Electronic Supplementary Information

Cobalt phosphide nanorings towards efficient electrocatalytic nitrate

reduction to ammonia[†]

Qing-Ling Hong^a, Jia Zhou^a, Quan-Guo Zhai^a, Yu-Cheng Jiang^a, Man-Cheng Hu^a, Xue Xiao^{b*}, Shu-Ni Li^{a*}, and Yu Chen^c

^a Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China. China. E-mail: lishuni@snnu.edu.cn (S. Li)

^b Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia. E-mail: tiffanyxx110@gmail.com (X. Xiao)

^c School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, PR China.

Experimental section

Reagents and chemicals

Cobalt (II) chloride hexahydrate (CoCl₂·6H₂O), sodium hydroxide (NaOH, 97%), hydrogen peroxide (H₂O₂, 30%), sodium sulfate (Na₂SO₄,99%), sodium hypophosphite monohydrate (NaH₂PO₂·H₂O, 99%), and sodium nitrate (NaNO₃, 99%) were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, People's Republic of China). All reagents in this work are analytically pure and can be used directly without further purification.

Synthesis of CoOOH NRs

In a typical synthesis, 3 mL of NaOH (0.15 M) solution was added into 20 mL of CoCl₂ (0.2 mM) solution and stirred for 10 min, which generate Co(OH)₂ nanosheets (Co(OH)₂ NSs). Then, 40 μ L of H₂O₂ (30%) solution was added in above Co(OH)₂ NSs suspension. After stirring for 3 hours at 60°C, CoOOH nanorings (CoOOH NRs) were collected by centrifugation, and then dried in vacuum at 60 °C for 5 hours.

Synthesis of CoP NRs

CoP nanorings (CoP NRs) were prepared by high-temperature phosphating of CoOOH NRs in the presence of NaH₂PO₂·H₂O. Specifically, 20 mg of CoOOH NRs and 200 mg of NaH₂PO₂·H₂O were mixed uniformly into a porcelain boat. The quartz tube was heated at 300 °C for 30 min with a heating rate of 1° C min⁻¹ under N₂ atmosphere. After reaction, CoP NRs were washed by water and dried in vacuum at 60 °C.

Synthesis of CoP NPs

In a typical synthesis, 20 mg of Co(OH)₂ NSs and 200 mg of NaH₂PO₂·H₂O were mixed uniformly into a porcelain boat. The quartz tube was heated at 300 °C for 30 min with a heating rate of 1 °C min⁻¹ under N₂ atmosphere. After reaction, CoP NPs were washed by water and dried in vacuum at 60 °C.

Physical characterization

The morphology and composition of the samples were characterized by SU-8020 scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDX). Transmission electron microscope (TEM) image and selected

area electron diffraction (SAED) pattern were obtained at TECNAI G2 F20 instrument. A DX-2700 power X-ray diffractometer was used to achieve powder X-ray diffraction (PXRD) patterns. X-ray photoelectron spectroscopy (XPS) measurements were carried out on AXIS ULTRA spectrometer. The binding energy was corrected for specimen charging by referencing C 1s to 284.5 eV.

Characterization of Co(OH)₂ nanosheets (Co(OH)₂ NSs)

 $Co(OH)_2$ NSs was achieved by mixing $CoCl_2$ aqueous solution and NaOH aqueous solution. X-ray diffraction (XRD) pattern shows the characteristic diffraction peaks of $Co(OH)_2$ (JCPDS No. 30-0443), in which the diffraction peaks at 19.0°, 32.4°, 37.9°, 51.4°, and 57.9° can be ascribed to the (001), (100), (101), (102), (110) planes of $Co(OH)_2$ crystal (Fig. S1 in ESI). Scanning electron microscopy (SEM) image confirms $Co(OH)_2$ NSs are complete hexagonal nanosheets (Fig. S2A in ESI).

Electrochemical measurements

The electrochemical measurements were carried out using a CHI 660D electrochemical workstation in an H-type electrolytic cell separated by a N117 Nafion membrane at room temperature. The saturated calomel electrode (SCE) is used as the reference electrode, the carbon rod is used as the auxiliary electrode, and the electrocatalyst modified glassy carbon electrode is used as working electrode. 0.5 M Na₂SO₄ solution (60 mL) is evenly distributed to the cathode and anode compartments. 50 mmol NaNO₃ was added into the cathode compartment for electroreduction of NaNO₃. All potentials mentioned in the work correspond to the reversible hydrogen electrode potential (RHE), where $E_{\text{RHE}} = E_{\text{SCE}} + 0.242 \text{ V} + 0.0591 \text{ pH}$. The current densities are normalized to the geometric area of the working electrode unless otherwise stated. The catalyst ink was prepared by dispersing 2 mg electrocatalyst in 1 mL of water containing 0.2 mL of isopropyl alcohol and 5 µL Nafion. Then, 4 µL of above suspension was dropped on the surface of the glassy carbon electrode and dry at room temperature.

HER activity of CoP NRs and CoP NPs

HER activity of CoP NRs and CoP NPs were first investigated by linear sweep voltammetry (LSV) technique in 0.5 M Na₂SO₄ electrolyte. The overpotential values of HER at CoP NRs and CoP NPs are 578 and 652 mV at current density of 10 mA

cm⁻², respectively (Fig. S8A in ESI). Tafel slope values of HER at CoP NRs and CoP NPs are 97 and 111 mV dec⁻¹, respectively, indicating a faster HER kinetics at CoP NRs (Fig. S8B in ESI). These electrochemical results suggest that CoP NRs have higher HER activity than CoP NPs. Indeed, HER activity of CoP NRs and CoP NPs were also investigated in neutral phosphate buffer saline (PBS, pH = 7) electrolyte (Fig. S9 in ESI). The polarization curves display that CoP NRs have still higher HER activity than CoP NPs. The overpotential of HER at CoP NRs is 241 mV at current density of 10 mA cm⁻², which exceed the HER performance of previously reported CoP nanomaterials in PBS electrolyte (Table S1).

The Faradaic Efficiency of NO₃⁻-ERR and NH₃ Yield

The chronoamperometry tests of NO_3^- -ERR were performed at a two-compartment cell with Ar-purged 0.5 M Na₂SO₄ + 0.05 M NaNO₃ solution and 0.5 M Na₂SO₄ solution (30 mL in each cell). The faradaic efficiency for NH_4^+ production was defined as charge converted to NH_4^+ divided by the total charge passed through the electrodes during the electrolysis (Q), which was calculated according to the following formula:

Faradaic efficiency=
$$\frac{8F \cdot c_{\rm NH_3} \cdot V}{M_{\rm NH_3} \cdot Q}$$

The NH₄⁺ yield was calculated by following formula:

$$\text{Yield}_{\text{NH}_3} = \frac{c_{\text{NH}_3} \cdot V}{m \cdot t}$$

where c_{NH_3} is the mass concentration of NH₃(aq), V is the volume of electrolyte in the cathode compartment (30 mL), M_{NH_3} is the molar mass of NH₃, t is the electrolysis time (3 h), F is the Faradaic constant (96485 C mol⁻¹), Q is the total charge passing the electrode. m and t are the electrocatalyst mass and the reduction reaction time, respectively.

Determination of ion concentration

The ultraviolet-visible (UV-Vis) spectrophotometer was used to detect the ion concentration of pre- and post-test electrolytes after diluting to appropriate concentration to match the range of calibration curves. The specific detection methods

are as follow:

Determination of NH₄⁺

Phenolhypochlorite method was used to detect the NH_3 concentration. Firstly, the corresponding calibration curve was obtained by UV-vis curves for known concentration of NH_4^+ in 0.05 M Na₂SO₄. After running chronoamperometry test for 3 h, 1 mL were taken from the electrolyte and put it into the centrifuge tube and diluted to 10 mL with water. Then Stock reagents were added in solution and stand for 3 h. Finally, NH_4^+ -N concentration was calculated according to the UV-vis curve and calibration curve.

Determination of nitrite

A mixture of p-aminobenzenesulfonamide (1.0 g), N-(1-Naphthyl) ethylenediamine dihydrochloride (0.1 g), ultrapure water (100 mL) was used as a color reagent. A certain amount of electrolyte was taken out from the electrolytic cell and diluted to detection range. Next, 0.1 mL color reagent was added into the aforementioned 5 mL solution and mixed uniformity, and the absorption intensity at a wavelength of 542 nm was recorded after sitting for 20 min. The concentration absorbance curve was calibrated using a series of standard sodium nitrite solutions.

Scheme S1. Synthetic procedures of CoP NRs.

Scheme S2. Synthetic procedures of CoP NPs.

Fig. S1 XRD pattern of $Co(OH)_2$ NSs.

Fig. S2 SEM images of (A) Co(OH)2 NSs and (B) CoOOH NRs.

Fig. S3 XRD pattern of CoOOH NRs.

Fig. S4 The survey XPS spectrum of CoP NRs.

Fig. S5 The nitrogen desorption-adsorption isotherm of (A) CoP NRs and (B) CoP NPs.

Fig. S6 (A) XRD pattern, (B) Co 2p XPS spectrum, (C) P 2p XPS spectrum, and (D) SEM images of CoP NPs.

Fig. S7 TEM images of CoP NPs.

Fig. S8 (A) LSV curves of CoP NRs and CoP NPs in 0.5 M Na_2SO_4 electrolyte at scan rate of 5 mV s⁻¹ and (B) Tafel plot values of HER at CoP NRs and CoP NPs.

Fig. S9 (A) LSV curves of CoP NRs and CoP NPs in 1 M PBS solution at 5 mV s⁻¹.

Fig S10. LSV curves of CoP NRs in 0.5 M Na_2SO_4 solution with and without 50 mM $NaNO_3$ or $NaNO_2$ at scan rate of 5 mV s⁻¹.

Fig. S11 Absolute calibration of the phenate method using ammonium solutions of known concentration as standards. (A) UV-vis curves of phenate assays after in darkness for 3 h at room temperature, (B) calibration curve used for estimation of NH₃ by NH₄⁺-N ion concentration. The absorbance at 650 nm was measured by UV-vis spectrophotometer, and the fitting curve shows good linear relation of absorbance with NH₄⁺-N concentration (y = 0.6118x + 0.0225, $R^2=0.9995$) of three times independent calibration curves.

Fig. S12 The concentration-absorbance curve was calibrated using a series of standard sodium nitrite solutions. (a) UV-vis curves of various NO_2^- concentrations after incubated for 10 min at room temperature. (b) Calibration curve used for calculation of NO_2^- concentrations. The absorbance at 542 nm was measured by UV-vis spectrophotometer, and the fitting curve shows good linear relation of absorbance with NO_2^- -N concentration (y = 3.6986x + 0.01062, $R^2=0.9999$) of three times independent calibration curves.

Fig. S13 (A) NH₃ yield and (B) Faradaic efficiency of NO_3^- -ERR at CoP NRs and CoP NPs at -0.5 V potential.

Fig. S14 CV curves of (A) CoP NRs and (B) CoP NPs in O_2 -saturated 0.5 M Na₂SO₄ electrolyte at different scan rates. (C) Plots of *i* at 0.2 V vs *v* at CoP NRs and CoP NPs.

Fig. S15 LSV curves of CoP NRs in 0.5 M $Na_2SO_4 + 50$ mM $NaNO_3$ electrolyte before and after chronoamperometry measurements.

Fig. S16 (A) XRD pattern and (B) TEM image of CoP NRs after chronoamperometry measurement at same –0.5 V potential.

Catalysts	Electrolyt e	η value at 10 mA cm ⁻²	Ref. (year)
CoP NRs	1.0 M PBS	241 mV	This Work
CoP nanoparticles	1.0 M PBS	~250 mV	20211
Cobalt phosphosulfide nanosheets	1.0 M PBS	480 mV	2021 ²
CoP nanosheets	1.0 M PBS	280 mV	2020 ³
V-doped CoP hollow nanofibers	1.0 M PBS	260 mV	2020 ⁴
CoP/Co ₂ P nanoparticles in a nitrogen-doped graphitized carbon shell	1.0 M PBS	459 mV	20195
CoP/NiCoP heterostructure	1.0 M PBS	430 mV	20196
Ni _{1.67} Co _{0.33} P/N-doped carbon nanofibers	1.0 M PBS	326 mV	20197
N-and P-dual-doped core–shell Co ₂ P@C nanoparticles	1.0 M PBS	410 mV	2018 ⁸
CoP@carbon polyhedron	1.0 M PBS	553 mV	20179
CoP nanowire	1.0 M PBS	530 mV	201410

Table S1. HER overpotential at various CoP nanomaterials in 1 M PBS electrolyte.

Catalysts	Electrolyte	Applied potential (vs. RHE)	NH3 yield (mg h ⁻¹ mg ⁻¹ cat)	Faradaic efficiency (%)	Ref. (year)
CoP NRs	0.5 M Na ₂ SO ₄ + 50 mM NaNO ₃	-0.5 V	30.1	97.1%	This Work
CuPd aerogels	0.5 M K ₂ SO ₄ + 0.49 mM KNO ₃	-0.46 V	0.784	90.02%	202111
Fe single atom catalyst	0.50 M KNO ₃ +100 mM K ₂ SO ₄	-0.66 V	5.245	75%	202112
Cu nanoplates	0.5 M K ₂ SO ₄ + 0.49 mM KNO ₃	-0.65 V	0.781	93.26%	202113
Cu nanowires with concave-convex surface Cu ₂₊₁ O layers	0.5 M K ₂ SO ₄ + 0.49 mM KNO ₃	-0.55 V	0.576	87.07%	202114
Cu nano dendrites	0.1 M Na ₂ SO ₄ +0.1 M NaNO ₃	-0.3 V	0.556	97%	202115
indium incorporated in sulfur doped graphene	1 M KOH +0.1 M KNO3	-0.5 V	12.94	75%	2021 ¹⁶
Pd concave nanocubes	0.1 M NaOH+20 mM NaNO ₃	-0.2 V	0.306	35%	202117
TiO ₂ nanotubes	0.5 M K ₂ SO ₄ + 0.49 mM KNO ₃	-0.95 V	0.81	85.0%	202018
Co ₃ O ₄ @NiO nanotubes	0.5 M K ₂ SO ₄ +2.35 mM KNO ₃	-0.70 V	0.125	55%	202019
Ir nanotubes	0.1 M HClO ₄ +1 M NaNO ₃	0.06 V	0.921	84.7%	2020 ²⁰

Table S2. Faraday efficiency and NH₃ yield of NO₃⁻-ERR at various electrocatalysts.

References

- 1. J. Li, J. Wang, F. Jiao, Y. Lin and Y. Gong, Int. J. Hydrog. Energy, 2021, 46, 18353-18363.
- 2. Y. Hu, Y. Liu, X. Long, Y. Long, F. Li, D. Ma, P. Ma, M. Chen, L. Gao, J. Jin and J. Ma, J. Power Sources, 2021, **484**, 229144.
- 3. L. Yan, B. Zhang, S. Wu and J. Yu, J. Mater. Chem. A, 2020, 8, 14234-14242.

- R. Zhu, F. Chen, J. Wang, Y. Song, J. Cheng, M. Mao, H. Ma, J. Lu and Y. Cheng, *Nanoscale*, 2020, 12, 9144-9151.
- 5. X. Lv, J. Ren, Y. Wang, Y. Liu and Z.-Y. Yuan, ACS Sustain. Chem. Eng., 2019, 7, 8993-9001.
- X. Liu, S. Deng, D. Xiao, M. Gong, J. Liang, T. Zhao, T. Shen and D. Wang, ACS Appl. Mater. Interfaces, 2019, 11, 42233-42242.
- 7. Q. Mo, W. Zhang, L. He, X. Yu and Q. Gao, Appl. Catal. B, 2019, 244, 620-627.
- Y. Yang, X. Liang, F. Li, S. Li, X. Li, S. P. Ng, C. L. Wu and R. Li, *ChemSusChem*, 2018, 11, 376-388.
- H. Tabassum, W. Guo, W. Meng, A. Mahmood, R. Zhao, Q. Wang and R. Zou, Adv. Energy Mater., 2017, 7.(9)
- 10. J. Tian, Q. Liu, A. M. Asiri and X. Sun, J. Am. Chem. Soc., 2014, 136, 7587-7590.
- 11. Y. Xu, K. Ren, T. Ren, M. Wang, M. Liu, Z. Wang, X. Li, L. Wang and H. Wang, *Chem. Commun.*, 2021, **57**, 7525-7528
- 12.Z. Y. Wu, M. Karamad, X. Yong, Q. Huang, D. A. Cullen, P. Zhu, C. Xia, Q. Xiao, M. Shakouri, F. Y. Chen, J. Y. T. Kim, Y. Xia, K. Heck, Y. Hu, M. S. Wong, Q. Li, I. Gates, S. Siahrostami and H. Wang, *Nat Commun*, 2021, **12**, 2870.
- 13. Y. Xu, M. Wang, K. Ren, T. Ren, M. Liu, Z. Wang, X. Li, L. Wang and H. Wang, J. Mater. Chem. A, 2021, 9, 16411-16417.
- 14. T. Ren, K. Ren, M. Wang, M. Liu, Z. Wang, H. Wang, X. Li, L. Wang and Y. Xu, Chem. Eng. J. 2021, 426, 130759.
- 15.S. B. Patil, T. R. Liu, H. L. Chou, Y. B. Huang, C. C. Chang, Y. C. Chen, Y. S. Lin, H. Li, Y. C. Lee, Y. J. Chang, Y. H. Lai, C. Y. Wen and D. Y. Wang, *J. Phys. Chem. Lett.*, 2021, 2236, 8121-8128.
- 16.F. Lei, W. Xu, J. Yu, K. Li, J. Xie, P. Hao, G. Cui and B. Tang, *Chem. Eng. J.*, 2021, **426**, 131317.
- 17.J. Lim, C.-Y. Liu, J. Park, Y.-H. Liu, T. P. Senftle, S. W. Lee and M. C. Hatzell, *ACS Catal.*, 2021, **11**, 7568-7577.
- 18. R. Jia, Y. Wang, C. Wang, Y. Ling, Y. Yu and B. Zhang, ACS Catal., 2020, 10, 3533-3540.
- 19. Y. Wang, C. Liu, B. Zhang and Y. Yu, Sci. China Mater., 2020, 63, 2530-2538
- 20.J.-Y. Zhu, Q. Xue, Y.-Y. Xue, Y. Ding, F.-M. Li, P. Jin, P. Chen and Y. Chen, ACS Appl. Mater. Interfaces., 2020, 12, 14064-14070.