Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Stereoselective total synthesis of (±)-vindeburnol and (±)-16-

epi-vindeburnol

Xiangtao Chen,^a Lei Yu,^a Huijing Wang,^a Wen Zhang,^a Pei Tang^{*a} and Fener Chen^{*abc}

^aSichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China. ^bEngineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China ^cShanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China

Table of Contents

1.	General Information	S2
2.	Experimental Procedures	S2
3.	References	S12
4.	Spectral Data	S13

1. General Information

All commercially available reagents were used without further purification. Tetrahydrofuran was distilled from sodium/benzophenone ketyl. Dichloromethane was distilled from calcium hydride. DMSO was dried from the activated molecular sieve. Chromatography was conducted by using 200–300 mesh silica gel. All new compounds gave satisfactory spectroscopic analyses (IR, ¹H NMR, ¹³C NMR, HRMS). NMR spectra were recorded on a 400 MHz NMR spectrometer. Chemical shifts are reported relative to the residue peaks of the solvent (CDCl₃: 7.26 ppm for ¹H and 77.0 ppm for ¹³C) (DMSO-*d*₆: 2.50 ppm for ¹H and 39.5 ppm for ¹³C). Coupling constants (J) are given in Hz and are uncorrected and multiplicities for coupled signals were denoted as: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br. = broad, apt. = apparent and dd = double doublet etc. Infrared (IR) spectra were recorded on a Bruker TOF Premier, by the ESI method. Melting points (m.p.) were recorded on an SRS-optic melting point apparatus. X-ray diffraction analysis was carried out by Dr. Meng Yang (Sichuan University). The data collections were done on a Bruker Xcalibur E using MoKα-radiation. HPLC analysis was performed with Daicel Chiralpak OD column (4.6 × 250 mm).

2. Experimental Procedures

Commercially available 4-(hydroxymethyl)cyclohexan-1-one **9** (0.60 g, 4.68 mmol) was added to a solution of BnBr (0.67 mL, 5.61 mmol) in DIPEA (1.6 mL, 9.4 mmol). The resulting mixture was refluxed at 150 °C in sealed tube for 3 h and quenched by adding water at room temperature, extracted by EtOAc (3 × 30 mL). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by silica gel flash column chromatography [petroleum ether/EtOAc = 10:1, R_f (**8a**) = 0.4] to give **8a** (0.88 g, 86%) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.18 (m, 5H), 4.44 (s, 2H), 3.31 (d, *J* = 6.0 Hz, 2H), 2.34 – 2.21 (m, 4H), 2.09 – 1.95 (m, 3H), 1.43 – 1.32 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 211.9, 138.4, 128.5, 127.7, 127.6, 74.3, 73.2, 40.5, 36.6, 29.6. IR (neat) 1711, 1452, 1245, 1170, 1099, 919, 737, 698, 503 cm⁻¹. HRMS (ESI) m/z calcd for C₁₄H₁₉O₂ [M + H]⁺: 219.1380, found: 219.1386.

To a stirred solution of compound **8a** (0.90 g, 4.12 mmol) in CH_2CI_2 (20.0 mL) was added *m*-CPBA (0.92 g, 4.53 mmol). The reaction mixtures were stirred for overnight at room temperature. The saturated K_2CO_3

aqueous solution (50 mL) was added and extracted with CH_2Cl_2 (3 x 50 mL).Then the organic layer was concentrated in vacuo and the crude products were purified directly by column chromatography on silica gel [petroleum ether/EtOAc = 3:1, R_f (**7a**) = 0.2] to afford the desired products **7a** (0.89 g, 92%) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.20 (m, 5H), 4.43 (s, 2H), 4.27 – 4.20 (m, 1H), 4.14 – 4.07 (m, 1H), 3.31 – 3.22 (m, 2H), 2.67 – 2.50 (m, 2H), 2.05 – 1.84 (m, 3H), 1.54 – 1.43 (m, 1H), 1.38 – 1.27 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 175.7, 138.1, 128.3, 127.6, 127.4, 74.2, 73.0, 67.8, 40.6, 32.8, 32.3, 25.7. IR (neat) 1723, 1475, 1392, 1169, 1102, 1070, 1008, 736, 698, 586 cm⁻¹. HRMS (ESI) m/z calcd for C₁₄H₁₈NaO₃ [M + Na]*: 257.1148, found: 257.1153.

A stirred solution of **7a** (0.89 g, 3.80 mmol) in EtOAc (12.0 mL) was treated with 5% Pd/C (0.18 g). After stirring at room temperature under H_2 for overnight, the reaction mixture was filtrated through a pad of celite. The solid was washed with EtOAc (3 × 30 mL) and concentrated in vacuo to give the alcohol intermediate as a colorless oil, which was directly used in next step without further purification.

A round bottom flask equipped with stirring bar was charged with oxalyl chloride (0.60 mL, 7.60 mmol) in dry CH₂Cl₂ (15.0 mL) and cooled to -78 °C. Dry dimethylsulfoxide (1.11 mL, 15.6 mmol) was diluted into 10 mL dry CH₂Cl₂, which was added slowly for 10 minutes. After stirring for 30 min at -78 °C, the alcohol intermediate was dissolved in 5.0 mL dry CH₂Cl₂, which was added into the reaction mixture over a period of 10 minutes. After stirring for additional 30 min at -78 °C, triethylamine (2.80 mL) was added and the reaction allowed to warm to room temperature. The reaction mixture was diluted with 20 mL H₂O and extracted with CH₂Cl₂ (3 x 30 mL). The combined organic phase was dried over Na₂SO₄ and concentrated in vacuum. The residue was purified directly by column chromatography on silica gel [petroleum ether/EtOAc = 3:1, R_f (**12**) = 0.3] to afford the corresponding product **12** (0.49 g, 90%) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 9.77 (s, 1H), 4.39 – 4.35 (m, 1H), 4.03 – 3.98 (m, 1H), 2.66 – 2.49 (m, 5H), 2.13 – 2.04 (m, 1H), 1.63 – 1.53 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 199.4, 170.9, 72.4, 45.6, 28.8, 27.3, 25.3. IR (neat) 2933, 1706, 1260, 1168, 971, 914, 803, 733 cm⁻¹. HRMS (ESI) m/z calcd for C₇H₁₁O₃ [M + H]⁺: 143.0703, found: 143.0707.

To a solution of **12** (0.47 g, 3.31 mmol) in THF (33.0 mL) was added tryptamine (0.69 g, 4.30 mmol) and TFA (0.30 mL). After refluxing for 24 h, water (10.0 mL) was added to the cooled reaction mixture and the pH was adjusted to 7.0 at 0 °C with saturated Na₂CO₃ solution. The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 30 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and evaporated in vacuo. The residue was purified by silica gel column chromatography [CH₂Cl₂/Acetone = 2:1, R_f (**4a**) = 0.5, R_f (**4b**) = 0.3, R_f (**4c**) = 0.4] to afford **4a** (0.44 g, 47%) as a white solid, **4b** (0.11 g, 12%) as a white solid, **4c** (0.10 g, 11%) as a white solid.

4a: mp = 189.8–192.5 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.83 (s, 1H), 7.35 (dd, *J* = 12.4, 8.0 Hz, 2H), 7.05 (td, *J* = 8.0, 1.2 Hz, 1H), 6.96 (td, *J* = 8.0, 1.2 Hz, 1H), 4.74 – 4.70 (m, 3H), 3.70 – 3.60 (m, 2H), 2.88 (td, *J* = 12.0, 4 Hz, 1H), 2.82 – 2.75 (m, 1H), 2.60 – 2.53 (m, 2H), 2.39 – 2.30 (m, 1H), 2.12 – 2.05 (m, 1H), 1.94 – 1.85 (m, 1H), 1.78 – 1.70 (m, 1H), 1.66 – 1.56 (m, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 169.0, 135.8, 135.1, 126.8, 120.9, 118.7, 117.5, 111.4, 108.4, 59.2, 58.9, 42.1, 34.4, 31.3, 28.8, 22.7, 20.5. IR (KBr) 3258, 2931, 2866, 1610, 1471, 1409, 1355, 1303, 1234, 1056, 1028, 736, 677, 511 cm⁻¹. HRMS (ESI) m/z calcd for $C_{17}H_{20}N_2NaO_2$ [M + Na]⁺: 307.1417, found: 307.1424;

4b: mp = 203.9–204.8 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.87 (s, 1H), 7.42 (d, *J* = 7.6 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.06 (t, *J* = 8.0 Hz, 1H), 6.97 (t, *J* = 7.6 Hz, 1H), 4.94 – 4.91 (m, 2H), 4.31 (t, *J* = 4.8 Hz, 1H), 3.31 – 3.23 (m, 2H), 2.70 (td, *J* = 14.8, 3.2 Hz, 2H), 2.60 – 2.53 (m, 2H), 2.38 – 2.29 (m, 2H), 1.98 – 1.87 (m, 2H), 1.28 – 1.18 (m, 1H), 1.00 – 0.92 (m, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.3, 136.4, 132.8, 126.3, 120.9, 118.5, 117.6, 111.1, 108.8, 58.9, 57.7, 38.6, 32.3, 27.7, 27.3, 22.2, 20.7. IR (KBr) 3190, 2931, 2850, 1612, 1491, 1435, 1294, 1226, 1080, 1209, 935, 871, 748, 688 cm⁻¹. HRMS (ESI) m/z calcd for C₁₇H₂₀N₂NaO₂ [M + Na]⁺: 307.1417, found: 307.1424;

4c: mp = 228.6–230.3 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.99 (s, 1H), 7.41 (d, *J* = 7.6 Hz, 1H), 7.33 (d, *J* = 8 Hz, 1H), 7.05 (t, *J* = 7.6 Hz, 1H), 6.96 (t, *J* = 7.6 Hz, 1H), 5.11 (d, *J* = 9.6 Hz, 1H), 4.71 (dd, *J* = 12.8, 4.8 Hz, 1H), 4.61 (t, *J* = 5.6 Hz, 1H), 3.29 – 3.24 (m, 2H), 2.95 (t, *J* = 13.6 Hz, 1H), 2.85 (td, *J* = 12.4, 3.6 Hz, 1H), 2.77 (td, *J* = 16.0, 4 Hz, 1H), 2.58 – 2.52 (m, 1H), 2.36 (q, *J* = 6.8 Hz, 1H), 2.25 – 2.21 (m, 1H), 2.04 – 1.92 (m, 2H), 1.36 (q, *J* = 11.2 Hz, 1H), 1.13 (q, *J* = 13.2 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 174.5, 136.3, 134.2, 125.9, 120.9, 118.4, 117.7, 111.0, 107.7, 66.0, 52.5, 43.2, 36.8, 36.1, 34.8, 26.4, 20.6. IR (KBr) 3325, 2964, 2901, 1620, 1502, 1429, 1354, 1307, 1172, 1068, 1004, 933, 883, 852 cm⁻¹. HRMS (ESI) m/z calcd for C₁₇H₂₀N₂NaO₂ [M + Na]⁺: 307.1417, found: 307.1425.

A round bottom flask equipped with stirring bar was charged with (1.30 mL, 15.60 mmol) oxalyl chloride in dry CH₂Cl₂ (25.0 mL) and cooled to -78 °C. Dry dimethylsulfoxide (2.26 mL, 32.0 mmol) diluted with 10 mL dry CH₂Cl₂, was added slowly for 10 min. After stirring for another 30 min at -78 °C , **9** (1.0 g, 7.80 mmol) dissolved in 15 mL dry CH₂Cl₂, was added over a period of 20 minutes. After stirring for additional 30 min at -78 °C, trimethylamine (5.70 mL) was added and the reaction allowed to warm to room temperature. The reaction mixture was diluted with 30 mL H₂O and extracted with CH₂Cl₂ (3 x 50 mL). The combined organic phases were dried over Na₂SO₄ and concentrated in vacuum to give the crude product. The residue was purified by silica gel flash column chromatography [petroleum ether/EtOAc = 3:1, R_f (**14**) = 0.3] to give **14** (0.86 g, 87%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.71 (s, 1H), 2.67 – 2.59 (m, 1H), 2.45 – 2.28 (m, 4H), 2.21 – 2.13 (m, 2H), 1.97 – 1.87 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 209.7, 202.5, 47.3, 39.5, 25.5. IR (neat) 2856, 1731, 1339, 1272, 1088, 905, 803, 701, 646 cm⁻¹. HRMS (ESI) m/z calcd for C₇H₁₁O₂ [M + H]⁺: 127.0754, found: 127.0758.

To a stirred solution of compound **14** (0.87 g, 6.90 mmol) in H₂O (14.0 mL) was added neopentyl glycol (0.72 g, 6.90 mmol) and *con*. HCl (4.0 mL). After at room temperature for 24 h, the precipitate was filtered, washed with ice-cold slightly alkaline water and Et₂O. The aqueous layers were extracted with CH₂Cl₂ (3 x 50 mL). The combined organic phases were dried over Na₂SO₄ and concentrated in vacuum to give the crude product. The solid was dried under vacuum to give the residue as a pale yellow solid. The residue was purified by silica gel flash column chromatography [petroleum ether/EtOAc = 8:1, R_f (**8b**) = 0.4] to give **8b** (1.20 g, 82%) as a white soild. mp = 75.1–75.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 4.29 (d, *J* = 4.8 Hz, 1H), 3.60 (t, *J* = 1.6 Hz, 1H), 3.57 (d, *J* = 1.6 Hz, 1H), 3.41 (s, 1H), 3.38 (s, 1H), 2.43 – 2.35 (m, 2H), 2.30 (td, *J* = 13.2, 6.0 Hz, 2H), 2.15 – 2.10 (m, 2H), 2.01 – 1.92 (m, 1H), 1.65 – 1.54 (m, 2H), 1.15 (s, 3H), 0.70 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 211.9, 103.7, 77.3, 40.6, 40.4, 30.3, 27.0, 22.9, 21.9. IR (neat) 2953, 2845, 1711, 1649, 1394, 1384, 1105, 925, 828, 793, 757, 656 cm⁻¹. HRMS (ESI) m/z calcd for C₁₂H₂₁O₃ [M + H]⁺: 213.1485, found: 213.1489.

To a stirred solution of compound **8b** (0.50 g, 2.36 mmol) in CH₂Cl₂ (12.0 mL) was added *m*-CPBA (0.57 g, 2.83 mmol). After the reaction mixtures were stirred for 12 h at room temperature, the saturated K₂CO₃ solution (30 mL) was added and the suspension was extracted with CH₂Cl₂ (3 x 50 mL).Then the combine organic layers were concentrated in vacuo and the crude products were purified directly by column chromatography on silica gel (petroleum ether/EtOAc = 3:1) to afford the desired product **7b** (0.49 g, 91%) as a white soild. mp = 122.9–125.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 4.32 (dd, *J* = 13.2, 6 Hz, 1H), 4.23 (d, *J* = 4.4 Hz, 1H), 4.12 (t, *J* = 10.4 Hz, 1H), 3.57 (d, *J* = 10.8 Hz, 2H), 3.37 (d, *J* = 10.8 Hz, 2H), 2.70 (dd, *J* = 14, 7.6 Hz, 1H), 2.54 (t, *J* = 13.6 Hz, 1H), 2.11 – 2.08 (m, 1H), 2.05 – 2.00 (m, 1H), 1.86 – 1.79 (m, 1H), 1.73 – 1.63 (m, 1H), 1.53 (q, *J* = 12.8 Hz, 1H), 1.11 (s, 3H), 0.68 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 103.2, 77.2, 67.9, 44.8, 32.9, 30.2, 29.9, 23.4, 22.8, 21.8. IR (neat) 2958, 2853, 1729, 1472, 1393, 1311, 1137, 1078,1018, 957, 929, 792, 646 cm⁻¹. HRMS (ESI) m/z calcd for C₁₂H₂₀KO₄ [M + K]*: 267.0993, found: 267.0996.

To a stirred mixture of tryptamine (0.38 g, 2.41 mmol) and 7b (0.50 g, 2.19 mmol) in dry CH₂Cl₂ (22.0 mL)

was added 2.0 M AlMe₃-hexane (1.70 mL, 3.30 mmol) at 0 °C, and then the reaction mixture was stirred for 5 h at room temperture. The reaction was carefully quenched with H₂O at 0 °C and the mixture was extracted with CH₂Cl₂ (3 x 30 mL). The organic extract was washed with brine, dried over Na₂SO₄, and evaporated to give a residue, which was chromatographed on silica gel [CH₂Cl₂/MeOH = 20:1, R_f (**15**) = 0.5] to afford the desired product **15** (0.79 g, 93%) as a gel product. ¹H NMR (400 MHz, CDCl₃) δ 8.73 (s, 1H), 7.58 (d, *J* = 8 Hz, 1H), 7.37 (d, *J* = 8.4 Hz, 1H), 7.17 (t, *J* = 7.2 Hz, 1H), 7.09 (t, *J* = 7.6 Hz, 1H), 6.99 (s, 1H), 5.96 (s, 1H), 4.29 (d, *J* = 2.8 Hz, 1H), 3.69 – 3.61 (m, 2H), 3.58 – 3.49 (m, 4H), 3.36 – 3.29 (m, 2H), 2.93 (t, *J* = 6.8 Hz, 2H), 2.29 – 2.13 (m, 2H), 1.84 – 1.71 (m, 3H), 1.66 – 1.57 (m, 1H), 1.51 – 1.473 (m, 1H), 1.12 (s, 3H), 0.67 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 136.6, 127.4, 122.5, 122.0, 119.3, 118.7, 112.7, 111.4, 104.1, 77.3, 77.2, 60.8, 39.8, 39.2, 34.5, 32.1, 30.2, 25.4, 25.3, 23.1, 21.8. IR (neat) 3286, 2950, 2893, 1636, 1534, 1456, 1361, 1100, 972, 925, 739, 701, 568 cm⁻¹. HRMS (ESI) m/z calcd for C₂₂H₃₂N₂NaO₄ [M + Na]⁺: 411.2254, found: 411.2262.

H		deprotection/aldimir acyl-Pictet-S	ne condensation/ Spengler		N_O
		containe	<i>5</i> 13	но Н 4а	
Entry	Acid	Sol.	Time (h)	Yield(%) ^b	dr °
1	TFA	DCM	16	46	5.5:1
2	TFA	MeCN	18	45	2.8:1
3	TFA	PhMe	24	54	4.6:1
4	TFA	THF	72	/	1
5	TFA	EtOH	72	/	/
6	TFA	Acetone	8	58	7.2:1
7	TsOH	Acetone	6	65	8.7:1
8	CSA	Acetone	12	81	12.5:1
9	MsOH	Acetone	24	60	10.0:1
10	AcOH	Acetone	48	/	1
11	Dichloroacetic acid	Acetone	36	83	16.5:1

 Table 1
 Exploration and optimization studies for synthesis of trans-fused indologuinolizidine core 4a.^a

^aUnless noted otherwise, reactions were performed on scale of 100 mg of **15** at 25 °C. ^bIsolated yields. ^cDetermined by HPLC analysis.

Procedure (entries 1 to 11)

Acid (10.0 equiv.) was added into a solution (4.90 mL) of **15** (0.10 g, 0.26 mmol).¹ After stirring at room temperature for various time, the pH was adjusted to 7.0 at 0 °C by adding saturated Na₂CO₃ aqueous solution. The aqueous layer was extracted with DCM. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and evaporated in vacuo. The residue was purified by silica gel flash column chromatography [(CH₂Cl₂/MeOH = 20:1, R_f (**4a**) = 0.4, R_f (**4b**) = 0.3)] to afford the product as a mixture of **4a** and **4b** compounds. Chiral HPLC conditions: Daicel Chiralcel OD column, 4.6 × 250 mm, 85:15 *n*-hexane/*i*-PrOH, 0.75 mL/min, UV detector at 254 nm. t_{R1} = 12.5 min, t_{R2} = 14.0 min, t_{R3} = 21.9 min, t_{R4} = 26.0 min. *dr* = 16.5:1 (**4a**:**4b**) (Table 1). In addition, **4a** and **4b** could be separated via column chromatography (CH₂Cl₂/MeOH = 30:1) to give **4a** as a white solid.

Table 2. HPLC Spectrum of mixture of 4a and 4b

RetTime [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
12.570	MM m	0.53	1250.48	35.48	22.03
14.023	MM m	0.67	1302.87	27.75	22.95
21.894	MM m	0.89	1557.91	26.23	27.44
26.003	MM m	0.95	1565.41	23.94	27.58
		Totals	5676.67		

Chiral HPLC conditions: Daicel Chiralcel OD column, 4.6 × 250 mm, 85:15 *n*-hexane/*i*-PrOH, 0.75 mL/min, UV detector at 254 nm. t_{R1} = 12.5 min, t_{R2} = 14.0 min, t_{R3} = 21.9 min, t_{R4} = 26.0 min

Table 3. HPLC Spectrum of 4a

RetTime [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
 21.951	MM m	0.90	2786.11	45.80	50.02
26.328	MM m	1.00	2783.82	41.56	49.98
		Totals	5569.92		

Chiral HPLC conditions: Daicel Chiralcel OD column, 4.6 × 250 mm, 85:15 *n*-hexane/*i*-PrOH, 0.75 mL/min, UV detector at 254 nm. t_{R3} (4a) = 21.9 min, t_{R4} (4a) = 26.3 min.

Table 4. HPLC Spectrum of 4b

RetTime [min]	Туре	Width [min]	Area [mAU * s]	Height [mAU]	Area%
12.474	MM m	0.52	2699.01	77.42	48.49
13.841	MM m	0.62	2867.46	65.73	51.51
		Totals	5566.47		

Chiral HPLC conditions: Daicel Chiralcel OD column, 4.6 × 250 mm, 85:15 n-hexane/i-PrOH, 0.75 mL/min, UV detector at 254 nm. t_{R1} (4b) = 12.4 min, t_{R2} (4b) = 13.8 min.

Table 5. HPLC Spectrum of the products of acyl-Pictet-Spengler cascade reaction from 15 (entry 11)

Area%	Height [mAU]	Area [mAU * s]	Width [min]	Туре	RetTime [min]
3.23	14.42	505.83	1.89	MM m	11.886
2.51	7.82	393.80	2.15	MM m	13.987
47.98	131.45	7521.93	4.94	MM m	20.451
46.29	10717	7526.991	5.71	MM m	25.883
		15678.55	Totals		

Chiral HPLC conditions: Daicel Chiralcel OD column, 4.6×250 mm, 85:15 *n*-hexane/*i*-PrOH, 0.75 mL/min, UV detector at 254 nm. t_{R1} (**4b**) = 11.9min, t_{R2} (**4b**) = 13.9 min, t_{R} (**4a**) = 20.4 min, t_{R} (**4a**) = 25.8 min.

To a stirred solution of compound **4a** (0.30 g, 1.05 mmol) in dry THF (20.0 mL) was added LiAlH₄ (0.20 g, 5.27 mmol). After the reaction mixture was refluxed for 4 h, the saturated Na₂SO₄ solution (30 mL) was added and extracted with CH₂Cl₂ (3 x 30 mL).Then the combined organic layers were concentrated in vacuo and the crude products were purified directly by column chromatography on silica gel [CH₂Cl₂/MeOH = 20:1, R_f (**16**) = 0.2] to afford the desired product **16** (0.24 g, 85%) as a white soild. mp = 216.3 - 220.3 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.58 (s, 1H), 7.33 (q, *J* = 7.6 Hz, 2H), 7.00 (t, *J* = 7.2 Hz, 1H), 6.93 (t, *J* = 7.6 Hz, 1H), 4.51 (t, *J* = 4.8 Hz, 1H), 3.75 (d, *J* = 5.2 Hz, 1H), 3.60 – 3.47 (m, 2H), 3.20 – 3.13 (m, 1H), 2.88 – 2.83 (m, 1H), 2.81 – 2.72 (m, 2H), 2.63 – 2.57 (m, 1H), 2.54 – 2.50 (m, 1H), 2.25 – 2.19 (m, 1H), 1.99 – 1.88 (m, 1H), 1.68 – 1.60 (m, 1H), 1.56 – 1.43 (m, 3H), 1.37 – 1.28 (m, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 135.7, 134.9, 126.9, 120.2, 118.1, 117.3, 111.0, 106.5, 59.5, 58.9, 49.6, 49.2, 34.9, 31.8, 26.8, 20.6, 18.9. IR (KBr) 3188, 3059, 2920, 1454, 1361, 1321, 1255, 1107, 1056, 858, 736 cm⁻¹. HRMS (ESI) m/z calcd for C₁₇H₂₃N₂O [M + H]⁺: 271.1805, found: 271.1810.

Condition A

To a stirred solution of compound **16** (0.15 g, 0.55 mmol) in dry DMSO (5.50 mL) was added SO₃·Py (0.35 g, 2.20 mmol) and triethylamine (0.60 mL). After at room temperature for 4h, the mixture was diluted by CH_2CI_2 (20 mL), and washed with H_2O (3 × 10 mL). The aqueous layer was extracted with CH_2CI_2 (3 × 30 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and evaporated in vacuo to give a brown solid as crude product. The residue was purified by column chromatography [CH_2CI_2 /Acetone/MeOH = 25:4:1, R_f (**2**) = 0.3, R_f (**3**) = 0.5] to afford (±)-vindeburnol (**2**) (67.1 mg, 45%) as a brown solid, (±)-16-*epi*-vindeburnol (**3**) (34.2 mg, 23%) as a brown solid.

(±)-vindeburnol (**2**): mp = 178.9–180.9 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 7.44 (d, J = 8 Hz, 1H), 7.36 (d, J = 7.6 Hz, 1H), 7.06 (t, J = 8 Hz, 1H), 6.99 (t, J = 7.6 Hz, 1H), 6.17 (d, J = 6.8 Hz, 1H), 5.91 (d, J = 6.8 Hz, 1H), 3.05 (dd, J = 11.2, 6.0 Hz, 1H), 2.96 (d, J = 10.8 Hz, 1H), 2.81 – 2.72 (m, 1H), 2.66 – 2.61 (m, 2H), 2.41 (td, J = 11.2, 4.4 Hz, 1H), 2.16 (td, J = 11.2, 2.8 Hz, 1H), 1.98 – 1.92 (m, 3H), 1.76 – 1.62 (m, 3H), 1.19 – 1.10 (m, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 136.0, 134.3, 128.2, 120.1, 119.2, 117.6, 111.3, 103.7, 73.8, 63.7, 54.6, 52.6, 37.4, 30.8, 29.5, 25.4, 21.2. IR (KBr) 2924, 2852, 1627, 1444, 1377, 1263, 1201, 1176, 1105, 1062, 902, 875, 854, 856 cm⁻¹.HRMS (ESI) m/z calcd for C₁₇H₂₁N₂O [M + H]⁺: 269.1648, found: 269.1652.

(±)-16-*epi*-vindeburnol (**3**): mp = 170.1–171.9 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.65 (d, *J* = 8 Hz, 1H), 7.37 (d, *J* = 8 Hz, 1H), 7.07 – 6.99 (m, 2H), 6.46 (d, *J* = 9.2 Hz, 1H), 5.54 – 5.48 (m, 1H), 3.02 (dd, *J* = 11.6, 6.0 Hz, 1H), 2.93 (d, J = 10.4 Hz, 1H), 2.78 – 2.61 (m, 3H), 2.44 (dd, J = 11.6, 4.8 Hz, 1H), 2.25 – 2.17 (m, 2H), 1.77 – 1.58 (m, 4H), 1.49 – 1.40 (m, 1H), 1.18 (dd, J = 12.0, 4 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 137.4, 135.4, 127.9, 120.4, 119.3, 117.6, 112.0, 104.0, 77.9, 63.2, 54.3, 52.0, 38.8, 36.0, 29.6, 25.2, 21.3. IR (KBr) 2924, 2854, 2808, 1732, 1458, 1321, 1258, 1186, 1112, 1082, 966, 740 cm⁻¹. HRMS (ESI) m/z calcd for C₁₇H₂₁N₂O [M + H]⁺: 269.1648, found: 269.1654.

Condition B

The residue from the Parikh-Doering oxidation, which was directly used in next step without further purification, was added to the solution of 10M NaOH (MeOH/H₂O = 1:1) for 36 h at room temperature. The mixture was diluted by CH_2Cl_2 , and washed with H_2O . The aqueous layer was extracted with CH_2Cl_2 . The combined organic layers were washed with brine, dried over Na_2SO_4 , filtered, and evaporated in vacuo to give a brown soild as crude product. The crude products were purified directly by flash column chromatography to afford the mixture soild [(±)-vindeburnol (**2**): (±)-16-*epi*-vindeburnol (**3**) = 13:1, according to ¹H NMR].

¹H NMR (400 MHz, DMSO- d_6) δ 7.65 (d, J = 8 Hz, 0.09H), 7.44 (d, J = 8 Hz, 1.01H), 7.36 (d, J = 7.2 Hz, 1.07H), 7.07 – 6.97 (m, 2.35H), 6.48 (d, J = 9.2 Hz, 0.08H), 6.18 (d, J = 6.8 Hz, 1.00H), 5.91 (d, J = 6.4 Hz, 1.01H), 5.54 – 5.48 (m, 0.09H), 3.06 (dd, J = 11.2, 6 Hz, 1.03H), 2.97 – 2.93 (m, 1.06H), 2.81 – 2.72 (m, 1.16H), 2.66 – 2.61 (m, 2.09H), 2.42 (qd, J = 11.2, 4.8 Hz, 1.01H), 2.22 – 2.13 (m, 1.11H), 1.95 – 1.88 (m, 2.91H), 1.76 – 1.65 (m, 3.78H), 1.16 – 1.11 (m, 1.07H). ¹³C NMR (100 MHz, DMSO- d_6) δ 137.3, 136.0, 135.7, 134.2, 128.1, 127.9, 120.4, 120.0, 119.3, 119.1, 117.6, 117.3, 111.9, 111.3, 103.9, 103.6, 77.8, 73.8, 63.6, 63.1, 54.5, 54.2, 52.6, 52.0, 37.3, 35.9, 31.2, 30.8, 29.6, 29.4, 25.3, 25.2, 21.3, 21.1.

Lit.² data (400 MHz, DMSO- <i>d</i>) δ/ppm	Our data (400 MHz, DMSO- <i>d</i>) δ/ppm	Error Δ δ/ppm
7.43 (dt, <i>J</i> = 7.8, 0.8 Hz, 1H)	7.44 (d, <i>J</i> = 8 Hz, 1H)	0.01
7.35 (d, <i>J</i> = 7.5 Hz, 1H)	7.36 (q, <i>J</i> = 7.6 Hz, 1H)	0.01
7.05 (br t, <i>J</i> = 7.6 Hz, 1H)	7.06 (t, <i>J</i> = 8 Hz, 1H)	0.01
7.00 (br t, <i>J</i> = 7.4 Hz, 1H)	6.99 (t, <i>J</i> = 7.6 Hz, 1H)	-0.01
6.14 (d, <i>J</i> = 6.9 Hz, 1H)	6.17 (d, <i>J</i> = 6.8 Hz, 1H)	0.03
5.9 (m, 1H)	5.91 (d, <i>J</i> = 6.8 Hz, 1H)	0
3.04 (dd, <i>J</i> = 11.3, 5.8 Hz, 1H)	3.05 (dd, <i>J</i> = 11.2, 6.0 Hz, 1H)	0.01
2.95 (m, 1H)	2.96 (d, <i>J</i> = 10.8 Hz, 1H)	0
2.77 (m, 1H)	2.78 – 2.72 (m, 1H)	0
2.64 (m, 2H)	2.66 – 2.61 (m, 2H)	0
2.41 (td, <i>J</i> = 11.4, 4.4 Hz, 1H)	2.41 (td, <i>J</i> = 11.2, 4.4 Hz, 1H)	0
2.16 (td, J = 11.1, 2.6 Hz, 1H)	2.16 (td, <i>J</i> = 11.2, 2.8 Hz, 1H)	0
1.98 – 1.89 (m, 3H)	1.98 – 1.92 (m, 3H)	0
1.78 – 1.61 (m, 3H)	1.76 – 1.62 (m, 3H)	0
1.15 (m,1H)	1.19 – 1.10 (m, 1H)	0

Lit.² data (125 MHz, DMSO- <i>d</i>) δ/ppm	Our data (100 MHz, DMSO- <i>d</i>) δ/ppm	Error Δ δ/ppm	
136.0	136.0	0	
134.3	134.3	0	
128.2	128.2	0	
120.0	120.1	0.1	
119.2	119.2	0	

117.6	117.6	0
111.3	111.3	0
103.7	103.7	0
73.8	73.8	0
63.7	63.7	0
54.6	54.6	0
52.6	52.6	0
37.4	37.4	0
30.8	30.8	0
29.5	29.5	0
25.4	25.4	0
21.2	21.2	0

Table 8. Comparison of ${}^1\text{H}$ NMR data of (±)-16-epi-vindeburnol (3) with literature

Lit. ² data (400 MHz, DMSO- <i>d</i>) δ/ppm	Our data (400 MHz, DMSO- <i>d</i>) δ/ppm	Error Δ δ/ppm
7.65 (m, 1H)	7.65 (d, <i>J</i> = 8 Hz, 1H)	0
7.37 (m, 1H)	7.37 (q, <i>J</i> = 8 Hz, 1H)	0
7.03 (m, 2H)	7.07 – 6.99 (m, 2H)	0
6.44 (d, <i>J</i> = 9.0 Hz, 1H)	6.46 (d, <i>J</i> = 9.2 Hz, 1H)	0.02
5.5 (td, <i>J</i> = 9.0, 5.7 Hz, 1H)	5.54 – 5.48 (m, 1H)	0
3.02 (dd, <i>J</i> = 11.2, 5.6 Hz, 1H)	3.02 (dd, <i>J</i> = 11.6, 6.0 Hz, 1H)	0
2.92 (dt, <i>J</i> = 11.0, 2.7 Hz, 1H)	2.93 (d, <i>J</i> = 10.4 Hz, 1H)	0.01
2.79 – 2.61 (m, 3H)	2.78 – 2.61 (m, 3H)	0
2.45 (td, <i>J</i> = 11.2, 4.4 Hz, 1H)	2.44 (dd, <i>J</i> = 11.2, 4.4 Hz, 1H)	-0.01
2.20 (m, 2H)	2.25 – 2.17 (m, 2H)	0
1.77 – 1.55 (m, 4H)	1.77 – 1.58 (m, 4H)	0
1.44 (m,1H)	1.49 – 1.40 (m, 1H)	0
1.17 (m,1H)	1.17 (dd, <i>J</i> = 12, 4 Hz, 1H)	0

Table 9. Comparison of 13 C NMR data of (±)-16-epi-vindeburnol (3) with literature

Lit.² data (125 MHz, DMSO- <i>d</i>) δ/ppm	Our data (100 MHz, DMSO- <i>d</i>) δ/ppm	Error Δ δ/ppm
137.4	137.4	0
135.4	135.4	0
127.9	127.9	0
120.3	120.4	0.1
119.3	119.3	0
117.6	117.6	0
111.9	112.0	0.1
103.9	104.0	0.1
77.8	77.9	0.1
63.2	63.2	0
54.3	54.3	0
52.0	52.0	0
38.8	38.8	0
36.0	36.0	0
29.6	29.6	0
25.2	25.2	0
21.3	21.3	0

3. References

- 1 T. Yamashita, N. Kawai, H. Tokuyama and T. Fukuyama, J. Am. Chem. Soc., 2005, 127, 15038.
- L. Salacz, C. Charpentier and N. Girard, J. Org. Chem. 2017, 82, 2257.

¹H-NMR Spectrum of 4a

¹H-NMR Spectrum of 4b

.2. 0

¹H-NMR Spectrum of 4c

¹H-NMR Spectrum of 14

¹H-NMR Spectrum of 16

¹³C-NMR Spectrum of 16

¹H-NMR Spectrum of (±)-vindeburnol (2)

¹H-NMR Spectrum of Compound 16-epi-(±)-vindeburnol (3)

¹H-NMR Spectrum of Mixture of Compound (±)-vindeburnol (2)/16-epi-(±)-vindeburnol (3) (2:3 = 13:1)

¹³C-NMR Spectrum of Mixture of Compound (±)-vindeburnol (2) and16-epi-(±)-vindeburnol (3) (2:3 = 13:1)

Comparison of ¹H spectrums between the synthesized (±)-vindeburnol (2) by Prof. Girard and the synthesized 2 by Prof. Chen.

The synthesized (±)-vindeburnol by Prof. Girard

The synthesized (±)-vindeburnol by Prof. Chen

Comparison of ¹³C spectrums between the synthesized (±)-vindeburnol (2) by Prof. Girard and the synthesized 2 by Prof. Chen.

The synthesized (±)-vindeburnol by Prof. Chen

Comparison of ¹H spectrums between the synthesized 16-epi-(±)-vindeburnol (3) by Prof. Girard and the synthesized 3 by Prof. Chen.

The synthesized 16-epi-(±)-vindeburnol (3) by Prof. Girard

The synthesized 16-epi-(±)-vindeburnol (3) by Prof. Chen

Comparison of ¹³C spectrums between the synthesized 16-epi-(±)-vindeburnol (3) by Prof. Girard and the synthesized 3 by Prof. Chen.

The synthesized $16-epi-(\pm)$ -vindeburnol (3) by Prof. Chen

Crystallographic Data

4a	X-Ray of 4a	
Figure 1. ORTEP of the	ne molecular structure of 4a	
CCDC 2103051 contains the supplementary crystallographic data for compound 4a		
Empirical formula	C ₁₇ H ₂₀ N ₂ O ₂ .H ₂ O	
Formula weight	284.35	
Temperature/K	297.1(5)	
Crystal system	monoclinic	
Space group	P2 ₁ /n	
a/Å	10.1352(3)	
b/Å	18.7726(5)	
c/Å	15.8738(5)	
α/°	90	
β/°	103.950(3)	
γ/°	90	
Volume/Å ³	2931.14(15)	
Z	8	
ρ _{calc} g/cm ³	1.289	
µ/mm ⁻¹	0.681	
F(000)	1216.0	
Crystal size/mm ³	0.5 × 0.45 × 0.2	
Radiation	CuKα (λ = 1.54184)	
2θ range for data collection/°	7.424 to 142.708	
Index ranges	-12 ≤ h ≤ 12, -22 ≤ k ≤ 13, -19 ≤ l ≤ 19	
Reflections collected	13940	
Independent reflections	5563 [R _{int} = 0.0410, R _{sigma} = 0.0357]	
Data/restraints/parameters	5563/0/381	
Goodness-of-fit on F ²	1.028	
Final R indexes [I>=2σ (I)]	R ₁ = 0.0565, wR ₂ = 0.1488	
Final R indexes [all data]	R ₁ = 0.0654, wR ₂ = 0.1611	
Largest diff. peak/hole / e Å-3	0.24/-0.27	

These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

H HO Ĥ

4b X-Ray of 4b Figure 2. ORTEP of the molecular structure of 4b

CCDC 2103479 contains the supplementary crystallographic data for compound 4b.

Empirical formula	C ₁₇ H ₂₀ N ₂ O ₂
Formula weight	284.35
Temperature/K	150.00(10)
Crystal system	monoclinic
Space group	P21/c

a/Å	6.52889(15)
b/Å	26.9565(6)
c/Å	9.50589(19)
α/°	90
β/°	104.117(2)
γ/°	90
Volume/Å ³	1622.47(6)
Ζ	4
ρ _{calc} g/cm ³	1.164
µ/mm ⁻¹	0.615
F(000)	608.0
Crystal size/mm ³	$0.5 \times 0.3 \times 0.05$
Radiation	CuKα (λ = 1.54184)
2θ range for data collection/°	10.14 to 142.726
Index ranges	$-7 \le h \le 8, -32 \le k \le 28, -10 \le l \le 11$
Reflections collected	9153
Independent reflections	3096 [R _{int} = 0.0461, R _{sigma} = 0.0396]
Data/restraints/parameters	3096/0/195
Goodness-of-fit on F ²	1.062
Final R indexes [I>=2σ (I)]	R ₁ = 0.0533, wR ₂ = 0.1467
Final R indexes [all data]	R ₁ = 0.0585, wR ₂ = 0.1525
Largest diff. peak/hole / e Å-3	0.24/-0.26

These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

 4c
 OH
 X-Ray of 4c

 Figure 3. ORTEP of the molecular structure of 4c

 CCDC 2103481 contains the supplementary crystallographic data for compound 4c

Empirical formula	$C_{17}H_{20}N_2O_2$.
Formula weight	284.35
Temperature/K	297.4(2)
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	10.0470(2)
b/Å	11.20580(19)
c/Å	13.1505(3)
α/°	90
β/°	101.241(2)
γ/°	90
Volume/Å ³	1452.15(6)
Z	4
ρ _{calc} g/cm ³	1.301
µ/mm ⁻¹	0.687
F(000)	608.0
Crystal size/mm ³	$0.4 \times 0.3 \times 0.3$
Radiation	CuKα (λ = 1.54184)
2θ range for data collection/°	10.178 to 142.792
Index ranges	-11 ≤ h ≤ 12, -13 ≤ k ≤ 8, -14 ≤ l ≤ 15
Reflections collected	7040
Independent reflections	2768 [R _{int} = 0.0349, R _{sigma} = 0.0338]

Data/restraints/parameters	2768/0/191
Goodness-of-fit on F ²	1.060
Final R indexes [I>=2σ (I)]	R ₁ = 0.0648, wR ₂ = 0.1612
Final R indexes [all data]	R ₁ = 0.0711, wR ₂ = 0.1710
Largest diff. peak/hole / e Å-3	0.26/-0.42

These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif