Electronic Supplementary Information For

Ferrocene Metallopolymers of Intrinsic Microporosity (MPIMs)

Tianran Zhai, ${ }^{\text {a }}$ Kenson Ambrose, ${ }^{\text {b }}$ Audithya Nyayachavadi, ${ }^{\text {b }}$ Kelly G. Walter, ${ }^{\text {c }}$ Simon Rondeau-Gagné, ${ }^{\text {b }}$ and Jeremy I. Feldblyum*a
${ }^{a}$ Department of Chemistry, The University at Albany, State University of New York, Albany, NY, 12222, United States. Email: ifeldblyum@albany.edu
${ }^{b}$ Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada. Email: Simon.Rondeau-Gagne@uwindsor.ca
${ }^{\text {c }}$ Department of Microbiological Sciences, North Dakota State University, Fargo, ND, 58108

Contents

1. Experimental section 3
1.1 General methods 3
1.2 Synthesis of monomers 3
1.3 Synthesis of polymers 7
1.4 Polymer activation and gas sorption 7
2. Spectroscopic, gas sorption, thermogravimetric analysis, and cyclic voltammetry data 9
$2.1^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra 9
2.2 FT-IR spectra 18
2.3 Gas sorption data. 31
2.4 Thermogravimetric analysis (TGA) 40
2.5 Raman spectra 45
2.6 Cyclic voltammetry 46

1. Experimental section

1.1 General methods

All ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 500 MHz under ambient conditions. ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 126 MHz under ambient conditions. FT-IR data were collected with a Spectrum Two FT-IR spectrometer (Perkin Elmer, Waltham, MA) in attenuated total internal reflectance (ATIR) mode using a diamond ATIR crystal. High resolution mass data were acquired using direct analysis in real time-high resolution mass spectrometry (DART-HRMS; AccuTOF-DAART 4G, JEOL USA, Peabody, MA) in positive mode. The ion source was operated with ultra-high purity helium (Airgas, Albany, NY, USA) and at a temperature of 300 ${ }^{\circ} \mathrm{C}$. Raman spectroscopy was performed using an inVia Raman microscope (Renishaw, West Dundee). For spectral acquisition, the following settings were used: 475 nm laser, 50 x objective, 1% laser power filter, 30 s acquisition time. UV-Vis-NIR data were measured using a Jasco V-770 UV-vis near-infrared (UV-vis-NIR) spectrophotometer with scanning rate $10 \mathrm{~nm} / \mathrm{min}$, UV/Vis bandwidth 5 nm and NIR bandwidth 20 nm . Gas sorption analysis was performed using a 3 Flex gas sorption analyzer (Micromeritics, Norcross, GA). Samples were affixed to the gas sorption analyzer, evacuated to 10^{-6} bar, cooled to 77 K , and analyzed using high purity N_{2} gas ($99.999 \%+$, Airgas). Number average molecular weight (M_{n}), weight average molecular weight $\left(M_{\mathrm{w}}\right)$, and dispersity $\left(~_{\mathrm{M}}\right)$ were evaluated by high temperature size exclusion chromatography (SEC) using 1,2,4-trichlorobenzene and performed on an EcoSEC HLC-8321GPC/HT (Tosoh Bioscience Inc., San Francisco, CA) equipped with a single TSK gel GPC column (GMHHR-H; $300 \mathrm{~mm} \times 7.8 \mathrm{~mm}$) calibrated with monodisperse polystyrene standards. The samples were prepared using $1 \mathrm{mg} / \mathrm{mL}$ of sample in trichlorobenzene (TCB), which were allowed to stir at $80^{\circ} \mathrm{C}$ for 12 h prior to injection. The analysis of the samples was performed at $180^{\circ} \mathrm{C}$ with a flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$ with injection quantities of $300 \mu \mathrm{~L}$. Data were collected and processed using the EcoSEC 8321GPC HT software suite. Cyclic voltammetry measurements were carried out using a sealed CHIode three electrode electrochemical set up utilizing a glassy carbon working electrode, a saturated KCl standard electrode, and a platinum wire counter electrode in anhydrous dimethylformamide solvent having 0.1 M tetrabutylammonium tetrafluoroborate.

1.2 Synthesis of monomers

1,4-dihexyloxybenzene (2): 1-iodohexane ($16.0 \mathrm{~mL}, 0.108 \mathrm{mmol}, 3$ eq.) and $\mathrm{NaOH}(5.45 \mathrm{~g}, 0.108 \mathrm{mmol}, 3$ eq.) were added to a solution of hydroquinone ($3.98 \mathrm{~g}, 0.0362 \mathrm{mmol}, 1 \mathrm{eq}$.) in 120 mL DMSO under air atmosphere at r.t. The mixture was stirred for 2 h and then poured into ice and water (1000 mL). The resulting solid precipitate was filtered and washed with water. The resulting residue was purified by flash column chromatography using hexanes as the eluent to afford the product (2.49 g , 25%) as a white solid.
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 6.82(\mathrm{~s}, 4 \mathrm{H}), 3.90(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.83-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.45(\mathrm{dt}, \mathrm{J}=8.0,3.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.33(\mathrm{dq}$, $J=7.2,4.3,3.8 \mathrm{~Hz}, 8 \mathrm{H}), 0.95-0.86(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz , Chloroform-d) $\delta 153.34,115.54,68.82,31.77,29.53,25.90,22.77,14.20$.

1,4-diiodo-2,5dihexyloxybenzene (3): A solution of $\mathrm{H}_{5} \mathrm{IO}_{6}$ ($2.18 \mathrm{~g}, 9.56 \mathrm{mmol}, 0.65$ eq.) in methanol (35 mL) was stirred for 10 $\mathrm{min} . \mathrm{I}_{2}(4.64 \mathrm{~g}, 19.7 \mathrm{mmol}, 1.3$ eq.) was added and the resulting solution was stirred for another $10 \mathrm{~min} .1,4$-dihexyloxybenzene ($4.11 \mathrm{~g}, 14.8 \mathrm{mmol}, 1 \mathrm{eq}$.) was added and the mixture was stirred at $70^{\circ} \mathrm{C}$ for 4 h . The resulting solution was poured into a solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(3.8 \mathrm{~g})$ in water (75 mL). The resulting precipitate was washed with methanol and dissolved in DCM. After filtration, the filtrate was collected and evaporated under vacuum to afford a white solid ($6.20 \mathrm{~g}, 78 \%$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.17(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.84-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.49(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 1.37-1.32$ ($\mathrm{m}, 8 \mathrm{H}$), $0.93-0.89$ (m, 6H).
${ }^{13}$ C NMR (126 MHz , Chloroform-d) $\delta 153.02,122.95,86.46,70.52,31.62,29.27,25.87,22.74,14.19$.
1,4-bis(trimethylsilylethynyl)-2,5-bis(hexyloxy)benzene (4): A flame-dried 100 mL Schlenk flask was charged with 30 mL diisopropylamine, 1,4-diiodo-2,5dihexyloxybenzene ($4.09 \mathrm{~g}, 7.70 \mathrm{mmol}, 1$ eq.), trimethylsilylethyne ($3.20 \mathrm{~mL}, 23.1 \mathrm{mmol}, 3 \mathrm{eq}$.), copper(I) iodide ($146.7 \mathrm{mg}, 0.77 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(270.2 \mathrm{mg}, 0.385 \mathrm{mmol}, 5 \mathrm{~mol} \%)$. The mixture was stirred for

24 h at room temperature. The solvent was removed in vacuo and the residue was dissolved in hexanes and extracted with water. The combined organic phases were dried over NaSO_{4} and the solvent was removed in vacuo. The residue was purified by column chromatography using hexanes/DCM (20/1-15/1) as eluent to afford compound $\mathbf{4}(3.08 \mathrm{~g}, 85 \%)$.
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 6.89(\mathrm{~s}, 12 \mathrm{H}), 3.94(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 4 \mathrm{H}), 1.84-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.52-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.39-1.29(\mathrm{~m}$, 8 H), $1.02-0.85$ (m, 6H), $0.25(\mathrm{~s}, 18 \mathrm{H})$
${ }^{13}$ C NMR (126 MHz, Chloroform-d) $\delta 154.14,117.34,114.07,101.20,100.22,69.59,31.76,29.44,25.84,22.79,14.23,0.10,0.10$.

1,4-diethynyl-2,5-bis(hexyloxy)benzene (5): A 500 mL round bottom flask was charged with 1,4-bis(trimethylsilylethynyl)-2,5bis(hexyloxy)benzene ($2.85 \mathrm{~g}, 6.05 \mathrm{mmol}, 1$ eq.) and suspended in 100 mL methanol and 100 mL ether, and then $\mathrm{K}_{2} \mathrm{CO}_{3}(3.17 \mathrm{~g}$, $23.0 \mathrm{mmol}, 3.8 \mathrm{eq}$.) was added. The mixture was stirred for 1 h at room temperature. The solvent was removed by rotary evaporation. The residue was dissolved in hexanes. $\mathrm{K}_{2} \mathrm{CO}_{3}$ was removed by filtration, and the residue was purified by column chromatography using hexanes/DCM (10/1) as the eluent to afford compound $\mathbf{5}$ ($968.7 \mathrm{mg}, 83 \%$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 6.95(\mathrm{~s}, 2 \mathrm{H}), 3.97(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.33(\mathrm{~s}, 2 \mathrm{H}), 1.80(\mathrm{dt}, \mathrm{J}=14.3,6.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.49-1.41(\mathrm{~m}$, $4 \mathrm{H}), 1.41-1.27(\mathrm{~m}, 8 \mathrm{H}), 0.94-0.86(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz , Chloroform-d) $\delta 154.12,117.87,113.39,82.54,79.92,69.81,31.67,29.24,25.73,22.74,14.17$.

1,4-dihexylbenzene (7): To a dry flask $\mathrm{NiCl}_{2}(\mathrm{dppp})(77.4 \mathrm{mg}, 0.143 \mathrm{mmol}, 0.3 \mathrm{~mol} \%$) and a solution of 1,4-dichlorobenzene (7.00 $\mathrm{g}, 47.6 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in THF (30 mL) were added, and then hexylmagnesiumbromide ($105 \mathrm{~mL}, 1 \mathrm{M}$ in THF, 2.2 eq.) was added dropwise. The resulting reaction mixture was stirred under reflux for 15 h . After cooling to room temperature, the reaction mixture was hydrolyzed with ice/ HCl (aq. $1 \mathrm{M}, 70 \mathrm{~mL}$), then extracted with hexanes. The combined organic phase was washed with saturated NaHCO_{3} solution and brine, then dried over MgSO_{4}. The solvent was then removed in vacuo. The resulting residue was purified by column chromatography using hexanes as the eluent to afford compound $\mathbf{7}$ ($8.71 \mathrm{~g}, 74 \%$).
${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, Chloroform-d) $\delta 7.09(\mathrm{~s}, 4 \mathrm{H}), 2.63-2.50(\mathrm{~m}, 4 \mathrm{H}), 1.59(\mathrm{p}, \mathrm{J}=7.8,7.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.39-1.26(\mathrm{~m}, 12 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=$ $6.8 \mathrm{~Hz}, 6 \mathrm{H}$).
${ }^{13}$ C NMR (126 MHz, Chloroform-d) $\delta 140.23,128.36,35.73,31.91,31.72,29.23,22.78,14.26$.
1,4-dihexyl-2,5-diiodobenzene (8): 1,4-dihexylbenzene ($236.0 \mathrm{mg}, 0.958 \mathrm{mmol}, 1$ eq.) was dissolved in a mixture of acetic acid (6 mL), conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(0.4 \mathrm{~mL})$, and water (0.1 mL). $\mathrm{I}_{2}(248.5 \mathrm{mg}, 1.05 \mathrm{mmol}, 1.1 \mathrm{eq}$.) and potassium iodate ($101.8 \mathrm{mg}, 0.479 \mathrm{mmol}$, 0.5 eq.) were added, and the resulting mixture was stirred under reflux for 20 h . The reaction was then allowed to cool to room temperature and stopped by the addition of 10 mL water. The aqueous phase was extracted with hexanes, and the combined organic layers were washed with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (aq., sat.), $\mathrm{Na}_{2} \mathrm{HCO}_{3}$ (aq., sat.), and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (aq., sat.), and dried over MgSO_{4}. The crude product was purified by column chromatography using hexanes as the eluent. Compound $\mathbf{8}$ was isolated as a colorless solid (451 $\mathrm{mg}, 95 \%$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.59(\mathrm{~s}, 2 \mathrm{H}), 2.69-2.54(\mathrm{~m}, 4 \mathrm{H}), 1.53(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 8 \mathrm{H}), 1.39-1.29(\mathrm{~m}, 12 \mathrm{H}), 0.97-0.86(\mathrm{~m}$, 8H).
${ }^{13}$ C NMR (126 MHz , Chloroform-d) δ 144.99, 139.45, 100.48, 39.99, 31.75, 30.32, 29.15, 22.74, 14.23.

1,4-bis(trimethylsilylethynyl)-2,5-bis(hexyloxy)benzene (9): A flame-dried 25 mL Schlenk flask was charged with diisopropylamine (10 mL), $8(1.27 \mathrm{~g}, 2.54 \mathrm{mmol}, 1$ eq.), trimethylsilylethyne ($1.1 \mathrm{~mL}, 7.62 \mathrm{mmol}, 3$ eq.), copper(I) iodide (38.7 mg , $0.203 \mathrm{mmol}, 8 \mathrm{~mol} \%)$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(178.3 \mathrm{mg}, 0.254 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The mixture was stirred for 24 h at room temperature. The solvent was removed in vacuo, and the residue was dissolved in hexanes and extracted with water. The aqueous phase was extracted with hexanes twice. The combined organic phases were dried over NaSO_{4} and the solvent was removed in vacuo. The residue was purified by column chromatography using hexanes as the eluent to afford compound 9 ($786.8 \mathrm{mg}, 71 \%$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.26(\mathrm{~s}, 2 \mathrm{H}), 2.74-2.55(\mathrm{~m}, 4 \mathrm{H}), 1.67-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.38-1.25(\mathrm{~m}, 12 \mathrm{H}), 0.98-0.83(\mathrm{~m}$, $6 \mathrm{H}), 0.25(\mathrm{~s}, 18 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, Chloroform-d) $\delta 144.99$, 139.45, 125.89, 106.29, 100.47, 39.99, 31.75, 30.32, 29.15, 22.74, 14.23.
1,4-diethynyl-2,5-dihexylbenzene (10): A 250 mL round bottom flask was charged with 9 ($2.57 \mathrm{~g}, 5.87 \mathrm{mmol}, 1$ eq.) and suspended in methanol (50 mL) and ether (50 mL). then $\mathrm{K}_{2} \mathrm{CO}_{3}(3.08 \mathrm{~g}, 22.3 \mathrm{mmol}, 3.8$ eq.) was then added. The mixture was
stirred for 1 h at room temperature. The solvent was then removed by rotary evaporation. The resulting mixture was suspended in hexanes, and $\mathrm{K}_{2} \mathrm{CO}_{3}$ was removed by filtration. The resulting solution was dried by rotary evaporation, and the resulting residue was purified by column chromatography using hexanes as the eluent to afford compound $\mathbf{1 0}$ ($1.47 \mathrm{~g}, 85 \%$).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.29(\mathrm{~s}, 2 \mathrm{H}), 3.28(\mathrm{~s}, 2 \mathrm{H}), 2.76-2.64(\mathrm{~m}, 4 \mathrm{H}), 1.61(\mathrm{~m}, 4 \mathrm{H}), 1.41-1.27(\mathrm{~m}, 12 \mathrm{H}), 0.95-0.79$ ($\mathrm{m}, 6 \mathrm{H}$).
${ }^{13}$ C NMR (126 MHz , Chloroform-d) δ 142.69, 132.95, 121.93, 82.27, 81.54, 33.86, 31.69, 30.44, 29.11, 22.59, 14.07.

1,4-bis(3,3-dimethylbutyl)benzene (12): To a flame-dried flask, dichlorobenzene ($7.00 \mathrm{~g}, 47.6 \mathrm{mmol}, 1 \mathrm{eq}$.) and $\mathrm{NiCl}_{2}(\mathrm{dppp})$ $(258.0 \mathrm{mg}, 0.476 \mathrm{mmol}, 1 \mathrm{~mol} \%)$ were dissolved in ether (20 mL). Then Grignard reagent [1 1-bromo-2,2-dimethylpentane (17.0 $\mathrm{mL}, 119 \mathrm{mmol}, 2.5$ eq.) in ether (50 mL)] was added at $0^{\circ} \mathrm{C}$. The reaction was stirred at r.t. overnight. The mixture was then poured into water at $0^{\circ} \mathrm{C}$, then extracted with hexanes. Combine organic phases were washed with 1 M HCl and then NaHCO_{3} (aq., sat.) and brine. The residue was purified by column chromatography using hexanes as the eluent to afford compound $\mathbf{1 2}$ ($11.34 \mathrm{~g}, 97 \%$).
IR (neat): vmax $3025 \mathrm{~cm}^{-1}, 2956 \mathrm{~cm}^{-1}, 2862 \mathrm{~cm}^{-1}, 2844 \mathrm{~cm}^{-1}, 1473 \mathrm{~cm}^{-1}, 1363 \mathrm{~cm}^{-1}, 1236 \mathrm{~cm}^{-1}, 844 \mathrm{~cm}^{-1}, 728 \mathrm{~cm}^{-1}, 552 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.09(\mathrm{~s}, 4 \mathrm{H}), 2.66-2.42(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.41(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{~s}, 18 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform-d) $\delta 140.80,128.35,46.68,30.92,30.68,29.50$.
HRMS (m/z): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{31}[\mathrm{M}+\mathrm{H}]^{+}: 247.2420$, found: 247.2401.

1,4-bis(3,3-dimethylbutyl)-2,5-diiodobenzene (13): 12 ($11.35 \mathrm{~g}, 46.0 \mathrm{mmol}, 1$ eq.) was dissolved in acetic acid (90 mL), conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(6 \mathrm{~mL})$, and water (1.5 mL). $\mathrm{I}_{2}(11.9 \mathrm{~g}, 50.5 \mathrm{mmol}, 1.1 \mathrm{eq}$.) and potassium iodate ($4.92 \mathrm{~g}, 23.0 \mathrm{mmol}, 0.5$ eq.) were added, and the resulting mixture stirred under reflux for 20 h . The reaction was cooled to room temperature and stopped by the addition of water (50 mL). The aqueous phase was extracted with hexanes, and the combined organic layers were washed with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (aq. sat.), $\mathrm{Na}_{2} \mathrm{HCO}_{3}$ (aq. sat.), and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (aq. sat.), and dried over MgSO_{4}. The crude product was purified by column chromatography using hexanes as the eluent, and compound 13 was isolated as colorless solid ($10.8 \mathrm{~g}, 47 \%$).
IR (neat): vmax $2950 \mathrm{~cm}^{-1}, 2898 \mathrm{~cm}^{-1}, 2866 \mathrm{~cm}^{-1}, 1459 \mathrm{~cm}^{-1}, 1363 \mathrm{~cm}^{-1}, 1230 \mathrm{~cm}^{-1}, 1041 \mathrm{~cm}^{-1}, 886 \mathrm{~cm}^{-1}, 797 \mathrm{~cm}^{-1}, 476 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.59(\mathrm{~s}, 2 \mathrm{H}), 2.72-2.48(\mathrm{~m}, 4 \mathrm{H}), 1.45-1.32(\mathrm{~m}, 4 \mathrm{H}), 0.98(\mathrm{~s}, 18 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform-d) δ 145.42, 139.44, 100.42, 44.89, 35.58, 30.78, 29.43.
HRMS (m/z): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{I}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 499.0353, found: 499.0370.
((2,5-bis(3,3-dimethylbutyl)-1,4-phenylene)bis(ethyne-2,1-diyl))bis(trimethylsilane) (14): A flame-dried 100 mL Schlenk flask was charged with triethylamine (30 mL), $13(3.40 \mathrm{~g}, 6.82 \mathrm{mmol}, 1 \mathrm{eq}$.), trimethylsilylethyne ($2.8 \mathrm{~mL}, 20.5 \mathrm{mmol}, 3$ eq.), copper(I) iodide ($103.9 \mathrm{mg}, 0.545 \mathrm{mmol}, 8 \mathrm{~mol} \%$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(478.7 \mathrm{mg}, 0.682 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The mixture was stirred for 24 h at room temperature. The solvent was removed in vacuo and the residue was dissolved in hexanes and extracted with water. The aqueous phase was extracted with hexanes twice. The combined organic phases were dried over NaSO_{4} and the solvent was removed in vacuo. The residue was purified by column chromatography using hexanes as the eluent to afford compound $\mathbf{1 4}$ (1.59 g, 53\%).
IR (neat): vmax $2950 \mathrm{~cm}^{-1}, 2863 \mathrm{~cm}^{-1}, 2148 \mathrm{~cm}^{-1}, 1476 \mathrm{~cm}^{-1}, 1250 \mathrm{~cm}^{-1}, 829 \mathrm{~cm}^{-1}, 759 \mathrm{~cm}^{-1}, 699 \mathrm{~cm}^{-1}, 626 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.24(\mathrm{~s}, 2 \mathrm{H}), 2.79-2.57(\mathrm{~m}, 4 \mathrm{H}), 1.49-1.40(\mathrm{~m}, 4 \mathrm{H}), 0.96(\mathrm{~s}, 18 \mathrm{H}), 0.24(\mathrm{~s}, 18 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz , Chloroform-d) δ 143.09, 132.82, 122.69, 103.84, 98.78, 45.47, 30.75, 29.56, 29.44, 0.17.
HRMS (m/z): Calcd. for $\mathrm{C}_{28} \mathrm{H}_{47} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 439.3211, found: 439.3217.

1,4-bis(3,3-dimethylbutyl)-2,5-diethynylbenzene (15): A 100 mL round bottom flask was charged with $\mathbf{1 4}$ ($1.65 \mathrm{~g}, 3.77 \mathrm{mmol}, 1$ eq.) and suspended in methanol (50 mL) and ether (50 mL). $\mathrm{K}_{2} \mathrm{CO}_{3}(1.98 \mathrm{~g}, 14.3 \mathrm{mmol}, 3.8 \mathrm{eq}$.) was then added. The mixture was stirred for 1 h at room temperature. The solvent was removed by rotary evaporation. The resulting mixture was suspended in hexanes, and $\mathrm{K}_{2} \mathrm{CO}_{3}$ was removed by filtration. The resulting solution was dried by rotary evaporation, and the resulting residue was purified by column chromatography using hexanes as the eluent to afford compound $\mathbf{1 5}$ ($1.07 \mathrm{~g}, 97 \%$).
IR (neat): vmax $3295 \mathrm{~cm}^{-1}, 2959 \mathrm{~cm}^{-1}, 2866 \mathrm{~cm}^{-1}, 2104 \mathrm{~cm}^{-1}, 1474 \mathrm{~cm}^{-1}, 1365 \mathrm{~cm}^{-1}, 1215 \mathrm{~cm}^{-1}, 901 \mathrm{~cm}^{-1}, 647 \mathrm{~cm}^{-1}, 605 \mathrm{~cm}^{-1}, 483$ cm^{-1}.
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.29(\mathrm{~s}, 2 \mathrm{H}), 3.28(\mathrm{~s}, 2 \mathrm{H}), 2.84-2.57(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.38(\mathrm{~m}, 4 \mathrm{H}), 0.96(\mathrm{~s}, 18 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform-d) δ 143.40, 133.09, 122.08, 82.24, 81.68, 45.36, 30.77, 29.46, 29.36.
HRMS (m/z): Calcd. for $\mathrm{C}_{22} \mathrm{H}_{31}[\mathrm{M}+\mathrm{H}]^{+}: 295.2420$, found: 295.2434 .

1,4-dineopentylbenzene (17): To a flame-dried flask, dichlorobenzene ($7.00 \mathrm{~g}, 47.6 \mathrm{mmol}, 1$ eq.) and NiCl_{2} (dppp) ($258.0 \mathrm{mg}, 0.476$ $\mathrm{mmol}, 1 \mathrm{~mol} \%$) were dissolved in ether (20 mL). Grignard reagent [1 1-bromo-2,2-dimethylpentane ($15.0 \mathrm{~mL}, 119 \mathrm{mmol}, 2.5$ eq.) in ether (50 mL)] was then added at $0^{\circ} \mathrm{C}$. Reaction was stirred at r.t. overnight. Mixture was poured into water at $0^{\circ} \mathrm{C}$, followed by extraction with hexanes. Combined organic layer was washed with 1 M HCl and then NaHCO_{3} (aq., sat.) and brine. Residue was purified by column chromatography using hexanes as eluent to afford compound 17 ($7.41 \mathrm{~g}, 71 \%$).
IR (neat): vmax $3020 \mathrm{~cm}^{-1}, 2954 \mathrm{~cm}^{-1}, 2907 \mathrm{~cm}^{-1}, 2861 \mathrm{~cm}^{-1}, 1515 \mathrm{~cm}^{-1}, 1467 \mathrm{~cm}^{-1}, 1361 \mathrm{~cm}^{-1}, 1244 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.02$ ($\mathrm{s}, 4 \mathrm{H}$), $2.46(\mathrm{~s}, 4 \mathrm{H}), 0.90(\mathrm{~s}, 18 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz , Chloroform-d) $\delta 137.15,129.84,50.00,31.85,29.55$.
HRMS (m/z): Calcd. for $\mathrm{C}_{16} \mathrm{H}_{27}[\mathrm{M}+\mathrm{H}]^{+}: 219.2107$, found: 219.2680.

1,4-diiodo-2,5-dineopentylbenzene (18): To a solution of 17 ($2.88 \mathrm{~g}, 13.2 \mathrm{mmol}, 1 \mathrm{eq}$.) in $\mathrm{MeCN}(120 \mathrm{~mL})$ were added $\mathrm{I}_{2}(7.76 \mathrm{~g}$, $32.9 \mathrm{mmol}, 2.5$ eq.) and $\mathrm{F}-\mathrm{TEDA}-\mathrm{BF}_{4}(11.7 \mathrm{~g}, 32.9 \mathrm{mmol}, 2.5 \mathrm{eq}$.$) and the reaction mixture was stirred at 70{ }^{\circ} \mathrm{C}$ overnight. The solvent was removed under reduced pressure and the crude mixture was extracted with hexanes and water. The combined organic phase was washed with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}\left(10 \%\right.$, aq.) and brine and subsequently dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was purified by column chromatography using hexanes as the eluent to afford compound $\mathbf{1 8}(4.16 \mathrm{~g}, 67 \%)$.
IR (neat): vmax $2950 \mathrm{~cm}^{-1}, 2864 \mathrm{~cm}^{-1}, 1454 \mathrm{~cm}^{-1}, 1364 \mathrm{~cm}^{-1}, 1246 \mathrm{~cm}^{-1}, 880 \mathrm{~cm}^{-1}, 801 \mathrm{~cm}^{-1}, 453 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.65$ (s, 2H), 2.66 ($\mathrm{s}, 4 \mathrm{H}$), 0.99 ($\mathrm{s}, 18 \mathrm{H}$).
${ }^{13}$ C NMR (126 MHz , Chloroform-d) δ 142.54, 141.35, 102.13, 51.44, 33.60, 29.83.
HRMS (m/z): Calcd. for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{I}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 471.0040$, found: 471.0055
((2,5-dineopentyl-1,4-phenylene)bis(ethyne-2,1-diyl))bis(trimethylsilane) (19): A flame dried 100 mL Schlenk flask was charged with 30 mL triethylamine, 18 ($3.34 \mathrm{~g}, 7.10 \mathrm{mmol}, 1$ eq.), trimethylsilylethyne ($2.4 \mathrm{~mL}, 17.8 \mathrm{mmol}, 2.5 \mathrm{eq}$.), copper(I) iodide (108.2 $\mathrm{mg}, 0.568 \mathrm{mmol}, 8 \mathrm{~mol} \%$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(498.3 \mathrm{mg}, 0.498 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The mixture was stirred for 24 h at room temperature. The solvent was removed in vacuo and the residue was dissolved in hexanes and extracted with water. The aqueous phase was extracted with hexanes for twice. The combined organic phases were dried by NaSO_{4} and the solvent was removed. The residue was purified by column chromatography using hexanes as eluent to afford compound 19 ($1.35 \mathrm{~g}, 47 \%$). IR (neat): vmax $3013 \mathrm{~cm}^{-1}, 2950 \mathrm{~cm}^{-1}, 2901 \mathrm{~cm}^{-1}, 2866 \mathrm{~cm}^{-1}, 2152 \mathrm{~cm}^{-1}, 1466 \mathrm{~cm}^{-1}, 1246 \mathrm{~cm}^{-1}, 832 \mathrm{~cm}^{-1}, 761 \mathrm{~cm}^{-1}, 546 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.23(\mathrm{~s}, 2 \mathrm{H}), 2.68(\mathrm{~s}, 4 \mathrm{H}), 0.95(\mathrm{~s}, 18 \mathrm{H}), 0.25(\mathrm{~s}, 18 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz , Chloroform-d) δ 139.82, 134.48, 123.72, 105.59, 98.65, 46.59, 33.34, 29.76, 0.09.
HRMS (m/z): Calcd. for $\mathrm{C}_{26} \mathrm{H}_{43} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 411.2897, found: 411.2893.
1,4-diethynyl-2,5-dineopentylbenzene (20): A 100 mL round bottom flask was charged with 19 ($1.35 \mathrm{~g}, 3.29 \mathrm{mmol}, 1$ eq.) and suspended in methanol (30 mL) and ether (30 mL), and then $\mathrm{K}_{2} \mathrm{CO}_{3}(1.73 \mathrm{~g}, 12.5 \mathrm{mmol}, 3.8$ eq.) was added. The mixture was stirred for 1 h at room temperature. The solvent was removed by rotary evaporation. The resulting mixture was suspended in hexanes, and $\mathrm{K}_{2} \mathrm{CO}_{3}$ was removed by filtration. The resulting solution was dried by rotary evaporation, and the resulting residue was purified by column chromatography using hexanes as the eluent to afford compound $\mathbf{2 0}$ ($824.0 \mathrm{mg}, 94 \%$).
IR (neat): vmax $3295 \mathrm{~cm}^{-1}, 2948 \mathrm{~cm}^{-1}, 2863 \mathrm{~cm}^{-1}, 2101 \mathrm{~cm}^{-1}, 1466 \mathrm{~cm}^{-1}, 1363 \mathrm{~cm}^{-1}, 1247 \mathrm{~cm}^{-1}, 900 \mathrm{~cm}^{-1}, 833 \mathrm{~cm}^{-1}, 644 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.29(\mathrm{~s}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 2 \mathrm{H}), 2.70(\mathrm{~s}, 4 \mathrm{H}), 0.95(\mathrm{~s}, 18 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz , Chloroform-d) $\delta 139.85,135.26,123.01,83.78,81.41,46.53,33.33,29.69$.
HRMS (m/z): Calcd. for $\mathrm{C}_{20} \mathrm{H}_{27}[\mathrm{M}+\mathrm{H}]^{+}: 267.2107$, found: 267.2099.
1,1-diiodoferrocene was prepared according to the literature. ${ }^{1}$

1.3 Synthesis of polymers

Synthesis of ferrocene polymers (P1-P6):

Method A (synthesis of P2 and P3): A Schlenk tube was flame-dried and filled with argon. Substituted 1,4-diethynylbenzene (2.05 mmol, 1 eq.), 1,1'-diiodoferrocene ($2.05 \mathrm{mmol}, 1$ eq.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.0882 \mathrm{mmol}, 0.043$ eq.) and Cul ($0.0882 \mathrm{mmol}, 0.043$ eq.) were dissolved in diisopropylamine (25 mL) and toluene (25 mL) for $\mathbf{P 2}$ and diisopropylamine (25 mL) and DCM (25 mL) for P3. The reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 93 h for $\mathbf{P 2}$ and 107 h for $\mathbf{P 3}$. The reaction was then cooled to r.t.. The majority of solvent was removed by rotary evaporation, and the resulting residue was extracted with DCM and water. The organic phase was isolated and the solvent removed by rotary evaporation. The resulting residue was washed by organic solvents using the following washing sequence: methanol ($30 \mathrm{~mL}, 4 \mathrm{x}$), ethyl acetate ($30 \mathrm{~mL}, 3 \mathrm{x}$) and hexanes ($30 \mathrm{~mL}, 3 \mathrm{x}$). The washed solid was isolated by centrifugation ($6000 \mathrm{rpm}, 10 \mathrm{~min}$). The red-brown solid was dried at reduced pressure ($\sim 50 \mathrm{mTorr}$) overnight. P2 was obtained in 85% yield and $\mathbf{P 3}$ was obtained in 49% yield. Anal. Calcd. for P2 $\left(\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{FeO}_{2}\right): \mathrm{C}, 75.59 \% ; \mathrm{H}, 7.14 \% ; \mathrm{Fe}, 10.98 \% ; \mathrm{O}, 6.29 \%$. Found: C, 71.29%; H, 7.40\%. Anal. Calcd. for P3 ($\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{Fe}$): C, 80.66%; H, 3.93\%; Fe, 7.62 Found: C, 72.35%; H, 7.19%.

P6Chemical Formula: C50H44Fe22•
Elemental Analysis: C, 79.38; H, 5.86; Fe, 14.76

Method B (synthesis of P1, P4, P5, and P6): A Schlenk tube was flame-dried and filled with argon. Substituted 1,4diethynylbenzene ($2.05 \mathrm{mmol}, 1 \mathrm{eq}$.), 1,1'-diiodoferrocene ($2.05 \mathrm{mmol}, 1 \mathrm{eq}$.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.0882 \mathrm{mmol}, 0.043 \mathrm{eq}$.$) , \mathrm{Cul}(0.0882$ $\mathrm{mmol}, 0.043$ eq.) were dissolved in diisopropylamine ($0.33 \mathrm{~mL}, 2.39 \mathrm{mmol}, 1.2$ eq.) and DCM (45 mL). The reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 72 h . The reaction was then cooled to r.t.. The majority of solvent was removed by rotary evaporation, and the resulting residue was extracted with DCM and water. The organic phase was isolated and the solvent removed by rotary evaporation. The resulting residue was washed by organic solvents using the following washing sequence: methanol ($30 \mathrm{~mL}, 4 \mathrm{x}$), ethyl acetate ($30 \mathrm{~mL}, 3 \mathrm{x}$, except for $\mathbf{P 4}$ due to its non-negligible solubility in ethyl acetate), and hexanes ($30 \mathrm{~mL}, 3 \mathrm{x}$). The washed solid was isolated by centrifugation ($6000 \mathrm{rpm}, 10 \mathrm{~min}$). The red-brown solid was dried under vacuum overnight. P1 was obtained in 46% yield, $\mathbf{P 4}$ was obtained in 16% yield, $\mathbf{P 5}$ was obtained in 35% yield, and $\mathbf{P 6}$ was obtained in 28% yield. Anal. Calcd. for P1 ($\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{Fe}$): $\mathrm{C}, 77.95 \%$; H, 3.93%; $\mathrm{Fe}, 18.12 \%$. Found: C, 70.76%; H, 3.88%. Anal. Calcd. for P4 ($\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{Fe}$): C, 80.66%; H, 7.62\%; Fe, 11.72 Found: C, 76.56%; $\mathrm{H}, 7.87 \%$. Anal. Calcd. for P5 ($\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{Fe}$): C, 80.35%; H, 7.19%; Fe, 12.45%. Found: C, $62.85 \% ; \mathrm{H}, 6.26 \%$. Anal. Calcd. for P3 ($\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{Fe}$): C, 79.38%; H, 5.86%; Fe, 7.62 Found: $\mathrm{C}, 69.98 \%$; $\mathrm{H}, 5.15 \%$.

Synthesis of other polymers (P7 and P8):

A Schlenk tube was flame-dried and filled with argon. 1,4-Diethynylbenzene ($264.92 \mathrm{mg}, 2.1 \mathrm{mmol}, 1 \mathrm{eq}$.) , 2,5-diiodothiophene ($705.5 \mathrm{mg}, 2.1 \mathrm{mmol}, 1 \mathrm{eq}$.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(97.1 \mathrm{mg}, 0.084 \mathrm{mmol}, 0.04 \mathrm{eq}),. \mathrm{Cul}(16.0 \mathrm{mg}, 0.084 \mathrm{mmol}, 0.04 \mathrm{eq}$.$) were dissolved in$ diisopropylamine ($0.53 \mathrm{~mL}, 2.52 \mathrm{mmol}, 1.2 \mathrm{eq}$.) and DCM (45 mL). The reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 72 h . The reaction was then cooled to r.t.. The majority of solvent was removed by rotary evaporation, and the resulting residue was extracted with DCM and water. The organic phase was isolated and the solvent removed by rotary evaporation. The resulting residue was washed by organic solvents using the following washing sequence: methanol ($30 \mathrm{~mL}, 4 \mathrm{x}$), ethyl acetate ($30 \mathrm{~mL}, 3 \mathrm{x}$), and hexanes
($30 \mathrm{~mL}, 3 \mathrm{x}$). The washed solid was isolated by centrifugation ($6000 \mathrm{rpm}, 10 \mathrm{~min}$). The red-brown solid was dried under vacuum overnight. P7 was obtained in 53% yield. Analysis of the soluble portion of the polymer by SEC $\left(180^{\circ} \mathrm{C}\right.$ in $1,2,4$-trichlorobenzene, polystyrene standard) was used to estimate $M_{\mathrm{n}}=4900 \mathrm{~g} / \mathrm{mol}, M_{\mathrm{W}}=6300 \mathrm{~g} / \mathrm{mol}$, and $\bigoplus_{\mathrm{M}}=1.27$.

P8

A Schlenk tube was flame-dried and filled with argon. 1,4-Diethynylbenzene (264.92, $2.1 \mathrm{mmol}, 1$ eq.), 1,4-Diiodobenzene (692.8 $\mathrm{mg}, 2.1 \mathrm{mmol}, 1 \mathrm{eq}.), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(97.1 \mathrm{mg}, 0.084 \mathrm{mmol}, 0.04 \mathrm{eq}$.), Cul ($16.0 \mathrm{mg}, 0.084 \mathrm{mmol}, 0.04$ eq.) were dissolved in diisopropylamine ($0.53 \mathrm{~mL}, 2.52 \mathrm{mmol}, 1.2$ eq.) and DCM (45 mL). The reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 72 h . The reaction was then cooled to r.t.. The majority of solvent was removed by rotary evaporation, and the resulting residue was extracted with DCM and water. The organic phase was isolated and the solvent removed by rotary evaporation. The resulting residue was washed by organic solvents using the following washing sequence: methanol ($30 \mathrm{~mL}, 4 \mathrm{x}$), ethyl acetate ($30 \mathrm{~mL}, 3 \mathrm{x}$), and hexanes ($30 \mathrm{~mL}, 3 \mathrm{x}$). The washed solid was isolated by centrifugation ($6000 \mathrm{rpm}, 10 \mathrm{~min}$). The red-brown solid was dried under vacuum overnight. P8 was obtained in 49% yield. The resulting polymer was completely insoluble in $1,2,4$-trichlorobenzene at $180^{\circ} \mathrm{C}$, precluding analysis by SEC.

1.4 Polymer activation and gas sorption

Polymers were activated under reduced pressure ($\sim 50 \mathrm{mTorr}$) with heating at different temperatures prior to N_{2} sorption analysis according to the following tables. Polymers P3 and P4 were determined to be non-porous ($<10 \mathrm{~m}^{2} / \mathrm{g} \mathrm{BET}$ surface area, the lower limit of our measurements) irrespective of activation method (Figures S36-41).

Table S1. P1 N_{2} sorption BET surface area

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	BET surface area $\left(\mathrm{m}^{2} / \mathrm{g}\right)^{a}$
r.t.	7	416 ± 3
100	10	427 ± 3
100	17	422 ± 3
100	36	418 ± 3
150	2	416 ± 2

${ }^{\text {a }}$ The reported errors are those associated with the BET equation fit.
Table S2. P2 N_{2} sorption BET surface area

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	BET surface area $\left(\mathrm{m}^{2} / \mathrm{g}\right)^{a}$
r.t.	17	21 ± 0.3
50	17	21 ± 0.3
100	17	18 ± 0.3
150	21	16 ± 0.3
200	20	17 ± 0.3

${ }^{\text {a }}$ The reported errors are those associated with the BET equation fit.

Table S3. P5 N_{2} sorption BET surface area

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	BET surface area $\left(\mathrm{m}^{2} / \mathrm{g}\right)^{a}$
r.t.	6	110 ± 1
50	7	40 ± 1
100	7	nonporous

${ }^{a}$ The reported errors are those associated with the BET equation fit.
Table S4. P6 N_{2} sorption BET surface area

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	BET surface area $\left(\mathrm{m}^{2} / \mathrm{g}\right)^{a}$
r.t.	5	391 ± 3
30	7	376 ± 2
40	48	354 ± 2
80	36	343 ± 3
100	48	311 ± 3

${ }^{a}$ The reported errors are those associated with the BET equation fit.

Table S5. P7 N_{2} sorption BET surface area

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	BET surface area $\left(\mathrm{m}^{2} / \mathrm{g}\right)^{a}$
r.t.	7	98 ± 1
100	3	65 ± 1

${ }^{a}$ The reported errors are those associated with the BET equation fit.
Table S6. P8 N_{2} sorption BET surface area

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	BET surface area $\left(\mathrm{m}^{2} / \mathrm{g}\right)^{a}$
r.t.	15	160 ± 2
100	2	94 ± 1

${ }^{a}$ The reported errors are those associated with the BET equation fit.

1.5 Polymer solubility

Table S7. Solubility of P1-P6 in organic solvents at room temperature (ca. $23^{\circ} \mathrm{C}$).

Solvent	P1	P2	P3	P4	P5	P6
Hexanes	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
Toluene	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
Chlorobenzene	Sparingly soluble	Sparingly soluble	Sparingly soluble	Partially soluble	Partially soluble	Sparingly soluble
Dichloromethane	Sparingly soluble	Partially soluble	Sparingly soluble	Soluble	Sparingly soluble	Sparingly soluble
Chloroform	Sparingly soluble	Partially soluble	Sparingly soluble	Soluble	Sparingly soluble	Partially soluble
Acetone	Insoluble	Partially soluble	Sparingly soluble	Soluble	Sparingly soluble	Sparingly soluble
Ethyl acetate	Insoluble	Sparingly soluble	Sparingly soluble	Soluble	Sparingly soluble	Sparingly soluble
Tetrahydrofuran	Partially soluble	Partially soluble	Partially soluble	Soluble	Partially soluble	Partially soluble
Methanol	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
Dimethylformamide	Partially soluble	Partially soluble	Partially soluble	Soluble	Partially soluble	Partially soluble
Dimethyl sulfoxide	Partially soluble	Partially soluble	Partially soluble	Soluble	Partially soluble	Partially soluble
$\begin{aligned} & \hline \text { 1,2,4- } \\ & \text { Trichlorobenzene } \end{aligned}$	Sparingly soluble	Partially soluble	Partially soluble	Partially soluble	Sparingly soluble	Partially soluble

2. Spectroscopic, gas sorption, thermogravimetric analysis, and cyclic voltammetry data

$2.1^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 12.

Figure S2. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 12.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 13.

Figure S4. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 13.

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 14 .

$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$ Chemical Shift (ppm)
Figure S6. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 14.

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 15.

| 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- | Chemical Shift (ppm)

Figure S8. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 15. Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 17.

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 17.

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}-10$ Chemical Shift (ppm)
Figure S10. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 17.

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 18.

$\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array} 0$ Chemical Shift (ppm)
Figure S12. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 18.

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 19.

$\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array} 0$ Chemical Shift (ppm)
Figure S14. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 19.

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 20.

Figure S16. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 20.

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P 4}$.

2.2 FT-IR spectra

Figure S18. FT-IR spectrum of compound 12.

Figure S19. FT-IR spectrum of compound 13.

Figure S18. FT-IR spectrum of compound 12.

Figure S19. FT-IR spectrum of compound 13.

Figure S20. FT-IR spectrum of compound 14.

Figure S21. FT-IR spectrum of compound 15.

Figure S22. FT-IR spectrum of compound 17.

Figure S23. FT-IR spectrum of compound 18.

Figure S24. FT-IR spectrum of compound 19.

Figure S25. FT-IR spectrum of compound 20.

2.3 Gas sorption data

P1, r.t., 7 h

Figure S26. N_{2} gas adsorption isotherm (left) of polymer P1 activated at room temperature for 7 hours under reduced pressure (50 mTorr), determination of BET plot range (middle) based on consistency criteria ${ }^{2,3}$, and BET fit (right) for obtaining BET surface area.

P1, $100^{\circ} \mathrm{C}, 10 \mathrm{~h}$

Figure S27. N_{2} gas adsorption isotherm (left) of polymer $\mathbf{P 1}$ activated at $100{ }^{\circ} \mathrm{C}$ for 10 hours under reduced pressure (50 mTorr), determination of BET plot range (middle) based on consistency criteria ${ }^{2,3}$, and BET fit (right) for obtaining BET surface area.

P1, $100^{\circ} \mathrm{C}, 17 \mathrm{~h}$

Figure S28. \mathbf{N}_{2} gas adsorption isotherm (left) of polymer $\mathbf{P} 1$ activated at $100^{\circ} \mathrm{C}$ for 17 hours under reduced pressure (50 mTorr), determination of BET plot range (middle) based on consistency criteria ${ }^{2,3}$, and BET fit (right) for obtaining BET surface area.

Figure S29. N_{2} gas adsorption isotherm (left) of polymer P1 activated at $100^{\circ} \mathrm{C}$ for 36 hours under reduced pressure (50 mTorr), determination of BET plot range (middle) based on consistency criteria², ${ }^{2}$, and BET fit (right) for obtaining BET surface area.

P1, $150{ }^{\circ} \mathrm{C} 2 \mathrm{~h}$

Figure S30. N_{2} gas adsorption isotherm (left) of polymer $\mathbf{P 1}$ activated at $150{ }^{\circ} \mathrm{C}$ for 2 hours under reduced pressure (50 mTorr), determination of BET plot range (middle) based on consistency criteria ${ }^{2,3}$, and BET fit (right) for obtaining BET surface area.

P2, r.t. 17 h

Figure S31. N_{2} gas adsorption isotherm (left) of polymer $\mathbf{P} \mathbf{2}$ activated at r.t. for 17 hours under reduced pressure (50 mTorr), determination of BET plot range (middle) based on consistency criteria²,3, and BET fit (right) for obtaining BET surface area.

P2, $50^{\circ} \mathrm{C} 17 \mathrm{~h}$

Figure S32. \mathbf{N}_{2} gas adsorption isotherm (left) of polymer $\mathbf{P 2}$ activated at $50^{\circ} \mathrm{C}$ for 17 hours under reduced pressure (50 mTorr), determination of BET plot range (middle) based on consistency criteria ${ }^{2,3}$, and BET fit (right) for obtaining BET surface area.

P2, $100^{\circ} \mathrm{C} 17 \mathrm{~h}$

Figure S33. \mathbf{N}_{2} gas adsorption isotherm (left) of polymer $\mathbf{P 2}$ activated at $100^{\circ} \mathrm{C}$ for 17 hours under reduced pressure (50 mTorr), determination of BET plot range (middle) based on consistency criteria ${ }^{2,3}$, and BET fit (right) for obtaining BET surface area.

P2, $150{ }^{\circ} \mathrm{C} 20 \mathrm{~h}$

Figure S34. N_{2} gas adsorption isotherm (left) of polymer $\mathbf{P 2}$ activated at $150^{\circ} \mathrm{C}$ for 21 hours under reduced pressure (50 mTorr), determination of BET plot range (middle) based on consistency criteria ${ }^{2,3}$, and BET fit (right) for obtaining BET surface area.

P2, $200^{\circ} \mathrm{C} 21 \mathrm{~h}$

Figure S35. N_{2} gas adsorption isotherm (left) of polymer $\mathbf{P 2}$ activated at $200^{\circ} \mathrm{C}$ for 20 hours under reduced pressure (50 mTorr), determination of BET plot range (middle) based on consistency criteria², ${ }^{2}$, and BET fit (right) for obtaining BET surface area.

P3, r.t. 20 h

Figure S36. N_{2} gas adsorption isotherm (left) of polymer P3 activated at r.t. for 20 hours under reduced pressure (50 mTorr), determination of BET plot range (middle) based on consistency criteria ${ }^{2,3}$, and BET fit (right) for obtaining BET surface area.

P3, $100^{\circ} \mathrm{C} 7 \mathrm{~h}$

Figure S37. N_{2} gas adsorption isotherm (left) of polymer $\mathbf{P 3}$ activated at $100^{\circ} \mathrm{C}$ for 7 hours under reduced pressure (50 mTorr), determination of BET plot range (middle) based on consistency criteria ${ }^{2,3}$, and BET fit (right) for obtaining BET surface area.

P3, $150{ }^{\circ} \mathrm{C} 7 \mathrm{~h}$

Figure S38. N_{2} gas adsorption isotherm (left) of polymer P 3 activated at $150{ }^{\circ} \mathrm{C}$ for 7 hours under reduced pressure (50 mTorr), determination of BET plot range (middle) based on consistency criteria², ${ }^{2}$, and BET fit (right) for obtaining BET surface area.

P3, $200^{\circ} \mathrm{C} 7 \mathrm{~h}$

Figure S39. N_{2} gas adsorption isotherm (left) of polymer $\mathbf{P 3}$ activated at $200^{\circ} \mathrm{C}$ for 7 hours under reduced pressure (50 mTorr), determination of BET plot range (middle) based on consistency criteria ${ }^{2,3}$, and BET fit (right) for obtaining BET surface area.

P4, r.t. 15 h

Figure S40. N_{2} gas adsorption isotherm (left) of polymer P4 activated at r.t. for 15 hours under reduced pressure (50 mTorr), determination of BET plot range (middle) based on consistency criteria²,3, and BET fit (right) for obtaining BET surface area.

Figure S41. N_{2} gas adsorption isotherm (left) of polymer P4 activated at $100^{\circ} \mathrm{C}$ for 7 hours under reduced pressure (50 mTorr), determination of BET plot range (middle) based on consistency criteria ${ }^{2,3}$, and BET fit (right) for obtaining BET surface area.

P5, r.t. 6 h

Figure S42. N_{2} gas adsorption isotherm (left) of polymer P5 activated at r.t. for 6 hours under reduced pressure (50 mTorr), determination of BET plot range (middle) based on consistency criteria ${ }^{2,3}$, and BET fit (right) for obtaining BET surface area.

P5, $50{ }^{\circ} \mathrm{C} 7 \mathrm{~h}$

Figure S43. N_{2} gas adsorption isotherm (left) of polymer P5 activated at $50^{\circ} \mathrm{C}$ for 7 hours under reduced pressure (50 mTorr), determination of BET plot range (middle) based on consistency criteria ${ }^{2,3}$, and BET fit (right) for obtaining BET surface area.

P6, r.t. 5 h

Figure S44. N_{2} gas adsorption isotherm (left) of polymer P6 activated at r.t. for 5 hours under reduced pressure (50 mTorr), determination of BET plot range (middle) based on consistency criteria ${ }^{2,3}$, and BET fit (right) for obtaining BET surface area.

P6, $30^{\circ} \mathrm{C} 7 \mathrm{~h}$

Figure S45. N_{2} gas adsorption isotherm (left) of polymer P6 activated at $30{ }^{\circ} \mathrm{C}$ for 7 hours under reduced pressure (50 mTorr), determination of BET plot range (middle) based on consistency criteria ${ }^{2,3}$, and BET fit (right) for obtaining BET surface area.

P6, $40{ }^{\circ} \mathrm{C} 48 \mathrm{~h}$

Figure S46. N_{2} gas adsorption isotherm (left) of polymer P6 activated at $40{ }^{\circ} \mathrm{C}$ for 48 hours under reduced pressure (50 mTorr), determination of BET plot range (middle) based on consistency criteria²,3, and BET fit (right) for obtaining BET surface area.

P6, $80^{\circ} \mathrm{C} 36 \mathrm{~h}$

Figure S47. N_{2} gas adsorption isotherm (left) of polymer $\mathbf{P 6}$ activated at $80^{\circ} \mathrm{C}$ for 36 hours under reduced pressure (50 mTorr), determination of BET plot range (middle) based on consistency criteria ${ }^{2,3}$, and BET fit (right) for obtaining BET surface area.

P6, $100^{\circ} \mathrm{C} 48 \mathrm{~h}$

Figure S48. N_{2} gas adsorption isotherm (left) of polymer P6 activated at $100^{\circ} \mathrm{C}$ for 48 hours under reduced pressure (50 mTorr), determination of BET plot range (middle) based on consistency criteria ${ }^{2,3}$, and BET fit (right) for obtaining BET surface area.

P7, r.t. 7 h

Figure S49. \mathbf{N}_{2} gas adsorption isotherm (left) of polymer P7 activated at r.t. for 7 hours under reduced pressure (50 mTorr), determination of BET plot range (middle) based on consistency criteria²,3, and BET fit (right) for obtaining BET surface area.

P7, $100^{\circ} \mathrm{C} 3 \mathrm{~h}$

Figure S50. N_{2} gas adsorption isotherm (left) of polymer P7 activated at $100^{\circ} \mathrm{C}$ for 3 hours under reduced pressure (50 mTorr), determination of BET plot range (middle) based on consistency criteria ${ }^{2,3}$, and BET fit (right) for obtaining BET surface area.

P8, r.t. 15 h

Figure S51. N_{2} gas adsorption isotherm (left) of polymer P8 activated at r.t. for 15 hours under reduced pressure (50 mTorr), determination of BET plot range (middle) based on consistency criteria ${ }^{2,3}$, and BET fit (right) for obtaining BET surface area.

P8, $100^{\circ} \mathrm{C} 2 \mathrm{~h}$

Figure S52. N_{2} gas adsorption isotherm (left) of polymer P8 activated at $100^{\circ} \mathrm{C}$ for 2 hours under reduced pressure (50 mTorr), determination of BET plot range (middle) based on consistency criteria ${ }^{2,3}$, and BET fit (right) for obtaining BET surface area.

Figure S53. a) Polymer $\mathbf{P} 1$ pore volume vs. pore width and b) polymer $\mathbf{P} 1$ pore area vs. pore width obtained from the N_{2} isotherm at 77 K using the Tarazona NLDFT mode ${ }^{4}$ as implemented in Micromeritics' 3Flex software.

Figure S54. Goodness of fit curve of pore size distribution data (Figure S49). The standard deviation of fit is $0.33426 \mathrm{mmol} / \mathrm{g}$.

Figure S55. Comparison of N2 gas adsorption isotherms obtained at 77 K for polymers $\mathbf{P 1}, \mathbf{P 7}$, and $\mathbf{P 8}$ activated at room temperature (ca. $23^{\circ} \mathrm{C}$) and $100^{\circ} \mathrm{C}$.

2.4 Thermogravimetric analysis (TGA)

Figure S56. TGA of polymer $\mathbf{P 1}$ from 35 to $850^{\circ} \mathrm{C}$ with a heating rate of $5^{\circ} \mathrm{C} / \mathrm{min}$.

Figure S57. TGA of polymer P2 from 35 to $850^{\circ} \mathrm{C}$ with a heating rate of $5^{\circ} \mathrm{C} / \mathrm{min}$.

Figure S58. TGA of polymer P3 from 35 to $850^{\circ} \mathrm{C}$ with a heating rate of $5^{\circ} \mathrm{C} / \mathrm{min}$.

Figure S59. TGA of polymer $\mathbf{P 4}$ from 35 to $850^{\circ} \mathrm{C}$ with a heating rate of $5^{\circ} \mathrm{C} / \mathrm{min}$.

Figure S60. TGA of polymer P5 from 35 to $850^{\circ} \mathrm{C}$ with a heating rate of $5{ }^{\circ} \mathrm{C} / \mathrm{min}$.

Figure S61. TGA of polymer P6 from 35 to $850^{\circ} \mathrm{C}$ with a heating rate of $5{ }^{\circ} \mathrm{C} / \mathrm{min}$.

Figure S62. TGA mass spectrum of polymer P4 decomposition products from 35 to $850^{\circ} \mathrm{C}$ with a heating rate of $5^{\circ} \mathrm{C} / \mathrm{min}$.

Figure S63. TGA mass spectrum of polymer P5 decomposition products from 35 to $850^{\circ} \mathrm{C}$ with a heating rate of $5^{\circ} \mathrm{C} / \mathrm{min}$.

Figure S64. Electron ionization mass spectrum of isobutene. Figure reproduced directly from the NIST Mass Spectrometry Data Center. ${ }^{5}$
2.5 Raman spectra

Figure S65. Original (non-background-corrected) Raman spectra of P1-P6.

2.6 Cyclic voltammetry

Figure S66. Cyclic voltammograms of (a) P1 and P3 in DMF (soluble part) containing $0.10 \mathrm{M}\left[\mathrm{N}\left(\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right] \mathrm{BF}_{4}$ under N_{2} with 500 mV / s scanning rate. Potential is given vs $\mathrm{Ag} / \mathrm{Ag}^{+}$. (b) P 1 in DMF (soluble part) containing $0.10 \mathrm{M}\left[\mathrm{N}\left(\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4}\right] \mathrm{BF}_{4}$ under N_{2} with different scanning rates.

Figure S67. Plot of anodic peak current of $\mathbf{P 1}$ against $\mathbf{v}^{1 / 2}(v=$ scan rate $)$.

1. M. S. Inkpen, S. Du, M. Driver, T. Albrecht and N. J. Long, Dalton Trans., 2013, 42, 2813-2816.
2. P. Llewellyn, F. Rodriguez-Reinoso, J. Rouquerol and N. Seaton, Studies in Surface Science and Catalysis, 2007, 160, 49-56.
3. K. S. Walton and R. Q. Snurr, J. Am. Chem. Soc., 2007, 129, 8552-8556.
4. P. Tarazona, Phys. Rev. A, 1985, 31, 2672-2679.
5. R. S. Deinhammer, E. Y. Ting and M. D. Porter, Anal. Chem., 1995, 67, 237-246.
