# Charge Neutral Halogen Bonding Tetradentate-lodotriazole Macrocycles Capable of Anion Recognition and Sensing in Highly Competitive Aqueous Media

Thanthapatra Bunchuay,<sup>a\*</sup> Kajjana Boonpalit,<sup>a</sup> Andrew Docker,<sup>b</sup> Araya Ruengsuk,<sup>a</sup> Jonggol Tantirungrotechai,<sup>a</sup> Mongkol Sukwattanasinitt,<sup>c</sup> Panida Surawatanawong,<sup>a</sup> Paul D. Beer<sup>b\*</sup>

<sup>a</sup>Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand <sup>b</sup>Department of Chemistry, University of Oxford Chemistry Research Laboratory Mansfield Road, Oxford OX1 3TA <sup>c</sup>Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand

| Со | ntents                                      | Page |
|----|---------------------------------------------|------|
| 1. | Synthesis and Characterisation              | 2    |
| 2. | <sup>1</sup> H-NMR titrations               | 23   |
| 3. | Fluorescence titrations                     | 34   |
| 4. | Computational Studies                       | 39   |
| 5. | <sup>1</sup> H NMR concentration dependence | 58   |

# 1. Synthesis and Characterisation

# 1.1 Synthesis of bis-lodoalkyne 2



Scheme 1 A synthetic route to prepare bis-iodoalkyne 2

**Triester amine S1** 



The compound **S1** was synthesised followed the method reported by Gawley and co-workers without any modification.<sup>1</sup>

#### **Precursor S2**



To a solution of triester amine **S1** (3.97g, 7.86 mmol, 2.2 equiv.) in DCM (50 ml), a mixture of 3,5dibromobenzoic acid (1 g, 3.57 mmol, 1 equiv), EDC·HCI (1.64g, 8.57mmol, 2.4 equiv), and DMAP (0.436g, 3.57mmol, 1 equiv) was added in one portion. The mixture was stirred at room temperature for 48 hours and monitored by TLC. The mixture was washed with a 10% (w/v) citric acid solution, followed by a 10% (w/v) NaHCO<sub>3</sub> solution, water, and brine. The organic layer was collected, dried over MgSO<sub>4</sub> then concentrated by removing solvent *in vacuo*. The crude mixture was purified by silica gel column chromatography to afford **S2** (77%). <sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*)  $\delta$  7.89 (H<sub>b</sub>, d, *J* = 1.8 Hz, 2H), 7.76 (H<sub>a</sub>, t, *J* = 1.8 Hz, 1H), 6.68 (H<sub>c</sub>, s, 1H), 3.82 (H<sub>d</sub>, s, 6H), 3.68 (H<sub>e</sub>, t, *J* = 6.2 Hz, 6H), 2.46 (H<sub>f</sub>, t, *J* = 6.2 Hz, 6H), 1.42 (H<sub>g</sub>, s, 27H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>)  $\delta$  171.03, 165.00, 138.87, 136.57, 129.46, 123.05, 80.67, 69.12, 67.21, 60.68, 36.25, 28.22. **HRMS** (ESI+ve) m/z: 766.17871 ([M+H]<sup>+</sup>, C<sub>32</sub>H<sub>50</sub>O<sub>10</sub>N<sup>79</sup>Br<sub>2</sub> requires 766.17960)

**Precursor S3** 



**S2** (1.426 g, 1.86 mmol, 1 equiv.), Cul (18 mg, 0.093 mmol, 0.05 equiv.), and  $Pd(PPh_3)_2Cl_2$  (0.130 g, 0.186 mmol, 0.1 equiv.) were added to round bottom flask in one portion. Triethylamine (10 ml)

and THF (10 ml) were added to the mixture, and then deoxygenated by bubbling N<sub>2</sub> to the reaction. TMS-acetylene (0.475 g or 2.2 ml, 4.836 mmol, 2.6 equiv.) was added through a septum. The reaction container was sealed and heated to 75°C for 18 hours. After that, the mixture was allowed to cool to room temperature, and removed solvent to dryness *in vacuo*. The mixture was re-dissolved in DCM (50 ml), then the black solid was filtered off through a silica plug and collected a yellow organic solution. The combined organic phase was purified via a flash column chromatography using DCM as an eluent to afford a yellow waxy liquid of **S3** (80%). <sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*)  $\delta$  7.77 (H<sub>b</sub>, d, *J* = 1.5 Hz, 2H), 7.63 (H<sub>a</sub>, t, *J* = 1.5 Hz, 1H), 6.56 (H<sub>c</sub>, s, 1H), 3.81 (H<sub>d</sub>, s, 6H), 3.68 (H<sub>e</sub>, t, *J* = 6.3 Hz, 6H), 2.45 (H<sub>f</sub>, t, *J* = 6.3 Hz, 6H), 1.41 (H<sub>g</sub>, s, 27H), 0.23 (H<sub>h</sub>, s, 18H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>)  $\delta$  170.94, 166.28, 137.63, 135.98, 130.54, 123.81, 103.50, 95.89, 80.59, 69.16, 67.22, 60.52, 36.29, 28.23, -0.02. **HRMS** (ESI+ve) m/z: 802.43707 ([M+H]<sup>+</sup>, C<sub>42</sub>H<sub>68</sub>O<sub>10</sub>N<sup>29</sup>Si<sub>2</sub> requires 802.43763)

#### **Precursor 2**



A solution of **S3** (1 g, 1.09 mmol, 1 equiv.) in acetone (10 ml) was added *N*-iodosuccinimide (0.613 g, 2.73 mmol, 2.5 equiv.). An aqueous solution of AgNO<sub>3</sub> (27.8 mg or 0.164 mmol in water 1 ml) was added dropwise, then the reaction was covered with foil to exclude light and stirred at room temperature for 4 hours. The reaction was diluted with DCM (50 ml) and an organic phase was washed thoroughly with a sufficient amount of water. After solvent removed, the crude product was purified by flash silica gel column chromatography using DCM as an eluent, to afford a yellowwaxy solid **2** (90%). <sup>1</sup>**H NMR** (500 MHz, Chloroform-*d*)  $\delta$  7.78 (H<sub>b</sub>, d, *J* = 1.5 Hz, 2H), 7.55 (H<sub>a</sub>, d, *J* = 1.3 Hz, 1H), 6.64 (H<sub>c</sub>, s, 1H), 3.81 (H<sub>d</sub>, s, 6H), 3.67 (H<sub>e</sub>, t, *J* = 6.2 Hz, 6H), 2.45 (H<sub>f</sub>, t, *J* = 6.2 Hz, 6H), 1.41 (H<sub>g</sub>, s, 27H). <sup>13</sup>**C NMR** (126 MHz, CDCl<sub>3</sub>)  $\delta$  170.87, 165.92, 138.18, 136.02, 131.24, 123.86, 92.50, 80.49, 69.01, 67.05, 60.43, 36.11, 14.21, 8.87. **HRMS** (ESI+ve) m/z: 910.15106 ([M+H]<sup>+</sup>, C<sub>36</sub>H<sub>50</sub>O<sub>10</sub>N<sup>127</sup>I<sub>2</sub> requires 910.15186).



Figure S1 <sup>1</sup>H-NMR spectrum of S2 in CDCl<sub>3</sub> (298K, 400 MHz)



Figure S2 <sup>13</sup>C-NMR spectrum of S2 in CDCl<sub>3</sub> (298K, 101 MHz)



Figure S4 <sup>13</sup>C-NMR spectrum of S3 in CDCl<sub>3</sub> (298K, 101 MHz)



Figure S6 <sup>13</sup>C-NMR spectrum of 2 in CDCl<sub>3</sub> (298K, 101 MHz)

#### 1.2 A typical procedure to prepare bis-azide precursors

A typical procedure to prepare the bis-azide S4-S6



Scheme 2 General scheme for azide synthesis

To a solution of the bis-bromomethyl derivatives (1 equiv.) in DMSO (20 ml), NaN<sub>3</sub> (6 equiv.) was added in one portion and stirred at room temperature overnight. The mixture was diluted with water and extracted the product from an aqueous phase with  $Et_2O$  (3×20 ml). The ether layer was washed with water and brine, then dried over Na<sub>2</sub>SO<sub>4</sub>. Solvent was removed in vacuo to afford the product in almost quantitative yield. **S4** and **S5** were synthesised following a literature procedure reported by Sierra and co-workers.<sup>2</sup>

#### **Precursor S6**



<sup>1</sup>**H NMR** (500 MHz, Chloroform-*d*)  $\delta$  7.89 (H<sub>c</sub>, d, *J* = 8.3 Hz, 2H), 7.80 (H<sub>b</sub>, d, *J* = 1.7 Hz, 2H), 7.47 (H<sub>d</sub>, dd, *J* = 8.4, 1.6 Hz, 2H), 4.53 (H<sub>a</sub>, s, 4H).

<sup>13</sup>**C NMR** (126 MHz, CDCl<sub>3</sub>) δ 133.55, 133.03, 128.94, 127.12, 126.61, 55.04.



Figure S8  $^{\rm 13}\text{C-NMR}$  spectrum of S6 in CDCl3 (298K, 101 MHz)

# $\begin{array}{c} \begin{array}{c} Dendrimer\\ \downarrow\\ \downarrow\\ 2\end{array}\end{array} \\ \begin{array}{c} Cu(MeCN)_4PF_6\\ \hline\\ THF, RT, 2 days\end{array} \\ (excess)\end{array} \\ \begin{array}{c} Cu(MeCN)_4PF_6\\ \hline\\ THF, RT, 2 days\end{array} \\ \begin{array}{c} N_{N} \\ \downarrow\\ \downarrow\\ N_{N} \\ \downarrow\\ \downarrow\\ N_{N} \\ I_{N} \\ I_{N}$

#### 1.3 A typical procedure to prepare the XB macrocycle bis-azide precursors

Scheme 3 General scheme for preparation of the XB macrocycle bis-azide precursors

Bis-iodoalkyne **2** (0.5 g, 0.55 mmol, 1 equiv.) and bis-azide (5.5 mmol, 10 equiv.) were dissolved in dry DCM (5 ml) under N<sub>2</sub> atmosphere. [Cu(MeCN)<sub>4</sub>]PF<sub>6</sub> (62 mg, 0.17 mmol, 0.3 equiv) and TBTA (58 mg, 0.11 mmol, 0.2 equiv) were subsequently added into the solution, then stirred at room temperature for 48 hours and monitored by TLC. After reached completion, NH<sub>4</sub>OH (conc., 10 ml) was added and stirred for 0.5 hours to remove copper residues. An organic phase was separated and washed with water, brine, followed by adding Na<sub>2</sub>SO<sub>4</sub>. The reaction mixture was purified by silica gel column chromatography using a gradient eluent from DCM to 1% MeOH/DCM to afford the corresponding product.



#### **Yield** = 80%

<sup>1</sup>**H NMR** (500 MHz, Chloroform-*d*)  $\delta$  8.69 (H<sub>a</sub>, t, *J* = 1.7 Hz, 1H), 8.40 (H<sub>b</sub>, d, *J* = 1.7 Hz, 2H), 7.42 – 7.35 (H<sub>i</sub>, m, 2H), 7.32 – 7.25 (H<sub>k</sub>+ H<sub>l</sub>, m, 6H), 6.69 (H<sub>c</sub>, s, 1H), 5.69 (H<sub>h</sub>, s, 4H), 4.34 (H<sub>j</sub>, s, 4H), 3.85 (H<sub>d</sub>, s, 6H), 3.68 (H<sub>e</sub>, t, *J* = 6.4 Hz, 6H), 2.45 (H<sub>f</sub>, t, *J* = 6.4 Hz, 6H), 1.36 (H<sub>g</sub>, s, 27H).

<sup>13</sup>**C NMR** (126 MHz, CDCl<sub>3</sub>) δ 170.96, 166.96, 149.38, 136.44, 136.38, 135.08, 131.10, 129.64, 129.02, 128.42, 127.84, 127.61, 126.06, 80.58, 69.26, 67.25, 60.43, 54.49, 54.28, 36.38, 28.15.

HRMS (ESI+ve) m/z: 1286.31079 ([M+H]<sup>+</sup>, C<sub>52</sub>H<sub>66</sub>O<sub>10</sub>N<sub>13</sub>I<sub>2</sub> requires 1286.31395)

Bis-azide 3.p



#### **Yield** = 75%

<sup>1</sup>H NMR (500 MHz, Chloroform-*d*)  $\delta$  8.55 (H<sub>a</sub>, t, *J* = 1.7 Hz, 1H), 8.27 (H<sub>b</sub>, d, *J* = 1.7 Hz, 2H), 7.19 (H<sub>i</sub>+ H<sub>j</sub>, d, *J* = 1.6 Hz, 7H), 6.57 (H<sub>c</sub>, s, 1H), 5.55 (H<sub>h</sub>, s, 4H), 4.20 (H<sub>k</sub>, s, 4H), 3.72 (H<sub>d</sub>, s, 6H), 3.55 (H<sub>e</sub>, t, *J* = 6.3 Hz, 6H), 2.31 (H<sub>f</sub>, t, *J* = 6.4 Hz, 6H), 1.23 (H<sub>g</sub>, s, 27H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 170.95, 166.95, 149.34, 136.37, 135.95, 134.45, 131.09, 128.79, 128.40, 126.04, 80.57, 69.26, 67.24, 60.42, 54.40, 54.13, 36.38.

HRMS (ESI+ve) m/z: 1286.31383 ([M+H]<sup>+</sup>, C<sub>52</sub>H<sub>66</sub>O<sub>10</sub>N<sub>13</sub>I<sub>2</sub> requires 1286.31395)

Bis-azide 3·n



**Yield** =72%

<sup>1</sup>**H NMR** (500 MHz, Chloroform-*d*)  $\delta$  8.72 (H<sub>a</sub>, t, *J* = 1.7 Hz, 1H), 8.43 (H<sub>b</sub>, d, *J* = 1.7 Hz, 2H), 7.84 (H<sub>j+m</sub>, dd, *J* = 8.5, 3.2 Hz, 4H), 7.75 (H<sub>i+n</sub>, dd, *J* = 9.2, 1.7 Hz, 4H), 7.45 (H<sub>k+l</sub>, td, *J* = 8.3, 1.8 Hz, 4H), 6.72 (H<sub>c</sub>, s, 1H), 5.84 (H<sub>h</sub>, s, 4H), 4.50 (H<sub>b</sub>, s, 4H), 3.85 (H<sub>d</sub>, s, 6H), 3.68 (H<sub>e</sub>, t, *J* = 6.3 Hz, 6H), 2.45 (H<sub>f</sub>, t, *J* = 6.3 Hz, 6H), 1.35 (H<sub>g</sub>, s, 27H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 171.00, 167.04, 149.39, 136.43, 133.79, 133.07, 132.94, 132.35, 131.13, 129.09, 129.00, 127.07, 126.70, 126.09, 125.86, 80.59, 69.28, 67.25, 60.45, 54.98, 54.61, 36.37, 28.13.



Chemical Shift (ppm)

**Figure S10** <sup>13</sup>C-NMR spectrum of **3**·**m** in CDCl<sub>3</sub> (298K, 126 MHz)



Figure S12 <sup>13</sup>C-NMR spectrum of **3**·p in CDCl<sub>3</sub> (298K, 126 MHz)



Figure S14 <sup>13</sup>C-NMR spectrum of 3·n in CDCl<sub>3</sub> (298K, 126 MHz)



#### 1.4 A typical procedure for high-dilution macrocyclization reaction to prepare macrocycles

Bis-iodoalkyne **2** (1 equiv.) and XB macrocycle bis-azide **3** (1 equiv.) were diluted to the concentration of 5 mM by adding dry DCM. The solution mixture was degassed by bubbling  $N_2$  through the reaction for 5 minutes. [Cu(MeCN)<sub>4</sub>]PF<sub>6</sub> (0.4 equiv) and TBTA (0.3 equiv.) were subsequently added into the solution, then stirred at room temperature for 48 hours. The reaction was monitored by either TLC or ESI-MS. If the reaction was not complete, another portion of Cu(MeCN)<sub>4</sub>PF<sub>6</sub> (0.1 equiv.) could be added and the reaction was left stirring overnight. A solution of NH<sub>4</sub>OH (10 ml) was added to remove copper residue. The organic layer was collected and washed thoroughly with water and brine, and dried over Na<sub>2</sub>SO<sub>4</sub>. The reaction mixture was purified by silica gel column chromatography using a 1-3% MeOH/DCM eluent to afford the corresponding product.



**Chemicals**: Bis-iodoalkyne **2** (71 mg, 0.078 mmol), Bis-azide **3**·**m** (100 mg, 0.078 mmol), [Cu(MeCN)<sub>4</sub>]PF<sub>6</sub> (12 mg, 0.031 mmol), TBTA (12 mg, 0.023 mmol), DCM (16 ml)

## **Yield** = 70%

<sup>1</sup>**H-NMR** (500 MHz, Chloroform-*d*) δ 8.58 (H<sub>a</sub>, t, *J* = 1.7 Hz, 2H), 8.40 (H<sub>b</sub>, d, *J* = 1.7 Hz, 4H), 7.41 (s, 6H), 6.82 (s, 2H), 5.64 (s, 8H), 3.87 (s, 12H), 3.69 (t, *J* = 6.4 Hz, 12H), 2.46 (t, *J* = 6.4 Hz, 12H), 1.38 (s, 54H).

<sup>13</sup>**C-NMR** (126 MHz, CDCl<sub>3</sub>) δ 171.02, 167.09, 149.28, 136.99, 135.43, 130.77, 129.75, 128.12, 127.66, 126.89, 126.35, 80.55, 69.32, 67.25, 60.49, 54.09, 36.37, 28.17.

HRMS (ESI+ve) m/z: 2195.45361 ([M+H]<sup>+</sup>, C<sub>88</sub>H<sub>115</sub>O<sub>20</sub>N<sub>14</sub><sup>127</sup>I<sub>4</sub> requires 2195.45853)

Macrocycle 3.p



**Chemicals**: Bis-iodoalkyne **2** (71 mg, 0.078 mmol), Bis-azide **3**·**p** (100 mg, 0.078 mmol), [Cu(MeCN)<sub>4</sub>]PF<sub>6</sub> (12 mg, 0.031 mmol), TBTA (12 mg, 0.023 mmol), DCM (16 ml)

## **Yield** = 65%

<sup>1</sup>**H-NMR** (500 MHz, Chloroform-*d*)  $\delta$  8.46 (H<sub>a</sub>, t, *J* = 1.6 Hz, 2H), 8.34 (H<sub>b</sub>, d, *J* = 1.6 Hz, 4H), 7.28 (H<sub>i</sub>, d, *J* = 6.3 Hz, 8H), 6.69 (H<sub>c</sub>, s, 2H), 5.66 (H<sub>h</sub>, s, 8H), 3.86 (H<sub>d</sub>, s, 12H), 3.69 (H<sub>e</sub>, t, *J* = 6.4 Hz, 12H), 2.46 (H<sub>f</sub>, t, *J* = 6.4 Hz, 12H), 1.39 (H<sub>g</sub>, s, 54H).

<sup>13</sup>**C-NMR** (126 MHz, CDCl<sub>3</sub>) δ 170.98, 166.94, 149.63, 136.64, 134.87, 130.97, 128.88, 128.65, 126.58, 80.60, 69.30, 67.28, 60.46, 53.98, 36.41, 28.20.

HRMS (MALDI-TOF) m/z: 2217.5487 ([M+Na]<sup>+</sup>, C<sub>88</sub>H<sub>114</sub>O<sub>20</sub>N<sub>14</sub><sup>127</sup>I<sub>4</sub>Na requires 2217.4405)



**Chemicals**: Bis-iodoalkyne **2** (66 mg, 0.072 mmol), Bis-azide  $3 \cdot n$  (100 mg, 0.072 mmol), [Cu(MeCN)<sub>4</sub>]PF<sub>6</sub> (11 mg, 0.029 mmol), TBTA (38 mg, 0.022 mmol), DCM (15 ml)

#### **Yield** = 58%

<sup>1</sup>**H-NMR** (500 MHz, Chloroform-*d*)  $\delta$  8.45 (H<sub>a</sub>, t, *J* = 1.6 Hz, 2H), 8.39 (H<sub>b</sub>, d, *J* = 1.6 Hz, 4H), 7.76 (H<sub>i</sub>, d, *J* = 8.5 Hz, 4H), 7.71 (H<sub>k</sub>, s, 4H), 7.43 – 7.38 (H<sub>j</sub>, m, 4H), 6.73 (H<sub>c</sub>, s, 2H), 5.82 (H<sub>h</sub>, s, 8H), 3.87 (H<sub>d</sub>, s, 12H), 3.71 (H<sub>e</sub>, t, *J* = 6.4 Hz, 12H), 2.48 (H<sub>f</sub>, t, *J* = 6.4 Hz, 12H), 1.40 (H<sub>g</sub>, s, 54H).

<sup>13</sup>**C-NMR** (126 MHz, CDCl<sub>3</sub>) δ 171.03, 167.00, 149.65, 136.71, 132.93, 132.60, 130.97, 129.16, 128.48, 127.28, 126.65, 126.07, 80.63, 69.30, 67.28, 60.48, 54.61, 36.41, 28.21.

HRMS (MALDI-TOF) m/z: 2317.8826 ([M+Na]<sup>+</sup>, C<sub>96</sub>H<sub>118</sub>O<sub>20</sub>N<sub>14</sub><sup>127</sup>I<sub>4</sub>Na requires 2317.4718)



**Figure S16** <sup>13</sup>C-NMR spectrum of **3**·**m** in CDCl<sub>3</sub> (298K, 126 MHz)



Figure S17 <sup>1</sup>H-NMR spectrum of 3·p in CDCI<sub>3</sub> (298K, 500 MHz)



**Figure S18** <sup>13</sup>C-NMR spectrum of **3**·**p** in CDCl<sub>3</sub> (298K, 126 MHz)



Figure S20 <sup>13</sup>C-NMR spectrum of 3·n in CDCI<sub>3</sub> (298K, 126 MHz

#### 2.<sup>1</sup>H-NMR Titration Protocol

<sup>1</sup>H-NMR spectroscopic titration experiments were carried out at 298 K on a Varian Unity Plus 500 spectrometers with <sup>1</sup>H operating at 500 MHz. Initial sample volumes were 0.5 mL and concentrations were 1.0 mM of host in all experiments. Anion solution as tetrabutylammonium salts (50 mM) was added in aliquots, the samples were shaken and spectra recorded. Spectra were recorded at 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0, 4.0, 5.0, 7.0 and 10 equivalents of anion. Some anions required addition up to 20-30 equivalents to reach a binding equilibrium. In all cases where association constants were calculated, bound and unbound species were found to be in fast exchange on the NMR timescale. Stability constants were obtained by analysis of the resulting data using the online program called Bindfit.<sup>3</sup>

## Summary of anion binding data for 1.m

**Table S1** Summary of Bindfit output data for  $1 \cdot m$  with TBACI from <sup>1</sup>H-NMR titration (40% v/v D<sub>2</sub>O in d<sub>6</sub>-Acetone, 1 mM)

| Stoichiometry |                 | к               | K error (%)     |                           |                           | Covariance  |
|---------------|-----------------|-----------------|-----------------|---------------------------|---------------------------|-------------|
| 1:1           |                 | 18.37036133     | 2.091827874     |                           |                           | 0.002021479 |
| Stoichiometry | Mode            | K <sub>11</sub> | K <sub>12</sub> | K <sub>11</sub> error (%) | K <sub>12</sub> error (%) | Covariance  |
| 1:2           | Full            | 5.442582092     | -255.345076     | 4.209551335               | -14.49754949              | 0.000782598 |
|               | Non-Cooperative |                 |                 |                           |                           |             |
|               | Additive        | 28.09632447     | 4.078263917     | 5.548558701               | 51.43050888               | 0.001964805 |
|               | Statistical     | 38.40469867     | 9.601174667     | 2.134383665               |                           | 0.002035948 |

**Table S2** Summary of Bindfit output data for  $1 \cdot m$  with TBABr from <sup>1</sup>H-NMR titration (40% v/v D<sub>2</sub>O in d<sub>6</sub>-Acetone, 1 mM)

| Stoichiometry |                 | к               | K error (%)     |                           |                           | Covariance  |
|---------------|-----------------|-----------------|-----------------|---------------------------|---------------------------|-------------|
| 1:1           |                 | 452.9245079     | 2.662495296     |                           |                           | 0.001294209 |
| Stoichiometry | Mode            | K <sub>11</sub> | K <sub>12</sub> | K <sub>11</sub> error (%) | K <sub>12</sub> error (%) | Covariance  |
| 1:2           | Full            | 288.0896825     | -92.54566841    | 0.967790121               | -0.967790121              | 0.000404624 |
|               | Non-Cooperative | 1033.770192     | 258.4425479     | 2.98064542                |                           | 0.000952744 |
|               | Additive        | 1602.45027      | 305.7020393     | 9.616775909               | 8.900688781               | 0.001001545 |
|               | Statistical     | 1592.705081     | 398.1762704     | 3.604584855               |                           | 0.001222635 |

**Table S3** Summary of Bindfit output data for  $1 \cdot m$  with TBAI from <sup>1</sup>H-NMR titration (40% v/v D<sub>2</sub>O in d<sub>6</sub>-Acetone, 1 mM)

| Stoichiometry |                 | К               | K error (%)     |                           |                           | Covariance  |
|---------------|-----------------|-----------------|-----------------|---------------------------|---------------------------|-------------|
| 1:1           |                 | 17727.68402     | 20.35610554     |                           |                           | 0.003858322 |
| Stoichiometry | Mode            | K <sub>11</sub> | K <sub>12</sub> | K <sub>11</sub> error (%) | K <sub>12</sub> error (%) | Covariance  |
| 1:2           | Full            | 16599.20375     | 97.1055468      | 27.59624731               | 285.2261235               | 0.003762384 |
|               | Non-Cooperative | 14185.0183      | 3546.254575     | 45.29948993               |                           | 0.006703052 |
|               | Additive        | 15849.30233     | -2.34111684     | 20.0653306                | -177.5215192              | 0.003774507 |
|               | Statistical     | 268905.2521     | 67226.31302     | 728.8001217               |                           | 0.217625206 |

**Table S4** Summary of Bindfit output data for  $1 \cdot m$  with TBA<sub>2</sub>(oxalate) from <sup>1</sup>H-NMR titration (5% v/v D<sub>2</sub>O in d<sub>6</sub>-Acetone, 1 mM)

| Stoichiometry |                 | к               | K error (%)     |                           |                           | Covariance  |
|---------------|-----------------|-----------------|-----------------|---------------------------|---------------------------|-------------|
| 1:1           |                 | 2219            | 17              |                           |                           | 0.018167158 |
| Stoichiometry | Mode            | K <sub>11</sub> | K <sub>12</sub> | K <sub>11</sub> error (%) | K <sub>12</sub> error (%) | Covariance  |
| 1:2           | Full            | Too high        | 9234            | 198346707                 | 15                        | 0.000348065 |
|               | Non-Cooperative | 816             | 204             | 11                        |                           | 0.010286946 |
|               | Additive        | 1093            | -24             | 11                        | -20                       | 0.011623441 |
|               | Statistical     | 65808           | 16452           | 50                        |                           | 0.004507658 |

**Table S5** Summary of Bindfit output data for  $1 \cdot m$  with TBA<sub>2</sub>(malonate) from <sup>1</sup>H-NMR titration (5% v/v D<sub>2</sub>O in d<sub>6</sub>-Acetone, 1 mM)

| Stoichiometry |                 | K               | K error (%)     |                           |                           | Covariance  |
|---------------|-----------------|-----------------|-----------------|---------------------------|---------------------------|-------------|
| 1:1           |                 | 2037.621441     | 15.55835744     |                           |                           | 0.016662775 |
| Stoichiometry | Mode            | K <sub>11</sub> | K <sub>12</sub> | K <sub>11</sub> error (%) | K <sub>12</sub> error (%) | Covariance  |
| 1:2           | Full            | 2569            | 12506           | 8                         | 30                        | 0.000353    |
|               | Non-Cooperative | 771             | 193             | 9                         |                           | 0.007740441 |
|               | Additive        | 1008            | -24             | 9                         | -17                       | 0.009464886 |
|               | Statistical     | 46738           | 11684           | 37                        |                           | 0.003501196 |

**Table S6** Summary of Bindfit output data for  $1 \cdot m$  with TBA<sub>2</sub>(succinate) from <sup>1</sup>H-NMR titration (5% v/v D<sub>2</sub>O in d<sub>6</sub>-Acetone, 1 mM)

| Stoichiometry |                 | к               | K error (%)     |                           |                           | Covariance  |
|---------------|-----------------|-----------------|-----------------|---------------------------|---------------------------|-------------|
| 1:1           |                 | 1679            | 9               |                           |                           | 0.006006055 |
| Stoichiometry | Mode            | K <sub>11</sub> | K <sub>12</sub> | K <sub>11</sub> error (%) | K <sub>12</sub> error (%) | Covariance  |
| 1:2           | Full            | 2008            | 2195            | 5                         | 23                        | 0.000323958 |
|               | Non-Cooperative | 889             | 222             | 4                         |                           | 0.001761192 |
|               | Additive        | 985             | -19             | 5                         | -12                       | 0.002598388 |
|               | Statistical     | 18076           | 4519            | 26                        |                           | 0.005816542 |



**Figure S21** Halide binding isotherms derived from <sup>1</sup>H-NMR titrations of **1**·**m** with halides as a tetrabutylammonium salts (40% v/v  $D_2O$  in d<sub>6</sub>-Acetone, 1 mM), where circles-represent experimental data and solid lines represent the fitted binding isotherm.



**Figure S22** Dicarboxylate binding isotherms derived from <sup>1</sup>H-NMR titrations of **1**·**m** with dicarboxylate anions as a tetrabutylammonium salts (5% v/v  $D_2O$  in d<sub>6</sub>-Acetone, 1 mM), where circles-represent experimental data and solid lines represent the fitted binding isotherm.

# Summary of anion binding data for 1.p

**Table S7** Summary of Bindfit output data for  $1 \cdot p$  with TBACI from <sup>1</sup>H-NMR titration (5% v/v D<sub>2</sub>O in d<sub>6</sub>-Acetone, 1 mM)

| Stoichiometry |                 | К               | K error (%)     |                           |                           | Covariance  |
|---------------|-----------------|-----------------|-----------------|---------------------------|---------------------------|-------------|
| 1:1           |                 | 334.152558      | 2.029189611     |                           |                           | 0.000780021 |
| Stoichiometry | Mode            | K <sub>11</sub> | K <sub>12</sub> | K <sub>11</sub> error (%) | K <sub>12</sub> error (%) | Covariance  |
| 1:2           | Full            | 242.2700231     | -70.69601114    | 1.249758168               | -1.249758168              | 0.000603157 |
|               | Non-Cooperative | 465.8244163     | 116.4561041     | 2.336391913               |                           | 0.000754131 |
|               | Additive        | 967.9043753     | 169.2812524     | 6.817763665               | 7.429026996               | 0.00083659  |
|               | Statistical     | 975.3179536     | 243.8294884     | 3.254048338               |                           | 0.001171832 |

**Table S8** Summary of Bindfit output data for  $1 \cdot p$  with TBABr from <sup>1</sup>H-NMR titration (5% v/v D<sub>2</sub>O in d<sub>6</sub>-Acetone, 1 mM)

| Stoichiometry |                 | ĸ               | K error (%)     |                           |                           | Covariance  |
|---------------|-----------------|-----------------|-----------------|---------------------------|---------------------------|-------------|
| 1:1           |                 | 334.5991122     | 4.63416487      |                           |                           | 0.003968354 |
| Stoichiometry | Mode            | K <sub>11</sub> | K <sub>12</sub> | K <sub>11</sub> error (%) | K <sub>12</sub> error (%) | Covariance  |
| 1:2           | Full            | 126.0941968     | 151.6891353     | 1.244459729               | 3.976450293               | 0.000232513 |
|               | Non-Cooperative | 1691.185987     | 422.7964968     | 3.298621923               |                           | 0.00094109  |
|               | Additive        | 919.271155      | 452.4428787     | 9.634703077               | 9.078592045               | 0.000729143 |
|               | Statistical     | 1022.668892     | 255.667223      | 4.126387435               |                           | 0.001922045 |

**Table S9** Summary of Bindfit output data for  $1 \cdot p$  with TBAI from <sup>1</sup>H-NMR titration (5% v/v D<sub>2</sub>O in d<sub>6</sub>-Acetone, 1 mM)

| Stoichiometry |                 | К               | K error (%)     |                           |                           | Covariance  |
|---------------|-----------------|-----------------|-----------------|---------------------------|---------------------------|-------------|
| 1:1           |                 | 2729.068795     | 20.5693072      |                           |                           | 0.02365515  |
| Stoichiometry | Mode            | К <sub>11</sub> | K <sub>12</sub> | K <sub>11</sub> error (%) | K <sub>12</sub> error (%) | Covariance  |
| 1:2           | Full            | 266.6248658     | 993.8267736     | 4.459639735               | 8.462018107               | 0.002216629 |
|               | Non-Cooperative | 584.6672118     | 146.1668029     | 4.085548905               |                           | 0.00241718  |
|               | Additive        | 924.6805872     | -31.88958111    | 4.7396029                 | -5.897898907              | 0.003290126 |
|               | Statistical     | 75466.71143     | 18866.67786     | 108.3947566               |                           | 0.018898807 |

**Table S10** Summary of Bindfit output data for  $1 \cdot p$  with TBA<sub>2</sub>(oxalate) from <sup>1</sup>H-NMR titration (5% v/v D<sub>2</sub>O in d<sub>6</sub>-Acetone, 1 mM)

| Stoichiometry |                 | к               | K error (%)     |                           |                           | Covariance  |
|---------------|-----------------|-----------------|-----------------|---------------------------|---------------------------|-------------|
| 1:1           |                 | 290.9258257     | 1.168517209     |                           |                           | 0.000292355 |
| Stoichiometry | Mode            | K <sub>11</sub> | K <sub>12</sub> | K <sub>11</sub> error (%) | K <sub>12</sub> error (%) | Covariance  |
| 1:2           | Full            | 4345.537148     | 237.9300251     | 7.033947917               | 1.842303514               | 0.000110095 |
|               | Non-Cooperative | 749.6928275     | 187.4232069     | 1.068257862               |                           | 0.000158405 |
|               | Additive        | 856.872824      | 191.3563182     | 2.930510261               | 3.436061241               | 0.000149723 |
|               | Statistical     | 872.6263842     | 218.1565961     | 1.121743834               |                           | 0.000181598 |

**Table S11** Summary of Bindfit output data for  $1 \cdot p$  with TBA<sub>2</sub>(malonate) from <sup>1</sup>H-NMR titration (5% v/v D<sub>2</sub>O in d<sub>6</sub>-Acetone, 1 mM)

| Stoichiometry |                 | к               | K error (%)     |                           |                           | Covariance  |
|---------------|-----------------|-----------------|-----------------|---------------------------|---------------------------|-------------|
| 1:1           |                 | 176.0459091     | 1.183123496     |                           |                           | 0.000370974 |
| Stoichiometry | Mode            | K <sub>11</sub> | K <sub>12</sub> | K <sub>11</sub> error (%) | K <sub>12</sub> error (%) | Covariance  |
| 1:2           | Full            | 474.1596686     | 57.7271972      | 3.069794852               | 4.708841798               | 0.000298066 |
|               | Non-Cooperative | 296.5629696     | 74.14074241     | 1.496396303               |                           | 0.000455767 |
|               | Additive        | 307.8153038     | 34.06435442     | 2.379663185               | 7.321323459               | 0.000301633 |
|               | Statistical     | 459.4070997     | 114.8517749     | 1.727193748               |                           | 0.000577484 |

**Table S12** Summary of Bindfit output data for  $1 \cdot p$  with TBA<sub>2</sub>(succinate) from <sup>1</sup>H-NMR titration (5% v/v D<sub>2</sub>O in d<sub>6</sub>-Acetone, 1 mM)

| Stoichiometry |                 | к               | K error (%)     |                           |                           | Covariance  |
|---------------|-----------------|-----------------|-----------------|---------------------------|---------------------------|-------------|
| 1:1           |                 | 92.55347788     | 1.78865438      |                           |                           | 0.000777271 |
| Stoichiometry | Mode            | K <sub>11</sub> | K <sub>12</sub> | K <sub>11</sub> error (%) | K <sub>12</sub> error (%) | Covariance  |
| 1:2           | Full            | 38.61803107     | -77.85458781    | 0.305006569               | -0.305006569              | 0.000101436 |
|               | Non-Cooperative |                 |                 |                           |                           |             |
|               | Additive        | 220.3938734     | 76.40837885     | 4.119224559               | 5.215138409               | 0.000430538 |
|               | Statistical     | 210.1862488     | 52.54656221     | 1.725642463               |                           | 0.000634435 |



**Figure S23** Halide binding isotherms derived from <sup>1</sup>H-NMR titrations of **1**·**p** with halides as a tetrabutylammonium salts (5% v/v D<sub>2</sub>O in d<sub>6</sub>-Acetone, 1 mM), where circles-represent experimental data and solid lines represent the fitted binding isotherm.



**Figure S24** Dicarboxylate binding isotherms derived from <sup>1</sup>H-NMR titrations of **1**·**p** with dicarboxylate anions as a tetrabutylammonium salts (5% v/v D<sub>2</sub>O in d<sub>6</sub>-Acetone, 1 mM), where circles-represent experimental data and solid lines represent the fitted binding isotherm

## Summary of anion binding data for 1.n

**Table S13** Summary of Bindfit output data for  $1 \cdot n$  with TBACI from <sup>1</sup>H-NMR titration (5% v/v D<sub>2</sub>O in d<sub>6</sub>-Acetone, 1 mM)

| Stoichiometry |                 | ĸ               | K error (%)     |                           |                           | Covariance  |
|---------------|-----------------|-----------------|-----------------|---------------------------|---------------------------|-------------|
| 1:1           |                 | 48.80793752     | 2.328371586     |                           |                           | 0.00140827  |
| Stoichiometry | Mode            | K <sub>11</sub> | K <sub>12</sub> | K <sub>11</sub> error (%) | K <sub>12</sub> error (%) | Covariance  |
| 1:2           | Full            | 235.6243466     | 83.10876134     | 3.372140599               | 1.877995032               | 9.24802E-05 |
|               | Non-Cooperative |                 |                 |                           |                           |             |
|               | Additive        | 122.3605848     | 92.2221375      | 2.804717258               | 2.957468824               | 0.000103733 |
|               | Statistical     | 106.0009673     | 2.340219166     |                           |                           | 0.001305713 |

**Table S14** Summary of Bindfit output data for  $1 \cdot n$  with TBABr from <sup>1</sup>H-NMR titration (5% v/v D<sub>2</sub>O in d<sub>6</sub>-Acetone, 1 mM)

| Stoichiometry |                 | K               | K error (%)     |                           |                           | Covariance  |
|---------------|-----------------|-----------------|-----------------|---------------------------|---------------------------|-------------|
|               |                 |                 |                 |                           |                           |             |
| 1:1           |                 | 192.3690388     | 1.992966459     |                           |                           | 0.000766482 |
| Stoichiometry | Mode            | K <sub>11</sub> | K <sub>12</sub> | K <sub>11</sub> error (%) | K <sub>12</sub> error (%) | Covariance  |
| 1:2           | Full            | 23309725.11     | 194.5238839     | 41230.45081               | 1.645524628               | 0.000168176 |
|               | Non-Cooperative | 642.171061      | 160.5427653     | 1.758329683               |                           | 0.000412302 |
|               | Additive        | 490.5072792     | 143.7200818     | 4.772382549               | 5.482080485               | 0.000442818 |
|               | Statistical     | 487.7897248     | 121.9474312     | 1.801150851               |                           |             |

**Table S15** Summary of Bindfit output data for  $1 \cdot n$  with TBAI from <sup>1</sup>H-NMR titration (5% v/v D<sub>2</sub>O in d<sub>6</sub>-Acetone, 1 mM)

| Stoichiometry |                 | К               | K error (%)     |                           |                           | Covariance  |
|---------------|-----------------|-----------------|-----------------|---------------------------|---------------------------|-------------|
| 1:1           |                 | 1348.920562     | 7.569989179     |                           |                           | 0.005951516 |
| Stoichiometry | Mode            | K <sub>11</sub> | K <sub>12</sub> | K <sub>11</sub> error (%) | K <sub>12</sub> error (%) | Covariance  |
| 1:2           | Full            | 4878.88484      | 93.44158409     | 13.71626758               | 12.09659375               | 0.002396721 |
|               | Non-Cooperative | 1719.114004     | 429.778501      | 12.97556491               |                           |             |
|               | Additive        | 4932.080554     | 99.76222161     | 13.24742306               | 11.66429488               | 0.002398323 |
|               | Statistical     | 7280.249402     | 1820.06235      | 34.74587566               |                           | 0.031458997 |

**Table S16** Summary of Bindfit output data for  $1 \cdot n$  with TBA<sub>2</sub>(oxalate) from <sup>1</sup>H-NMR titration (5% v/v D<sub>2</sub>O in d<sub>6</sub>-Acetone, 1 mM)

| Stoichiometry |                 | к               | K error (%)     |                           |                           | Covariance  |
|---------------|-----------------|-----------------|-----------------|---------------------------|---------------------------|-------------|
| 1:1           |                 | 55.35647631     | 2.259151223     |                           |                           | 0.001694882 |
| Stoichiometry | Mode            | K <sub>11</sub> | K <sub>12</sub> | K <sub>11</sub> error (%) | K <sub>12</sub> error (%) | Covariance  |
| 1:2           | Full            | -20.49182898    | 95.85220533     | -0.89235146               | 0.89235146                | 0.000978373 |
|               | Non-Cooperative |                 |                 |                           |                           |             |
|               | Additive        | 141.748971      | 46.05762493     | 7.033520898               | 14.1537426                | 0.001617787 |
|               | Statistical     | 122.8371753     | 30.70929382     | 2.356853473               |                           | 0.00167385  |

**Table S17** Summary of Bindfit output data for  $1 \cdot n$  with TBA<sub>2</sub>(malonate) from <sup>1</sup>H-NMR titration (5% v/v D<sub>2</sub>O in d<sub>6</sub>-Acetone, 1 mM)

| Stoichiometry |                 | К               | K error (%)     |                           |                           | Covariance  |
|---------------|-----------------|-----------------|-----------------|---------------------------|---------------------------|-------------|
| 1:1           |                 | 40.70114017     | 1.089687856     |                           |                           | 0.00040928  |
| Stoichiometry | Mode            | K <sub>11</sub> | K <sub>12</sub> | K <sub>11</sub> error (%) | K <sub>12</sub> error (%) | Covariance  |
| 1:2           | Full            | 0.091402147     | -7226.080417    | 1.695448536               | -4.335948237              | 0.000288567 |
|               | Non-Cooperative |                 |                 |                           |                           |             |
|               | Additive        | 107.1209338     | 38.11747254     | 3.311860601               | 6.26161048                | 0.000331875 |
|               | Statistical     | 88.16917844     | 22.04229461     | 1.110549969               |                           | 0.000396096 |

Table S18 Summary of Bindfit output data for 1.n with TBA<sub>2</sub>(succinate) from <sup>1</sup>H-NMR titration

| Stoichiometry |                 | к               | K error (%)     |                           |                           | Covariance  |
|---------------|-----------------|-----------------|-----------------|---------------------------|---------------------------|-------------|
| 1:1           |                 | 24.68149057     | 0.961937361     |                           |                           | 0.000400439 |
| Stoichiometry | Mode            | K <sub>11</sub> | K <sub>12</sub> | K <sub>11</sub> error (%) | K <sub>12</sub> error (%) | Covariance  |
| 1:2           | Full            | 97794.54349     | 19.11057831     | 476.1538691               | 1.21343168                | 0.000279202 |
|               | Non-Cooperative |                 |                 |                           |                           |             |
|               | Additive        | 37.87430625     | 5.494491896     | 2.741418505               | 24.65673644               | 0.000389619 |
|               | Statistical     | 52.23056227     | 13.05764057     | 0.988859642               |                           | 0.000404049 |

 $(5\% \text{ v/v } \text{D}_2\text{O} \text{ in } \text{d}_6\text{-Acetone, 1 mM})$ 



**Figure S25** Halide binding isotherms derived from <sup>1</sup>H-NMR titrations of **1**·**n** with halides as a tetrabutylammonium salts (5% v/v  $D_2O$  in d<sub>6</sub>-Acetone, 1 mM), where circles-represent experimental data and solid lines represent the fitted binding isotherm.



**Figure S26** Dicarboxylate binding isotherms derived from <sup>1</sup>H-NMR titrations of **1**·**n** with dicarboxylate anions as a tetrabutylammonium salts (5% v/v  $D_2O$  in d<sub>6</sub>-Acetone, 1 mM), where circles-represent experimental data and solid lines represent the fitted binding isotherm.

#### 3. Fluorescence Anion Binding Titration Protocol

Fluorescence titration experiments were typically carried out by starting with 2.0 mL of a  $1.0 \times 10^{-4}$  M solution of the host **1**·**n** and adding aliquots of a solution containing the same concentration of the host together with a known concentration of the anion under study. Emission spectra of all samples were recorded from 350-650 nm with slit width of 5 nm, by applying an excitation wavelength at 330 nm with the slit width of 5 nm. Spectral changes were monitored at varying equivalent of anion from 0-100 equivalents or 0 – 10 mM of anion solutions.



#### 3.1 Concentration-Independent Excimer Formation

**Figure S27** Fluorescence spectra of  $1 \cdot n$  in 5%H<sub>2</sub>O/acetone at concentration of a) 1.00 x 10<sup>-4</sup> M, b) 0.50 x 10<sup>-4</sup> M, c) 0.25 x 10<sup>-4</sup> M, and d) 1.25 x 10<sup>-5</sup> M (Excitation wavelength 330 nm, slit width 5 nm)

# 3.2 Fluorescence Anion Titration Spectra



## 3.2.1 Halides

**Figure S28** Fluorescence spectra of  $1 \cdot n$  in 5%H<sub>2</sub>O/acetone at concentration of 1.00 x 10<sup>-4</sup> M in the presence of 0-100 equivalents of a) TBACI b) TBABr and c) TBAI





**Figure S29** Fluorescence spectra of  $1 \cdot n$  in 5%H<sub>2</sub>O/acetone at concentration of 1.00 x 10<sup>-4</sup> M in the presence of 0-100 equivalents of a) TBA<sub>2</sub>Oxalate b) TBA<sub>2</sub>Succinate c) TBA<sub>2</sub>Malonate.

#### 3.2.3 Other Anions



**Figure S30** Fluorescence spectra of  $1 \cdot n$  in 5%H<sub>2</sub>O/acetone at concentration of 1.00 x 10<sup>-4</sup> M in the presence of 0-100 equivalents of TBANO<sub>3</sub>



**Figure S31** Fluorescence spectra of  $1 \cdot n$  in 5%H<sub>2</sub>O/acetone at concentration of 1.00 x 10<sup>-4</sup> M in the presence of 0-100 equivalents of TBASCN



**Figure S32** Fluorescence spectra of  $1 \cdot n$  in 5%H<sub>2</sub>O/acetone at concentration of 1.00 x 10<sup>-4</sup> M in the presence of 0-100 equivalents of TBACIO<sub>4</sub>

#### 4. Computational details

All calculations were performed by Gaussian 09<sup>4</sup> program. All gas-phase geometry optimizations and frequency calculations were carried out by M06-2X functional<sup>5</sup> and basis set 1 (BS1). In BS1, def2-TZVP<sup>6</sup> basis set was used for halogens, 6-31++G(d,p)<sup>7-9</sup> basis set for N and O and 6-31G(d)<sup>7-</sup> <sup>9</sup> basis set for all other C and H atoms. Single point energy calculation for solvent correction was performed on all structures using the same functional and basis set in solvent using an SMD<sup>10</sup> continuum solvation model with water solvent parameter  $\varepsilon$  = 78.3553. The molecular electrostatic potential (MEP) was plotted over electron density surface with an isovalue of 0.004 au. The color scale is ranged from 0.05 (red) to 0.10 (blue) au. The surface maxima on the MEP surfaces, between the most negative and most positive values, were calculated using multiwfn<sup>11</sup> program. The NBO analysis was performed using NBO 6.0.<sup>12</sup>



**Figure S33.** Optimized geometry of  $1 \cdot m$  and  $1 \cdot m - X^-$  (X = Cl, Br, and I). The I...X distances are shown in Å



**Figure S34.** Electrostatic potential plots (ESPs) were mapped over electron density surfaces with isodensity of 0.004 au with the color scale from 0.05 (red) to 0.10 (blue) au for **1·m** and **1·m–Cl**<sup>-</sup> (The Cl atom is omitted for clarity).

**Table S19** Maximum electrostatic potential at the binding sites of  $1 \cdot m - Cl^2$ ,  $1 \cdot m - Br^2$ , and  $1 \cdot m - l^2$  in gas phase. Electrostatic potential plots (ESPs) were mapped over electron density surfaces with isodensity of 0.004 au.

| Complex | Maximum electrostatic potential (in au) |        |            |            |  |  |
|---------|-----------------------------------------|--------|------------|------------|--|--|
|         | <b>1</b>                                | 3      | <b> </b> 2 | <b> </b> 4 |  |  |
| 1·m     | 0.1041                                  | 0.0921 | 0.0651     | 0.0735     |  |  |
| 1·m–Cl⁻ | 0.1119                                  | 0.1133 | 0.0710     | 0.0824     |  |  |
| 1·m–Br⁻ | 0.1100                                  | 0.1131 | 0.0845     | 0.0818     |  |  |
| 1·m–l⁻  | 0.1096                                  | 0.1107 | 0.0854     | 0.0823     |  |  |

**Table S20** Second-order perturbative energy, E(2), (in kcal/mol) for the orbital interaction from the lone pair of halide, LP (X<sup>-</sup>), to  $\sigma^*$ (C-I) of **1·m**–**X**<sup>-</sup> (X = CI, Br, and I) in gas phase<sup>a</sup> and aqueous phase<sup>b</sup>

| Donor                             | Acceptor              |       | 1·m–X⁻ |       |
|-----------------------------------|-----------------------|-------|--------|-------|
|                                   | -                     | CI    | Br     | I     |
| ªLP (X⁻)                          | σ*(C-I¹)              | 18.81 | 15.00  | 13.38 |
| ªLP (X⁻)                          | σ*(C-I <sup>3</sup> ) | 20.60 | 17.38  | 11.65 |
| <sup>b</sup> LP (X <sup>-</sup> ) | σ*(C-I¹)              | 16.98 | 14.23  | 10.68 |
| <sup>b</sup> LP (X <sup>-</sup> ) | σ*(C-I <sup>3</sup> ) | 18.24 | 16.14  | 9.16  |

| Bond Distance (Å)  | 1∙m   | 1·m–X <sup>-</sup> |       |       |
|--------------------|-------|--------------------|-------|-------|
|                    |       | Cl                 | Br    | I     |
| <sup>1</sup> X-    | -     | 2.976              | 3.212 | 3.425 |
| <sup>3</sup> X⁻    | -     | 2.967              | 3.158 | 3.459 |
| ²X⁻                | -     | 5.406              | 5.639 | 5.867 |
| I <sup>4</sup> X⁻  | -     | 5.160              | 5.647 | 6.190 |
| $C - I^1$          | 2.053 | 2.102              | 2.092 | 2.095 |
| C – I <sup>3</sup> | 2.054 | 2.103              | 2.101 | 2.088 |
| C – I <sup>2</sup> | 2.055 | 2.053              | 2.054 | 2.054 |
| C – I <sup>4</sup> | 2.056 | 2.053              | 2.054 | 2.055 |

**Table S21** Optimized geometry parameters of  $1 \cdot m$  and  $1 \cdot m - X^{-}$  (X = Cl, Br, and I)

**Table S22** Gas phase hydration energies (in kcal/mol) for the  $[X(H_2O)_4]^-$  cluster formation (X = CI, Br, and I).

| Reaction                                       | $\Delta E$ (kcal/mol) |
|------------------------------------------------|-----------------------|
| $Cl^- + (H_2O)_4 \rightarrow [Cl(H_2O)_4]^-$   | -39.49                |
| $Br^- + (H_2O)_4 \rightarrow [Br(H_2O)_4]^-$   | -33.26                |
| $ ^{-} + (H_2O)_4 \rightarrow [I(H_2O)_4]^{-}$ | -26.98                |

**Table S23** Solvent corrected binding energies for the binding of an anion to the sigma hole type receptors.

| Reaction <sup>a</sup>                                                                                                                            | $\Delta E$ (kcal/mol) |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| <b>1</b> ⋅ <b>m</b> + [Cl(H <sub>2</sub> O) <sub>4</sub> ] <sup>-</sup> → <b>1</b> ⋅ <b>m</b> -Cl <sup>-</sup> + (H <sub>2</sub> O) <sub>4</sub> | 3.90                  |
| $1 \cdot \mathbf{m} + [Br(H_2O)_4]^- \rightarrow 1 \cdot \mathbf{m} \cdot Br^- + (H_2O)_4$                                                       | 3.10                  |
| $1 \cdot \mathbf{m} + [\mathbf{I}(\mathbf{H}_2\mathbf{O})_4]^- \rightarrow 1 \cdot \mathbf{m} \cdot \mathbf{I}^- + (\mathbf{H}_2\mathbf{O})_4$   | 2.92                  |

<sup>a</sup>Optimizations were performed in gas phase and single-point calculations were performed in water with 4 explicit water molecules on halide.

**Table S24** Calculated gas phase binding energies for the binding of an anion to the sigma holetype receptors.

| Reaction <sup>a</sup>                               | ∆E (kcal/mol) |
|-----------------------------------------------------|---------------|
| $1 \cdot m + Cl^{-} \rightarrow 1 \cdot m - Cl^{-}$ | -52.60        |
| $1 \cdot m + Br^- \rightarrow 1 \cdot m - Br^-$     | -46.11        |
| $1 \cdot m + l^- \rightarrow 1 \cdot m \cdot l^-$   | -40.102       |

# Cartesian coordinates of the optimized structures

#### 1∙m

# 96

## scf done: -3727.40069561

| С | -2.868777596 | -0.934572208 | 0.347176151  |
|---|--------------|--------------|--------------|
| С | -2.950202765 | -2.256689424 | 0.794185069  |
| С | -3.962910412 | -2.626799544 | 1.679668833  |
| С | -3.809501434 | 0.012732749  | 0.766336542  |
| С | -4.802845462 | -0.366541414 | 1.675704752  |
| С | -4.884483159 | -1.681048265 | 2.124946032  |
| С | -5.994775030 | -2.017349118 | 3.083331210  |
| 0 | -6.510553903 | -1.163942772 | 3.790525443  |
| Ν | -6.383691602 | -3.321050520 | 3.117888701  |
| С | 3.202781852  | -1.962189819 | -4.332768828 |
| С | -7.486093925 | -3.738485187 | 3.972418051  |
| С | -7.551122635 | -5.255692406 | 4.047879188  |
| С | 8.132131146  | -1.259083362 | 5.150273759  |
| Ν | -0.464047171 | -4.537543674 | -0.517593447 |
| Ν | -1.603906716 | -5.227539088 | -0.619211741 |
| Ν | -2.558622554 | -4.497823961 | -0.141172900 |
| С | -2.055567609 | -3.297934656 | 0.266954915  |
| С | -0.693401817 | -3.317019075 | 0.031596931  |
| I | 0.796061107  | -1.993160501 | 0.531420621  |
| С | 0.728274941  | -5.037600021 | -1.192901142 |
| Ν | -3.775953041 | 3.283699916  | -0.816900023 |
| Ν | -4.432223661 | 3.487528705  | 0.328849467  |
| Ν | -4.474104067 | 2.370403810  | 0.973196043  |
| С | -3.831912180 | 1.397640168  | 0.264243373  |
| С | -3.368354223 | 1.990530592  | -0.901058317 |
| I | -2.405778837 | 1.265838809  | -2.562121996 |
| С | -3.441001103 | 4.432205510  | -1.651469076 |
| С | 1.044209898  | -3.079726239 | -5.007904095 |

| С | -0.029413262 | -3.929008000 | -4.746089673 |
|---|--------------|--------------|--------------|
| С | -0.125567160 | -4.579239440 | -3.520838719 |
| С | 2.039072659  | -2.893141064 | -4.051524609 |
| С | 1.946246023  | -3.559206740 | -2.827521613 |
| С | 0.865432936  | -4.391017214 | -2.554456063 |
| С | 0.528987582  | 5.743157187  | -0.631835883 |
| С | -0.406966313 | 5.471215614  | 0.369727492  |
| С | -1.697224159 | 5.097725350  | 0.018971633  |
| С | 0.169379291  | 5.619051951  | -1.968862730 |
| С | -1.117140061 | 5.202124585  | -2.314737591 |
| С | -2.055310598 | 4.942112392  | -1.320495644 |
| С | 5.294144788  | -0.843360974 | 3.769287808  |
| 0 | 4.919210537  | -0.664193194 | 4.919456954  |
| Ν | 6.355214947  | -1.638116617 | 3.458780397  |
| С | 7.157540309  | -2.244315398 | 4.513439387  |
| С | 3.250205859  | 1.078828477  | 0.528830382  |
| С | 3.923420780  | -0.116961911 | 0.275979928  |
| С | 4.587035715  | -0.756104084 | 1.332727173  |
| С | 3.238819341  | 1.635286610  | 1.811488396  |
| С | 3.909794689  | 0.997958955  | 2.851696504  |
| С | 4.591336601  | -0.195907946 | 2.607329550  |
| Ν | 3.762397584  | -1.446785169 | -3.093878416 |
| Ν | 4.825508843  | -2.059401809 | -2.562710790 |
| Ν | 4.976901938  | -1.621088151 | -1.357467156 |
| С | 3.994769005  | -0.720100754 | -1.063116561 |
| С | 3.198435240  | -0.602881402 | -2.191276437 |
| I | 1.489288777  | 0.462977293  | -2.600684500 |
| Ν | 1.121711918  | 4.546832297  | 2.030667921  |
| Ν | 2.305544468  | 5.026201083  | 2.430018202  |
| Ν | 3.157635715  | 4.050850348  | 2.431329788  |
| С | 2.538643249  | 2.914042063  | 2.013530016  |
| С | 1.218008071  | 3.222647808  | 1.754721901  |
| I | -0.346224022 | 1.999687883  | 1.222590866  |
| С | 0.003193547  | 5.460458927  | 1.825245945  |

| Н | -2.080136551 | -0.665296157 | -0.351139741 |
|---|--------------|--------------|--------------|
| Н | -3.996132605 | -3.655743368 | 2.025506826  |
| Н | -5.526366071 | 0.359648229  | 2.031492934  |
| Н | -6.093467916 | -3.940855415 | 2.373924567  |
| Н | 4.027000139  | -2.481216558 | -4.828923448 |
| Н | 2.891737433  | -1.121829538 | -4.959618620 |
| Н | 7.685594130  | -3.095994712 | 4.075375421  |
| Н | 6.461983392  | -2.627695176 | 5.263374140  |
| Н | 8.834716909  | -0.869528893 | 4.406971186  |
| Н | 8.706530766  | -1.747672528 | 5.942806197  |
| Н | 7.581927986  | -0.421906156 | 5.586754586  |
| Н | -7.318058849 | -3.300864243 | 4.959430641  |
| Н | -8.429317584 | -3.323308021 | 3.596261534  |
| Н | -6.624066550 | -5.664878309 | 4.459983445  |
| Н | -8.379489643 | -5.567466931 | 4.688530223  |
| Н | -7.713091014 | -5.696118697 | 3.057834726  |
| Н | 0.590151822  | -6.118752364 | -1.264070061 |
| Н | 1.598958096  | -4.830798756 | -0.565745988 |
| Н | -3.519572314 | 4.139452966  | -2.701271840 |
| Н | -4.212492458 | 5.176072566  | -1.437219242 |
| Н | 1.101642129  | -2.552868685 | -5.957209125 |
| Н | -0.801254455 | -4.069964089 | -5.495617236 |
| Н | -0.976548813 | -5.219296760 | -3.300532925 |
| Н | 2.710045483  | -3.415874313 | -2.066129987 |
| Н | 1.544320491  | 6.022289006  | -0.358666704 |
| Н | -2.420631756 | 4.866364372  | 0.798404567  |
| Н | 0.898922559  | 5.820785707  | -2.746482167 |
| Н | -1.383081773 | 5.064972210  | -3.359955470 |
| Н | 6.750896307  | -1.573482197 | 2.531141069  |
| Н | 2.763271101  | 1.620389214  | -0.275190558 |
| Н | 5.083233997  | -1.701193161 | 1.133711440  |
| Н | 3.908848467  | 1.415318315  | 3.853884699  |
| Н | -0.831503996 | 5.150163124  | 2.460837910  |
| Н | 0.366464182  | 6.431402624  | 2.170247203  |

# 1·m-Cl⁻

# 97

scf done: -4187.74039612

| С | 3.724023780  | 0.410900189  | 0.546973286  |
|---|--------------|--------------|--------------|
| С | 4.056166047  | 1.644989573  | 1.111745038  |
| С | 5.127552004  | 1.732231985  | 2.001448640  |
| С | 4.438802622  | -0.744468842 | 0.879972571  |
| С | 5.496975051  | -0.645998824 | 1.791540243  |
| С | 5.850398346  | 0.586640674  | 2.333576435  |
| С | 7.027270743  | 0.631657772  | 3.264216683  |
| 0 | 7.391587676  | -0.339086391 | 3.914008822  |
| Ν | 7.675044987  | 1.831288918  | 3.342340501  |
| С | -2.985007647 | 3.789106460  | -3.218837543 |
| С | 8.878109687  | 1.969477867  | 4.144527493  |
| С | 9.250720729  | 3.436956624  | 4.291254469  |
| С | -9.723911278 | 0.666532426  | 4.366257255  |
| Ν | 1.896999049  | 4.425748556  | 0.275424086  |
| Ν | 3.101118404  | 4.998669094  | 0.373577329  |
| Ν | 3.957322377  | 4.075709750  | 0.676884652  |
| С | 3.322638850  | 2.872585702  | 0.770193755  |
| С | 1.980520780  | 3.093467616  | 0.513699804  |
| I | 0.346672103  | 1.851139856  | 0.542754661  |
| С | 0.747860993  | 5.209372685  | -0.157876384 |
| Ν | 3.551890709  | -3.779772132 | -0.872155653 |
| Ν | 4.361342545  | -4.210827858 | 0.105895068  |
| Ν | 4.715384813  | -3.181687968 | 0.798695593  |
| С | 4.137138246  | -2.056717818 | 0.284434614  |
| С | 3.365596232  | -2.434160907 | -0.810671488 |
| I | 2.100006147  | -1.504322304 | -2.207506031 |
| С | 2.990361214  | -4.743926705 | -1.806507311 |
| С | -0.589659449 | 3.846109787  | -4.007159907 |
| С | 0.764647514  | 4.083585158  | -3.785411714 |

| С  | 1.197767517  | 4.546663283  | -2.548323219 |
|----|--------------|--------------|--------------|
| С  | -1.517712175 | 4.085539054  | -2.997222729 |
| С  | -1.080494612 | 4.552676295  | -1.758064914 |
| С  | 0.273279509  | 4.775905702  | -1.527417726 |
| С  | -1.235702983 | -5.289350206 | -1.201909258 |
| С  | -0.372330519 | -5.246577385 | -0.105835733 |
| С  | 0.995861710  | -5.096176132 | -0.309160519 |
| С  | -0.728347523 | -5.157832132 | -2.489739240 |
| С  | 0.639251325  | -4.984680951 | -2.687104152 |
| С  | 1.507762621  | -4.960433960 | -1.598751145 |
| С  | -6.616622300 | 0.402680331  | 3.679642504  |
| 0  | -6.594646373 | -0.230098339 | 4.728380029  |
| Ν  | -7.533439762 | 1.388114489  | 3.455105940  |
| С  | -8.573767083 | 1.667327605  | 4.430467153  |
| С  | -3.825337235 | -0.441876741 | 0.540545055  |
| С  | -4.431955966 | 0.816031966  | 0.573343287  |
| С  | -5.336325698 | 1.099076308  | 1.605088061  |
| С  | -4.099551841 | -1.393730147 | 1.528997303  |
| С  | -5.013123093 | -1.102670658 | 2.541499603  |
| С  | -5.638909689 | 0.142470020  | 2.570710581  |
| Ν  | -3.593221497 | 3.140255272  | -2.067218605 |
| Ν  | -4.454472506 | 3.829335543  | -1.307301303 |
| Ν  | -4.806306915 | 3.062802518  | -0.330546860 |
| С  | -4.170495003 | 1.857895520  | -0.434003901 |
| С  | -3.365979229 | 1.894710083  | -1.569489589 |
| I  | -2.011740212 | 0.630636191  | -2.568519391 |
| Ν  | -2.054990420 | -4.372755146 | 1.455703780  |
| Ν  | -3.255654175 | -4.850432530 | 1.804189870  |
| Ν  | -4.083234409 | -3.855713821 | 1.852603141  |
| С  | -3.432962661 | -2.704718116 | 1.523662204  |
| С  | -2.113190243 | -3.031532888 | 1.267424377  |
| I  | -0.490373899 | -1.878825941 | 0.764766325  |
| С  | -0.925031459 | -5.280493196 | 1.300913825  |
| CL | 0.070451335  | -0.684291998 | -4.223426123 |

| Н | 2.913982393   | 0.356014445  | -0.172392286 |
|---|---------------|--------------|--------------|
| Н | 5.355776710   | 2.697235796  | 2.444650444  |
| Н | 6.058557157   | -1.531062697 | 2.070945694  |
| Н | 7.488550471   | 2.527320004  | 2.633124241  |
| Н | -3.563774606  | 4.705317697  | -3.365627528 |
| н | -3.115779507  | 3.147479067  | -4.095114035 |
| н | -8.929081392  | 2.687196917  | 4.254947662  |
| Н | -8.105517141  | 1.637777489  | 5.417231517  |
| Н | -10.206441326 | 0.691558397  | 3.383926955  |
| Н | -10.478025440 | 0.894054061  | 5.126297051  |
| Н | -9.343130855  | -0.342312305 | 4.543817972  |
| Н | 8.678129413   | 1.516034488  | 5.118553498  |
| Н | 9.702258308   | 1.401136604  | 3.693803831  |
| Н | 8.445757473   | 3.993927228  | 4.779664425  |
| Н | 10.157686979  | 3.540962950  | 4.892564338  |
| Н | 9.443304220   | 3.896637613  | 3.315440572  |
| Н | 1.095392982   | 6.245764580  | -0.148046042 |
| Н | -0.051482681  | 5.101465976  | 0.581521030  |
| Н | 3.185040543   | -4.398105032 | -2.825852954 |
| Н | 3.556929982   | -5.663394814 | -1.634821728 |
| Н | -0.919070280  | 3.424482276  | -4.952984450 |
| Н | 1.485203705   | 3.869073397  | -4.567510042 |
| Н | 2.258342637   | 4.696576180  | -2.358325466 |
| Η | -1.800884535  | 4.694608419  | -0.953417487 |
| Η | -2.307457904  | -5.381704054 | -1.039521220 |
| Н | 1.668999916   | -5.023818538 | 0.544433252  |
| Η | -1.400572501  | -5.150141639 | -3.341067635 |
| Н | 1.026529528   | -4.820883662 | -3.689165054 |
| Н | -7.636410885  | 1.748668624  | 2.517619570  |
| Η | -3.147149644  | -0.695175512 | -0.267913615 |
| Η | -5.768118625  | 2.094145904  | 1.641001542  |
| Н | -5.235445691  | -1.834022726 | 3.312103412  |
| Н | -0.149864619  | -5.004893020 | 2.023319309  |
| Н | -1.319545422  | -6.263369241 | 1.572392188  |

# 1·m-Br⁻

# 97

scf done: -6301.74514373

| С | -3.688097011 | -0.604254638 | 0.501531511  |
|---|--------------|--------------|--------------|
| С | -3.941967767 | -1.870398771 | 1.034982818  |
| С | -4.889561343 | -2.017859118 | 2.047788977  |
| С | -4.356336917 | 0.524549591  | 0.985841400  |
| С | -5.289239872 | 0.365072987  | 2.018327831  |
| С | -5.566140284 | -0.898595855 | 2.532649091  |
| С | -6.599260002 | -1.003243327 | 3.616504417  |
| 0 | -6.872846046 | -0.068413110 | 4.357076373  |
| Ν | -7.218792599 | -2.214089226 | 3.733104431  |
| С | 3.089118247  | -3.362262116 | -3.397837071 |
| С | -8.274197284 | -2.409874371 | 4.711995387  |
| С | -8.622188525 | -3.886028948 | 4.827017104  |
| С | 9.490874375  | -0.833568008 | 4.703359117  |
| Ν | -1.860365374 | -4.543373596 | -0.227095693 |
| Ν | -3.054464117 | -5.131888504 | -0.098947743 |
| Ν | -3.886514198 | -4.252039988 | 0.360485133  |
| С | -3.245094073 | -3.061580754 | 0.528750212  |
| С | -1.924999450 | -3.243610451 | 0.155676922  |
| I | -0.310364332 | -1.975365760 | 0.199036101  |
| С | -0.739924555 | -5.288811356 | -0.789717534 |
| Ν | -3.623933210 | 3.673117005  | -0.640081275 |
| Ν | -4.440111578 | 4.021954273  | 0.362568487  |
| Ν | -4.750449547 | 2.946523895  | 1.004713285  |
| С | -4.131022627 | 1.871147895  | 0.434864432  |
| С | -3.384441850 | 2.334549925  | -0.643813079 |
| I | -2.096169117 | 1.558768717  | -2.098757940 |
| С | -3.048354362 | 4.711497569  | -1.485818201 |
| С | 0.720057028  | -3.233570243 | -4.267630039 |
| С | -0.641937729 | -3.497933531 | -4.138212946 |

| С  | -1.115350909 | -4.199195658 | -3.035376491 |
|----|--------------|--------------|--------------|
| С  | 1.614900103  | -3.688914791 | -3.302981380 |
| С  | 1.136435336  | -4.393627358 | -2.199085883 |
| С  | -0.224635152 | -4.637906357 | -2.053303266 |
| С  | 1.134935247  | 5.158295389  | -0.590465836 |
| С  | 0.194336264  | 5.122248915  | 0.441234441  |
| С  | -1.158102018 | 5.016151853  | 0.137210504  |
| С  | 0.718862083  | 5.063012895  | -1.913234533 |
| С  | -0.636024239 | 4.935743673  | -2.212986543 |
| С  | -1.579251655 | 4.919831119  | -1.188836443 |
| С  | 6.392552777  | -0.696924495 | 3.973432097  |
| 0  | 6.312385160  | -0.211101259 | 5.095031448  |
| Ν  | 7.377450130  | -1.580438107 | 3.641200880  |
| С  | 8.422419550  | -1.917580748 | 4.593391358  |
| С  | 3.614693811  | 0.372826350  | 0.894375854  |
| С  | 4.268844157  | -0.857690584 | 0.804392771  |
| С  | 5.167788401  | -1.216956221 | 1.816314098  |
| С  | 3.843137474  | 1.227954387  | 1.977836101  |
| С  | 4.749465902  | 0.863007189  | 2.972213433  |
| С  | 5.417549129  | -0.357591705 | 2.883744045  |
| Ν  | 3.613199997  | -2.861051300 | -2.134487088 |
| Ν  | 4.389731134  | -3.653919083 | -1.386315822 |
| Ν  | 4.668123724  | -3.012251557 | -0.300868871 |
| С  | 4.066979626  | -1.785932316 | -0.320651263 |
| С  | 3.366861643  | -1.673901016 | -1.517598778 |
| I  | 2.152215184  | -0.260425431 | -2.489554901 |
| Ν  | 1.763561274  | 4.183060543  | 2.070007024  |
| Ν  | 2.955067325  | 4.649562656  | 2.460252862  |
| Ν  | 3.789142645  | 3.658940830  | 2.470029227  |
| С  | 3.152680083  | 2.523314219  | 2.068833579  |
| С  | 1.834297332  | 2.854311987  | 1.810858638  |
| I  | 0.222972165  | 1.711157479  | 1.249658899  |
| С  | 0.646000517  | 5.099808085  | 1.884319889  |
| BR | 0.148290734  | 1.283481845  | -4.380504642 |

| Н | -2.978351806 | -0.509690236 | -0.313404671 |
|---|--------------|--------------|--------------|
| Н | -5.053853032 | -3.006938599 | 2.465631423  |
| Н | -5.811194321 | 1.227763021  | 2.418917841  |
| Н | -7.134046967 | -2.877832397 | 2.975424166  |
| Н | 3.687297726  | -4.249650081 | -3.621188025 |
| Н | 3.266843829  | -2.612101637 | -4.172928428 |
| Н | 8.859406350  | -2.871008220 | 4.281833706  |
| Н | 7.939649204  | -2.067460455 | 5.562051016  |
| Н | 9.982639355  | -0.673595806 | 3.738607612  |
| Н | 10.253329054 | -1.115788056 | 5.436308559  |
| Н | 9.031166779  | 0.105157630  | 5.022022786  |
| Н | -7.914511867 | -2.015884277 | 5.665925445  |
| Н | -9.158759926 | -1.820179969 | 4.439216528  |
| Н | -7.746557808 | -4.468398603 | 5.128642284  |
| Н | -9.408365944 | -4.034712608 | 5.571667961  |
| Н | -8.987084536 | -4.282982856 | 3.873255287  |
| Н | -1.135773638 | -6.292708243 | -0.964374006 |
| Н | 0.055142397  | -5.353154955 | -0.040080262 |
| Н | -3.195067267 | 4.435443528  | -2.533778874 |
| Н | -3.637512040 | 5.606903212  | -1.270908367 |
| Н | 1.076856716  | -2.625099160 | -5.094540620 |
| Н | -1.336029174 | -3.115301105 | -4.878848350 |
| Н | -2.182731885 | -4.367287287 | -2.908154948 |
| Н | 1.830780824  | -4.696501216 | -1.416002234 |
| Н | 2.194995890  | 5.211624656  | -0.351333279 |
| Н | -1.892664957 | 4.940206847  | 0.938502977  |
| Н | 1.449417549  | 5.039139466  | -2.714887035 |
| Н | -0.948474582 | 4.784779857  | -3.243143875 |
| Н | 7.515315873  | -1.805668253 | 2.666648847  |
| Н | 2.937272055  | 0.684626168  | 0.106226267  |
| Н | 5.640193578  | -2.192219653 | 1.753096450  |
| Н | 4.939594520  | 1.519342527  | 3.815550038  |
| Н | -0.176356469 | 4.793789334  | 2.538755402  |
| Н | 1.020801457  | 6.068660045  | 2.224499672  |

# 1·m-l⁻

# 97

scf done: -4025.1868276

| С | 3.614379231  | -0.665081248 | -0.683677470 |
|---|--------------|--------------|--------------|
| С | 3.879414410  | -1.978065335 | -1.079813069 |
| С | 4.838663210  | -2.223074741 | -2.062334619 |
| С | 4.288939801  | 0.410078333  | -1.269769832 |
| С | 5.232144204  | 0.152244212  | -2.272160231 |
| С | 5.516244343  | -1.156436862 | -2.653233718 |
| С | 6.568333470  | -1.370322246 | -3.702798474 |
| 0 | 6.840552120  | -0.524820167 | -4.544259359 |
| Ν | 7.206523366  | -2.576264389 | -3.662216086 |
| С | -3.059334006 | -3.049024532 | 3.586375724  |
| С | 8.287449358  | -2.873569442 | -4.586088605 |
| С | 8.633312037  | -4.354001071 | -4.535488102 |
| С | -9.659216638 | -1.247980657 | -4.478941687 |
| Ν | 1.855747913  | -4.525515915 | 0.499089661  |
| Ν | 3.059131914  | -5.103252138 | 0.420593636  |
| Ν | 3.867341019  | -4.268085365 | -0.150298778 |
| С | 3.200782235  | -3.116385140 | -0.444314672 |
| С | 1.889682357  | -3.277659869 | -0.032185128 |
| I | 0.250510225  | -2.051820200 | -0.199767351 |
| С | 0.764542467  | -5.213475945 | 1.179759920  |
| Ν | 3.587569018  | 3.685165424  | 0.095006884  |
| Ν | 4.361024970  | 3.950132089  | -0.965435313 |
| Ν | 4.653154132  | 2.824875480  | -1.526030298 |
| С | 4.063277482  | 1.800512354  | -0.842837496 |
| С | 3.355310582  | 2.351807106  | 0.220363188  |
| I | 2.174821154  | 1.678278172  | 1.814290848  |
| С | 3.023488472  | 4.788820769  | 0.860185447  |
| С | -0.676184641 | -2.713530098 | 4.362176364  |
| С | 0.691813735  | -2.944143868 | 4.226896254  |

| С | 1.160374087  | -3.791078904 | 3.229126284  |
|---|--------------|--------------|--------------|
| С | -1.578022086 | -3.346111237 | 3.510616157  |
| С | -1.103979493 | -4.194691616 | 2.510365321  |
| С | 0.260664497  | -4.407923546 | 2.355930977  |
| С | -1.158792959 | 5.186410473  | -0.062165640 |
| С | -0.222399629 | 5.030146315  | -1.087190733 |
| С | 1.128759418  | 4.936687290  | -0.776027990 |
| С | -0.738710396 | 5.223189291  | 1.262218455  |
| С | 0.615642151  | 5.107109352  | 1.571593808  |
| С | 1.553910009  | 4.973640842  | 0.551905628  |
| С | -6.521956927 | -1.056411053 | -3.916640599 |
| 0 | -6.491652653 | -0.660846049 | -5.075423524 |
| Ν | -7.490290828 | -1.909038381 | -3.473233094 |
| С | -8.576001691 | -2.315095256 | -4.350194124 |
| С | -3.602328940 | 0.248342992  | -1.065285944 |
| С | -4.275233890 | -0.952330605 | -0.830036519 |
| С | -5.219013962 | -1.390377642 | -1.767035406 |
| С | -3.863846298 | 1.000808197  | -2.215451682 |
| С | -4.816853571 | 0.560253692  | -3.132916899 |
| С | -5.498473733 | -0.634226308 | -2.902523838 |
| Ν | -3.595169948 | -2.668840418 | 2.283219237  |
| Ν | -4.360747131 | -3.535201615 | 1.610287484  |
| Ν | -4.643849311 | -3.000905918 | 0.468903816  |
| С | -4.056665257 | -1.771911147 | 0.373150991  |
| С | -3.362844284 | -1.543256941 | 1.555430679  |
| I | -2.167941488 | -0.046831572 | 2.386737487  |
| Ν | -1.788995431 | 3.934366779  | -2.616252892 |
| Ν | -2.990816364 | 4.363167946  | -3.016573229 |
| Ν | -3.820189745 | 3.373359058  | -2.924604823 |
| С | -3.169890422 | 2.276877797  | -2.444637283 |
| С | -1.846968772 | 2.631724414  | -2.244560243 |
| I | -0.212212587 | 1.542096963  | -1.640205564 |
| С | -0.677730060 | 4.872457681  | -2.520531129 |
| I | 0.117917163  | 1.405352726  | 4.539064656  |

| Η | 2.895834231   | -0.486108532 | 0.108753346  |
|---|---------------|--------------|--------------|
| Н | 5.016871275   | -3.249504075 | -2.369942843 |
| н | 5.758589417   | 0.972097704  | -2.749205301 |
| н | 7.112865281   | -3.144732786 | -2.831408148 |
| н | -3.638025712  | -3.928251081 | 3.880682688  |
| Н | -3.256069087  | -2.241978124 | 4.297256834  |
| Н | -8.988154585  | -3.249554421 | -3.958062966 |
| Н | -8.136712813  | -2.523508945 | -5.328586855 |
| Н | -10.111188566 | -1.033233571 | -3.505288440 |
| Н | -10.449440145 | -1.580511938 | -5.159344816 |
| Н | -9.224152498  | -0.326682228 | -4.873868615 |
| Н | 7.954588294   | -2.581461680 | -5.585256644 |
| Н | 9.166474269   | -2.259108748 | -4.352240399 |
| Н | 7.766022102   | -4.963598809 | -4.805507471 |
| Н | 9.444680610   | -4.579694506 | -5.232290029 |
| Н | 8.962644496   | -4.650275229 | -3.533325434 |
| Н | 1.186990092   | -6.177204938 | 1.476294290  |
| Н | -0.043624676  | -5.391987816 | 0.463280359  |
| Н | 3.176387895   | 4.595933911  | 1.925335244  |
| Н | 3.612090382   | 5.663564892  | 0.571611614  |
| Н | -1.029136709  | -1.988449794 | 5.091433415  |
| Н | 1.387334662   | -2.417024854 | 4.871469146  |
| Н | 2.229927113   | -3.935225909 | 3.090497452  |
| Н | -1.807707045  | -4.635414870 | 1.804742886  |
| Н | -2.218599364  | 5.235942694  | -0.303270347 |
| Н | 1.859828201   | 4.775889006  | -1.567447034 |
| Н | -1.467318935  | 5.303271821  | 2.062075401  |
| Н | 0.933532174   | 5.070488287  | 2.610410911  |
| Н | -7.588857347  | -2.054079500 | -2.478915723 |
| Н | -2.885210828  | 0.621622095  | -0.341492488 |
| Н | -5.702010448  | -2.345872296 | -1.589385062 |
| Н | -5.034629116  | 1.137835602  | -4.025573732 |
| Н | 0.144059366   | 4.515704476  | -3.149136635 |
| н | -1.062198926  | 5.803997778  | -2.943913396 |

(H<sub>2</sub>O)<sub>4</sub>

12

scf done: -305.5912421

| 0 | -1.358631620 | 1.358631620  | 0.047267730  |
|---|--------------|--------------|--------------|
| 0 | -1.358631620 | -1.358631620 | -0.047267730 |
| 0 | 1.358631620  | -1.358631620 | 0.047267730  |
| 0 | 1.358631620  | 1.358631620  | -0.047267730 |
| Н | -0.383904359 | 1.508219533  | -0.001895863 |
| Н | -1.670494280 | 1.823580413  | 0.834390297  |
| Н | -1.508219533 | -0.383904359 | 0.001895863  |
| Н | -1.823580413 | -1.670494280 | -0.834390297 |
| Н | 0.383904359  | -1.508219533 | -0.001895863 |
| Н | 1.670494280  | -1.823580413 | 0.834390297  |
| Н | 1.508219533  | 0.383904359  | 0.001895863  |
| Н | 1.823580413  | 1.670494280  | -0.834390297 |

[CI(H<sub>2</sub>O)<sub>4</sub>]<sup>-</sup>

13

```
scf done: -765.910047624
```

| 0  | -0.671779681 | -2.042565556 | -0.230041284 |
|----|--------------|--------------|--------------|
| 0  | -0.590282444 | 0.112234143  | -2.071569562 |
| 0  | -0.927858026 | 1.954115679  | 0.056774636  |
| 0  | -1.010372008 | -0.201121129 | 1.899072830  |
| CL | 1.730106429  | 0.095674280  | 0.186651205  |
| Н  | -1.076550794 | -1.581536578 | 0.532946598  |
| Н  | 0.258248380  | -1.744414952 | -0.162759448 |
| Н  | 0.319497668  | 0.198585567  | -1.720192038 |
| Н  | -0.889576346 | -0.707589227 | -1.628019528 |

| scf done: -603.356461692 |              |              |              |
|--------------------------|--------------|--------------|--------------|
| 0                        | -1.770624718 | 1.985902674  | 0.098684363  |
| 0                        | -1.770235836 | -0.098800403 | 1.985027717  |
| 0                        | -1.770625411 | -1.985904680 | -0.098797819 |
| 0                        | -1.769906799 | 0.098815568  | -1.985145115 |
| I                        | 1.279028170  | -0.000002381 | 0.000037292  |
| Н                        | -1.986223609 | 1.446027573  | -0.692780002 |

[I(H<sub>2</sub>O)<sub>4</sub>]<sup>−</sup>

13

| 0  | -1.331954072 | -1.985032199 | -0.216727881 |
|----|--------------|--------------|--------------|
| 0  | -1.332363713 | 0.216806656  | -1.984692552 |
| 0  | -1.332150624 | 1.984962210  | 0.216808192  |
| BR | 1.441331735  | 0.000044702  | 0.000020148  |
| Н  | -1.585125187 | 0.602360576  | 1.508345462  |
| Н  | -0.369183420 | -0.250447023 | 1.823169290  |
| Н  | -0.368625165 | -1.823449198 | -0.250878412 |
| Н  | -1.584694421 | -1.508410947 | 0.602260466  |
| Н  | -1.584977462 | -0.602414578 | -1.508455128 |
| Н  | -0.369161667 | 0.250299136  | -1.823187716 |
| Н  | -0.368842199 | 1.823132449  | 0.250199038  |
| Н  | -1.584946119 | 1.508456986  | -0.602199441 |

scf done: -2879.91521472

# $[Br(H_2O)_4]^-$

13

| Н | -1.105334958 | 1.460867918  | -0.770199671 |
|---|--------------|--------------|--------------|
| Н | 0.021954368  | 1.761702185  | 0.194524798  |
| Н | -0.042175795 | -0.180679776 | 1.756310607  |
| Н | -1.295534598 | 0.585297009  | 1.390425220  |

O -1.332413467 -0.216873166 1.984617398

- H -0.798240485 1.913566142 0.138928043
- H -0.797895118 -0.138790974 1.911670074
- H -1.986499586 0.692815346 1.445672188
- H -1.986374727 -1.446051941 0.692638214
- H -0.798235929 -1.913536592 -0.138874081
- H -0.797575633 0.138759891 -1.911584326
- H -1.986305796 -0.692768556 -1.445799757

# 5. <sup>1</sup>H NMR concentration dependence

To confirm that any peak width changes observed during the <sup>1</sup>H NMR anion titration experiments for **1**·**m** are due to a perturbation of macrocycle dynamism and not de-aggregation effects, <sup>1</sup>H NMR spectra were measured in the range 0.05 - 1.00 mM, wherein in this concentration range, no chemical shift changes were observed suggesting the aggregation effect do not operate under these conditions.



**Figure S35.** <sup>1</sup>H NMR spectra of  $1 \cdot m$  of various concentration ranges in 5%D<sub>2</sub>O/d<sub>6</sub>-acetone.

#### References

- 1. C. M. Cardona and R. E. Gawley, J. Org. Chem., 2002, 67, 1411-1413.
- 2. P. Ramírez-López, M. C. de la Torre, H. E. Montenegro, M. Asenjo and M. A. Sierra, *Org. Lett.*, 2008, **10**, 3555-3558.
- 3. c. b. f. u. h. a. s. o. b. "BindFit v0.5 | Supramolecular, n.d.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz and J. Cioslowski and D. J. Fox, *Gaussian 09, Revision B.01, 2009.*
- 5. Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc*, 2008, **120**, 215-241.
- 6. F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297-3305.
- 7. P. C. Hariharan and J. A. Pople, *Theoret. Chim. Acta*, 1973, **28**, 213-222.
- 8. G. A. Petersson and M. A. Al-Laham, J. Chem. Phys., 1991, **94**, 6081-6090.
- 9. G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Al-Laham, W. A. Shirley and J. Mantzaris, *J. Chem. Phys.*, 1988, **89**, 2193-2218.
- 10. A. V. Marenich, C. J. Cramer and D. G. Truhlar, *J. Phys. Chem. B*, 2009, **113**, 6378-6396.
- 11. T. Lu and F. Chen, J. Comput. Chem., 2012, **33**, 580-592.
- 12. E. D. Glendening, C. R. Landis and F. Weinhold, *J. Comput. Chem.*, 2013, **34**, 1429-1437.