### **Supporting Information**

## Asymmetric Cross-Aldol Reaction of α-Keto Hydrazones and α,β-Unsaturated γ-Keto Hydrazones with Trifluoromethyl Ketones

Saúl Alberca,<sup>*a*</sup> Esteban Matador,<sup>*a*</sup> Javier Iglesias-Sigüenza,<sup>*a*</sup> M<sup>a</sup> de Gracia Retamosa,<sup>\*,*a*,*b*</sup> Rosario Fernández,<sup>\*,*a*</sup> José M. Lassaletta<sup>\*,*c*</sup> and David Monge<sup>\*,*a*</sup>

<sup>*a*</sup> Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Prof. García González, 1, 41012 Sevilla, Spain. E-mail: <u>dmonge@us.es</u>, <u>ffernan@us.es</u>

<sup>b</sup> Departamento de Química Orgánica e Instituto de Síntesis Orgánica, Universidad de Alicante 03080-Alicante, Spain. Centro de Innovación en Química Avanzada (ORFEO-CINQA). E-mail: <u>gracia.retamosa@ua.es</u>

<sup>c</sup> Instituto de Investigaciones Químicas and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Avda Américo Vespucio 49, 41092 Sevilla, Spain. E-mail: <u>imlassa@iiq.csic.es</u>

### Contents

| 1. General information                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. General procedure for the synthesis of ketones 1B, 1C, 1E and 1G                                                                                                 |
| 3. General procedure for the <i>one pot</i> synthesis of $\alpha$ , $\beta$ -unsaturated ketones <b>8A-E</b>                                                        |
| 4. Synthesis of 1-[4-(allyloxy)-3,5-diisopropylphenyl]-2,2,2-trifluoroethan-1-one (2e)                                                                              |
| 5. Synthesis of II(SA) <sub>2</sub> salt                                                                                                                            |
| 6. Screening of chiral organocatalysts and preliminary optimization of the reaction parameters<br>                                                                  |
| 7. General procedure for the catalytic enantioselective reactions of ketones <b>1A-H</b> , <b>4</b> , and <b>6</b> with di- and trifluoromethyl ketones <b>2a-k</b> |
| 8. General procedure for the catalytic enantioselective reactions of $\alpha$ , $\beta$ -unsaturated ketones 8A-<br>E with trifluoromethyl ketone 2a                |
| 9. Synthesis of (S)-4,4,4-trifluoro-3-hydroxy-3-phenylbutanoic acid, (S)-10                                                                                         |
| 10. Synthesis of (S)-7,7,7-trifluoro-6-hydroxy-4-oxo-6-phenylheptanal, (S)-11                                                                                       |
| 11. Synthesis of (S)-7,7,7-trifluoro-6-hydroxy-4-oxo-6-phenylheptanoic acid, (S)-12                                                                                 |
| 12. Synthesis of ( <i>E</i> )-( <i>S</i> )-7-(2,2-diphenylhydrazineylidene)-1,1,1,8,8,8-hexafluoro-2-hydroxy-2-phenyloctan-4-one, ( <i>E</i> )-(S)-13               |
| 13. NMR spectra of all compounds                                                                                                                                    |
| 14. Mass spectra analysis                                                                                                                                           |

#### 1. General information

<sup>1</sup>H NMR spectra were recorded at 300 MHz or 500 MHz (internal reference;  $CDCl_3 = 7.26$ ;  $CD_2Cl_2 = 5.32$ ;  $DMSO-d_6 = 2.50$ ). <sup>13</sup>C NMR spectra were recorded at 75.5 MHz or 126 MHz (internal reference;  $CDCl_3 =$ 77.0; CD<sub>2</sub>Cl<sub>2</sub> = 54.0; DMSO-d<sub>6</sub> = 39.5); <sup>19</sup>F NMR spectra were recorded at 282.5 MHz or 471 MHz. Column chromatography was performed on silica gel (Merck Kieselgel 60). Analytical TLC was performed on aluminium backed plates  $(1.5 \times 5 \text{ cm})$  pre-coated (0.25 mm) with silica gel (Merck, Silica Gel 60 F254). Compounds were visualized by exposure to UV light or by dipping the plates in solutions of KMnO<sub>4</sub>, vainilline or phosphomolibdic acid stains followed by heating. Melting points were recorded in a metal block and are uncorrected. Optical rotations were measured on a JASCO P-2000 polarimeter. The enantiomeric excess (ee) of the products was determined by chiral stationary phase HPLC (Daicel Chiralpak IA/IB/IC/ID and OJ-H Chiralcel columns). Unless otherwise noted, analytical grade solvents and commercially available reagents were used without further purification. Jones reagent was prepared as follows: Concentrated H<sub>2</sub>SO<sub>4</sub> (3 mL, 56 mmol) was dropwise added to a solution of Na<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>·H<sub>2</sub>O (3 g, 10 mmol) in H<sub>2</sub>O (10 mL) at 0 °C. Togni Reagent II [1-trifluoromethyl-1,2-benziodoxol-3-(1H)-one] was purchased from Sigma-Aldrich (60 wt. %, contains 40 wt. % Celatom® FW-80 as additive). Notcommercially available hydrazone reagents  $1A^1$ ,  $1D^1$ ,  $1F^1$ ,  $1H^1$ ,  $4^1$ ,  $8E^1$ , trifluoromethyl ketones  $2g^2$ ,  $2h^3$ ,  $2i^4$ ,  $2i^5$  and organocatalysts III<sup>6</sup>, Ia- $c^7$ , II<sup>7</sup>, VI<sup>8</sup> were synthesized according to literature procedures. Crystals of suitable size were covered with FOMBLIN oil and mounted on a glass fiber. Data collection has been performed on a Bruker SMART APEX II CCD area detector on a D8 goniometer at 100 K, using a graphite monochromator Cu K $\alpha$ 1 ( $\lambda$  = 1.54178 Å) and a Bruker Cryo-Flex low-temperature device. Data collection was processed with APEX-W2D-NT,<sup>9</sup> cell refinement and data reduction with SAINT-Plus1 and the absorption was corrected by multiscan method applied by SADABS.<sup>10</sup> The structure was solved by direct method and refined on F<sup>2</sup> (SHELXTL).<sup>11</sup> Non-hydrogen atoms were refined with anisotropic displacement parameters and hydrogen atoms attached to refined atoms were placed in geometrically idealized positions and refined by using a riding model.

<sup>&</sup>lt;sup>1</sup> E. Matador, M. G. Retamosa, D. Rohal'ová, J. Iglesias-Sigüenza, P. Merino, R. Fernández, J. M. Lassaletta, D. Monge, *Org. Chem. Front.* 2021, **8**, 3446.

<sup>&</sup>lt;sup>2</sup> C. J. Thomson, D. M. Barber, D. J. Dixon, Angew. Chem., Int. Ed. 2019, 58, 2469.

<sup>&</sup>lt;sup>3</sup> K. Fuchibe, H. Jyono, M. Fujiwara, T. Kudo, M. Yokota, J. Ichiwaka, Chem. Eur. J. 2011, 17, 12175.

<sup>&</sup>lt;sup>4</sup> D. M. Rudzinski, C. B. Kelly, A. Leadbeater, Chem. Commun. 2012, 48, 9610.

<sup>&</sup>lt;sup>5</sup> G. Cheng, B. Xia, Q. Wu, X. Lin, *RSC Adv.* 2013, **3**, 9820.

<sup>&</sup>lt;sup>6</sup> A. G. Wenzel, E. N. Jacobsen, J. Am. Chem. Soc. 2002, 124, 12964.

<sup>&</sup>lt;sup>7</sup> C. Cassani, R. Martín-Rapún, E. Arceo, F. Bravo, P. Melchiorre, Nat. Protoc. 2013, 8, 325.

<sup>&</sup>lt;sup>8</sup> F. Yu, X. Sun, Z. Jin, S. Wen, X. Liang, J. Ye, *Chem. Commun.* 2010, **46**, 4589.

<sup>&</sup>lt;sup>9</sup> APEX2 (version 2009.11\_0). Program for Bruker CCD X-Ray Diffractometer Control, Bruker AXS Inc., Madison, WI, 2009.

<sup>&</sup>lt;sup>10</sup> SADABS, Bruker (2006). APEX 2. Version 2.1. Bruker Analytical X-Ray Solutions, Madison, Wisconsin, USA.

<sup>&</sup>lt;sup>11</sup> G. M. Sheldrick, SHELXTL, version 6.14. Program for solution and refinement of crystal structures, Universität Göttingen, Germany, 2000.

#### 2. General procedure for the synthesis of ketones 1B, 1C, 1E and 1G



Free hydrazine (8.0 mmol) was dropwise added to a solution of pyruvaldehyde (1.25 mL, 8.0 mmol, 40 wt. % in H<sub>2</sub>O) and H<sub>3</sub>PO<sub>4</sub> (0.39 g, 4.0 mmol) in THF (5 mL) at 0 °C. The resulting mixture was allowed to warm to room temperature and stirred until the consumption of the starting material (15-30 min, TLC monitoring). After this time, the solvent was eliminated under reduced pressure. The mixture was then neutralized with a saturated aqueous solution of NaHCO<sub>3</sub> and extracted with Et<sub>2</sub>O (3 x 25 mL). The combined organic layers were washed with brine (1 x 50 mL), dried over anhydrous MgSO<sub>4</sub> and concentrated under reduced pressure. The resulting residue was purified by flash chromatography (pure *n*-hexanes to *n*-hexanes/EtOAc 3/1) to afford pure product **1B**, **1C**, **1E**, and **1G**.

(*E*)-1-(Morpholinoimino)propan-2-one, 1B. Following the general procedure 2, starting from 1,1morpholin-4-amine (0.82 g, 8.0 mmol), compound 1B was obtained as a white solid (1.08 g, 86%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  6.88 (s, 1H), 3.87 – 3.80 (m, 4H), 3.31 – 3.25 (m, 4H), 2.29 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$  198.0, 132.0, 66.1, 50.6, 24.4. HRMS (ESI): m/z calcd for C<sub>7</sub>H<sub>12</sub>O<sub>2</sub>N<sub>2</sub>Na [M<sup>+</sup>+Na] 179.0791, found 179.0788.

(E)-1-[(cis-2,6-Dimethylpiperidin-1-yl)imino]propan-2-one, 1C. Following the general procedure 2, starting from 1-amino-*cis* $-2,6-dimethylpiperidine (1.03 g, 8.0 mmol), compound 1C was obtained as a light yellow solid (1.61 g, 80%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): <math>\delta$  6.75 (d, J = 0.8 Hz, 1H), 4.02 – 3.89 (m, 2H), 2.27 (s, 3H), 1.87 – 1.73 (m, 3H), 1.71 – 1.61 (m, 2H), 1.59 – 1.50 (m, 1H), 1.15 (d, J = 6.9 Hz, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$  198.0, 127.3, 53.5, 30.2, 24.1, 18.1, 14.2. HRMS (ESI): m/z calcd for C<sub>10</sub>H<sub>19</sub>ON<sub>2</sub> [M<sup>+</sup>+H] 183.1492, found 183.1490.

(*E*)-1-(Azepan-1-ylimino)propan-2-one, 1E. Following the general procedure 2, starting from azepan-1amine (0.96 g, 8.0 mmol), compound 1E was obtained as a light yellow oil (0.69 g, 51%). <sup>1</sup>H NMR (500 MHz, 60 °C, DMSO-d<sub>6</sub>)  $\delta$  6.58 (s, 1H), 3.63 – 3.38 (m, 4H), 2.15 (s, 3H), 1.78 – 1.66 (m, 4H), 1.59 – 1.49 (m, 4H). <sup>13</sup>C NMR (75.5 MHz, 60 °C, DMSO-d<sub>6</sub>)  $\delta$  194.9, 125.6, 53.7, 27.5, 26.2, 23.5. HRMS (ESI): m/z calcd for C<sub>9</sub>H<sub>16</sub>ON<sub>2</sub>Na [M<sup>+</sup>+Na] 191.1155, found 191.1152.

 $(E)-1-(2-Methyl-2-phenylhydrazineylidene)propan-2-one, 1G. Following the general procedure 2, starting from 1-methyl-1-phenylhydrazine (0.98 g, 8.0 mmol), compound 1G was obtained as a yellow solid (0.97 g, 69%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): <math>\delta$  7.44 – 7.31 (m, 4H), 7.14 – 7.05 (m, 1H), 6.97 (q, *J* = 0.9 Hz, 1H), 3.39 (s, 3H), 2.44 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$  198.1, 146.7, 131.3, 129.4, 123.6, 117.0, 34.3, 24.7. HRMS (ESI): m/z calcd for C<sub>10</sub>H<sub>12</sub>ON<sub>2</sub>Na [M<sup>+</sup>+Na] 199.0842, found 199.0839.

#### 3. General procedure for the one pot synthesis of α,β-unsaturated ketones 8A-E



*N*-Bromosuccinimide (1.35 g, 7.5 mmol) and pyridine (809  $\mu$ L, 10.0 mmol) were subsequently added to a solution of 2-methylfuran (456  $\mu$ L, 5.0 mmol) in THF/H<sub>2</sub>O (25 mL, 9/1) at -20 °C. The mixture was allowed to warm slowly to room temperature and stirred for 6 h. After this time, the reaction was cooled to 0 °C and the corresponding hydrazine (5.0 mmol) was added in one portion. The resulting mixture was allowed to warm to room temperature and stirred overnight. After this time, the solvent was eliminated under reduced pressure. The mixture was then diluted with CH<sub>2</sub>Cl<sub>2</sub> (50 mL) and washed with aqueous Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> (3 x 50 mL, 10 wt. %) and brine (1 x 50 mL). The organic layer was dried over MgSO<sub>4</sub> and the solvent was eliminated under reduced pressure. The resulting residue was purified by flash chromatography (*n*-hexanes/EtOAc 3/1) to afford pure product **8A-E**.



181.1335, found 181.1334.



(3E,5E)-5-(2,2-Dibenzylhydrazineylidene)pent-3-en-2-one, 8C. Following the general procedure 3,



starting from *N*,*N*-dibenzylhydrazine (1.10 g, 5.0 mmol), ketone **8C** was obtained as a pale orange solid (0.82 g, 56%). <sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.39 – 7.27 (m, 7H), 7.24 – 7.14 (m, 4H), 6.92 (d, *J* = 9.1 Hz, 1H), 5.96 (d, *J* = 15.9 Hz, 1H), 4.60 (s, 4H), 2.26 (s, 3H). <sup>13</sup>**C NMR** (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  198.4, 142.7, 136.0, 129.2, 128.7, 127.8, 127.6, 127.2, 57.6, 26.4. **HRMS** (ESI): m/z calcd for

C<sub>19</sub>H<sub>20</sub>ON<sub>2</sub>Na [M<sup>+</sup>+Na] 315.1468, found 315.1469.

(3E,5E)-5-(2-Methyl-2-phenylhydrazineylidene)pent-3-en-2-one, 8D. Following the general procedure 3, starting from 1-methyl-1-phenyhydrazine (607 µL, 5.0 mmol), ketone 8D was obtained as a light yellow solid (0.60 g, 59%). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$ 7.48 - 7.29 (m, 5H), 7.29 - 7.19 (m, 1H), 7.08 - 6.96 (m, 1H), 6.24 (d, *J* = 15.8 Hz, 1H), 3.40 (s, 3H), 2.33 (s, 3H). <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  198.4, 146.8,

142.3, 130.9, 129.6, 129.1, 122.4, 116.2, 33.8, 26.6. HRMS (ESI): m/z calcd for  $C_{12}H_{14}ON_2Na$  [M<sup>+</sup>+Na] 225.0998, found 225.0997.

#### 4. Synthesis of 1-[4-(allyloxy)-3,5-diisopropylphenyl]-2,2,2-trifluoroethan-1-one (2e)



Allyl bromide (190 µL, 2.25 mmol) and K<sub>2</sub>CO<sub>3</sub> (0.42 g, 3.0 mmol) were subsequently added to a solution of 2,2,2-trifluoro-1-(4-hydroxy-3,5-diisopropylphenyl)ethan-1-one<sup>12</sup> (0.41 g, 1.5 mmol) in DMF (5 mL) at room temperature. The resulting mixture was stirred at the same temperature overnight. After this time, the solvent was eliminated under reduced pressure. The mixture was diluted with EtOAc (25 mL), washed with H<sub>2</sub>O (6 x 5 mL) and brine (2 x 5 mL), dried over anhydrous MgSO<sub>4</sub> and concentrated under reduced pressure. The resulting residue was purified by flash chromatography (toluene/EtOAc 95/5) to afford pure product **2e** as a colorless oil (0.41 g, 87%). <sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.85 (s, 2H), 6.22 – 6.03 (m, 1H), 5.48 (d, *J* = 17.2 Hz, 1H), 5.32 (d, *J* = 10.5 Hz, 1H), 4.35 (d, *J* = 5.3 Hz, 2H), 3.35 (hept, *J* = 6.8 Hz, 2H), 1.26 (d, *J* = 6.9 Hz, 12H). <sup>13</sup>C NMR (75.5 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  180.3 (q, *J*<sub>C,F</sub> = 34.0 Hz), 160.8, 144.1, 134.0, 127.3, 127.0, 117.8, 117.5 (q, *J*<sub>C,F</sub> = 291.7 Hz), 76.2, 27.4, 24.0. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>):  $\delta$  – 70.89 (s, 3F). **HRMS** (ESI) m/z calcd. for C<sub>17</sub>H<sub>22</sub>O<sub>2</sub>F<sub>3</sub> [M<sup>+</sup>+H] 315.1566, found 315.1566.

#### 5. Synthesis of II(SA)<sub>2</sub> salt



Salicylic acid (0.55 g, 4 mmol) was added to a solution of **II** (0.67 g, 2 mmol) in toluene (0.1 M, 20 mL) at room temperature. The mixture was stirred at the same temperature for 2 h. After this time, the solvent was eliminated under reduced pressure and Et<sub>2</sub>O was added (5 mL). The resulting suspension was vigorously stirred for 15 min and the solvent was eliminated under reduced pressure to afford the pure salt **II**(**SA**)<sub>2</sub> as a pale yellow solid (1.1 g, 92%); mp. = 138-140 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  9.81 (br s, 6H), 8.77 (d, *J* = 4.6 Hz, 1H), 8.08 (d, *J* = 9.3 Hz, 1H), 7.84 (dd, *J* = 7.8, 1.3 Hz, 2H), 7.75 – 7.59 (m, 2H), 7.58 – 7.42 (s, 2H), 7.41 – 7.30 (m, 4H), 6.90 (d, *J* = 8.2 Hz, 2H), 6.80 (t, *J* = 7.4 Hz, 2H), 5.84 – 5.73 (m, 1H), 5.32 – 5.14 (m, 2H), 3.93 (s, 3H), 3.69 – 3.52 (m, 3H), 3.42 – 3.25 (m, 1H), 2.72 – 2.56 (m, 1H), 1.96 – 1.79 (s, 3H), 1.41 – 1.31 (m, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$  174.4, 161.8, 159.0, 146.9, 143.7, 136.5, 134.6, 132.2, 132.1, 131.1, 130.7, 129.4, 128.6, 128.5, 127.7, 123.1, 118.6, 117.5, 117.0, 115.2, 62.1, 56.5, 55.8, 48.6, 45.9, 36.5, 26.6, 24.1, 23.5. HRMS (ESI): m/z calcd for C<sub>20</sub>H<sub>26</sub>ON<sub>3</sub><sup>+</sup> [M<sup>+</sup>] 324.2070, found 324.2066. [ $\alpha$ ]<sub>D</sub><sup>25</sup> = +31.6 (c 1.0, CHCl<sub>3</sub>).

Recrystallization of  $II(SA)_2$  by slow diffusion of *n*-hexanes in a solution of  $II(SA)_2$  in CH<sub>2</sub>Cl<sub>2</sub> afforded suitable crystals for X-ray analysis.

<sup>&</sup>lt;sup>12</sup> D. S. Stewart, P. Y. Savechenkov, Z. Dostalova, D. C. Chiara, R. Ge, D. E. Raines, J. B. Cohen, S. A. Forman, K. S. Bruzik, K. W. Miller, *J. Med. Chem.* 2011, **54**, 8124.



6. Screening of chiral organocatalysts and preliminary optimization of the reaction parameters

2,2,2-Trifluoro-1-phenylethan-1-one **2a** (14  $\mu$ L, 0.1 mmol) was added to a solution of organocatalyst **I-VI** (0.02 mmol), the acid additive (0.02 mmol) and ketone **1A** (30 mg, 0.2 mmol) in the corresponding solvent (100  $\mu$ L/n  $\mu$ L H<sub>2</sub>O) at room temperature. The resulting mixture was stirred at this temperature for 2 d. Conversions were estimated by <sup>1</sup>H-NMR and enantiomeric ratios were determined by HPLC analysis.

|                                                    | Table S1                                                         |                                |                                |                          |                       |  |  |  |  |  |  |
|----------------------------------------------------|------------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------|-----------------------|--|--|--|--|--|--|
| Entry                                              | Catalyst                                                         | Acid (mol%)                    | Solvent                        | Conv. (%) <sup>[a]</sup> | ee (%) <sup>[b]</sup> |  |  |  |  |  |  |
| 1                                                  | Ia                                                               | BA (20)                        | Toluene                        | 65                       | 82                    |  |  |  |  |  |  |
| 2                                                  | Ib                                                               | BA (20)                        | Toluene                        | <10 <sup>[c]</sup>       | 66                    |  |  |  |  |  |  |
| 3                                                  | Ic                                                               | BA (20)                        | Toluene                        | 64                       | 82                    |  |  |  |  |  |  |
| 4                                                  | II                                                               | BA (20)                        | Toluene                        | 55                       | 90                    |  |  |  |  |  |  |
| 5                                                  | III                                                              | BA (20)                        | Toluene                        | 95 <sup>[c]</sup>        | 54                    |  |  |  |  |  |  |
| 6                                                  | IV                                                               | BA (20)                        | Toluene                        | <5 <sup>[c]</sup>        | nd                    |  |  |  |  |  |  |
| 7                                                  | $\mathbf{V}$                                                     | BA (20)                        | Toluene                        | 35 <sup>[c]</sup>        | 32                    |  |  |  |  |  |  |
| 8                                                  | VI                                                               | BA (20)                        | Toluene                        | 10 <sup>[c]</sup>        | rac                   |  |  |  |  |  |  |
| 9                                                  | II                                                               | BA (20)                        | H <sub>2</sub> O               | >95 <sup>[d]</sup>       | 84                    |  |  |  |  |  |  |
| 10                                                 | <b>10 II</b> BA (20)                                             |                                | CHCl <sub>3</sub>              | 60                       | 80                    |  |  |  |  |  |  |
| 11                                                 | II                                                               | BA (20)                        | THF                            | <5                       | nd                    |  |  |  |  |  |  |
| 12                                                 | II                                                               | BA (20)                        | MeOH                           | 20                       | 37                    |  |  |  |  |  |  |
| 13                                                 | Π                                                                | BA (20)                        | EtOAc                          | 15                       | 74                    |  |  |  |  |  |  |
| 14                                                 | п                                                                | BA (20)                        | TFT                            | 45                       | 86                    |  |  |  |  |  |  |
| 15                                                 | П                                                                | BA (20)                        | Toluene/H <sub>2</sub> O (2:1) | >95                      | 88                    |  |  |  |  |  |  |
| 16                                                 | П                                                                | TFA (20)                       | Toluene/H <sub>2</sub> O (2:1) | 50                       | 86                    |  |  |  |  |  |  |
| 17                                                 | П                                                                | m-Br-PhOH (20)                 | Toluene/H <sub>2</sub> O (2:1) | <5                       | nd                    |  |  |  |  |  |  |
| 18                                                 | <b>18 II</b> <i>m</i> -Cl-PhCO <sub>2</sub> H (20)               |                                | Toluene/H <sub>2</sub> O (2:1) | >95                      | 88                    |  |  |  |  |  |  |
| 19                                                 | <b>19 II</b> <i>p</i> -NO <sub>2</sub> -PhCO <sub>2</sub> H (20) |                                | Toluene/H <sub>2</sub> O (2:1) | >95                      | 89                    |  |  |  |  |  |  |
| <b>20 II</b> <i>p</i> -Me-PhCO <sub>2</sub> H (20) |                                                                  | Toluene/H <sub>2</sub> O (2:1) | >95                            | 88                       |                       |  |  |  |  |  |  |
| 21                                                 | II                                                               | p-OMe-PhCO <sub>2</sub> H (20) | Toluene/H <sub>2</sub> O (2:1) | >95                      | 89                    |  |  |  |  |  |  |

| 22                           | II      | SA (20) | Toluene/H <sub>2</sub> O (2:1) | >95 (80) <sup>[c]</sup> | 89 |
|------------------------------|---------|---------|--------------------------------|-------------------------|----|
| 23 <sup>[e]</sup>            | II      | SA (20) | Toluene/H <sub>2</sub> O (2:1) | >95                     | 88 |
| 24 <sup>[e]</sup>            | II      | SA (20) | Toluene/H <sub>2</sub> O (4:1) | >95                     | 87 |
| 25 <sup>[e]</sup>            | II      | SA (20) | Toluene/H <sub>2</sub> O (8:1) | >95                     | 89 |
| <b>26</b> <sup>[e]</sup>     | II      | SA (20) | Toluene/H2O (16:1)             | >95                     | 87 |
| 27 <sup>[e]</sup>            | II      | SA (10) | Toluene/H <sub>2</sub> O (8:1) | 84                      | 84 |
| <b>28</b> <sup>[e]</sup>     | II      | SA (40) | Toluene/H <sub>2</sub> O (8:1) | >95                     | 92 |
| <b>29</b> <sup>[e],[f]</sup> | II      | SA (20) | Toluene/H <sub>2</sub> O (8:1) | >95                     | 92 |
| 30 <sup>[e],[g]</sup>        | II(SA)2 | -       | Toluene/H <sub>2</sub> O (8:1) | >95                     | 92 |

<sup>[a]</sup> Estimated by <sup>1</sup>H NMR in the crude mixture. <sup>[b]</sup> Determined by HPLC analysis after isolation of the product by semipreparative TLC (toluene/EtOAc 9/1). <sup>[c]</sup> Determined after 1 d. <sup>[d]</sup> Determined after 36 h. <sup>[e]</sup> Reaction was performed at 0.2 mmol scale. <sup>[f]</sup> Reaction was performed employing 10 mol% of catalyst loading. <sup>[g]</sup> Reaction was performed employing **II(SA)**<sub>2</sub> salt (10 mol%). [BA = Benzoic Acid]. [TFA = Trifluoroacetic Acid]. [SA = Salicylic Acid]. [TFT = Trifluorotoluene]. [nd = not determined].

#### 7. General procedure for the catalytic enantioselective reactions of ketones 1A-H, 4, and 6 with diand trifluoromethyl ketones 2a-k



Di- or trifluoromethyl ketone **2a-k** (1.0 equiv.) was added to a solution of  $II(SA)_2$  salt (x mol%) and the corresponding ketone **1A-H**, **4** or **6** (2.0 equiv.) in toluene/H<sub>2</sub>O 8:1 (1.0 M) at room temperature. The resulting mixture was stirred at this temperature until the consumption of the starting material. After this time, the resulting mixture was directly purified by flash chromatography (toluene/EtOAc 9/1) to afford pure product **3Aa-Gi**, **3Bk**, **5** or **7**.

*Racemic samples* were prepared employing pyrrolidine (20 mol%) and benzoic acid (20 mol%) following the general procedure described above.

#### (S,E)-5,5,5-Trifluoro-4-hydroxy-4-phenyl-1-(piperidin-1-ylimino)pentan-2-one, (S)-3Aa.



Following the general procedure **7**, starting from **1A** (61 mg, 0.4 mmol), 2,2,2trifluoro-1-phenylethan-1-one **2a** (28  $\mu$ L, 0.2 mmol) and 10 mol% of **II(SA)**<sub>2</sub> salt (12 mg, 0.02 mmol), compound (*S*)-**3Aa** was obtained as a colorless oil (65 mg, 98%; reaction performed at 2 mmol scale: 637 mg, 99%, 92% ee; reactions ran for 2 d). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.63 (d, *J* = 7.3 Hz, 2H), 7.36 – 7.28 (m, 4H), 6.72 (s, 1H), 6.30 (s, 1H), 3.91 (d, *J* = 16.0 Hz, 1H), 3.42 (t, *J* =

5.8 Hz, 4H), 3.29 (d, J = 16.0 Hz, 1H), 1.73 (dq, J = 11.4, 5.7 Hz, 4H), 1.67 – 1.58 (m, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$  198.0, 138.2, 128.5, 128.1, 126.9, 125.0 (q,  $J_{C,F} = 285.0$  Hz), 76.6 (q,  $J_{C,F} = 28.9$  Hz), 51.6, 38.0, 24.9, 23.5. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>):  $\delta$  –80.33 (s, 3F). HRMS (ESI) m/z calcd. for C<sub>16</sub>H<sub>19</sub>O<sub>2</sub>N<sub>2</sub>F<sub>3</sub>Na [M<sup>+</sup>+Na] 351.1291, found 351.1287. The enantiomeric excess was determined by HPLC using a Chiralpak IA column [*n*-hexanes/*i*PrOH (90:10)]; flow rate 1 mL/min;  $\tau_{minor} = 6.3$  min,  $\tau_{major} = 6.8$  min (92% ee); [ $\alpha$ ]<sub>D</sub><sup>25</sup> = +242.6 (c 1.0, CHCl<sub>3</sub>).



(S,E)-5,5,5-Trifluoro-4-hydroxy-1-(morpholinoimino)-4-phenylpentan-2-one, (S)-3Ba.



Following the general procedure **7**, starting from **1B** (62 mg, 0.4 mmol), 2,2,2trifluoro-1-phenylethan-1-one **2a** (28  $\mu$ L, 0.2 mmol) and 10 mol% of **II(SA)**<sub>2</sub> salt (12 mg, 0.02 mmol), compound (*S*)-**3Ba** was obtained as a white solid (65 mg, 98%, 92% ee; reaction performed at 2 mmol scale: 650 mg, 98%, 92% ee; after a single recrystallization: 310 mg, 47%, >99% ee; reactions ran for 2 d). mp. = 72-74 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.61 (d, *J* = 7.4 Hz, 2H), 7.43

-7.28 (m, 3H), 6.78 (s, 1H), 5.98 (s, 1H), 3.92 (d, J = 16.3 Hz, 1H), 3.90 – 3.80 (m, 4H), 3.44 – 3.38 (m, 4H), 3.31 (d, J = 16.3 Hz, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>): δ 198.2, 138.0, 130.2, 128.7, 128.3, 126.8, 124.8 (q,  $J_{C,F} = 284.7$  Hz), 76.6 (q,  $J_{C,F} = 29.2$  Hz), 66.0, 50.7, 38.3.<sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>): δ –80.37 (s, 3F). HRMS (ESI): m/z calcd for C<sub>15</sub>H<sub>17</sub>F<sub>3</sub>N<sub>2</sub>O<sub>3</sub>Na [M<sup>+</sup>+Na] 353.1083, found 353.1078. The enantiomeric excess was determined by HPLC using a Chiralpak IB column [*n*-hexanes/*i*PrOH (90:10)]; flow rate 1 mL/min;  $\tau_{minor} = 10.7$  min,  $\tau_{major} = 12.3$  min (>99% ee); [α]<sub>D</sub><sup>20</sup> = +261.5 (c 1.0, CHCl<sub>3</sub>).

Recrystallization of (S)-**3Ba** by slow diffusion of *n*-hexanes in a solution of (S)-**3Ba** in  $Et_2O$  afforded suitable crystals for X-ray analysis.



(*S*,*E*)-1-[(*cis*-2,6-Dimethylpiperidin-1-yl)imino]-5,5,5-trifluoro-4-hydroxy-4-phenylpentan-2-one, (*S*)-3Ca.



Following the general procedure **7**, starting from **3C** (73 mg, 0.4 mmol), 2,2,2trifluoro-1-phenylethan-1-one **2a** (28  $\mu$ L, 0.2 mmol) and 20 mol% of **II(SA)**<sub>2</sub> salt (24 mg, 0.04 mmol), compound (*S*)-**3Ca** was obtained as a pale yellow oil (70 mg, 98%, reaction ran for 7 d). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.72 – 7.52 (m, 2H), 7.42 – 7.26 (m, 3H), 6.67 (s, 1H), 6.44 (s, 1H), 4.12 – 3.97 (m, 2H), 3.92 (d, *J* = 15.8 Hz, 1H), 3.27 (d, *J* = 15.7 Hz, 1H), 1.92 – 1.79 (m, 3H), 1.77 - 1.68 (m, 2H), 1.61 (tt, *J* = 7.7, 4.1 Hz, 1H), 1.23 (d, *J* = 7.0 Hz, 3H), 1.17 (d, *J* = 7.0 Hz, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>): δ 197.9, 138.3, 128.5, 128.1, 127.0, 126.5, 125.0 (q, *J*<sub>C,F</sub> = 285.0 Hz), 76.7 (q, *J*<sub>C,F</sub> = 28.8 Hz), 54.7, 54.1 37.5, 30.1, 18.6, 18.1, 14.0. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>): δ -80.34 (s, 3F). HRMS (ESI) m/z calcd. for C<sub>18</sub>H<sub>23</sub>F<sub>3</sub>N<sub>2</sub>O<sub>2</sub>Na [M<sup>+</sup>+Na] 379.1604, found 379.1598. The enantiomeric excess was determined by HPLC using a Chiralpak IB column [*n*-hexanes/*i*PrOH (90:10)]; flow rate 1 mL/min;  $\tau_{minor} = 5.3 \text{ min}$ ,  $\tau_{major} = 5.8 \text{ min}$  (83% ee); [α]<sub>D</sub><sup>25</sup> = +335.0 (c 1.0, CHCl<sub>3</sub>).



| Integr | ation Results  |         |               | Integration Results |                |         |               |
|--------|----------------|---------|---------------|---------------------|----------------|---------|---------------|
| No.    | Retention Time | Area    | Relative Area | No.                 | Retention Time | Area    | Relative Area |
|        | min            | mAU*min | %             |                     | min            | mAU*min | %             |
| 1      | 5.257          | 142.040 | 49.88         | 1                   | 5.260          | 5.432   | 8.46          |
| 2      | 5.787          | 142.706 | 50.12         | 2                   | 5.790          | 58.774  | 91.54         |

#### (*S*,*E*)-5,5,5-Trifluoro-4-hydroxy-4-phenyl-1-(pyrrolidin-1-ylimino)pentan-2-one, (*S*)-3Da.



Following the general procedure **7**, starting from **1D** (56 mg, 0.4 mmol), 2,2,2trifluoro-1-phenylethan-1-one **2a** (28  $\mu$ L, 0.2 mmol) and 20 mol% of **II(SA)**<sub>2</sub> salt (24 mg, 0.04 mmol), compound (*S*)-**3Da** was obtained as a pale yellow oil (60 mg, 95%, reaction ran for 7 d). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.63 (d, *J* = 7.6 Hz, 2H), 7.39 – 7.28 (m, 3H), 6.44 (t, *J* = 1.0 Hz, 1H), 3.86 (d, *J* = 16.1 Hz, 1H), 3.45 (s, 4H), 3.28 (d, *J* = 16.1 Hz, 1H), 2.13 – 1.93 (m, 4H). <sup>13</sup>**C NMR** (126

MHz, CDCl<sub>3</sub>):  $\delta$  197.4, 138.3, 128.5, 128.1, 128.1, 126. 9, 125.0 (q,  $J_{C,F}$  = 285.0 Hz), 76.6 (q,  $J_{C,F}$  = 28.8 Hz), 51.1, 37.5, 23.9. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>):  $\delta$  –80.31 (s, 3F). HRMS (ESI) m/z calcd. for C<sub>15</sub>H<sub>17</sub>F<sub>3</sub>N<sub>2</sub>O<sub>2</sub>Na [M<sup>+</sup>+Na] 337.1134, found 337.1129. The enantiomeric excess was determined by HPLC using a Chiralpak IB column [*n*-hexanes/*i*PrOH (90:10)]; flow rate 1 mL/min;  $\tau_{minor}$  = 6.6 min,  $\tau_{major}$  = 10.2 min (89% ee); [ $\alpha$ ]<sub>D</sub><sup>25</sup> = +391.6 (c 1.0, CHCl<sub>3</sub>).



| Integr | ration Results |        | _             | Integration Results |                |         |               |
|--------|----------------|--------|---------------|---------------------|----------------|---------|---------------|
| No.    | Retention Time | Area   | Relative Area | No.                 | Retention Time | Area    | Relative Area |
|        | min mAU*min    |        | %             |                     | min            | mAU*min | %             |
| 1      | 8.793          | 64.459 | 50.01         | 1                   | 8.847          | 6.563   | 5.70          |
| 2      | 10.147         | 64.434 | 49.99         | 2                   | 10.227         | 108.653 | 94.30         |

#### (*S*,*E*)-1-(Azepan-1-ylimino)-5,5,5-trifluoro-4-hydroxy-4-phenylpentan-2-one, (*S*)-3Ea.



Following the general procedure **7**, starting from **1E** (67 mg, 0.4 mmol), 2,2,2trifluoro-1-phenylethan-1-one **2a** (28  $\mu$ L, 0.2 mmol) and 20 mol% of **II(SA)**<sub>2</sub> salt (24 mg, 0.04 mmol), compound (*S*)-**3Ea** was obtained as a pale yellow oil (68 mg, 99%, reaction ran for 7 d). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.63 (d, *J* = 7.4 Hz, 2H), 7.41 – 7.27 (m, 3H), 6.54 (s, 1H), 3.92 (d, *J* = 15.8 Hz, 1H), 3.82 (s, 2H), 3.31 (s, 2H), 3.24 (d, *J* = 15.9 Hz, 1H), 1.86 – 1.74 (m, 4H), 1.70

-1.53 (m, 4H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>): δ 197.7, 138.3, 128.5, 128.1, 127.0, 125.9, 125.0 (q,  $J_{C,F} = 284.9$  Hz), 76.7 (q,  $J_{C,F} = 28.8$  Hz), 59.3, 50.8, 37.5, 28.3. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>): δ -80.37 (s, 3F). HRMS (ESI) m/z calcd. for C<sub>17</sub>H<sub>21</sub>F<sub>3</sub>N<sub>2</sub>O<sub>2</sub>Na [M<sup>+</sup>+Na] 365.1447, found 365.1444. The enantiomeric excess was determined by HPLC using a Chiralpak IB column [*n*-hexanes/*i*PrOH (90:10)]; flow rate 1 mL/min;  $\tau_{minor} = 7.0$  min,  $\tau_{major} = 7.9$  min (83% ee);  $[\alpha]_D^{25} = +320.1$  (c 1.0, CHCl<sub>3</sub>).



(S,E)-1-(2,2-Dibenzylhydrazineylidene)-5,5,5-trifluoro-4-hydroxy-4-phenylpentan-2-one, (S)-3Fa.



Following the general procedure **7**, starting from **1F** (106 mg, 0.4 mmol), 2,2,2-trifluoro-1-phenylethan-1-one **2a** (28  $\mu$ L, 0.2 mmol) and 20 mol% of **II**(**SA**)<sub>2</sub> salt (24 mg, 0.04 mmol), compound (*S*)-**3Fa** was obtained as a pale yellow oil (88 mg, 99%; reaction ran for 3 d). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.64 – 7.56 (m, 2H), 7.40 – 7.30 (m, 9H), 7.14 (s, 4H), 6.59 (s, 1H), 6.13 (s, 1H), 4.69 (s, 4H), 4.01 (d, *J* = 15.8 Hz, 1H), 3.24 (d, *J* = 15.8 Hz, 1H). <sup>13</sup>**C NMR** (126 MHz,

CDCl<sub>3</sub>):  $\delta$  198.1, 138.1, 129.2, 128.7, 128.6, 128.3, 128.2, 127.5, 127.0, 124.9 (q,  $J_{C,F} = 285.0$  Hz), 76.7 (q,  $J_{C,F} = 28.9$  Hz), 37.6. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>):  $\delta$  –80.37 (s, 3F). HRMS (ESI): m/z calcd for C<sub>25</sub>H<sub>23</sub>F<sub>3</sub>N<sub>2</sub>O<sub>2</sub>Na [M<sup>+</sup>+Na] 463.1604, found 463.1598. The enantiomeric excess was determined by HPLC using a Chiralpak IB column [*n*-hexanes/*i*PrOH (90:10)]; flow rate 1 mL/min;  $\tau_{major} = 10.7$  min,  $\tau_{minor} = 11.5$  min (78% ee);  $[\alpha]_D^{20} = +234.9$  (c 1.0, CHCl<sub>3</sub>).



(*S*,*E*)-5,5,5-Trifluoro-4-hydroxy-1-(2-methyl-2-phenylhydrazineylidene)-4-phenylpentan-2-one, (*S*)-3Ga.



Following the general procedure **7**, starting from **1G** (70 mg, 0.4 mmol), 2,2,2trifluoro-1-phenylethan-1-one **2a** (28  $\mu$ L, 0.2 mmol) and 10 mol% of **II(SA)**<sub>2</sub> salt (12 mg, 0.02 mmol), compound (*S*)-**3Ga** was obtained as a yellow solid (70 mg, 99%; reaction performed at 2 mmol scale: 584 mg, 84%, 93% ee; reactions ran for 2 d); mp. = 88-90 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.64 (d, *J* = 7.4 Hz, 2H), 7.49 – 7.40 (m, 4H), 7.38 – 7.29 (m, 3H), 7.22 (tt, *J* = 7.0, 1.5 Hz, 1H), 6.88 (d, *J* 

= 0.5 Hz, 1H), 6.01 (s, 1H), 4.05 (d, J = 16.4 Hz, 1H), 3.45 (d, J = 16.3 Hz, 1H), 3.42 (d, J = 0.5 Hz, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$  198.4, 146.2, 137.9, 130.4, 129.5, 128.6, 128.2, 126.7, 124.7, 124.8 (q,  $J_{C,F} = 285.4$  Hz), 117.7, 76.6 (q,  $J_{C,F} = 29.0$  Hz), 38.1, 35.3. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>):  $\delta$  –80.25 (s, 3F). HRMS (ESI): m/z calcd for C<sub>18</sub>H<sub>17</sub>F<sub>3</sub>N<sub>2</sub>O<sub>2</sub>Na [M<sup>+</sup>+Na] 373.1134, found 373.1129. The enantiomeric excess was determined by HPLC using a Chiralpak IB column [*n*-hexanes/*i*PrOH (90:10)]; flow rate 1 mL/min;  $\tau_{minor} = 8.8$  min,  $\tau_{major} = 12.8$  min (93% ee);  $[\alpha]_D^{20} = +584.2$  (c 1.0, CHCl<sub>3</sub>).

Recrystallization of (S)-**3Ga** by slow evaporation of a solution of (S)-**3Ga** in  $CH_2Cl_2$  afforded suitable crystals for X-ray analysis.







Following the general procedure **7**, starting from **1H** (95 mg, 0.4 mmol), 2,2,2trifluoro-1-phenylethan-1-one **2a** (28  $\mu$ L, 0.2 mmol) and 10 mol% of **II(SA)**<sub>2</sub> salt (12 mg, 0.02 mmol), compound (*S*)-**3Ha** was obtained as a pale pink solid (82 mg, 99%; reaction ran for 2 d). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.68 (d, *J* = 7.2 Hz, 2H), 7.48 (s, 5H), 7.41 – 7.28 (m, 4H), 7.19 (d, *J* = 7.9 Hz, 4H), 6.55 (s, 1H), 5.82 (s, 1H), 4.15 (d, *J* = 16.3 Hz, 1H), 3.51 (d, *J* = 16.4 Hz, 1H). <sup>13</sup>**C NMR** (126

MHz, CDCl<sub>3</sub>):  $\delta$  198.7, 137.9, 130.3, 128.7, 128.4, 126.8, 124.9 (q,  $J_{C,F}$  = 284.9 Hz), 76.7 (q,  $J_{C,F}$  = 29.0 Hz), 38.5. <sup>19</sup>**F NMR** (471 MHz, CDCl<sub>3</sub>):  $\delta$  -80.23 (s, 3F). **HRMS** (ESI): m/z calcd for C<sub>23</sub>H<sub>19</sub>F<sub>3</sub>N<sub>2</sub>O<sub>2</sub>Na [M<sup>+</sup>+Na] 435.1291, found 435.1285. The enantiomeric excess was determined by HPLC using a Chiralpak IC column [*n*-hexanes/*i*PrOH (95:5)]; flow rate 1 mL/min;  $\tau_{minor}$  = 7.4 min,  $\tau_{major}$  = 7.9 min (88% ee);  $[\alpha]_D^{20}$  = +403.2 (c 1.0, CHCl<sub>3</sub>).



#### (S,E)-5,5,5-Trifluoro-4-hydroxy-2-oxo-4-phenylpentanal O-benzyl oxime, (S)-5.



Following the general procedure **7**, starting from **4** (71 mg, 0.4 mmol), 2,2,2trifluoro-1-phenylethan-1-one **2a** (28  $\mu$ L, 0.2 mmol) and 20 mol% of **II**(**SA**)<sub>2</sub> salt (24 mg, 0.04 mmol), compound (*S*)-**5** was obtained as a pale yellow oil (70 mg, 99%, reaction ran for 3 d). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.55 – 7.49 (m, 2H), 7.47 – 7.39 (m, 6H), 7.36 – 7.27 (m, 3H), 5.35 (s, 2H), 5.06 (s, 1H), 3.99 (d, *J* = 16.8 Hz, 1H), 3.33 (d, *J* = 16.8 Hz, 1H). <sup>13</sup>C NMR (126

MHz, CDCl<sub>3</sub>):  $\delta$  197.5, 137.1, 135.8, 129.0, 128.9, 128.5, 126.7, 124.5 (q,  $J_{C,F}$  = 288.9 Hz), 78.8, 76.5 (q,  $J_{C,F}$  = 29.4 Hz), 40.1. <sup>19</sup>**F** NMR (471 MHz, CDCl<sub>3</sub>):  $\delta$  –80.55 (s, 3F). HRMS (ESI) m/z calcd. for C<sub>18</sub>H<sub>16</sub>F<sub>3</sub>NO<sub>3</sub>Na [M<sup>+</sup>+Na] 374.0974, found 374.0968. The enantiomeric excess was determined by HPLC using a Chiralpak IB column [*n*-hexanes/*i*PrOH (90:10)]; flow rate 1 mL/min;  $\tau_{minor}$  = 5.3 min,  $\tau_{major}$  = 5.8 min (86% ee); [ $\alpha$ ]<sub>D</sub><sup>25</sup> = +161.21 (c 1.0, CHCl<sub>3</sub>).



| Integr | ration Results      |         |               | Integration Results |                |         |               |
|--------|---------------------|---------|---------------|---------------------|----------------|---------|---------------|
| No.    | Retention Time Area |         | Relative Area | No.                 | Retention Time | Area    | Relative Area |
|        | min                 | mAU*min | %             |                     | min            | mAU*min | %             |
| 1      | 5.343               | 16.613  | 49.93         | 1                   | 5.343          | 3.194   | 7.25          |
| 2      | 5.803               | 16.662  | 50.07         | 2                   | 5.803          | 40.855  | 92.75         |

#### (S)-5,5,5-Trifluoro-4-hydroxy-1,1-dimethoxy-4-phenylpentan-2-one, (S)-7.



Following the general procedure **7**, starting from **6** (50 µL, 0.4 mmol), 2,2,2-trifluoro-1-phenylethan-1-one **2a** (28 µL, 0.2 mmol) and 20 mol% of **II(SA)**<sub>2</sub> salt (24 mg, 0.04 mmol), compound (*S*)-**7** was obtained as a colorless oil (54 mg, 92%, reaction ran for 3 d). The experimental data is in accordance with those reported in the literature.<sup>13</sup> <sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.64 – 7.55 (m, 2H), 7.43 – 7.31

(m, 3H), 5.00 (s, 1H), 4.28 (s, 1H), 3.66 (d, J = 17.8 Hz, 1H), 3.40 (s, 3H), 3.31 (s, 3H), 3.29 (d, J = 17.8 Hz, 1H). <sup>13</sup>**C NMR** (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  204.8, 137.1, 128.8, 128.3, 126.4, 124.4 (d,  $J_{CF} = 284.7$  Hz), 104.4, 76.0 (d,  $J_{CF} = 29.3$  Hz), 55.2, 39.9. The enantiomeric excess was determined by HPLC using a

<sup>&</sup>lt;sup>13</sup> S. Luo, H. Xu, L. Chen, J. -P. Cheng, Org. Lett. 2008, **10**, 1775.

Chiralpak IB column [*n*-hexanes/*i*PrOH (95:5)]; flow rate 1 mL/min;  $\tau_{minor} = 5.3 \text{ min}$ ,  $\tau_{major} = 5.6 \text{ min}$  (79% ee);  $[\alpha]_D^{25} = +26.4$  (c 2.0, EtOAc). Literature:  $[\alpha]_D^{20} = +17.5$  (c 2.0, EtOAc), 59% ee (S).



(S,E)-5,5,5-Trifluoro-4-(4-fluorophenyl)-4-hydroxy-1-(piperidin-1-ylimino)pentan-2-one, (S)-3Ab.



Following the general procedure **7**, starting from **1A** (61 mg, 0.4 mmol), 2,2,2-trifluoro-1-(4-fluorophenyl)ethan-1-one **2b** (28  $\mu$ L, 0.2 mmol) and 10 mol% of **II(SA)**<sub>2</sub> salt (12 mg, 0.02 mmol), compound (*S*)-**3Ab** was obtained as a colorless oil (64 mg, 93%, reaction ran for 1 d). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.59 (dd, *J* = 8.5, 5.4 Hz, 1H), 7.08 – 6.94 (m, 2H), 6.73 (s, 1H), 6.30 (s, 1H), 3.90 (d, *J* = 16.0 Hz, 1H), 3.53 – 3.34 (m, 2H), 3.23 (d, *J* = 16.0 Hz, 1H), 1.82 – 1.63 (m, 6H). <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  197.7, 162.8

(d,  $J_{C,F} = 247.2$  Hz), 133.8 (d,  $J_{C,F} = 2.8$  Hz), 128.8 (d,  $J_{C,F} = 8.3$  Hz), 128.1, 124.6 (q,  $J_{C,F} = 284.5$  Hz), 114.9 (d,  $J_{C,F} = 21.5$  Hz), 76.2 (q,  $J_{C,F} = 28.9$  Hz), 51.4, 37.8, 24.8, 23.3. <sup>19</sup>F NMR (282.5 MHz, CDCl<sub>3</sub>):  $\delta$  -80.69 (s, 3F), -114.15 (s, 1F). HRMS (ESI) m/z calcd. for C<sub>16</sub>H<sub>18</sub>O<sub>2</sub>N<sub>2</sub>F<sub>4</sub>Na [M<sup>+</sup>+Na] 369.1197, found 369.1195. The enantiomeric excess was determined by HPLC using a Chiralpak IA column [*n*-hexanes/*i*PrOH (90:10)]; flow rate 1 mL/min;  $\tau_{minor} = 6.2 \text{ min}$ ,  $\tau_{major} = 6.9 \text{ min}$  (94% ee); [ $\alpha$ ]<sub>D</sub><sup>25</sup> = +261.5 (c 1.0, CHCl<sub>3</sub>).



#### (S,E)-5,5,5-Trifluoro-4-(4-fluorophenyl)-4-hydroxy-1-



### (morpholinoimino)pentan-2-one, (S)-3Bb.

Following the general procedure **7**, starting from **1B** (62 mg, 0.4 mmol), 2,2,2trifluoro-1-(4-fluorophenyl)ethan-1-one **2b** (28  $\mu$ L, 0.2 mmol) and 10 mol% of **II(SA)**<sub>2</sub> salt (12 mg, 0.02 mmol), compound (*S*)-**3Bb** was obtained as a colorless oil (68 mg, 98%, reaction ran for 1 d). <sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.58 (dd, *J* = 8.6, 5.4 Hz, 2H), 7.10 – 6.94 (m, 2H), 6.78 (s, 1H), 6.04 (s,

1H), 3.95 – 3.79 (m, 5H), 3.46 – 3.35 (m, 4H), 3.27 (d, *J* = 16.3 Hz, 1H). <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>): δ

197.9, 162.8 (q,  $J_{C,F} = 247.5$  Hz), 133.6 (d,  $J_{C,F} = 3.2$  Hz), 129.9, 128.6 (d,  $J_{C,F} = 8.8$  Hz), 124.5 (d,  $J_{C,F} = 284.9$  Hz), 115.0 (d,  $J_{C,F} = 21.5$  Hz), 76.1 (d,  $J_{C,F} = 29.2$  Hz), 65.8, 50.5, 38.0. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>):  $\delta$  –80.65 (s, 3F), –113.85 (s, 1F). HRMS (ESI) m/z calcd. for C<sub>15</sub>H<sub>16</sub>F<sub>4</sub>N<sub>2</sub>O<sub>3</sub>Na [M<sup>+</sup>+Na] 371.0989, found 371.0985. The enantiomeric excess was determined by HPLC using a Chiralpak IB column [*n*-hexanes/*i*PrOH (90:10)]; flow rate 1 mL/min;  $\tau_{minor} = 11.1$  min,  $\tau_{major} = 12.3$  min (94% ee);  $[\alpha]_D^{25} = +311.5$  (c 1.0, CHCl<sub>3</sub>).



| Integr | ation Results  |        |               | Integration Results |                |        |               |
|--------|----------------|--------|---------------|---------------------|----------------|--------|---------------|
| No.    | Retention Time | Area   | Relative Area | No.                 | Retention Time | Area   | Relative Area |
|        | min            | %      |               | min                 | mAU*min        | %      |               |
| 1      | 11.113         | 62.443 | 49.97         | 1                   | 11.143         | 2.704  | 3.05          |
| 2      | 12.333         | 62.508 | 50.03         | 2                   | 12.323         | 86.008 | 96.95         |

#### (S,E)-5,5,5-Trifluoro-4-hydroxy-1-(piperidin-1-ylimino)-4-(p-tolyl)pentan-2-one, (S)-3Ac.



Following the general procedure **7**, starting from **1A** (61 mg, 0.4 mmol), 2,2,2trifluoro-1-(*p*-tolyl)ethan-1-one **2c** (31  $\mu$ L, 0.2 mmol) and 10 mol% of **II(SA)**<sub>2</sub> salt (12 mg, 0.02 mmol), compound (*S*)-**3Ac** was obtained as a colorless oil (63 mg, 93%, reaction ran for 3 d). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.50 (d, *J* = 8.1 Hz, 2H), 7.15 (d, *J* = 8.2 Hz, 2H), 6.73 (s, 1H), 6.22 (s, 1H), 3.91 (d, *J* = 16.0 Hz, 1H), 3.42 (t, *J* = 6.5 Hz, 4H), 3.25 (d, *J* = 16.0 Hz, 1H), 2.33 (s, 3H),

1.81 – 1.62 (m, 6H). <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>): δ 198.0, 138.1, 135.1, 128.8, 128.3, 126.7, 124.8 (q,  $J_{C,F} = 284.4$  Hz), 76.4 (q,  $J_{C,F} = 28.9$  Hz), 51.4, 37.9, 24.8, 23.4, 21.0. <sup>19</sup>F NMR (282.5 MHz, CDCl<sub>3</sub>): δ – 80.54 (s, 3F). HRMS (ESI) m/z calcd. for C<sub>17</sub>H<sub>21</sub>O<sub>2</sub>N<sub>2</sub>F<sub>3</sub>Na [M<sup>+</sup>+Na] 365.1447, found 365.1440. The enantiomeric excess was determined by HPLC using a Chiralpak IC column [*n*-hexanes/*i*PrOH (85:15)]; flow rate 1 mL/min;  $\tau_{major} = 10.3$  min,  $\tau_{minor} = 12.0$  min (92% ee); [α]<sub>D</sub><sup>25</sup> = +295.5 (c 1.0, CHCl<sub>3</sub>).



#### (S,E)-5,5,5-Trifluoro-4-hydroxy-1-(morpholinoimino)-4-(p-tolyl)pentan-2-one, (S)-3Bc.



Following the general procedure **7**, starting from **1B** (62 mg, 0.4 mmol), 2,2,2trifluoro-1-(*p*-tolyl)ethan-1-one **2c** (31  $\mu$ L, 0.2 mmol) and 10 mol% of **II(SA)**<sub>2</sub> salt (12 mg, 0.02 mmol), compound (*S*)-**3Bc** was obtained as a colorless oil (66 mg, 94%, reaction ran for 2 d). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.48 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 2H), 6.78 (s, 1H), 5.94 (s, 1H), 3.93 (d, *J* = 16.3 Hz, 1H), 3.89 – 3.83 (m, 4H), 3.42 – 3.36 (m, 4H), 3.27 (d, *J* = 16.3 Hz,

1H), 2.33 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$  198.3, 138.4, 135.0, 130.3, 129.0, 126.7, 124.9 (q,  $J_{C,F}$  = 284.9 Hz), 76.5 (q,  $J_{C,F}$  = 29.0 Hz), 66.0, 50.7, 38.3, 21.1.<sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>):  $\delta$  –80.54 (s, 3F). HRMS (ESI) m/z calcd. for C<sub>16</sub>H<sub>19</sub>F<sub>3</sub>N<sub>2</sub>O<sub>3</sub>Na [M<sup>+</sup>+Na] 367.1240, found 367.1238. The enantiomeric excess was determined by HPLC using a Chiralpak IB column [*n*-hexanes/*i*PrOH (90:10)]; flow rate 1 mL/min;  $\tau_{minor}$  = 10.6 min,  $\tau_{major}$  = 11.8 min (92% ee); [ $\alpha$ ]<sub>D</sub><sup>25</sup> = +340.7 (c 1.0, CHCl<sub>3</sub>).



| 1<br>2 | 10.530<br>11.800 | 138.011<br>137.991 | 50.00<br>50.00 | . 1 | 10.583<br>11.823 | 4.166<br>98.135 | ,<br>g | 4.07<br>95.93 |  |
|--------|------------------|--------------------|----------------|-----|------------------|-----------------|--------|---------------|--|
|        |                  |                    |                |     |                  |                 |        |               |  |

(S,E)-5,5,5-Trifluoro-4-hydroxy-4-(4-methoxyphenyl)-1-(morpholinoimino)pentan-2-one, (S)-3Bd.



Following the general procedure **7**, starting from **1B** (62 mg, 0.4 mmol), 2,2,2-trifluoro-1-(4-methoxyphenyl)ethan-1-one **2d** (32  $\mu$ L, 0.2 mmol) and 20 mol% of **II(SA)**<sub>2</sub> salt (24 mg, 0.04 mmol), compound (*S*)-**3Bd** was obtained as a colorless oil (69 mg, 96%, reaction ran for 3 d). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.51 (d, *J* = 8.7 Hz, 2H), 6.86 (d, *J* = 8.9 Hz, 2H), 6.78 (s, 1H), 5.93 (s, 1H), 3.92 (d, *J* = 16.2 Hz, 1H), 3.88 – 3.81 (m, 4H), 3.78 (s,

3H), 3.45 - 3.35 (m, 4H), 3.24 (d, J = 16.2 Hz, 1H). <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  198.1, 159.7, 130.4, 130.1, 129.8, 128.0, 126.6, 124.7 (q,  $J_{C,F} = 284.5$  Hz), 76.1 (q,  $J_{C,F} = 29.0$  Hz), 65.8, 55.1, 50.5, 38.1. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>):  $\delta$  -80.74 (s, 3F). HRMS (ESI) m/z calcd. for C<sub>16</sub>H<sub>19</sub>F<sub>3</sub>N<sub>2</sub>O<sub>4</sub>Na [M<sup>+</sup>+Na] 383.1189, found 383.1184. The enantiomeric excess was determined by HPLC using a Chiralpak IA column [*n*-hexanes/*i*PrOH (90:10)]; flow rate 1 mL/min;  $\tau_{minor} = 13.2$  min,  $\tau_{major} = 14.1$  min (95% ee);  $[\alpha]_D^{25} = +222.1$  (c 1.0, CHCl<sub>3</sub>).



(*S*,*E*)-4-[4-(Allyloxy)-3,5-diisopropylphenyl]-5,5,5-trifluoro-4-hydroxy-1-(piperidin-1-ylimino)pentan-2-one, (*S*)-3Ae.



Following the general procedure **7**, starting from **1A** (61 mg, 0.4 mmol), 1-[4-(allyloxy)-3,5-diisopropylphenyl]-2,2,2-trifluoroethan-1-one **2e** (63 mg, 0.2 mmol) and 20 mol% of **II(SA)**<sub>2</sub> salt (24 mg, 0.04 mmol), compound (*S*)-**3Ae** was obtained as a white solid (78 mg, 83%, reaction ran for 5 d). <sup>1</sup>**H NMR** (300 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  7.33 (s, 2H), 6.73 (s, 1H), 6.24 – 6.03 (m, 2H), 5.46 (dd, *J* = 17.2, 1.7 Hz, 1H), 5.27 (dd, *J* = 10.5, 1.4 Hz, 1H), 4.34 – 4.20 (m, 3H), 3.55 – 3.38 (m, 4H), 3.36 – 3.21 (m,

2H), 2.93 (d, J = 15.8 Hz, 1H), 1.83 – 1.59 (m, 6H), 1.19 (dd, J = 18.0, 6.9 Hz, 12H). <sup>13</sup>C NMR (75.5 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  199.1, 154.3, 141.9, 134.8, 134.3, 128.4, 125.4 (q,  $J_{C,F} = 284.3$  Hz) 123.6, 117.0, 77.4 (q,  $J_{C,F} = 28.8$  Hz), 75.9, 37.3, 27.2, 25.5, 24.4, 24.3, 23.9. <sup>19</sup>F NMR (471 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  –81.26 (s, 3F). HRMS (ESI) m/z calcd. for C<sub>25</sub>H<sub>35</sub>O<sub>3</sub>N<sub>2</sub>F<sub>3</sub>Na [M<sup>+</sup>+Na] 491.2492, found 491.2490. The enantiomeric excess was determined by HPLC using a Chiralpak IC column [*n*-hexanes/*i*PrOH (90:10)]; flow rate 1 mL/min);  $\tau_{minor} = 5.2 \text{ min}, \tau_{major} = 7.1 \text{ min} (90\% \text{ ee}); [\alpha]_D^{20} = +240.3 (c 1.0, CHCl_3).$ 







Following the general procedure **7**, starting from **1B** (62 mg, 0.4 mmol), 2,2,2trifluoro-1-(thiophen-2-yl)ethan-1-one **2f** (26  $\mu$ L, 0.2 mmol) and 10 mol% of **II(SA)**<sup>2</sup> salt (12 mg, 0.02 mmol), compound (*R*)-**3Bf** was obtained as a colorless oil (63 mg, 94%, reaction ran for 2 d). <sup>1</sup>H **NMR** (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.29 (dd, J = 5.1, 1.1 Hz, 1H), 7.08 (d, J = 3.4 Hz, 1H), 6.96 (dd, J = 5.0, 3.7 Hz, 1H), 6.81 (s, 1H), 6.51 (s, 1H), 3.93 – 3.79 (m, 5H), 3.46 – 3.35 (m, 4H), 3.24 (d, J =

16.2 Hz, 1H). <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>): δ 197.6, 142.3, 129.8, 126.9, 126.3, 125.8, 124.0 (q,  $J_{C,F} = 284.7$  Hz), 75.8 (q,  $J_{C,F} = 30.5$  Hz) 65.8, 50.5, 38.9. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>): δ -81.40 (s, 3F). HRMS

(ESI) m/z calcd. for C<sub>13</sub>H<sub>15</sub>F<sub>3</sub>N<sub>2</sub>O<sub>3</sub>SNa [M<sup>+</sup>+Na] 359.0648, found 359.0646. The enantiomeric excess was determined by HPLC using a Chiralpak IB column [*n*-hexanes/*i*PrOH (90:10)]; flow rate 1 mL/min;  $\tau_{minor} = 14.2 \text{ min}$ ,  $\tau_{major} = 18.4 \text{ min}$  (83% ee);  $[\alpha]_D^{25} = +163.7$  (c 1.0, CHCl<sub>3</sub>).



|   | Integr | ation Results       |        |               | Integration Results |                |         |               |
|---|--------|---------------------|--------|---------------|---------------------|----------------|---------|---------------|
|   | No.    | Retention Time Area |        | Relative Area | No.                 | Retention Time | Area    | Relative Area |
|   |        | min mAU*min         |        | %             |                     | min            | mAU*min | %             |
|   | 1      | 14.143              | 81.992 | 49.96         | 1                   | 14.183         | 6.847   | 8.45          |
| 1 | 2      | 18.413              | 82.124 | 50.04         | 2                   | 18.407         | 74.182  | 91.55         |

(S,1E,5E)-4-Hydroxy-1-(morpholinoimino)-6-phenyl-4-(trifluoromethyl)hex-5-en-2-one, (S)-3Bg.



Following the general procedure **7**, starting from **1B** (62 mg, 0.4 mmol), (*E*)-1,1,1-trifluoro-4-phenylbut-3-en-2-one **2g** (32  $\mu$ L, 0.2 mmol) and 10 mol% of **II(SA)**<sub>2</sub> salt (12 mg, 0.02 mmol), compound (*S*)-**3Bg** was obtained as a colorless oil (61 mg, 85%, reaction ran for 2 d). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.35 – 7.28 (m, 2H), 7.24 (t, *J* = 7.4 Hz, 2H), 7.22 – 7.15 (m, 1H), 6.87 (d, *J* = 15.9 Hz, 1H), 6.79 (s, 1H), 6.10 (d, *J* = 15.8 Hz, 1H), 5.78 (s, 1H), 3.82 – 3.74 (m,

4H), 3.38 - 3.25 (m, 5H), 3.14 (d, J = 15.6 Hz, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$  197.9, 136.0, 133.6, 130.3, 128.7, 128.4, 127.1, 125.1, 124.9 (q,  $J_{C,F} = 285.4$  Hz), 75.6 (q,  $J_{C,F} = 29.2$  Hz), 66.0, 50.7, 38.3. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>):  $\delta$  -80.96 (s, 3F). HRMS (ESI) m/z calcd. for C<sub>17</sub>H<sub>19</sub>F<sub>3</sub>N<sub>2</sub>O<sub>3</sub>Na [M<sup>+</sup>+Na] 379.1240, found 379.1234. The enantiomeric excess was determined by HPLC using a Chiralpak IB column [*n*-hexanes/*i*PrOH (90:10)]; flow rate 1 mL/min;  $\tau_{minor} = 12.3$  min,  $\tau_{major} = 14.5$  min (91% ee);  $[\alpha]_D^{25} = +237.3$  (c 1.0, CHCl<sub>3</sub>).



#### (R,E)-4-Hydroxy-6-phenyl-1-(piperidin-1-ylimino)-4-(trifluoromethyl)hexan-2-one, (R)-3Ah.



Following the general procedure **7**, starting from **1A** (61 mg, 0.4 mmol), 1,1,1trifluoro-4-phenylbutan-2-one **2h** (40 mg, 0.2 mmol) and 20 mol% of **II(SA)**<sub>2</sub> salt (24 mg, 0.04 mmol), compound (*R*)-**3Ah** was obtained as a colorless oil (64 mg, 90%, reaction ran for 5 d). <sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.34 – 7.14 (m, 5H), 6.86 (s, 1H), 6.13 (s, 1H), 3.52 – 3.33 (m, 5H), 2.97 – 2.66 (m, 3H), 1.99 (dtd, *J* = 18.6, 14.0, 5.2 Hz, 2H), 1.81 – 1.61 (m, 6H). <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  198.7, 141.6, 128.41, 128.36, 128.1, 126.1 (q, *J<sub>C,F</sub>* = 286.9 Hz), 125.9, 75.2 (q,  $J_{C,F}$  = 27.5 Hz), 51.4, 37.3, 36.1, 29.2, 24.7, 23.3. <sup>19</sup>**F NMR** (282.5 MHz, CDCl<sub>3</sub>): δ –80.12. **HRMS** (ESI) m/z calcd. for C<sub>18</sub>H<sub>23</sub>O<sub>2</sub>N<sub>2</sub>F<sub>3</sub>Na [M<sup>+</sup>+Na] 379.1604, found 379.1599. The enantiomeric excess was determined by HPLC using a Chiralpak IC column [*n*-hexanes/*i*PrOH (85:15)]; flow rate 1 mL/min);  $\tau_{major}$  = 9.9 min,  $\tau_{minor}$  = 11.1 min (87% ee); [α]<sub>D</sub><sup>25</sup> = +47.8 (c 0.5, CHCl<sub>3</sub>).



#### (S,E)-5,5-Difluoro-4-hydroxy-1-(morpholinoimino)-4-phenylpentan-2-one, (S)-3Bk.



Following the general procedure **7**, starting from **1B** (62 mg, 0.4 mmol), 2,2difluoro-1-phenylethan-1-one **2k** (61 mg, 0.2 mmol) and 20 mol% of **II**(**SA**)<sub>2</sub> salt (24 mg, 0.04 mmol), compound (*S*)-**3Bk** was obtained as a pale yellow oil (61 mg, 98%; reaction ran for 2 d). <sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.54 (d, *J* = 7.5 Hz, 2H), 7.40 – 7.24 (m, 3H), 6.78 (s, 1H), 5.67 (dd, *J* = 55.8, 1.0 Hz, 1H), 5.59 (d, *J* = 1.2 Hz, 1H), 3.91 – 3.78 (m, 5H), 3.44 – 3.30 (m, 4H),

3.22 (d, J = 16.5 Hz, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$  199.2, 139.59, 139.57, 130.6, 128.3, 128.2, 126.6, 116.4 (dd,  $J_{C,F} = 251.6$ , 248.1 Hz), 76.0 (dd,  $J_{C,F} = 22.7$ , 21.0 Hz), 66.0, 50.6, 37.7 (t,  $J_{C,F} = 2.2$  Hz). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>):  $\delta$  –128.38 (d, J = 275.5 Hz, 1F), –130.50 (d, J = 275.5 Hz, 1F). HRMS (ESI): m/z calcd for C<sub>15</sub>H<sub>18</sub>F<sub>2</sub>N<sub>2</sub>O<sub>3</sub>Na [M<sup>+</sup>+Na] 335.1178, found 335.1174. The enantiomeric excess was determined by HPLC using a Chiralpak IB column [*n*-hexanes/*i*PrOH (90:10)]; flow rate 1 mL/min;  $\tau_{minor} = 14.2 \text{ min}$ ,  $\tau_{major} = 15.4 \text{ min}$  (88% ee);  $[\alpha]_D^{20} = +237.3$  (c 1.0, CHCl<sub>3</sub>).



(*S*,*E*)-5,5,5-Trifluoro-4-(4-fluorophenyl)-4-hydroxy-1-(2-methyl-2-phenylhydrazineylidene)pentan-2-one, (*S*)-3Gb.



Following the general procedure **7**, starting from **1G** (70 mg, 0.4 mmol), 2,2,2-trifluoro-1-(4-fluorophenyl)ethan-1-one **2b** (28  $\mu$ L, 0.2 mmol) and 10 mol% of **II(SA)**<sub>2</sub> salt (12 mg, 0.02 mmol), compound (*S*)-**3Gb** was obtained as a pale brown solid (68 mg, 92%, reaction ran for 1 d). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.61 (dd, *J* = 8.7, 5.3 Hz, 2H), 7.54 – 7.38 (m, 4H), 7.22 (t, *J* = 7.2 Hz, 1H), 7.08

-6.98 (m, 2H), 6.88 (s, 1H), 6.03 (s, 1H), 4.03 (d, J = 16.3 Hz, 1H), 3.44 (s, 3H), 3.41 (d, J = 16.3 Hz, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>): δ 198.2, 162.9 (d,  $J_{C,F} = 247.4$  Hz), 146.2, 133.7 (d,  $J_{C,F} = 3.2$  Hz), 130.4, 129.6, 128.7 (d,  $J_{C,F} = 8.3$  Hz), 124.8, 124.6 (q,  $J_{C,F} = 284.6$  Hz), 117.7, 115.2 (d,  $J_{C,F} = 21.6$  Hz), 76.3 (q,  $J_{C,F} = 29.2$  Hz), 38.0, 35.4. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>): δ -80.55 (s, 3F), -113.81 (s, 1F). HRMS (ESI) m/z calcd. for C<sub>18</sub>H<sub>16</sub>F<sub>4</sub>N<sub>2</sub>O<sub>2</sub>Na [M<sup>+</sup>+Na] 391.1040, found 391.1036. The enantiomeric excess was determined by HPLC using a Chiralpak IB column [*n*-hexanes/*i*PrOH (90:10)]; flow rate 1 mL/min;  $\tau_{minor}$ = 8.5 min,  $\tau_{major} = 10.4$  min (95% ee); [α]<sub>D</sub><sup>25</sup> = +584.4 (c 1.0, CHCl<sub>3</sub>).







Following the general procedure **7**, starting from **1G** (70 mg, 0.4 mmol), 2,2,2trifluoro-1-(*p*-tolyl)ethan-1-one **2c** (31  $\mu$ L, 0.2 mmol) and 10 mol% of **II(SA)**<sub>2</sub> salt (12 mg, 0.02 mmol), compound (*S*)-**3Gc** was obtained as a brown pale solid (54 mg, 99%, reaction ran for 2 d). <sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.59 – 7.36 (m, 6H), 7.26 – 7.10 (m, 3H), 6.89 (s, 1H), 5.96 (s, 1H), 4.07 (d, *J* = 16.4 Hz, 1H), 3.49 – 3.36 (m, 4H), 2.33 (s, 3H). <sup>13</sup>**C NMR** (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  198.4, 146.2,

138.3, 134.9, 130.4, 129.5, 128.9, 126.5, 124.7 (q,  $J_{C,F} = 284.8$  Hz), 124.6, 117.6, 76.5 (q,  $J_{C,F} = 28.9$  Hz), 38.0, 35.2, 21.0. <sup>19</sup>**F** NMR (471 MHz, CDCl<sub>3</sub>): δ –80.41 (s, 3F). HRMS (ESI) m/z calcd. for C<sub>19</sub>H<sub>19</sub>F<sub>3</sub>N<sub>2</sub>O<sub>2</sub>Na [M<sup>+</sup>+Na] 387.1291, found 387.1287. The enantiomeric excess was determined by HPLC using a Chiralpak IB column [*n*-hexanes/*i*PrOH (90:10)]; flow rate 1 mL/min;  $\tau_{minor} = 8.5$  min,  $\tau_{major} = 9.4$ min (90% ee); [α]<sub>D</sub><sup>25</sup> = +584.4 (c 1.0, CHCl<sub>3</sub>).



| Integr | ration Results |         |               | Integr | ation Results  |         |               |
|--------|----------------|---------|---------------|--------|----------------|---------|---------------|
| No.    | Retention Time | Area    | Relative Area | No.    | Retention Time | Area    | Relative Area |
|        | min            | mAU*min | %             |        | min            | mAU*min | %             |
| 1      | 8.523          | 87.188  | 49.92         | 1      | 8.527          | 1.141   | 4.84          |
| 2      | 9.430          | 87.482  | 50.08         | 2      | 9.427          | 22.434  | 95.16         |

# (S,E)-4-[4-(Allyloxy)-3,5-diisopropylphenyl]-5,5,5-trifluoro-4-hydroxy-1-(2-methyl-2-phenylhydrazineylidene) pentan-2-one, (S)-3Ge.



Following the general procedure **7**, starting from **1G** (70 mg, 0.4 mmol), 1-[4-(allyloxy)-3,5-diisopropylphenyl]-2,2,2-trifluoroethan-1-one **2e** (63 mg, 0.2 mmol) and 20 mol% of **II**(**SA**)<sub>2</sub> salt (24 mg, 0.04 mmol), compound (*S*)-**3Ge** was obtained as a yellow solid (90 mg, 92%, reaction ran for 5 d). <sup>1</sup>**H NMR** (300 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  7.54 – 7.40 (m, 3H), 7.35 (s, 2H), 7.26 – 7.16 (m, 2H), 6.91 (s, 1H), 6.21 – 6.03 (m, 1H), 5.93 (s, 1H), 5.45 (dd, *J* = 17.2, 1.7 Hz, 1H), 5.26 (dd, *J* = 10.5, 1.5 Hz, 1H), 4.35 – 4.23

(m, 3H), 3.43 (s, 3H), 3.34 – 3.20 (m, 3H), 1.13 (dd, J = 19.2, 6.9 Hz, 12H). <sup>13</sup>C NMR (75.5 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  199.4, 154.3, 146.9, 142.2, 134.8, 134.2, 131.0, 130.0, 125.4 (q,  $J_{C,F} = 284.5$  Hz), 125.1, 123.4, 118.1, 117.0, 77.4 (q,  $J_{C,F} = 28.8$  Hz) 75.9, 38.0, 35.7, 27.2, 24.22, 24.17. <sup>19</sup>F NMR (471 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  –78.98 (s, 3F). HRMS (ESI) m/z calcd. for C<sub>27</sub>H<sub>33</sub>F<sub>3</sub>N<sub>2</sub>O<sub>3</sub>Na [M<sup>+</sup>+Na] 513.2335, found 513.2330. The enantiomeric excess was determined by HPLC using a Chiralpak IC column [*n*-hexanes/*i*PrOH (90:10)]; flow rate 1 mL/min;  $\tau_{major} = 4.9$  min,  $\tau_{minor} = 6.5$  min (92% ee);  $[\alpha]_D^{25} = +504.2$  (c 1.0, CHCl<sub>3</sub>).



(*R*,*E*)-4-Hydroxy-1-(2-methyl-2-phenylhydrazineylidene)-4-(trifluoromethyl)heptan-2-one, (*R*)-3Gi.

49.94

50.06



4.880

6.460

139.279

139.596

Following the general procedure **7**, starting from **1G** (70 mg, 0.4 mmol), 1,1,1trifluorononan-2-one **2i** (40 mg, 0.2 mmol) and 20 mol% of **II**(**SA**)<sub>2</sub> salt (24 mg, 0.04 mmol), compound (*R*)-**3Gi** was obtained as a pale yellow solid (60 mg, 81%, reaction ran for 7 d). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.51 – 7.32 (m, 4H), 7.17 (tt, J = 7.1, 1.4 Hz, 1H), 6.98 (d, J = 0.6 Hz, 1H), 5.72 (s, 1H), 3.59 (d, J = 15.9 Hz, 1H), 3.46 (s, 3H), 2.82 (d, J = 15.9 Hz, 1H), 1.78 (td, J = 13.3, 12.7, 4.3 Hz, 1H),

4.883

6.463

83.999

3.511

95.99

4.01

1.66 (td, J = 13.6, 13.0, 4.6 Hz, 1H), 1.55 (ddd, J = 26.0, 12.4, 5.2 Hz, 2H), 1.40 (td, J = 14.8, 13.4, 6.2 Hz, 1H), 1.32 – 1.25 (m, 9H), 0.94 – 0.82 (m, 3H).<sup>13</sup>**C** NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$  199.7, 146.4, 130.5, 129.5, 126.4 (q,  $J_{C,F} = 287.1$  Hz), 124.6, 117.7, 75.8 (q,  $J_{C,F} = 27.3$  Hz), 36.0, 35.4, 31.9, 31.0, 30.0, 29.8, 29.3, 22.9, 22.8, 14.2. <sup>19</sup>**F** NMR (471 MHz, CDCl<sub>3</sub>):  $\delta$  –80.12 (s, 3F). HRMS (ESI) m/z calcd. for C<sub>19</sub>H<sub>28</sub>F<sub>3</sub>N<sub>2</sub>O<sub>2</sub> [M<sup>+</sup>+H] 373.2097, found 373.2093. The enantiomeric excess was determined by HPLC using a Chiralpak IC column [*n*-hexanes/*i*PrOH (90:10)]; flow rate 1 mL/min;  $\tau_{major} = 7.4$  min,  $\tau_{minor} = 11.4$  min (87% ee);  $[\alpha]_D^{25} = +71.3$  (c 1.0, CHCl<sub>3</sub>).



| Integr | ation Results                     |         |               | Integration Results |                |         |               |  |
|--------|-----------------------------------|---------|---------------|---------------------|----------------|---------|---------------|--|
| No.    | Retention Time Area Relative Area |         | Relative Area | No.                 | Retention Time | Area    | Relative Area |  |
|        | min                               | mAU*min | %             |                     | min            | mAU*min | %             |  |
| 1      | 7.393                             | 191.129 | 49.90         | 1                   | 7.437          | 162.972 | 93.40         |  |
| 2      | 11.303                            | 191.892 | 50.10         | 2                   | 11.390         | 11.516  | 6.60          |  |

# 8. General procedure for the catalytic enantioselective reactions of $\alpha$ , $\beta$ -unsaturated ketones 8A-E with trifluoromethyl ketone 2a



2,2,2-Trifluoro-1-phenylethan-1-one **2a** (1.0 equiv.) was added to a solution of **II(SA)**<sub>2</sub> salt (x mol%) and the corresponding  $\alpha$ , $\beta$ -unsaturated ketone **8A-E** (2.0 equiv.) in toluene/H<sub>2</sub>O 8:1 (1.0 M) at room temperature. The resulting mixture was stirred at this temperature until consumption of the starting material. Then, the resulting crude mixture was directly purified by flash chromatography (toluene/EtOAc 9/1) to afford pure product **9Aa-Ea**.

*Racemic samples* were prepared employing  $(\pm)$ -*trans*-1,2-diaminocyclohexane (20 mol%) and benzoic acid (20 mol%) following the general procedure described above.

#### (S,1E,2E)-7,7,7-Trifluoro-6-hydroxy-6-phenyl-1-(piperidin-1-ylimino)hept-2-en-4-one, (S)-9Aa.



Following the general procedure **8**, starting from **8A** (72 mg, 0.4 mmol), 2,2,2-trifluoro-1-phenylethan-1-one **2a** (28  $\mu$ L, 0.2 mmol) and 20 mol% of **II(SA)**<sub>2</sub> salt (24 mg, 0.04 mmol), compound (*S*)-**9Aa** was obtained as a yellow oil (19 mg, 26%; reaction ran for 7 d). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.59 (d, *J* = 7.5 Hz, 2H), 7.45 – 7.29 (m, 4H), 7.14 (d, *J* = 9.1 Hz, 1H), 6.09 (s, 1H), 6.06 (d, *J* = 15.9 Hz, 1H), 3.55 (d, *J* = 16.6 Hz,

1H), 3.32 (t, J = 5.7 Hz, 3H), 3.27 (d, J = 16.6 Hz, 1H), 1.77 – 1.68 (m, 4H), 1.66 – 1.54 (m, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$  199.3, 145.1, 137.9, 129.1, 128.5, 128.3, 126.5, 126.4, 124.6 (q,  $J_{C,F} = 284.9$  Hz), 76.4 (q,  $J_{C,F} = 28.8$  Hz), 51.3, 40.2, 24.8, 23.6. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>):  $\delta$  –80.22 (s, 3F). HRMS (ESI) m/z calcd. for C<sub>18</sub>H<sub>22</sub>O<sub>2</sub>N<sub>2</sub>F<sub>3</sub> [M<sup>+</sup>+H] 355.1628, found 355.1627. The enantiomeric excess was determined by HPLC using a Chiralpak IA column [*n*-hexanes/*i*PrOH (90:10)]; flow rate 1 mL/min;  $\tau_{major} = 10.0$  min,  $\tau_{minor} = 12.0$  min (89% ee); [ $\alpha$ ] $_{D}^{25} = +275.8$  (c 1.0, CHCl<sub>3</sub>).



(S,1E,2E)-7,7,7-Trifluoro-6-hydroxy-1-(morpholinoimino)-6-phenylhept-2-en-4-one, (S)-9Ba.



Following the general procedure **8**, starting from **8B** (73 mg, 0.4 mmol), 2,2,2-trifluoro-1-phenylethan-1-one **2a** (28  $\mu$ L, 0.2 mmol) and 20 mol% of **II(SA)**<sub>2</sub> salt (24 mg, 0.04 mmol), compound (*S*)-**9Ba** was obtained as a yellow oil (42 mg, 58%; reaction ran for 3 d). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.58 (d, *J* = 7.5 Hz, 2H), 7.42 – 7.29 (m, 4H), 7.21 (d, *J* = 9.1 Hz, 1H), 6.14 (d, *J* = 15.9 Hz, 1H), 5.90 (s, 1H), 3.85

(t, J = 5.1 Hz, 4H), 3.56 (d, J = 16.7 Hz, 1H), 3.32 – 3.23 (m, 5H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$  199.3, 143.8, 137.1, 131.4, 128.6, 128.4, 128.3, 126.3, 124.6 (q,  $J_{C,F} = 284.8$  Hz), 76.4 (q,  $J_{C,F} = 29.0$  Hz), 66.0, 50.7, 40.7. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>):  $\delta$  –80.19 (s, 3F). HRMS (ESI) m/z calcd. for C<sub>17</sub>H<sub>19</sub>O<sub>3</sub>N<sub>2</sub>F<sub>3</sub>Na [M<sup>+</sup>+Na] 379.1240, found 379.1236. The enantiomeric excess was determined by HPLC using a Chiralpak IA column [*n*-hexanes/*i*PrOH (90:10)]; flow rate 1 mL/min;  $\tau_{major} = 19.4$  min,  $\tau_{minor} = 23.8$  min (88% ee);  $[\alpha]_D^{25} = +189.5$  (c 0.5, CHCl<sub>3</sub>).



(*S*,1*E*,2*E*)-1-(2,2-Dibenzylhydrazineylidene)-7,7,7-trifluoro-6-hydroxy-6-phenylhept-2-en-4-one, (*S*)-9Ca.



Following the general procedure **8**, starting from **8C** (73 mg, 0.4 mmol), 2,2,2-trifluoro-1-phenylethan-1-one **2a** (28  $\mu$ L, 0.2 mmol) and 10 mol% of **II(SA)**<sub>2</sub> salt (12 mg, 0.02 mmol), compound (*S*)-**9Ca** was obtained as a yellow oil (88 mg, 94%; reaction performed at 2 mmol scale: 904 mg, 97%, 90% ee; reactions ran for 2 d). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.55 (d, *J* = 7.0 Hz, 2H), 7.46 – 7.24 (m, 10H), 7.14 (d, *J* = 6.5 Hz, 4H), 6.86

(d, J = 9.2 Hz, 1H), 6.09 (s, 1H), 5.89 (d, J = 15.8 Hz, 1H), 4.60 (s, 4H), 3.46 (d, J = 16.6 Hz, 1H), 3.21 (d, J = 16.6 Hz, 1H). <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  199.1, 144.8, 137.9, 135.5, 128.9, 128.5, 128.2, 127.8, 127.3, 126.3, 125.8, 124.6 (q,  $J_{C,F} = 285.0$  Hz), 76.4 (q,  $J_{C,F} = 28.9$  Hz), 57.9, 40.6. <sup>19</sup>F NMR (282.5 MHz, CDCl<sub>3</sub>):  $\delta$  –80.10 (s, 3F). HRMS (ESI) m/z calcd. for C<sub>27</sub>H<sub>25</sub>O<sub>2</sub>N<sub>2</sub>F<sub>3</sub>Na [M<sup>+</sup>+Na] 489.1760, found 489.1756. The enantiomeric excess was determined by HPLC using a Chiralpak IA column [*n*-hexanes/*i*PrOH (90:10)]; flow rate 1 mL/min;  $\tau_{minor} = 8.9$  min,  $\tau_{major} = 9.9$  min (90% ee);  $[\alpha]_D^{25} = +204.2$  (c 1.0, CHCl<sub>3</sub>).



(*S*,1*E*,2*E*)-7,7,7-Trifluoro-6-hydroxy-1-(2-methyl-2-phenylhydrazineylidene)-6-phenylhept-2-en-4-one, (*S*)-9Da.



Following the general procedure **8**, starting from **8D** (81 mg, 0.4 mmol) 2,2,2-trifluoro-1-phenylethan-1-one **2a** (28  $\mu$ L, 0.2 mmol) and 10 mol% of **II(SA)**<sub>2</sub> salt (12 mg, 0.02 mmol), compound (*S*)-**9Da** was obtained as a yellow solid (56 mg, 75%; reaction ran for 2 d). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.61 (d, *J* = 7.6 Hz, 2H), 7.53 (dd, *J* = 15.9, 9.1 Hz, 1H), 7.44 – 7.31 (m, 7H), 7.23 (d, *J* = 9.1 Hz, 1H), 7.11 – 7.04 (m, 1H), 6.22 (d, *J* 

= 15.9 Hz, 1H), 6.01 (s, 1H), 3.60 (d, J = 16.6 Hz, 1H), 3.43 (s, 3H), 3.32 (d, J = 16.6 Hz, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$  199.2, 146.5, 144.3, 137.8, 130.1, 129.2, 128.6, 128.3, 127.8, 126.4, 124.6 (q,  $J_{C,F}$  = 284.9 Hz), 123.2, 121.2, 76.4 (q,  $J_{C,F}$  = 28.9 Hz), 40.8, 34.3. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>):  $\delta$  -80.14 (s, 3F). HRMS (ESI) m/z calcd. for C<sub>20</sub>H<sub>19</sub>O<sub>2</sub>N<sub>2</sub>F<sub>3</sub>Na [M<sup>+</sup>+Na] 399.1291, found 399.1288. The enantiomeric excess was determined by HPLC using a Chiralpak IA column [*n*-hexanes/*i*PrOH (90:10)]; flow rate 1 mL/min;  $\tau_{minor}$  = 11.5 min,  $\tau_{major}$  = 13.9 min (86% ee); [ $\alpha$ ]<sub>D</sub><sup>25</sup> = +419.1 (c 1.0, CHCl<sub>3</sub>).



## (*S*,1*E*,2*E*)-1-(2,2-Diphenylhydrazineylidene)-7,7,7-trifluoro-6-hydroxy-6-phenylhept-2-en-4-one, (*S*)-9Ea.



Following the general procedure **8**, starting from **8E** (106 mg, 0.4 mmol), 2,2,2-trifluoro-1-phenylethan-1-one **2a** (28  $\mu$ L, 2 mmol) and 10 mol% of **II(SA)**<sub>2</sub> salt (12 mg, 0.02 mmol), compound (*S*)-**9Ea** was obtained as a yellow solid (82 mg, 94%; reaction performed at 2 mmol scale: 851 mg, 97%, 90% ee; reactions ran for 2 d); mp: 118-120 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.59 (d, *J* = 7.5 Hz, 2H), 7.52 (dd, *J* = 15.9, 9.3 Hz, 1H),

7.45 (t, J = 7.8 Hz, 4H), 7.40 – 7.26 (m, 5H), 7.17 (d, J = 7.6 Hz, 4H), 6.89 (d, J = 9.3 Hz, 1H), 6.02 (d, J = 15.9 Hz, 1H), 5.92 (s, 1H), 3.54 (d, J = 16.7 Hz, 1H), 3.28 (d, J = 16.7 Hz, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$  199.0, 143.4, 137.8, 133.3, 130.0, 128.8, 128.6, 128.3, 126.3, 124.6 (q,  $J_{C,F} = 284.9$  Hz), 76.4 (q,  $J_{C,F} = 28.8$  Hz), 41.0. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>):  $\delta$  –80.14 (s, 3F). HRMS (ESI) m/z calcd. for C<sub>25</sub>H<sub>22</sub>O<sub>2</sub>N<sub>2</sub>F<sub>3</sub> [M<sup>+</sup>+H] 439.1628 found 439.1633. The enantiomeric excess was determined by HPLC using a Chiralpak IB column [*n*-hexanes/*i*PrOH (90:10)]; flow rate 1 mL/min;  $\tau_{minor} = 7.2$  min,  $\tau_{major} = 7.8$  min (90% ee); [ $\alpha$ ]<sub>D</sub><sup>25</sup> = +350.4 (c 1.0, CHCl<sub>3</sub>).

Recrystallization of (S)-**3Ga** by slow evaporation of a solution of (S)-**3Ga** in  $Et_2O$  afforded suitable crystals for X-ray analysis.



#### 9. Synthesis of (S)-4,4,4-trifluoro-3-hydroxy-3-phenylbutanoic acid, (S)-10



Jones reagent (6.75 mL, 4.5 mmol) was dropwise added to a solution of (*S*)-**3Ba** (150 mg, 0.45 mmol, >99% ee) in Et<sub>2</sub>O (4.5 mL) at -30 °C. The reaction mixture was allowed to warm to room temperature and stirred for 10 min. After this time, the mixture was filtered through a short silica gel pad (50 x 40 mm) and eluted with Et<sub>2</sub>O until the product could no longer be detected (TLC monitoring). The solvent was eliminated under reduced pressure and the residue was diluted with aqueous NaOH (5 mL, 1.0 M) and washed with Et<sub>2</sub>O (2 x 5 mL). The aqueous phase was acidified with aqueous H<sub>2</sub>SO<sub>4</sub> (2.0 N) until pH 0-1 and extracted with EtOAc (7 x 5 mL). The combined organic layers were dried over MgSO<sub>4</sub> and the solvent was eliminated under reduced pressure to afford the product (*S*)-**10** as a white solid (61 mg, 58%). The

experimental data is in accordance with those reported in the literature.<sup>14</sup> <sup>1</sup>**H** NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  8.64 (br s, 1H), 7.63 – 7.33 (m, 5H), 4.89 (s, 1H), 3.34 – 3.10 (m, 2H). <sup>19</sup>F NMR (282.5 MHz, CDCl<sub>3</sub>):  $\delta$  – 80.47 (s, 3F). The enantiomeric excess was determined by HPLC using a Chiralcel OJ-H column [*n*-hexanes/*i*PrOH/TFA (85:15:0.2)], flow rate 1 mL/min;  $\tau_{minor} = 5.7 \text{ min}$ ,  $\tau_{major} = 11.9 \text{ min}$  (>99% ee);  $[\alpha]_D^{25} = +12.6$  (c 0.5, CHCl<sub>3</sub>). Literature:  $[\alpha]_D^{26} = +7.6$  (c 0.98, CHCl<sub>3</sub>), >99% ee (*S*).



10. Synthesis of (S)-7,7,7-trifluoro-6-hydroxy-4-oxo-6-phenylheptanal, (S)-11



A solution of (*S*)-**9Ca** (130 mg, 0.28 mmol, 90% ee) in THF (1.70 mL) was dropwise added to a solution of SnCl<sub>2</sub> (340 mg, 1.70 mmol) in aqueous HCl (1.6 mL, 6.0 M) at 0 °C. The mixture was allowed to warm to room temperature and stirred for 10 min. After this time, the mixture was diluted with H<sub>2</sub>O (12 mL) and extracted with CH<sub>2</sub>Cl<sub>2</sub>/*i*PrOH (4 x 5 mL, 9/1). The combined organic layers were washed with water (1 x 10 mL) and brine (1 x 10 mL), dried over anhydrous MgSO<sub>4</sub> and the solvent was eliminated under reduced pressure. The resulting residue was purified by flash chromatography (CH<sub>2</sub>Cl<sub>2</sub>/Et<sub>2</sub>O 10/1) to afford pure product (*S*)-**11** as a colorless oil (70 mg, 91%). <sup>1</sup>**H** NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  9.68 (s, 1H), 7.57 (d, *J* = 7.1 Hz, 2H), 7.46 – 7.31 (m, 3H), 5.25 (s, 1H), 3.43 (d, *J* = 17.0 Hz, 1H), 3.28 (d, *J* = 17.0 Hz, 1H), 2.93 – 2.53 (m, 4H). <sup>13</sup>**C** NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  208.7, 199.4, 137.2, 128.8, 128.4, 126.1, 124.5 (q, *J*<sub>C,F</sub> = 285.0 Hz), 76.0 (q, *J*<sub>C,F</sub> = 29.2 Hz), 44.8, 37.0, 36.6. <sup>19</sup>**F** NMR (471 MHz, CDCl<sub>3</sub>):  $\delta$  –80.27 (s, 3F). **HRMS** (ESI) m/z calcd. for C<sub>13</sub>H<sub>13</sub>O<sub>3</sub>F<sub>3</sub>Na [M<sup>+</sup>+Na] 297.0709, found 297.0713. HPLC Chiralpak ID column [*n*-hexanes/*i*PrOH (90:10)], flow rate 1 mL/min;  $\tau_{minor}$  = 9.5 min,  $\tau_{major}$  = 10.2 min (90% ee); [ $\alpha$ ]<sub>D</sub><sup>25</sup> = +163.7 (c 1.0, CHCl<sub>3</sub>).

<sup>&</sup>lt;sup>14</sup> Z. Jing, X. Bai, W. Chen, G. Zhang, B. Zhu, Z. Jiang, Org. Lett. 2016, 18, 2, 260.



11. Synthesis of (S)-7,7,7-trifluoro-6-hydroxy-4-oxo-6-phenylheptanoic acid, (S)-12



**Step 1**: A suspension of (*S*)-**9Ea** (110 mg, 0.25 mmol, 90% ee) and Raney-Ni<sup>®</sup> (0.30 g, 50% in H<sub>2</sub>O) in MeOH (3 mL) was stirred under hydrogen atmosphere (1 atm) at room temperature for 3 h. After this time, the mixture was filtered through a celite pad and the solvent was eliminated under reduced pressure to afford (*S*)-7-(2,2-diphenylhydrazineylidene)-1,1,1-trifluoro-2-hydroxy-2-phenylheptan-4-one (**9Ea'**) as a yellow oil, which was used in the next step without further purification.

**Step 2**: Jones reagent (4 mL, 2.67 mmol) was dropwise added to a solution of crude (*S*)-**9Ea'** (~0.25 mmol) in Et<sub>2</sub>O (2.5 mL) at -30 °C. The reaction mixture was allowed to warm to rt and stirred for 10 min. The mixture was then filtered through a short silica gel pad (30 x 40 mm) and eluted with Et<sub>2</sub>O until the product could no longer be detected (TLC monitoring). The solvent was eliminated under reduced pressure and the residue was dissolved in aqueous NaOH (5 mL, 1.0 M) and washed with Et<sub>2</sub>O (2 x 5 mL). The aqueous phase was acidified with aqueous H<sub>2</sub>SO<sub>4</sub> (2.0 N) until pH 0-1 and extracted with EtOAc (7 x 5 mL). The combined organic layers were dried over MgSO<sub>4</sub> and concentrated under reduced pressure to afford (*S*)-**12** as a yellow oil (46 mg, 63%). <sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>):  $\delta$  8.96 (br s, 1H), 7.56 – 7.48 (m, 2H), 7.44 – 7.29 (m, 3H), 5.35 (br s, 1H), 3.41 (d, *J* = 17.0 Hz, 1H), 3.25 (d, *J* = 17.0 Hz, 1H), 2.89 – 2.75 (m, 1H), 2.73 – 2.50 (m, 3H). <sup>13</sup>**C NMR** (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  208.7, 177.9, 137.1, 128.8, 128.4, 126.1, 124.4 (q, *J*<sub>C,F</sub> = 285.0 Hz), 76.0 (q, *J*<sub>C,F</sub> = 29.2 Hz), 44.8, 38.7, 27.2. <sup>19</sup>**F NMR** (282.5 MHz, CDCl<sub>3</sub>):  $\delta$  –80.29 (s, 3F). **HRMS** (ESI) m/z calcd. for C<sub>13</sub>H<sub>13</sub>O<sub>4</sub>F<sub>3</sub>Na [M<sup>+</sup>+Na] 313.0658, found 313.0657. The enantiomeric excess was determined by HPLC using a Chiralcel OJ-H column [*n*-hexanes/*i*PrOH/TFA (80:20:0.2)], flow rate 1 mL/min;  $\tau_{minor} = 7.8 \min$ ,  $\tau_{major} = 19.0 \min$  (90% ee); [ $\alpha$ ]<sub>D</sub><sup>25</sup> = +22.4 (c 0.5, CHCl<sub>3</sub>).



12. Synthesis of (*E*)-(*S*)-7-(2,2-diphenylhydrazineylidene)-1,1,1,8,8,8-hexafluoro-2-hydroxy-2-phenyloctan-4-one, (*E*)-(*S*)-13.



**Step 1**: A suspension of (*S*)-**9Ea** (180 mg, 0.4 mmol, 90% ee) and Raney-Ni<sup>®</sup> (0.40 g, 50% in H<sub>2</sub>O) in MeOH (3 mL) was stirred under hydrogen atmosphere (1 atm) at room temperature for 3 h. After this time, the mixture was filtered through a celite pad and the solvent was eliminated under reduced pressure to afford (*S*)-7-(2,2-diphenylhydrazineylidene)-1,1,1-trifluoro-2-hydroxy-2-phenylheptan-4-one (**9Ea'**) as a yellow oil, which was used in the next step without further purification.

**Step 2**: Togni reagent II (366 mg, 0.7 mmol) and copper chloride (8 mg, 0.08 mmol) were subsequently added to a solution of crude (*S*)-**9Ea'** (~0.4 mmol) in CHCl<sub>3</sub> (3 mL). The reaction was flushed with argon and sealed. The reaction mixture was stirred at room temperature overnight and then washed with a saturated solution of NaHCO<sub>3</sub> (3 × 7 mL). The organic layer was dried over MgSO4 and the solvent was eliminated under reduced pressure. The resulting residue was purified by flash chromatography (*n*-hexanes/EtOAc 6/1) to afford pure (*E*)-(*S*)-**13** as a yellow oil (148 mg, 73%). <sup>1</sup>**H** NMR (500 MHz, CDCl3):  $\delta$  7.57 – 7.49 (m, 2H), 7.45 – 7.37 (m, 3H), 7.20 – 7.19 (m, 4H), 7.19 (t, *J* = 7.4 Hz, 2H), 7.10 – 7.00 (m, 4H), 5.21 (s, 1H), 3.14 (d, *J* = 17.1 Hz, 1H), 2.98 (d, *J* = 17.0 Hz, 1H), 2.46 – 2.22 (m, 2H), 2.19 – 2.03 (m, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$  207.7, 146.3, 138.9 (q, *J*<sub>C,F</sub> = 32.2 Hz), 137.2, 129.6, 128.9, 128.5, 126.1, 125.5, 125.0, 124.3 (q, *J*<sub>C,F</sub> = 284.8 Hz), 122.3, 121.7 (q, *J*<sub>C,F</sub> = 275.4 Hz), 75.9 (q, *J*<sub>C,F</sub> = 29.3 Hz), 44.3, 39.6, 20.9. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>):  $\delta$  -68.55 (s, 3F), -80.28 (s, 3F). HRMS (ESI) m/z calcd. for C<sub>26</sub>H<sub>22</sub>O<sub>2</sub>N<sub>2</sub>F<sub>6</sub>Na [M<sup>+</sup>+Na] 531.1478, found 531.1473. The enantiomeric excess was determined by HPLC using a Chiralpak IB column [*n*-hexanes/*i*PrOH (90:10)], flow rate 1 mL/min;  $\tau_{minor} = 4.5 \min$ ,  $\tau_{major} = 4.8 \min (90\%$  ee);  $[\alpha]_D^{25} = +46.3$  (c 1.0, CHCl<sub>3</sub>).

| 300  | 🖥 (man         | ually integrated] |          |           |                    | EXT277NM WVL:277 nm  | 450          | 💈 (manu    | ally integrated] |             | EXT277NM WVL:277 nm |
|------|----------------|-------------------|----------|-----------|--------------------|----------------------|--------------|------------|------------------|-------------|---------------------|
| 250- | mAU            |                   |          | ł         | - 4.523 /2 - 4.853 |                      | 400-         | mAU        |                  | 12 - 4.757  |                     |
| 200- |                |                   |          |           |                    |                      | 300-         |            |                  |             |                     |
| 150- |                |                   |          |           |                    |                      | 200          |            |                  |             |                     |
| 50-  |                |                   |          |           |                    |                      | 150-<br>100- |            |                  |             |                     |
| 0    |                |                   |          |           |                    | ~                    | 50<br>0      |            | 1-4.430          |             |                     |
| -50- | 40 3.50        | 3.75              | 4.00     | 4.25 4.50 | 4.75 5.00 5.25     | min<br>5.50 5.75 6.0 | .50 J        | 40 3 50    | 375 400 425 450  | 475 500 525 | min                 |
| In   | tegr           | ation R           | esults   |           |                    |                      | In           | tegr       | ation Results    |             |                     |
| No   | <b>D</b> .     | Re                | etentior | n Time    | Area               | Relative Area        | No           | <b>D</b> . | Retention Time   | Area        | Relative Area       |
|      |                |                   | min      |           | mAU*min            | %                    |              |            | min              | mAU*min     | %                   |
| 1    | 1 4.523 23.855 |                   | 50.05    | 1         |                    | 4.430                | 1.882        | 5.24       |                  |             |                     |
| 2    | 2 4.853 23.805 |                   |          | 49.95     | 2                  |                      | 4.757        | 34.049     | 94.76            |             |                     |

#### 13. NMR spectra of all compounds







210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0















210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)



210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)
<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>) of **2e** 



<sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) of 2e



 $^1H$  NMR (500 MHz, CDCl<sub>3</sub>) of  $II(SA)_2$ 















<sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) of (S)-3Da













<sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) of (S)-3Ha





S51

## <sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>) of (*S*)-7.







<sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>) of (*S*)-**3Bb** 





20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200



S56

## <sup>19</sup>F NMR (282.5 MHz, CDCl<sub>3</sub>) of (S)- 3Ac







<sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) of (S)- 3Bd











<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) of (*R*)- **3Bf** 















S67









## <sup>1</sup>**H NMR** (300 MHz, CD<sub>2</sub>Cl<sub>2</sub>) of (*S*)-**3Ge**






<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) of (*R*)-3Gi







## <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) of (S)-9Aa



<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) of (S)-9Ba









S77







<sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>) of (S)-9Ea





11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

0.83-

2.00-

5.11-

1.10-

## <sup>19</sup>F NMR (282.5 MHz, CDCl3) of (S)-10







### <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) of (S)-12



<sup>13</sup> C NMR (75.5 MHz, CDCl<sub>3</sub>) of (S)-12



## <sup>19</sup>F NMR (282.5 MHz, CDCl<sub>3</sub>) of (S)-12



# <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>) of (*E*)-(*S*)-**13**



<sup>13</sup> C NMR (126 MHz, CDCl<sub>3</sub>) of (*E*)-(*S*)-13





## 14. Mass spectra analysis



(+)-ESI-MS scan of the reaction between 1A (0.2 mmol) and 2a (0.1 mmol) in the presence of II(SA)<sub>2</sub> (0.02 mmol) in toluene/H<sub>2</sub>O 8:1 (1.0 M) at room temperature.

