-Bromophenyl)amino)(4-chlorophenyl)methyl)-1-((*tert*-butylthio)pe roxy)pyrrolidin-3-one (3cr). Pale yellow oil, 35.9 mg, 72% yield, >95:5 *dr*, 92% *ee*; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.37 – 7.28 (comp, 4H), 7.18 (d, *J* = 8.8 Hz, 2H), 6.47 (d, *J* = 8.8 Hz, 2H), 5.39 (d, *J* = 7.1 Hz, 1H), 5.09 (bs, 1H), 4.43 (d, *J* = 5.0 Hz, 1H), 3.72 (t, *J* = 10.8 Hz, 1H), 2.63 – 2.44 (m, 2H), 2.03 – 1.95 (m, 1H), 1.46 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 213.4, 144.6, 136.3, 134.6, 132.1, 129.3, 129.2, 115.4, 110.1, 66.2, 63.0, 58.9, 46.4, 37.8, 25.1; HRMS (TOF MS ESI⁺) calculated for C₂₁H₂₅ClBrN₂O₃S [M + H]⁺: 499.0452, found 499.0453; HPLC conditions for determination of enantiomeric excess: Chiral IC, λ = 254 nm, hexane : isopropanol = 90:10, flow rate =1.0 mL/min, *t*_{major} = 8.6 min, *t*_{minor} = 11.4 min.

(*S*)-2-((*R*)-(4-Bromophenyl)(*p*-tolylamino)methyl)-1-((*tert*-butylthio)peroxy)pyrro lidin-3-one (3cs). Brown oil, 34.9 mg, 73% yield, >95:5 *dr*, 90% *ee*; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.45 (d, *J* = 8.2 Hz, 2H), 7.29 (d, *J* = 8.2 Hz, 2H), 6.92 (d, *J* = 8.1 Hz, 2H), 6.52 (d, *J* = 8.1 Hz, 2H), 5.12 (d, *J* = 4.7 Hz, 2H), 4.46 (d, *J* = 4.2 Hz, 1H), 3.72 (t, *J* = 10.2 Hz, 1H), 2.66 – 2.58 (m, 1H), 2.53 – 2.43 (m, 1H), 2.18 (s, 3H), 2.01 – 1.95 (m, 1H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 213.4, 143.2, 137.6, 132.1, 129.9, 129.6, 127.6, 122.4, 114.0, 66.3, 62.8, 59.2, 46.5, 37.8, 25.1, 20.5; HRMS (TOF MS ESI⁺) calculated for C₂₂H₂₈BrN₂O₃S [M + H]⁺: 479.0999, found 479.1025; HPLC conditions for determination of enantiomeric excess: Chiral IC, $\lambda = 230$ nm, hexane : isopropanol = 90:10, flow rate =1.0 mL/min, $t_{major} = 10.0$ min, $t_{minor} = 19.1$ min.

(*S*)-1-((*tert*-Butylthio)peroxy)-2-((*R*)-((*4*-methoxyphenyl)amino)(4-(trifluorometh yl)phenyl)methyl)pyrrolidin-3-one (3ct). Brown oil, 36.3 mg, 75% yield, >95:5 *dr*, 90% *ee*; ¹H NMR (500 MHz, CDCl₃) (δ , ppm) 7.60 – 7.54 (comp, 4H), 6.72 (d, *J* = 7.9 Hz, 2H), 6.59 (d, *J* = 7.9 Hz, 2H), 5.21 (s, 2H), 4.51 (s, 1H), 3.76 – 3.67 (comp, 4H), 2.63 – 2.58 (m, 1H), 2.54 – 2.46 (m, 1H), 2.00 – 1.95 (m, 1H), 1.45 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 213.1, 152.8, 142.8, 139.5, 130.6 (q, *J* = 32.7 Hz), 128.4, 125.9 (q, *J* = 3.6 Hz), 124.0 (d, *J* = 272.1 Hz), 115.2, 115.1, 66.4, 63.0, 60.0, 55.8, 46.5, 37.8, 25.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.6; HRMS (TOF MS ESI⁺) calculated for C₂₃H₂₇F₃N₂O₄SNa [M + Na]⁺: 507.1536, found 507.1535; HPLC conditions for determination of enantiomeric excess: Chiral IC, λ = 254 nm, hexane : isopropanol = 90:10, flow rate =1.0 mL/min, *t*_{major} = 12.0 min, *t*_{minor} = 18.8 min.

(*S*)-1-((*tert*-Butylthio)peroxy)-2-((*R*)-((3-chlorophenyl)amino)(phenyl)methyl)pyr rolidin-3-one (3cu). White solid, 34.5 mg, 82% yield, >95:5 *dr*, 96% *ee*, mp: 136 – 138 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.43 – 7.29 (comp, 5H), 7.01 (t, *J* = 8.3 Hz, 1H), 6.68 – 6.59 (comp, 2H), 6.50 (d, *J* = 8.3 Hz, 1H), 5.47 (bs, 1H), 5.09 (d, *J* = 4.4 Hz, 1H), 4.47 (d, *J* = 4.8 Hz, 1H), 3.74 – 3.63 (m, 1H), 2.52 – 2.40 (m, 2H), 1.98 – 1.88 (m, 1H), 1.46 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 213.8, 147.1,

137.6, 135.1, 130.4, 129.1, 128.7, 127.7, 118.0, 113.7, 111.9, 66.2, 62.7, 59.4, 46.4, 37.9, 25.0; HRMS (TOF MS ESI⁺) calculated for $C_{21}H_{26}ClN_2O_3S$ [M + H]⁺: 421.1347, found 421.1351; HPLC conditions for determination of enantiomeric excess: Chiral IC, $\lambda = 254$ nm, hexane : isopropanol = 90:10, flow rate =1.0 mL/min, $t_{major} = 8.8$ min, $t_{minor} = 13.8$ min.

(*S*)-2-((*R*)-(4-Bromophenyl)(*m*-tolylamino)methyl)-1-((*tert*-butylthio)peroxy)pyro lidin-3-one (3cv). Brown oil, 34.4 mg, 72% yield, >95:5 *dr*, 94% *ee*; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.46 (d, *J* = 8.4 Hz, 2H), 7.31 (d, *J* = 8.4 Hz, 2H), 6.99 (t, *J* = 7.8 Hz, 1H), 6.55 – 6.37 (comp, 3H), 5.25 (bs, 1H), 5.14 (d, *J* = 4.6 Hz, 1H), 4.46 (d, *J* = 4.5 Hz, 1H), 3.72 (t, *J* = 11.5 Hz, 1H), 2.66 – 2.58 (m, 1H), 2.54 – 2.43 (m, 1H), 2.22 (s, 3H), 2.02 – 1.95 (m, 1H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 213.4, 145.5, 139.2, 137.5, 132.1, 129.5, 129.3, 122.4, 119.3, 114.7, 110.8, 66.3, 62.9, 58.9, 46.5, 37.8, 25.1, 21.7; HRMS (TOF MS ESI⁺) calculated for C₂₂H₂₈BrN₂O₃S [M + H]⁺: 479.0999, found 479.0996; HPLC conditions for determination of enantiomeric excess: Chiral IC, λ = 230 nm, hexane : isopropanol = 90:10, flow rate =1.0 mL/min, *t*_{major} = 9.4 min, *t*_{minor} = 16.1 min.

(*S*)-2-((*R*)-((4-Bromophenyl)amino)(*p*-tolyl)methyl)-1-((methylthio)peroxy)pyrrol idin-3-one (3bh). Yellow oil, 31.8 mg, 73% yield, >95:5 *dr*, 92% *ee*; ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.22 – 7.11 (comp, 6H), 6.52 (d, *J* = 8.6 Hz, 2H), 5.29 (bs, 1H), 5.02 (d, *J* = 4.1 Hz, 1H), 4.13 (d, *J* = 4.6 Hz, 1H), 3.54 – 3.47 (m, 1H), 3.09 – 2.99 (m,

1H), 2.89 (s, 3H), 2.44 – 2.34 (m, 1H), 2.30 (s, 3H), 1.86 – 1.77 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 212.2, 145.0, 138.2, 133.7, 132.1, 129.6, 127.8, 115.6, 110.0, 65.2, 59.3, 44.2, 37.3, 36.2, 21.2; HRMS (TOF MS ESI⁺) calculated for C₁₉H₂₂BrN₂O₃S [M + H]⁺: 437.0529, found 437.0535; HPLC conditions for determination of enantiomeric excess: Chiral IA, λ = 254 nm, hexane : isopropanol = 90:10, flow rate =1.0 mL/min, *t*_{major} = 39.1 min, *t*_{minor} = 23.0 min.

(*S*)-2-((*R*)-((4-Bromophenyl)amino)(*p*-tolyl)methyl)-1-((ethylthio)peroxy)pyrrolid in-3-one (3hh). Yellow oil, 34.2 mg, 76% yield, >95:5 *dr*, 92% *ee*; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.25 – 7.10 (comp, 6H), 6.51 (d, *J* = 8.7 Hz, 2H), 5.28 (bs, 1H), 4.98 (d, *J* = 4.3 Hz, 1H), 4.25 (d, *J* = 4.7 Hz, 1H), 3.64 – 3.57 (m, 1H), 3.05 (q, *J* = 7.4 Hz, 2H), 2.91 – 2.84 (m, 1H), 2.46 – 2.37 (m, 1H), 2.30 (s, 3H),1.92 – 1.84 (m, 1H), 1.40 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 212.7, 145.0, 138.2, 133.9, 132.1, 129.6, 127.7, 115.6, 109.9, 65.2, 59.4, 45.1, 44.4, 37.5, 21.2, 8.1; HRMS (TOF MS ESI⁺) calculated for C₂₀H₂₄BrN₂O₃S [M + H]⁺: 451.0686, found 451.0699; HPLC conditions for determination of enantiomeric excess: Chiral IA, λ = 254 nm, hexane : isopropanol = 90:10, flow rate =1.0 mL/min, *t*_{major} = 30.4 min, *t*_{minor} = 20.6 min.

(*S*)-2-((*R*)-((4-Bromophenyl)amino)(*p*-tolyl)methyl)-1-(isopropylsulfonyl)pyrrolid in-3-one (3ih). Yellow oil, 34.8 mg, 75% yield, >95:5 *dr*, 94% *ee*; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.24 – 7.11 (comp, 6H), 6.50 (d, *J* = 8.7 Hz, 2H), 5.30 (d, *J* = 8.1 Hz, 1H), 4.96 (bs, 1H), 4.36 (d, J = 4.8 Hz, 1H), 3.70 – 3.67 (m, 1H), 3.31 – 3.24 (m, 1H), 2.76 – 2.69 (m, 1H), 2.50 – 2.41 (m, 1H), 2.30 (s, 3H), 1.97 – 1.90 (m, 1H), 1.40 – 1.38 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 213.2, 145.0, 138.3, 134.2, 132.1, 129.7, 127.7, 115.5, 109.9, 65.6, 59.6, 53.6, 45.0, 37.7, 21.3, 16.9, 16.8; HRMS (TOF MS ESI⁺) calculated for C₂₁H₂₆BrN₂O₃S [M + H]⁺: 465.0842, found 465.0833; HPLC conditions for determination of enantiomeric excess: Chiral IA, $\lambda = 254$ nm, hexane : isopropanol = 90:10, flow rate =1.0 mL/min, $t_{major} = 27.2$ min, $t_{minor} = 18.7$ min.

Procedure of the Scale Up

To a 250-mL over-dried vial with a magnetic stirring bar, homopropargyl amides **1c** (491.6 mg, 2.6 mmol), nitrone **2u** (462.1 mg, 2.0 mmol), chiral phosphoric acid **4e** (43.7 mg, 2.5 mol%), 4 Å molecular sieves (1.0 g), Me₃OMe*t*BuXPhosAuNTf₂ (48.8 mg, 2.5 mol%), and anhydrous DCE (80 mL) were added in sequence under atmosphere of argon, and the reaction mixture was stirred at -20 °C for 24 hours. When the reaction was completed (monitored by TLC), the solvent was evaporated in *vacuo* after filtration of molecular sieves. The residue was purified by flash column chromatography on 200-300 mesh silica gel (Hexanes : EtOAc : Dichloromethane = 10:2:1) to give 714.1 mg pure product **3cu** in 84% yield with >95:5 *dr* and 96% *ee*.

Synthetic Applications

Synthesis of 5: To a 10-mL oven-dried round-bottom flask with a magnetic stirring bar, a solution of 3cu (42.0 mg, 0.1 mmol) in Et₂O (2.0 mL), was added LiAlH₄ (3.8 mg, 0.1 mmol, 1.0 equiv) under stirring at 0 °C, and the reaction mixture was stirred for 30 minutes. When the reaction was completed (monitored by TLC), the crude reaction mixture was quenched with water (10 mL) and extracted with DCM (15 mL). The organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was evaporated in vacuo after filtration. The residue was purified by column chromatography on silica gel (Hexanes : EtOAc : DCM = 5:1:1) to give 38.7 mg of pure product 5 as colorless oil in 92% yield with >20:1 dr, 96% ee; ¹H NMR (500 MHz, CDCl₃) (δ , ppm) 7.53 (d, J = 7.4 Hz, 2H), 7.33 (t, J = 7.6 Hz, 2H), 7.25 (d, J =7.3 Hz, 1H), 6.93 (t, J = 8.0 Hz, 1H), 6.52 – 6.49 (comp, 2H), 6.40 (d, J = 9.7 Hz, 1H), 6.00 (d, J = 6.0 Hz, 1H), 4.72 - 4.66 (m, 1H), 4.57 - 4.54 (m, 1H), 4.13 (s, 1H), 3.75-3.67 (m, 1H), 3.47 - 4.41 (m, 1H), 1.89 - 1.82 (m, 1H), 1.78 (d, J = 2.2 Hz, 1H), 1.73 – 1.67 (m, 1H), 1.42 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) (δ, ppm) 147.8, 141.8, 134.8, 130.1, 128.9, 128.0, 127.9, 116.5, 112.3, 111.2, 71.9, 67.9, 62.1, 58.0, 50.7, 35.5, 25.3; HRMS (TOF MS ESI+) calculated for $C_{21}H_{28}CIN_2O_3S$ [M + H]⁺: 423.1504, found 423.1513; HPLC conditions for determination of enantiomeric excess: Chiral IC, $\lambda = 254$ nm, hexane : isopropanol = 95:5, flow rate =1.0 mL/min, $t_{\text{major}} = 11.0 \text{ min}, t_{\text{minor}} = 22.1 \text{ min}.$

Synthesis of 6: To a 10-mL oven-dried round-bottom flask with a magnetic stirring bar, and 3cu (42.0 mg, 0.1 mmol) in EtOH (2.0 mL), was added NHOH·HCl (10.4 mg, 0.3 mmol, 3.0 equiv), and pydrine (12.0 mg, 0.3 mmol, 3.0 equiv.) under stirring at room temperature, and the reaction mixture was stirring for 12 h. When the reaction was completed (monitored by TLC), the crude reaction mixture was quenched with water (10 mL) and extracted with DCM (15 mL). The organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was evaporated in vacuo after filtration. The residue was purified by column chromatography on silica gel (Hexanes : EtOAc : DCM = 5:1:1) to give 29.2 mg of pure product 6 as colorless oil in 67% yield with >20:1 dr, 95% ee; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.85 (s, 1H), 7.40 (d, J = 7.3 Hz, 2H), 7.34 - 7.28 (comp, 3H), 6.98 (t, J = 8.2 Hz, 1H), 6.59 (d, J = 6.7 Hz, 2H), 6.46 (d, J = 7.7 Hz, 1H), 5.41 (s, 1H), 4.97 (s, 1H), 4.85 (d, J = 4.6 Hz, 1H), 3.51 (t, J = 10.0 Hz, 1H), 2.68 - 2.58 (m, 1H), 2.36 - 2.29 (m, 1H), 2.20 - 2.13 (m, 1H),1.42 (d, J = 17.0 Hz, 9H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 161.8, 147.4, 138.3, 134.9, 130.3, 128.9, 128.4, 128.1, 117.6, 113.8, 111.8, 64.3, 62.8, 59.8, 47.9, 27.1, 25.1; HRMS (TOF MS ESI+) calculated for C₂₁H₂₇ClN₃O₃S [M + H]⁺: 434.1456, found 434.1469; HPLC conditions for determination of enantiomeric excess: Chiral IC, $\lambda = 215$ nm, hexane : isopropanol = 90:10, flow rate =1.0 mL/min, $t_{major} = 13.2$ min, $t_{\text{minor}} = 9.2$ min.

1D-NOE NMR Analysis of 5

Figure S1. NOE NMR spectra of 5.

Control Experiments

Compound 7 was prepared according to the reported synthetic method.³

1-(*tert*-**Butylsulfonyl**)**pyrrolidin-3-one** (**7**): colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 3.87 (t, J = 7.4 Hz, 2H), 3.82 (s, 2H), 2.60 (t, J = 7.5 Hz, 2H), 1.42 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 210.3, 61.7, 55.2, 46.7, 38.2, 24.5.

Control experimental with 7

To a 10-mL oven-dried vial with a magnetic stirring bar, **7** (20.5 mg, 0.1 mmol), imine **8a** (19.6 mg, 0.1 mmol), CPA **4e** (4.4 mg, 5 mol%), Me₃OMe^{*t*}BuXPhosAuNTf₂ (4.9 mg, 5.0 mol%), 4Å MS (50.0 mg), and anhydrous DCE (4.0 mL) were added in sequence under atmosphere of argon, and the reaction mixture was stirred at -20 °C for 24 hours. The reaction was monitored by ¹H NMR (see Figure S2). The imine decomposed while the N-H insertion product **7** remained intact.

Figure S2. Control experimental of 7 with imine 8a.

S27

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

S30

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Mar19-2021-zs-t-382

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	10.984	80381	1424004	50.01
2	14.122	61496	1423277	49.99

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	10.933	133424	2366955	88.85
2	14.048	13319	297111	11.15

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	18.960	47161	1460603	50.04
2	20.567	43261	1458362	49.96

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	19.013	56423	1792318	91.24
2	20.647	5702	172103	8.76

Condition: Chrial IC, $\lambda = 254$ nm, hexane/isopropanol = 90:10 flow rate = 1.0 mL/min

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	11.032	32317	562100	50.09
2	12.558	28172	560066	49.91

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	10.969	54344	937866	91.00
2	12.470	5063	92773	9.00

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	12.555	52427	883295	46.02
2	14.241	2538	75344	3.93
3	16.065	35778	883239	46.01
4	16.842	3137	77689	4.05

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	12.669	130824	2260060	88.76
2	16.255	12475	286232	11.24

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	37.137	11103	645751	49.88
2	61.475	6161	648887	50.12

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	33.150	73347	3859564	90.10
2	54.341	4896	423925	9.90

flow rate = 1.0 mL/min

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	10.126	70007	1134922	49.47
2	12.200	57702	1159216	50.53

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	10.099	127937	2042893	87.56
2	12.153	15148	290160	12.44

Condition: Chrial IC, $\lambda = 245$ nm, hexane/isopropanol = 90:10

flow rate = 1.0 mL/min

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	9.459	81048	748401	50.45
2	14.305	31138	734939	49.55

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	9.477	172268	1587493	96.25
2	14.382	3035	61875	3.75

Condition: Chrial IA, $\lambda = 240$ nm, hexane/isopropanol = 90:10

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	13.192	9828	392265	50.38
2	18.216	7302	386273	49.62

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	13.215	1460	47897	3.56
2	18.180	22588	1299168	96.44

Condition: Chrial IA, $\lambda = 240$ nm, hexane/isopropanol = 85:15 flow rate = 1.0 mL/min

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	14.551	12855	557762	50.13
2	21.349	9000	554956	49.87

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	14.559	1804	66800	4.17
2	21.37	22938	1534154	95.83

Condition: Chrial IA, $\lambda = 240$ nm, hexane/isopropanol = 85:15 flow rate = 1.0 mL/min

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	22.638	20029	1617940	50.25
2	32.332	13307	1601678	49.75

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	22.600	1655	82564	5.18
2	32.246	13084	1510239	94.82
Condition: Chrial IA, $\lambda = 240$ nm, hexane/isopropanol = 85:15

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	48.937	4495	405230	50.01
2	53.835	4067	405072	49.99

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	48.311	13468	1198746	98.04
2	53.053	361	23920	1.96

Condition: Chrial IA, $\lambda = 254$ nm, hexane/isopropanol = 90:10 flow rate = 1.0 mL/min

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	6.992	89026	1080369	50.22
2	9.817	52354	1070767	49.78

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	6.814	74766	900262	93.85
2	9.697	3054	59010	6.15

Condition: Chrial IA, $\lambda = 254$ nm, hexane/isopropanol = 90:10 flow rate = 1.0 mL/min

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	19.615	18526	592167	49.98
2	22.331	15202	592613	50.02

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	19.661	1702	52800	4.19
2	22.322	28322	1206569	95.81

Condition: Chrial IA, $\lambda = 260$ nm, hexane/isopropanol = 90:10 flow rate = 1.0 mL/min

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	19.066	13477	332133	50.02
2	20.396	12158	331837	49.98

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	19.404	1365	28390	2.00
2	20.757	49139	1388457	98.00

Condition: Chrial IC, $\lambda = 254$ nm, hexane/isopropanol = 90:10 flow rate = 1.0 mL/min

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	9.115	268863	2443231	50.22
2	14.165	86197	2422211	49.78

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	9.187	323105	4824059	93.81
2	14.166	14012	318542	6.19

Condition: Chrial IC, $\lambda = 254$ nm, hexane/isopropanol = 90:10 flow rate = 1.0 mL/min

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	10.065	29292	628911	50.00
2	20.402	17471	628892	50.00

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	10.02	57411	1173937	97.65
2	20.358	940	28269	2.35

Condition: Chrial IA, $\lambda = 254$ nm, hexane/isopropanol = 95:5 flow rate = 1.0 mL/min

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	7.036	32115	780887	49.99
2	18.236	29853	781251	50.01

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	16.980	1165	22711	1.59
2	18.181	53340	1401234	98.41

0.14 0 ΗN 0.12-0.10-R 0.08 tBuO₂S 0.06--24.317-33.078 3cl 0.04-10.45017.368 racemic 0.02-0.00-10.00 15.00 5.00 20.00 25.00 30.00 35.00 0. 00

flow rate = 1.0 mL/min	

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	10.45	5654	267632	9.48
2	17.368	6525	269426	9.54
3	24.317	24217	1142111	40.45
4	33.078	18883	1144444	40.53

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	10.466	836	33221	1.41
2	17.556	2799	113732	4.84
3	24.57	42611	2088661	88.84
4	33.509	2065	115347	4.94

Condition: Chrial IC, $\lambda = 254$ nm, hexane/isopropanol = 90:10

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	17.256	62727	1815902	50.00
2	21.74	49723	1815551	50.00

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	17.341	86973	2563948	94.75
2	21.882	4653	141959	5.25

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	16.607	53059	1446432	50.00
2	24.946	35967	1446424	50.00

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	16.656	112576	3063888	97.50
2	24.983	2241	78517	2.50

Condition: Chrial IA, $\lambda = 254$ nm, hexane/isopropanol = 90:10 flow rate = 1.0 mL/min

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	16.766	3539	83149	1.29
2	19.188	3195	84571	1.31
3	23.342	89065	3132530	48.66
4	26.512	79994	3137197	48.73

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	23.503	133417	4772498	98.16
2	26.732	2788	89323	1.84

Condition: Chrial IC, $\lambda = 254$ nm, hexane/isopropanol = 90:10 flow rate = 1.0 mL/min

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	9.281	54593	492408	50.00
2	16.378	18044	492321	50.00

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	9.346	207884	3161231	97.10
2	16.418	3784	94383	2.90

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	8.452	113746	1562199	50.03
2	11.02	78868	1560022	49.97

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	8.571	210092	2948328	96.50
2	11.176	6083	106893	3.50

Condition: Chrial IC, $\lambda = 254$ nm, hexane/isopropanol = 90:10 flow rate = 1.0 mL/min

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	8.435	110590	1538935	50.00
2	11.174	72145	1539032	50.00

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	8.568	166017	2421221	96.02
2	11.375	5136	100397	3.98

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	9.868	37022	1323124	50.05
2	18.972	36810	1320359	49.95

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	10.003	110829	2189041	95.13
2	19.09	3635	112148	4.87

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	12.003	66643	1496839	50.00
2	18.693	41808	1497015	50.00

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	12.045	64358	1473230	95.08
2	18.802	2529	76201	4.98

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	8.912	83697	1148118	50.89
2	13.912	46759	1107775	49.11

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	8.847	150279	2098976	98.05
2	13.783	2087	41750	1.95

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	8.954	337866	4876742	100.00

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	8.787	101140	1347772	97.96
2	13.827	1443	28014	2.04

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	8.962	91617	1393294	50.03
2	15.223	49019	1391697	49.97

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	9.407	187847	3014210	97.17
2	16.124	3615	87715	2.83

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	23.324	51743	2080316	45.51
2	31.354	4257	206893	4.53
3	40.075	27006	2080574	45.52
4	55.014	1920	203146	4.44

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	22.984	3096	125431	3.85
2	39.073	35922	3133917	96.15

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	20.836	102208	3525184	45.90
2	23.328	7859	317120	4.13
3	26.168	6480	314756	4.10
4	31.059	56769	3523172	45.87

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	20.629	3209	109139	3.86
2	30.399	38459	2717833	96.14

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	18.808	81279	2411977	50.05
2	27.746	45303	2406701	49.95

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	18.663	3686	108753	3.00
2	27.194	57863	3517867	97.00

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	10.961	19259	401336	50.28
2	21.904	5676	396828	49.72

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	11.001	46914	1447389	97.87
2	22.073	657	31484	2.13

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	9.135	68777	1005017	50.50
2	13.142	30603	985082	49.50

Entry	RT	Height	Area	% Area
	min	mV	mV.sec	%
1	9.201	7401	100374	2.50
2	13.153	138019	3912578	97.50

Crystallographic Data for Compound 3cu

Cell: Temperature: Volume	a=7.1972(2) b= alpha=90 be 100 K	=13.8507(2) eta=108.671(2)	c=11.1349(2) gamma=90
Volume			
Space group Hall group Moiety formula Sum formula Mr Dx,g cm-3 Z Mu (mm-1) F000 F000' h,k,lmax Nref Tmin,Tmax Tmin'	Calculated 1051.58(4) P 21 P 2yb C21 H25 C1 N2 O3 S C21 H25 C1 N2 O3 S 420.94 1.329 2 2.733 444.0 444.0 446.52 9,17,14 4441[2317] 0.799,0.872 0.725	Reported 1051.58(4) P 1 21 1 P 2yb S C21 H25 C 420.94 1.329 2 2.733 444.0 8,17,13 3557 0.601,1.00	0 1 N2 O3 S 1 N2 O3 S
Correction metho AbsCorr = MULTI- Data completenes R(reflections)= S = 1.068	0.725 pd= # Reported T L -SCAN as= 1.54/0.80 0.0318(3323) Npar= 2	<pre>imits: Tmin=0.601 T Theta(max)= 77.17 wR2(reflections)= 256</pre>	rmax=1.000 2 0.0786(3557)

References:

- 1 X. Wang, X. Xu, P. Y. Zavalij and M. P. Doyle, *J. Am. Chem. Soc.*, 2011, **133**, 16402.
- 2 H. Li, S. Ye, Y. Chen, W. Luo, P. Qian and L. Ye, *Chin. J. Chem.*, 2020, **38**, 263.
- 3 C. Shu, L. Li, Y. Yu, S. Jiang and L. Ye, *Chem. Commun.*, 2014, **50**, 2522.