Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Rim-differentiated Co-pillar[4+1]arenes

Jianyi Zhao^a, Weiwei Yang^a, Chuanyun Liang^a, Liya Gao^a, Jun Xu^a, Andrew C.-H. Sue,^{*,b} Hongxia Zhao^{*,a}

^a Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Rd., Nankai Dist., Tianjin 300072, P. R. China.

^b College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming S. Rd., Siming Dist., Xiamen, Fujian Providence 361005, P. R. China.

*Corresponding E-mail addresses

Andrew C.-H. Sue: andrewsue@xmu.edu.cn Hongxia Zhao: zhaohongxia@tju.edu.cn

Table of Contents

1.	General Procedures	S1
2.	Synthetic Procedures	S1
3.	HPLC and LC-MS Analyses	S21
4.	NMR Analysis	S26
5.	X-Ray Crystallography Data	S29
6.	References	S31

1. General Procedures

NMR spectroscopy was carried out by on Bruker Avance III 600 MHz at ambient temperature. Data are reported as chemical shifts (δ) in parts per million (ppm) relative to the solvent peak, and scalar coupling constants (*J*) are reported in units of hertz (Hz). High resolution mass spectra (HRMS) were measured on Thermo ScientificTM Q ExactiveTM HF spectrometer in positive mode (ESI⁺). HPLC analyses were performed on an Agilent 1260 liquid chromatography system with an Agilent ZORBAX SB-C18 column (150 mm × 4.6 mm, 5 µm). The LC-MS analyses were carried out in the positive ion mode on an Agilent 6230 TOF LC/MS. Flash column chromatography was performed over silica gel (200–300 mesh or 300–400 mesh). As detailed later, single crystal X-ray diffraction was carried out using an XtaLAB FRX (Rigaku, Japan), and the data were collected at 100 K (Oxford Cryosystems, UK). Prep-HPLC was performed using a semi-preparative HPLC system (Shimadzu Technologies, Japan) with a SHIMADZUShim-pack PRC-ODS PrepHT column (21.2 × 250 mm) (Shimadzu Technologies, Japan). RD-*Co*-P[4+1]s were separated using MeCN/H₂O (85/15 v/v) as the eluent, with a run time of 30 min and a flow rate of 10 mL/min. All reagents and solvents were of reagent grade purity and were used without further purification.

2.Synthetic Procedures

Scheme S1. Synthesis of the Compound 2.

Compound **2**: To a solution of 2-hydroxy-5-methoxybenzaldehyde (2.0 g, 13.1 mmol) in MeCN (60 mL) was added K₂CO₃ (3.6 g, 26.2 mmol) followed by 3-bromoprop-1-yne (1.47 mL, 19.7 mmol). The reaction mixture was sealed and refluxed for 4h. The reaction mixture was filtered to remove K₂CO₃ and then concentrated. The resulting residue was dissolved in MeOH (50 mL), to which NaBH₄ (250 mg, 6.5 mmol) was added. The solution was stirred at room temperature for 5 min and the solvent was then removed under reduced pressure. The residue was dissolved in H₂O (30 mL) and the aqueous solution was extracted with EtOAc (3 × 30 mL). The combined organic phase was dried (Na₂SO₄) and the solvent was removed under low pressure. The resulting crude product was purified by silica gel column chromatography using EtOAc/petroleum ether (PE) as eluents (from 1/9 to 1/6) to obtain product **1a** as a yellow oil (1.87 g, 75%).¹H NMR (600 MHz, CDCl₃) δ 6.94–6.91 (m, 2H, Ar-H), 6.79 (dd, *J* = 13.2, 4.8 Hz, 1H, Ar-H), 4.70 (d, *J* = 3.6 Hz, 2H, CH≡C-C<u>H</u>₂), 4.68 (s, 2H, ArC<u>H</u>₂OH), 3.78 (s, 3H, OCH₃), 2.51 (t, *J* = 7.2,3.6 Hz, 1H, C<u>H</u>≡C-CH₂), 2.14 (s, 1H, OH). NMR data is in accordance with literature.^[1]

Figure S1. ¹H NMR (600 MHz) spectra of compound 2 (CDCl₃, 298 K).

Scheme S2. Synthesis of the Compound S1.

Compound S1: 2,5-dihydroxybenzaldehyde (1.0 g, 7.24 mmol) and K₂CO₃ (2.0 g, 14.5 mmol) were dissolved in DMF (50 mL) and stirred for 20 min at 0 °C. The propargyl bromide (0.9 g, 7.24 mmol) was added into the reaction mixture in dropwise. The mixture was further stirred for another 8 h at room temperature. After 2, 5-dihydroxybenzaldehyde was reacted completely, the reaction mixture was filtered to remove K₂CO₃ and the residue was dissolved in H₂O (30 mL) and the aqueous solution was extracted with EtOAc (3 × 30 mL). The combined organic phase was dried (Na₂SO₄) and the solvent was removed under low pressure. The resulting crude product was purified by silica gel column chromatography using EtOAc/PE = 1/12 as eluents to obtain product **1a** as a yellow oil (0.82 g, 64%).¹H NMR (600 MHz, CDCl₃) δ 10.42 (s, 1H, ArCHO), 7.31 (d, *J* = 3.0 Hz, 1H, Ar-H), 7.10 (dd, *J* = 9.0, 3.0 Hz, 1H, Ar-H), 7.05 (d, *J* = 9.0 Hz, 1H, Ar-H), 4.78 (d, *J* = 2.4 Hz, 2H, CH \equiv C-CH₂). NMR data is in accordance with literature.^[2]

Figure S2. ¹H NMR (600 MHz) spectra of compound S1 (CDCl₃, 298 K).

Scheme S3. Synthesis of the Compound 2a-2d

Compound 2a: To a slurry of S1 (1.0 g, 5.68 mmol), K₂CO₃ (1.18 g, 8.51 mmol) in MeCN (10 mL) was added (bromomethyl)benzene (0.67 mL, 5.68 mmol). The mixture was sealed and refluxed overnight. The reaction progress was monitored by TLC until the starting material was consumed. And then, the rection mixture was filtered and concentrated. The resulting crude product was dissolved in MeOH (10 mL), to which NaBH₄ (106 mg, 2.84 mmol) was added. The solution was stirred at room temperature for 10 min until TLC indicated the complete conversion from aldehyde to alcohol, and the solvent was then removed under reduced pressure. The residue was dissolved in H_2O (10 mL) and the aqueous solution was extracted with EtOAc (3 × 10 mL). The combined organic phase was dried (Na₂SO₄) and the solvent was removed under low pressure. The crude product was purified by silica-gel column chromatography using EtOAc/PE = 1/6 as eluents to obtain product 2a as a white solid (1.2 g, 76%). ¹H NMR (600 MHz, CDCl₃) δ 7.42–7.40 (m, 2H, Ar-H), 7.38–7.36 (m, 2H,Ar-H), 7.32–7.29 (m, 1H,Ar-H), 7.01 (d, J = 3.6 Hz, 1H, Ar-H), 6.91 (d, J = 9.0 Hz, 1H, Ar-H), 6.84 (dd, J = 9.0, 3.6 Hz, 1H, Ar-H), 5.02 (s, 2H, ArCH₂O), 4.69 (dd, J = 2.5, 1.1 Hz, 2H, CH \equiv C-CH₂), 4.68 (s, 2H, ArCH₂OH),2.51 (t, *J* = 4.8, 2.4 Hz, 1H, CH \equiv C-CH₂). ¹³C NMR (151 MHz, CDCl₃) & 153.72, 149.61, 137.18, 131.37, 128.57, 127.92, 127.46, 115.83, 114.25, 113.58, 78.74, 75.61, 70.64, 61.56, 61.54, 56.89. HRMS (FD) m/z: $[M + Na]^+$ Calcd for $C_{17}H_{16}O_3Na$, 291.0992; Found 291.0985.

Figure S3. (a) ¹H NMR (600 MHz) and (b) ¹³C NMR (151 MHz) spectra of compound 2a (CDCl₃, 298 K).

Compound **2b**: To a slurry of **S1** (1.0 g, 5.68 mmol), K₂CO₃ (1.18 g, 8.51 mmol) and NaI (0.09 g, 0.6 mmol) in MeCN (10 mL) was added 4-bromobut-1-ene (0.5 mL, 5.68 mmol). The mixture was sealed and refluxed overnight. The reaction progress was monitored by TLC until the starting material was consumed. And then, the rection mixture was filtered and concentrated. The resulting crude productwas dissolved in MeOH (10 mL), to which NaBH₄ (106 mg, 2.84 mmol) was added. The solution was stirred at room temperature for 10 min until TLC indicated the complete conversion from aldehyde to alcohol, and the solvent was then removed under reduced pressure. The residue was dissolved in H₂O (10 mL) and the aqueous solution was extracted with EtOAc (1 \times 10 mL). The combined organic phase was dried (Na₂SO₄) and the solvent was removed under low pressure. The crude product was purified by silica-gel column chromatography using EtOAc/PE = 1/8 as eluents to obtain product **2b** as a white solid (1.0 g, 82%). ¹H NMR (600 MHz, CDCl₃) δ 6.94 (d, J = 3.0 Hz, 1H, Ar-H), 6.91 (d, J = 9.0 Hz, 1H, Ar-H), 6.81 (dd, J = 9.0, 3.0 Hz, 1H, Ar-H), 6.07– 6.01 (m, 1H, CH₂=C<u>H</u>), 5.41–5.38 (m, 1H, C<u>H</u>₂=CH), 5.28–5.26 (m, 1H, C<u>H</u>₂=CH), 4.68 (d, J =2.4 Hz, 2H, CH=C-CH₂), 4.67 (s, 2H, ArCH₂OH), 4.50–4.49 (m, 2H, CH₂=CH-CH₂O), 2.51 (t, J = 4.8, 2.4Hz, 1H, C<u>H</u>=C-CH₂), 2.20 (br, 1H, CH₂O<u>H</u>).¹³C NMR (151 MHz, CDCl₃) δ 153.50, 153.49, 149.53, 133.48, 131.31, 131.30, 117.50, 115.67, 114.18, 113.56, 78.74, 75.59, 69.43, 61.51, 56.89. HRMS (FD) m/z: $[M + Na]^+$ Calcd for C₁₃H₁₄O₃Na, 241.0835; Found 241.0830.

(a)

Chemical Shift / ppm

Figure S4. (a) ¹H NMR (600 MHz) and (b) ¹³C NMR (151 MHz) spectra of compound 2b (CDCl₃, 298 K).

Compound 2c: To a slurry of S1 (1.0 g, 5.68 mmol), K₂CO₃ (1.18 g, 8.51 mmol) in MeCN (10 mL) was added 1,3-dibromopropane (0.59 mL, 5.68 mmol). The mixture was sealed and refluxed overnight. The reaction progress was monitored by TLC until the starting material was consumed. And then, the rection mixture was filtered and concentrated. The resulting crude product was dissolved in MeOH (10 mL), to which NaBH₄ (106 mg, 2.84 mmol) was added. The solution was stirred at room temperature for 10 min until TLC indicated the complete conversion from aldehyde to alcohol, and the solvent was then removed under reduced pressure. The residue was dissolved in H_2O (10 mL) and the aqueous solution was extracted with EtOAc (3 \times 10 mL). The combined organic phase was dried (Na₂SO₄) and the solvent was removed under low pressure. The crude product was purified by silica-gel column chromatography using EtOAc/PE = 1/4 as eluents to obtain 2c as a white solid (1.2 g, 74%). ¹H NMR (600 MHz, CDCl₃) δ 6.94–6.90 (m, 2H, Ar-H), 6.79 (dd, J = 8.4, 3.0 Hz, 1H, Ar-H), 4.68 (d, J = 2.4 Hz, 2H, CH \equiv C-CH₂), 4.66 (s, 2H, OCH₂OH), 4.05 (t, J = 12.0, 6.0 Hz,2H, OCH₂CH₂), 3.58 (t, J = 12.0, 6.0 Hz,2H, BrCH₂), 2.51 (t, J = 12.0, 6.0 Hz,1H, CH≡C-CH₂), 2.39 (s, 1H, CH₂OH), 2.30–2.26(m, 2H, CH₂CH₂CH₂).¹³C NMR (151 MHz, CDCl₃) *δ* 153.58, 149.57, 131.39, 115.51, 113.91, 113.62, 78.70, 75.61, 65.96, 61.50, 56.89, 32.45, 29.99. HRMS (ESI) *m/z*: Calcd for C₁₃H₁₅BrO₃Na [*M* + Na]⁺ 321.0097; Found 321.0091.

(a)

Figure S5. (a) ¹H NMR (600 MHz) and (b) ¹³C NMR (151 MHz) spectra of compound 2c (CDCl₃, 298 K).

Compound 2d: To a slurry of S1 (1.0 g, 5.68 mmol), K₂CO₃ (1.18 g, 8.51 mmol) in MeCN (10 mL) was added 1,6-dibromohexane (0.92 mL, 5.68 mmol). The mixture was sealed and refluxed overnight. The reaction progress was monitored by TLC until the starting material was consumed. And then, the rection mixture was filtered and concentrated. The resulting crude product was dissolved in MeOH (10 mL), to which NaBH₄ (106 mg, 2.84 mmol) was added. The solution was stirred at room temperature for 10 min until TLC indicated the complete conversion from aldehyde to alcohol, and the solvent was then removed under reduced pressure. The residue was dissolved in H_2O (10 mL) and the aqueous solution was extracted with EtOAc (3 \times 10 mL). The combined organic phase was dried (Na₂SO₄) and the solvent was removed under low pressure. The crude product was purified by silica-gel column chromatography using EtOAc/PE as eluents (from 1/8 to 1/6) to obtain product 2d as a yellow oil (1.35 g, 70%). ¹H NMR (600 MHz, CDCl₃) δ 6.92–6.91 $(m, 2H, Ar-H), 6.78 (dd, J = 9.0, 3.0 Hz, 1H, Ar-H), 4.69 (d, J = 2.4 Hz, 2H, CH \equiv C-CH_2), 4.67 (s, J = 2.4 Hz, 2H, CH = C-CH_2), 4.$ 2H, OCH₂OH), 3.92 (t, J = 12.0, 6.0 Hz, 2H, OCH₂CH₂), 3.42 (t, J = 12.0, 6.0 Hz, 2H, BrCH₂), 2.51 (t, J = 4.8, 2.4 Hz, 1H, CH \equiv C-CH₂), 2.16 (s, 1H, CH₂OH), 1.91–1.87 (m, 2H, OCH₂CH₂), 1.78–1.76 (m, 2H, CH₂CH₂Br), 1.53–1.48 (m, 4H, CH₂CH₂). ¹³C NMR (151 MHz, CDCl₃) δ 153.97, 149.35, 131.32, 115.41, 113.87, 113.67, 78.78, 75.56, 68.32, 61.55, 56.94, 33.73, 32.69, 29.16, 27.91, 25.29. HRMS (FD) *m/z*: [*M* + Na]⁺ Calcd for C₁₆H₂₁BrO₃Na, 363.0566; Found 363.0559.

Figure S6. (a) ¹H NMR (600 MHz) and (b) ¹³C NMR (151 MHz) spectra of compound 2d (CDCl₃, 298 K).

Scheme S4. Synthesis of the RD-*Co*-P[4+1] 1a.

RD-Co-P[4+1] 1a:To a stirred suspension of 2 (968 mg, 5.04 mmol) and 2a (150 mg, 0.56 mmol) in 1,2-dichloroethane (1000 mL) was added FeCl₃ (90 mg, 0.56 mmol) under a N₂ atmosphere. The reaction mixture was stirred at 25 °C for 3 h before MeOH (2 mL) was added to quench the reaction. The solvent was removed under reduced pressure to yield a crude product, which was purified by silica-gel column chromatography using $CH_2Cl_2/PE = 1/3$ as eluents to provide a mixture of the product together with RD-P[5]1^[1] as a light yellow solid (107.2mg, 22.0%). Pure RD-Co-P[4+1]1a can be crystallised by methanol as a white solid (62mg, 12.0%). ¹H NMR (600 MHz, CDCl₃) δ 7.43 (d, J = 6.0 Hz, 2H, OCH₂Ar-H), 7.36–7.33 (m, 2H, OCH₂Ar-H), 7.31–7.29 (m, 1H, OCH₂Ar-H), 6.89 (s, 1H, Ar-H), 6.84 (d, J = 6.0 Hz, 2H, Ar-H), 6.81 (d, J= 6.0 Hz, 3H, Ar-H), 6.75 (d, J = 9.6 Hz, 2H, Ar-H), 6.69 (s, 1H, Ar-H), 6.65 (s, 1H, Ar-H), 4.94 (s, 2H, OCH₂Ar), 4.50 (d, *J* = 2.4 Hz, 2H, CH \equiv C-C<u>H</u>₂), 4.46 (d, *J* = 2.4 Hz, 4H, CH \equiv C-C<u>H</u>₂), 4.44 (dd, *J* = 6.0, 2.4 Hz, 4H, CH \equiv C-C CH2), 3.84 (s, 2H, ArCH2Ar), 3.80-3.79 (m, 6H, ArCH2Ar), 3.77 (s, 2H, ArCH2Ar), 3.73 (s, 3H, OCH₃), 3.71 (s, 3H, 3H, OCH₃), 3.69 (s, 3H, 3H, OCH₃), 3.39 (s, 3H, 3H, OCH₃), 2.20 (t, *J* = 4.8, 2.4 Hz, 1H, C<u>H</u>≡C-CH₂), 2.17–2.15 (m, 3H, C<u>H</u>≡C-CH₂), 2.08 (t, *J* = 4.8, 2.4 Hz, 1H, C<u>H</u>≡C-CH₂). ¹³C NMR (151 MHz, CDCl₃) δ 151.16, 151.03, 151.01, 150.43, 148.90, 148.83, 148.81, 148.78, 148.77, 137.87, 129.09, 128.99, 128.88, 128.82, 128.51, 128.46, 128.33, 128.22, 128.11, 128.09, 128.05, 127.70, 127.45, 115.68, 115.51, 115.33, 115.31, 114.93, 114.07, 114.04, 113.93, 113.90, 79.35, 79.32, 79.30, 79.23, 74.81, 74.77, 70.44, 56.46, 56.44, 56.42, 56.29, 55.88, 55.85, 55.43, 30.30, 29.77, 29.69, 29.36, 29.29. HRMS (FD) *m/z*: [*M* + NH₄]⁺ Calcd for C₆₁H₅₄O₁₀NH₄, 964.4055; Found 964.4033.

Figure S7. COSY spectrum (400 MHz, CDCl₃) recorded for RD-Co-P[4+1] 1a.

Figure S8. (a) ¹H NMR (600 MHz) and (b) ¹³C NMR (151 MHz) spectra of RD-Co-P[4+1] 1a (CDCl₃, 298 K).

S9

Scheme S5. Synthesis of the RD-Co-P[4+1] 1b.

RD-Co-P[4+1] 1b: To a stirred suspension of 2 (968 mg, 5.04 mmol) and 2b (122 mg, 0.56 mmol)in 1,2-dichloroethane (1000 mL) was added FeCl₃ (90 mg, 0.56 mmol) under a N₂ atmosphere. The reaction mixture was stirred at 25 °C for 3 h before MeOH (2 mL) was added to quench the reaction. The solvent was removed under reduced pressure to yield a residue, which was purified by semipreparative HPLC using MeCN/H₂O = 85/15 as eluents to give RD-*Co*-P[4+1] **1b** as a white solid (49 mg, 10.0%) and RD-P[5] 1 as a light yellow solid (97.4 mg, 20.0%). ¹H NMR (600 MHz, CDCl₃) δ 6.86 (d, J = 6.0 Hz, 2H, Ar-H), 6.84 (br, 2H, Ar-H), 6.79 (s, 1H, Ar-H), 6.77 (s, 2H, Ar-H), 6.75 (d, *J* = 6.0 Hz, 2H, Ar-H), 6.65 (s, 1H, Ar-H), 5.68–5.62 (m, 1H, CH₂=C<u>H</u>), 5.07 (d, *J* = 18.0 Hz, 1H, CH₂=CH), 4.82 (d, J = 12.0 Hz, 1H, CH₂=CH), 4.52 (d, J = 2.4 Hz, 2H, CH \equiv C-CH₂), 4.49 (dd, J = 12.0, 2.4 Hz, 4H, CH \equiv C-CH₂), 4.46 (d, J = 2.4 Hz, 2H, CH \equiv C-CH₂), 4.42 (d, J = 2.4 Hz, 2H, $CH \equiv C-CH_2$), 4.34 (d, J = 6.0 Hz, 2H, $CH_2=CH-CH_2O$), 3.82–3.80 (m, 10H, ArCH₂Ar), 3.73 (s, 3H, OCH₃), 3.71 (d, *J* = 4.0 Hz, 6H, OCH₃), 3.70 (s, 3H, OCH₃), 2.46 (t, *J* = 4.8, 2.4 Hz, 1H, C<u>H</u>≡C-CH₂), 2.21 (t, J = 4.8, 2.4 Hz, 2H, CH = C-CH₂), 2.18 (t, J = 4.8, 2.4 Hz, 1H, CH = C-CH₂), 2.15 (t, $J = 4.8, 2.4 \text{ Hz}, 1\text{H}, \text{CH} \equiv \text{C-CH}_2$.¹³C NMR (151 MHz, CDCl₃) δ 171.11, 151.25, 151.22, 150.16, 149.56, 149.01, 148.91, 148.86, 148.82, 133.62, 133.46, 129.18, 129.12, 129.06, 129.01, 128.64, 128.46, 128.36, 128.21, 128.18, 117.49, 117.18, 115.98, 115.84, 115.73, 115.68, 115.60, 115.59, 115.50, 114.27, 114.18, 114.01, 113.91, 113.55, 79.39, 79.36, 79.32, 79.28, 75.60, 74.74, 74.70, 69.43, 69.28, 61.65, 60.38, 56.89, 56.70, 56.59, 56.55, 56.54, 56.50, 55.96, 55.86, 55.81, 30.53, 29.78, 29.71, 29.49, 29.16, 21.02, 14.19. HRMS (FD) m/z: [M + NH₄]⁺ Calcd for C₅₇H₅₂O₁₀NH₄, 914.3899; Found 914.3899.

Figure S9. (a) ¹H NMR (600 MHz) and (b) ¹³C NMR (151 MHz) spectra of RD-*Co*-P[4+1] 1b (CDCl₃, 298 K).

Scheme S6. Synthesis of the RD-*Co*-P[4+1] 1c.

RD-Co-P[4+1] 1c: To a stirred suspension of 2 (968 mg, 5.04 mmol) and 2c (167 mg, 0.56 mmol) in 1,2-dichloroethane (1000 mL) was added FeCl₃ (90 mg, 0.56 mmol) under N₂ atmosphere. The reaction mixture was stirred at 25 °C for 3 h before MeOH (2 mL) was added to quench the reaction. The solvent was removed under reduced pressure to yield a residue, which was purified by semipreparative HPLC using MeCN/H₂O = 92/8 as eluents to give RD-Co-P[4+1] 1c as a white solid (59 mg, 11.0%) and RD-P[5] 1 as a light yellow solid (110.9 mg, 23.0%). ¹H NMR (600 MHz, CDCl₃) δ 6.87 (d, *J* = 6.0 Hz, 2H, Ar-H), 6.75 (s, 1H, Ar-H), 6.73 (br, 2H, Ar-H), 6.69–6.67 (m, 4H, Ar-H), 6.60 (s, 1H, Ar-H), 4.42 (d, *J* = 2.4 Hz, 2H, CH=C-CH₂), 4.40 (d, *J* = 2.4 Hz, 2H, CH=C-CH₂), 4.39 (d, J = 2.4 Hz, 2H, CH \equiv C-CH₂), 4.35 (d, J = 2.4 Hz, 4H, CH \equiv C-CH₂), 3.93 (t, J =12.0, 6.0 Hz, 2H, OCH₂CH₂), 3.73 - 3.71 (m, 10H, ArCH₂Ar), 3.66-3.65 (m, 12H, OCH₃), 3.48 (t, $J = 12.0, 6.0 \text{ Hz}, 2\text{H}, \text{Br-CH}_2), 2.19-2.15 \text{ (m, 2H, CH}_2\text{CH}_2\text{CH}_2), 2.13 \text{ (t, } J = 4.8, 2.4 \text{ Hz}, 1\text{H}, \text{CH} \equiv$ C-CH₂), 2.10 (t, J = 4.8, 2.4 Hz, 2H, C<u>H</u>=C-CH₂), 2.02 (t, J = 4.8, 2.4 Hz, 1H, C<u>H</u>=C-CH₂), 1.96 $(t, J = 4.8, 2.4 \text{ Hz}, 1\text{H}, \text{CH} \equiv \text{C-CH}_2)$.¹³C NMR (151 MHz, CDCl₃) δ 151.28, 151.26, 151.24, 150.09, 149.04, 148.88, 148.86, 148.83, 129.21, 129.08, 129.01, 128.97, 128.46, 128.43, 128.35, 128.23, 128.22, 115.85, 115.78, 115.65, 115.60, 115.13, 114.05, 113.99, 79.35, 79.32, 79.31, 79.18, 79.13, 74.74, 74.72, 74.71, 74.70, 66.13, 56.53, 56.51, 56.46, 56.40, 56.01, 55.91, 55.87, 32.75, 30.35, 29.81, 29.79, 29.77, 29.71, 29.65, 29.58. HRMS (FD) *m/z*: [*M* + Na]⁺ Calcd for C₅₇H₅₃BrO₁₀Na, 999.2714; Found 999.2700.

(a)

Figure S10. (a) ¹H NMR (600 MHz) and (b) ¹³C NMR (151 MHz) spectra of RD-Co-P[4+1] 1c (CDCl₃, 298 K).

S13

Scheme S7.Synthesis of the RD-Co-P[4+1] 1d.

RD-*Co*-P[4+1] **1d**: To a stirred suspension of **2** (968 mg, 5.04 mmol) and **2d** (190 mg, 0.56 mmol)in 1,2-dichloroethane (1000 mL) was added FeCl₃ (90 mg, 0.56 mmol) under a N₂ atmosphere. The reaction mixture was stirred at 25 °C for 3 h before MeOH (2 mL) was added to quench the reaction. The solvent was removed under reduced pressure to yield a residue, which was purified by semipreparative HPLC using MeCN/H₂O = 92/8 as eluents to give RD-*Co*-P[4+1] **1d** as a white solid (58 mg, 10.0%) and RD-P[5] **1** as a light yellow solid (98.4 mg, 20.0%). ¹H NMR (600 MHz, CDCl₃) δ 7.02–6.97 (m, 5H, Ar-H), 6.85–6.81 (m, 5H, Ar-H), 4.66 (br, 10H, CH=C-CH₂), 3.86–3.79 (m, 18H, ArCH₂Ar, OCH₃), 3.73 (d, *J* = 12 Hz, 6H, OCH₃, OCH₂), 2.47 (br, 5H, CH=C-CH₂), 1.59–1.52 (m, 4H, CH₂CH₂).¹³C NMR (151 MHz, CDCl₃) δ 150.82, 150.73, 150.05, 149.21, 149.02, 148.76, 148.73, 128.96, 128.47, 128.36, 128.26, 128.21, 128.11, 127.92, 114.39, 114.25, 113.27, 79.53, 79.50, 79.45, 74.80, 74.77, 74.70, 68.53, 60.37, 56.49, 56.43, 56.35, 56.31, 55.46, 55.42, 33.25, 29.62, 29.47, 29.31, 29.22, 29.15, 27.98, 24.36, 21.01, 14.19. HRMS (FD) *m/z*: [*M* + Na]⁺ Calcd for C₆₀H₅₉BrO₁₀Na, 1041.3184; Found 1041.3168.

Figure S11. (a) ¹H NMR (600 MHz) and (b) ¹³C NMR (151 MHz) spectra of RD-Co-P[4+1] 1d (CDCl₃, 298 K).

Scheme S8. Synthesis of the RD-*Co*-P[4+1] 1e.

RD-Co-P[4+1] 1e: To a stirred suspension of 2b (1.1 g, 5.04 mmol) and 2a (194 mg, 0.56 mmol) in 1,2-dichloroethane (1000 mL) was added FeCl₃ (90 mg, 0.56 mmol) under a N₂ atmosphere. The reaction mixture was stirred at 25 °C for 3 h before MeOH (2 mL) was added to quench the reaction. The solvent was removed under reduced pressure to yield a residue, which was purified by semipreparative HPLC using MeCN/H₂O = 95/5 as eluents to give RD-Co-P[4+1] 1e as a white solid (54 mg, 8.0%) and RD-P[5]1^[1] as a light yellow solid (65.7 mg, 17.0%). ¹H NMR (600 MHz, $CDCl_3$) δ 7.43 (d, J = 7.2 Hz, 2H, OCH₂Ar-H), 7.36 (t, J = 9.0, 7.2 Hz, 2H, OCH₂Ar-H), 7.32 (t, J= 9.0, 7.2 Hz,1H, OCH₂Ar-H), 6.92 (s, 1H, Ar-H), 6.90 (s, 1H, Ar-H), 6.87 (s, 2H, Ar-H), 6.85 (s, 1H, Ar-<u>H</u>), 6.82 (s, 1H, Ar-<u>H</u>), 6.69 (d, J = 4.2 Hz, 2H, Ar-<u>H</u>), 6.65 (s, 1H, Ar-<u>H</u>), 6.61 (s, 1H, Ar-<u>H</u>), 5.84–5.78 (m, 1H, CH₂=C<u>H</u>), 5.73–5.62 (m, 3H, CH₂=C<u>H</u>), 5.27–5.19 (m, 1H, CH₂=CH), 5.12– 5.07 (m, 3H, CH2=CH), 4.99-4.96 (m, 1H, CH2=CH), 4.94-4.92 (m, 1H, CH2=CH), 4.90-4.86 (m, 4H, C<u>H</u>₂=CH, OC<u>H</u>₂Ar), 4.57 (d, J = 2.4 Hz, 2H, CH \equiv C-C<u>H</u>₂O), 4.55–4.53 (m, 8H, CH \equiv C-C<u>H</u>₂O), 4.31-4.29 (m, 4H, CH₂=CH-CH₂O), 4.27-4.26 (m, 2H, CH₂=CH-CH₂O), 3.90-3.89 (m, 2H, CH₂=CH-CH₂O), 3.84 (d, J = 4.0 Hz, 4H, ArCH₂Ar), 3.80 (d, J = 4.0 Hz, 4H, ArCH₂Ar), 3.78 (s, 2H, ArCH₂Ar), 2.34 (t, *J* = 5.0, 2.4 Hz, 1H, C<u>H</u>≡C-CH₂), 2.31 (t, *J* = 5.0, 2.4 Hz, 2H, C<u>H</u>≡C-CH₂), 2.29 (dt, J = 5.0, 2.4 Hz, 2H, CH \equiv C-CH₂). ¹³C NMR (151 MHz, CDCl₃) δ 150.42, 150.09, 150.07, 150.02, 149.92, 148.96, 148.89, 148.88, 148.81, 148.79, 137.85, 133.87, 133.84, 133.81, 133.71, 129.10, 129.04, 129.01, 128.66, 128.57, 128.53, 128.50, 128.48, 128.36, 127.76, 127.39, 117.10, 117.06, 116.99, 116.62, 115.84, 115.76, 115.63, 115.61, 115.41, 115.36, 115.30, 115.19, 115.17, 114.89, 79.49, 79.47, 79.42, 74.80, 74.78, 74.76, 70.30, 69.15, 69.08, 68.63, 56.76, 56.73, 56.72, 56.64, 56.51, 29.87, 29.84, 29.80, 29.72, 29.47. HRMS (FD) m/z: $[M + Na]^+$ Calcd for C₆₉H₆₂O₁₀Na, 1073.4235; Found 1073.4219.

Figure S12. (a) ¹H NMR (600 MHz) and (b) ¹³C NMR (151 MHz) spectra of RD-Co-P[4+1] 1e (CDCl₃, 298 K).

Scheme S9. Synthesis of the Galactoside 4.

Galactoside **4**: To a stirred suspension of FeCl₃ (100 mg, 0.62 mmol) in dry CH₂Cl₂ (25 mL) was added β -*D*-Galactose pentaacetate (5 g, 12.8 mmol) in dry CH₂Cl₂ (12.5 mL) under a N₂ atmosphere. The reaction mixture was stirred for 5 min, then add TMSiN₃ (2.51g, 21.8 mmol) and stirred for 16 h in room temperature. The reaction was quenched with saturated NaHCO₃ and extracted with CH₂Cl₂ and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure to give a crude product, which was purified by silica-gel column chromatography using PE/EtOAc = 4/1 as eluents to provide galactoside **4** as a white solid (3.91 g, 82% yield). ¹H NMR (400 MHz, CDCl₃) δ 5.42 (dd, *J* = 4.8, 1.8 Hz, 1H, CH-N₃), 5.16 (dd, *J* = 15.6, 13.2 Hz, 1H, CH-OAc), 5.03 (dd, *J* = 15.6, 4.8 Hz, 1H, CH-OAc), 4.60 (d, *J* = 13.2 Hz, 1H, CH-OAc), 4.21–4.13 (m, 2H, CH₂-OAc), 4.01 (td, *J* = 9.6, 1.8 Hz, 1H, CH-OAc), 2.18 (s, 3H, OAc), 2.10 (s, 3H, OAc), 2.07 (s, 3H, OAc), 1.99 (s, 3H, OAc). NMR data were in accordance with literature.^[3]

Figure S13. ¹H NMR spectrum (600 MHz, CDCl₃) recorded for galactoside 4.

Compound 3: To a stirred suspension of compound RD-Co-P[4+1] 1a (100 mg, 0.10 mmol) and galactoside 4 (289 mg, 0.74 mmol) in DMF (60 mL) and H₂O (6 mL) was added CuSO₄·5H₂O (21 mg, 0.08 mmol) and Na ascorbate (33 mg, 0.17 mmol) under a N₂ atmosphere. The reaction mixture was stirred at 80 °C for 6 h. After cooled to room temperature, the reaction mixture was added to CH₂Cl₂ (50 mL) and washed with saturated NH₄Cl (50 mL). The organic layer was washed with saturated NH₄Cl (3×50 mL) and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure to give a crude product, which was purified by silica-gel column chromatography using PE/EA = 2/1 as eluents to provide **3** as a light yellow solid (220 mg, 73% yield).¹H NMR (600 MHz, DMSO-*d*₆) δ 8.52 – 8.40 (m, 5H, C=CH-N), 7.38 – 7.25 (m, 5H, OCH₂Ar-H), 6.97 – 6.74 (m, 10H, Ar-H), 6.28 (dd, J = 34.6, 9.3 Hz, 5H, CH-N), 5.74 (s, 2H, OCH₂Ar), 5.67 (t, J = 8.1 Hz, 5H, CH-OAc), 5.42 (d, J = 3.5 Hz, 10H, OCH₂C=CH), 5.27 – 5.09 (m, 5H, CH-OAc), 4.94–4.77 (m, 5H, CH-OAc), 4.53 (d, J = 24.7 Hz, 5H, CH-OAc), 4.12 (d, J = 6.8 Hz, 5H, CH-OAc), 4.00 (s, 5H, CH-OAc), 3.70 (d, J = 7.7 Hz, 4H, ArCH₂Ar), 3.66 (d, J = 8.7 Hz, 4H, ArCH₂Ar), 3.62 (d, J = 3.8 Hz, 2H, ArCH₂Ar), 3.60 (s, 3H, OCH₃), 3.59–3.52 (m, 3H, OCH₃), 3.50 (d, *J* = 8.3 Hz, 3H, OCH₃), 3.29 (s, 3H, OCH₃), 2.17 (s, 15H, OAc), 1.98–1.92 (m, 30H, OAc), 1.76 (s, 15H, OAc).¹³C NMR (101 MHz, CDCl₃) δ 170.53, 170.24, 169.96, 169.12, 162.59, 151.06, 150.97, 150.16, 149.09, 148.95, 145.19, 145.12, 145.03, 138.00, 128.38, 128.19, 127.99, 127.41, 126.82, 122.32, 122.20, 114.76, 114.20, 114.07, 113.84, 85.82, 73.43, 70.81, 69.90, 68.41, 66.98, 66.94, 61.66, 60.98, 55.68, 55.60, 55.30, 55.09, 36.20, 31.88, 31.32, 29.71, 29.55, 29.35, 29.09, 26.39, 23.04, 22.67, 20.77, 20.63, 20.57, 20.27, 20.23, 14.13. HRMS (FD) m/z: $[M + 2Na]^{2+}$ Calcd for C₁₃₁H₁₄₉N₁₅ONa₂, 1429.4571; Found 1429.4552.

Figure S14. (a) ¹H NMR (400 MHz) and (b) ¹³C NMR (101 MHz) spectra of compound 3(CDCl₃, 298 K).

S20

3. HPLC and LC-MS Analyses

Figure S15. HPLC chromatograms of the crude reaction mixture of RD-*Co*-P[4+1] **1a** obtained from different ratio of monomer **2** and **2a** in (a) 4/1; (b) 8/1; (c) 9/1; (d) 10/1 and (e) 16/1 ratios.

Figure S16. HPLC chromatograms of the crude reaction mixture of (a) RD-*Co*-P[4+1] **1a**, (b) RD-*Co*-P[4+1] **1b**, (c) RD-*Co*-P[4+1] **1c**, (d) RD-*Co*-P[4+1] **1d**, and (e) RD-*Co*-P[4+1] **1e**.

Figure S17. LC-MS of crude reaction mixture of RD-Co-P[4+1] 1a.

Figure S18. LC-MS of crude reaction mixture of RD-Co-P[4+1] 1b.

Figure S19. LC-MS of crude reaction mixture of RD-Co-P[4+1] 1c.

Figure S20. LC-MS of crude reaction mixture of RD-Co-P[4+1] 1d.

Figure S21. LC-MS of crude reaction mixture of RD-Co-P[4+1] 1e.

Figure S22.¹H NMR spectra (400 MHz, CDCl₃, 298 K) of: a) 1,4-dicyanobutane(5 mM); b) RD-*Co*-P[4+1] **1d** and 1,4-dicyanobutane in a 1:1 ratio (5 mM/ 5 mM); c) RD-*Co*-P[4+1] **1d** (5 mM). Colourcode: orange, 1,4-dicyanobutane; blue, propargyl; green, 6-bromohexyl chain; grey, methoxy and methylene bridges. The • symbol denotes solvent residue peaks.

Figure S23.¹H NMR spectra (400 MHz) of RD-*Co*-P[4+1] **1d** recorded in a) acetone- d_6 ; b) CDCl₃. Colour code: red, aromatic peaks; blue, propargyl group; green, 6-bromohexyl chain; grey, methoxy and methylene bridges. The • symbol denotes solvent residue peaks.

Figure S24. DOSY spectra (400 MHz, CDCl₃, 298 K) of RD-*Co*-P[4+1] **1d** recorded in 5 mM, the distinct weight average diffusion coefficients of 4.8×10^{-6} cm²/s.

Figure S25. DOSY spectra (400 MHz, CDCl₃, 298 K) of RD-*Co*-P[4+1] **1d** recorded in 40 mM, the distinct weight average diffusion coefficients of 4.1×10^{-6} cm²/s.

Figure S26. DOSY spectra (400 MHz, CDCl₃, 298 K) of RD-*Co*-P[4+1] **1d** recorded in 60 mM, the distinct weight average diffusion coefficients of 3.7×10^{-6} cm²/s.

5. X-Ray Crystallography Data

-	
Identification code	CCDC 2106128
Empirical formula	$C_{61}H_{54}O_{10}$
Formula weight	947.04
Temperature/K	100.01(12)
Crystal system	triclinic
Space group	<i>P</i> -1
a/Å	12.0930(6)
b/Å	13.4589(8)
c/Å	17.0755(7)
α/°	88.492(4)
<i>β</i> /°	81.618(4)
γ/°	77.710(4)
Volume/Å ³	2686.5(2)
Ζ	2
$ ho_{calc}$ g/cm ³	1.171
μ/mm^{-1}	0.079
F(000)	1000.0
Crystal size/mm ³	0.12 imes 0.1 imes 0.06
Radiation	Mo K α ($\lambda = 0.71073$)
2Θ range for data collection/°	3.916 to 58.97
Index ranges	$-16 \le h \le 15, -18 \le k \le 18, -23 \le l \le 23$
Reflections collected	37326
Independent reflections	11810 [$R_{int} = 0.0929, R_{sigma} = 0.1294$]
Data/restraints/parameters	11810/0/645
Goodness-of-fit on F^2	0.963
Final <i>R</i> indexes [$I \ge 2\sigma$ (I)]	$R_1 = 0.0848, wR_2 = 0.2179$
Final R indexes [all data]	$R_1 = 0.1681, wR_2 = 0.2609$
Largest diff. peak/hole /eÅ ⁻³	0.50/-0.41

 Table S1. Crystal data and structure refinement for RD-Co-P[4+1] 1a.

Identification code	CCDC 2106131
Empirical formula	$C_{121}H_{115}Br_2Cl_3O_{20}$
Formula weight	2155.29
Temperature/K	159.99(10)
Crystal system	triclinic
Space group	<i>P</i> -1
a/Å	12.9624(2)
b/Å	20.2304(2)
c/Å	23.4932(5)
$a/^{\circ}$	88.7250(10)
$eta/^{\circ}$	77.306(2)
γ/°	79.7420(10)
Volume/Å ³	5913.17(17)
Ζ	2
$ ho_{calc} g/cm^3$	1.211
μ/mm^{-1}	2.007
<i>F</i> (000)	2244.0
Crystal size/mm ³	0.3 imes 0.2 imes 0.2
Radiation	Mo K α (λ = 1.54184)
2Θ range for data collection/°	3.856 to 149.998
Index ranges	$-16 \le h \le 16, -23 \le k \le 25, -29 \le l \le 29$
Reflections collected	153530
Independent reflections	23156 [$R_{int} = 0.0750, R_{sigma} = 0.0337$]
Data/restraints/parameters	23156/0/1322
Goodness-of-fit on F^2	1.055
Final <i>R</i> indexes [$I \ge 2\sigma$ (I)]	$R_1 = 0.0955, wR_2 = 0.2614$
Final R indexes [all data]	$R_1 = 0.1049, wR_2 = 0.2699$
Largest diff. peak/hole /eÅ ⁻³	1.43/-1.17

 Table S2. Crystal data and structure refinement for RD-Co-P[4+1] 1d.

6.References

- M. Guo, X. Wang, C. Zhan, P. Demay-Drouhard, W. Li, K. Du, M. A. Olson, H. Zuilhof and A. C.-H. Sue, J. Am. Chem. Soc., 2018, 140, 74.
- [2] J. Ding, J. Chen, W. Mao, J. Huang and D. Ma, Org. Biomol. Chem., 2017, 15, 7894.
- [3] S. B. Salunke, N. S. Babu and C.-T. Chen, Chem. Commun., 2011, 47, 10440.