Asymmetric synthesis of dihydrocarbazoles through Friedel-Crafts

alkylation/annulation sequential reaction of indoles

Linfeng Hu, Weidi Cao, Kaixuan Wang, Xiaohua Liu* and Xiaoming Feng*

Key Laboratory of Green Chemistry and Technology Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 (China)

E-mail: xmfeng@scu.edu.cn, liuxh@scu.edu.cn

Electronic Supporting Information

Content

1. General Information	2
2. General procedure for the synthesis of diazoacetoacetate enones	2
3. Typical procedure for the preparation of the racemic products	3
4. Typical procedure for the catalytic asymmetric reaction	3
5. Optimization of reaction conditions	4
6. Scaled-up version of the asymmetric reaction and further transformations	6
7. The analytical and spectral characterization data of products	8
8. X-ray crystal structure of product 5a	
9. Unsuccessful substrate scopes.	85
10. Reference	85

1. General Information

NMR characterization data were collected on Bruker ASCENDTM 400M. ¹H NMR, ¹³C{¹H} NMR and ¹⁹F{¹H} NMR: chemical shifts δ were recorded in ppm relative to tetramethylsilane and internally referenced to the residual solvent signal (for ¹H NMR: CDCl₃ = 7.26 ppm; for ¹³C NMR: CDCl₃ = 77.16 ppm). Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, td = triplet of doublets, dt = doublet of triplets, ddd = doublet of doublet of doublets, m = multiplet), coupling constants (Hz), integration.

Enantiomeric excesses (ee) were determined by HPLC (High performance liquid chromatography) analysis using the corresponding commercial chiralpak column (ADH, ODH, etc.) as stated in the experimental procedures at 25 °C.

Optical rotations measured on Rudolph Research Analytic Automatic Polarimeter were reported as follows: $[\alpha]_D^T$ (*c*: g/100 mL, in CH₂Cl₂).

HRMS (High resolution mass spectra) were performed on Thermo Q-Exactive Focus (FTMS+c ESI) and data were reported as (m/z).

Infrared spectra (IR) were recorded on Shimadzu IRTracer-100 or Bruker Tensor II spectrometer with Plantium ATR accessory. The peaks are reported as absorption maxima (\tilde{v} , cm⁻¹).

X-Ray crystallographic data were collected by a Bruker D8 Venture Photon II.

The N, N'-dioxides were prepared according to the methods reported in the literature.¹

2. General procedure for the synthesis of diazoacetoacetate enones

A solution of DMAP (0.1 mmol, 0.01 equiv) and DCC (24 mmol, 1.2 equiv) in CH_2Cl_2 (25 mL) was added slowly over 1 h to a solution of propiolic acid **S1** (20 mmol, 1 equiv) and alcohol (22 mmol, 1.1 equiv) in CH_2Cl_2 (20 mL) in a 50 mL round bottom flask at 0 °C. The suspension was then stirred for 5 h at room temperature. Afterwards, the product was purified by flash chromatography (Eluent: petroleum ether/ethyl acetate 20:1 to 10:1) to afford the desired product **S2** in about 50-85% yield. All the alkynyl esters were prepared in a similar manner using the above-mentioned procedure.

The corresponding propiolates **S2** (10 mmol, 1 equiv) was dissolved in CH_2Cl_2 (10 mL), then DABCO (0.1 mmol, 1 mol%) was added into the solution at 0 °C. The mixture was stirred at room temperature for 5 min. The product **S3** was afforded through flash chromatography (Eluent: petroleum ether/ethyl acetate 20:1) in about 95-99% yield. All the products were prepared in a similar manner using the above-mentioned procedure.²

The diethyl (*E*)-hex-2-en-4-ynedioate **S3** (2.1 g, 10 mmol) was attempted using $Ph_3PAuCl/AgSbF_6$ (0.2 mmol, 0.02 equiv) in refluxing acetone at 60 °C for 5 h. The crude product was purified by silica gel column chromatography (petroleum ether:ethyl acetate = 10:1), affording the product **S4** as a yellow oil in about 83% yield. All the other products were prepared by the similar procedure.³

To a solution of diethyl (*E*)-4-oxohex-2-enedioate **S4** (2.1 g, 10 mmol) and p-ABSA (3.12 g, 13 mmol) in dry CH₃CN (20 mL) was added Et₃N (1.8 mL, 13 mmol) dropwise at 0 °C. Then the mixture was stirred overnight at room temperature. The reaction was then quenched with 10 w% NH₄Cl, followed by extraction with Et₂O (2 x 20 mL). The combined organic extracts were treated with anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The yellow crude product was purified by silica gel column chromatography (petroleum ether:ethyl acetate = 10:1) to give the product diethyl (*E*)-5-diazo-4-oxohex-2-enedioate **2a** as a yellow oil (1.21 g,50% yield). The other diazoacetoacetate enones were prepared by the similar procedure.⁴

3. Typical procedure for the preparation of the racemic products

Sc(OTf)₃ (2.4 mg, 5 mol%), *N*,*N*'-dioxide ligand of *rac*-L₃-PrPr₂ (3.2 mg, 5 mol%), NaBAr₄^F (8.8 mg, 10 mol%) and diazoacetoacetate enone **2a** (0.15 mmol) were weighted into a test tube under an inert atmosphere. Anhydrous CH₂Cl₂ (1.0 mL) was added and the solution was stirred at 35 °C for 0.5 h. Subsequently indole **1a** (11.7 mg, 0.1 mmol) was added into reaction system at 35 °C and the reaction mixture was stirred for 45 h. Then Rh₂(OAc)₄ was added into the reaction system and the mixture stirred for additional 3 h. The racemic product **3aa** was directly purified by flash column chromatography (Petroleum ether: ethyl acetate = 6:1).

4. Typical procedure for the catalytic asymmetric reaction

Sc(OTf)₃ (2.4 mg, 5 mol%), *N*,*N'*-dioxide ligand of **L**₃-**PrPr**₂ (3.2 mg, 5 mol%), NaBAr₄^F (8.8 mg, 10 mol%) and diazoacetoacetate enone **2a** (0.15 mmol) were weighted into a test tube under an inert atmosphere. Anhydrous CH₂Cl₂ (1.0 mL) was added and the solution was stirred at 35 °C for 0.5 h. Subsequently indole **1a** (11.7 mg, 0.1 mmol) was added into reaction system at 35 °C and the reaction mixture was stirred for 45 h. Then Rh₂(OAc)₄ was added into the reaction system and the mixture stirred for additional 3 h. The product **3aa** was directly purified by flash column chromatography (Petroleum ether: ethyl acetate = 6:1).

5. Optimization of reaction conditions

Table S1: Optimization of metal salts

NH 1a	+ Eto O O O O O O O O O O O O O O O O O O O	L ₃ -PrPr₂/metal salt (1:1, 5 mol%) Rh₂(OAc)₄ (2 mol%) DCM, 35 °C	ьtO ₂ C N H Заа
entry ^a	metal salt	yield ^b (%)	ee ^c (%)
1	Sc(OTf) ₃	51	92
2	Mg(OTf) ₂	trace	-
3	Al(OTf) ₃	trace	-
4	In(OTf) ₃	trace	-
5	Fe(OTf) ₃	trace	-
6	Co(OTf) ₃	trace	-
7	Ni(OTf) ₂	trace	-
8	Cu(OTf) ₂	trace	-
9	Zn(OTf) ₂	trace	-
10	Gd(OTf) ₃	trace	-
11	Y(OTf) ₃ ,	trace	-
12	Yb(OTf) ₃	trace	-

^aUnless otherwise noted, all reactions were carried out with indole 1a (0.1 mmol), diazoacetoacetate enone

2a (0.15 mmol), Rh2(OAc)4 (2 mol%), L3-PrPr2/metal salt (1:1, 5 mol%) in CH2Cl2 (1.0 mL) under N2 at

35 $\,\,{}^\circ\!\!{\rm C}$ for 48 h. $^{\rm b}$ Isolated yield. $^{\rm c}$ Determined by chiral HPLC analysis.

Table S2: Optimization of the ligands

Δ

L₃-PrPr₃: Ar = 2,4,6-^{*i*}Pr₃C₆H₂, m=1 L₃-PrMe₂: Ar = 2,6-Me₂C₆H₃, m=1 **L₃-PrEt₂**: Ar = 2,6-Et₂C₆H₃, m=1 **L₂-PrPr₂**: Ar = 2,6-^{*i*}Pr₂C₆H₃, m=0

L₂-PiPr₂: Ar = 2,6-^{*i*}Pr₂C₆H₃, m = 0

entry ^a	ligand	yield ^b (%)	ee ^c (%)	
1	L ₃ -PiPr ₂	39	43	
2	L ₃ -RaPr ₂	-	-	
3	L ₃ -PrPr ₃	40	92	
4	L ₃ -PrMe ₂	30	76	
5	L ₃ -PrEt ₂	43	89	
6	L ₂ -PrPr ₂	32	0	
7	L ₃ -PrPr ₂	51	92	

^aAll reactions were carried out with indole **1a** (0.1 mmol), diazoacetoacetate enone **2a** (0.15 mmol), $Rh_2(OAc)_4$ (2 mol%), **Ligand**/Sc(OTf)₃ (1:1, 5 mol%) in DCM (1.0 mL) under N₂ at 35 °C for 48 h. ^bIsolated yield. ^cDetermined by chiral HPLC analysis.

Table S3: Optimization of solvents

H H 1a	EtO O N ₂ O EtO N ₂ O EtO O EtO N ₂	L ₃ -PrPr ₂ /Sc(OTf) ₃ (1:1, 5 mol%) Rh ₂ (OAc) ₄ (2 mol%) Solvent, 35 °C	EtO ₂ C — ОН N CO ₂ Et Заа
entry ^a	solvent	yield ^b (%)	ee ^c (%)
1	CH ₂ ClCH ₂ Cl	35	90
2	CHCl ₂ CHCl ₂	21	95
3	CHCl ₃	-	-
4	CH ₂ ClCHCl ₂	11	60
5	PhBr	18	20
6	PhCl	-	-
7	THF	-	-
8	Et ₂ O	23	95
9	PhMe	-	-
10	CH ₂ Cl ₂	51	92

^aAll reactions were carried out with indole **1a** (0.1 mmol), diazoacetoacetate enone **2a** (0.15 mmol), $Rh_2(OAc)_4$ (2 mol%), **L₃-PrPr₂/Sc**(OTf)₃ (1:1, 5 mol%) in solvent (1.0 mL) under N₂ at 35 °C for 48 h. ^bIsolated yield. ^cDetermined by chiral HPLC analysis.

Table S4: Optimization of additives and temperature

N H 1a	+ EtO O O O O O O O O O O O O O O O O O O	L ₃ -PrPr ₂ /Sc(OT (1:1, 5 mol% Rh ₂ (OAc) ₄ (2 m CH ₂ Cl ₂ , additive	$r_{1}(t_{1}) = r_{1}(t_{1})$	он N CO ₂ Et Н Заа
entry ^a	additive	Temp ($^{\circ}$ C)	yield ^b (%)	ee ^c (%)
1	3 Å MS (20 mg)	35	32	85
2	4 Å MS (20 mg)	35	32	91
3	5 Å MS (20 mg)	35	45	93
4	NaBArF ₄ (10 mol%)	35	70	93
5	PhCO ₂ H (10 mol%)	35	59	0
6	MeOH (10 µL)	35	-	-
7	H ₂ O (10 µL)	35	30	87
8	LiNTf ₂ (10 mol%)	35	64	63
9	LiBr (10 mol%)	35	-	-
10	K ₂ CO ₃ (10 mol%)	35	-	-
11	Et ₃ N (10 mol%)	35	-	-

12	NaBF4 (10 mol%)	35	42	15	
13	NaBPh ₄ (10 mol%)	35	68	81	
14	MgCl ₂ (10 mol%)	35	38	0	
15	LiCl (10 mol%)	35	13	0	
16	$NaBAr^{F_4}$ (10 mol%)	10	18	93	
17	NaBAr ^F ₄ (10 mol%)	20	25	92	
18	$NaBAr^{F_4}$ (10 mol%)	45	43	89	

^aAll reactions were carried out with indole **1a** (0.1 mmol), diazoacetoacetate enone **2a** (0.15 mmol), Rh₂(OAc)₄ (2 mol%), **L₃-PrPr₂/Sc**(OTf)₃ (1:1, 5 mol%), and additives in CH₂Cl₂ (1.0 mL) under N₂ at $T \,$ °C for 48 h. ^bIsolated yield. ^cDetermined by chiral HPLC analysis.

Table S5: Optimization of different Rh(II) salts

^aAll reactions were carried out with indole **1a** (0.1 mmol), diazoacetoacetate enone **2a** (0.15 mmol), Rh(II) salt (2 mol%), **L**₃-**PrPr**₂/Sc(OTf)₃ (1:1, 5 mol%), and NaBAr^F₄ (10 mol%) in CH₂Cl₂ (1.0 mL) under N₂ at 35 °C for 48 h. ^bIsolated yield. ^cDetermined by chiral HPLC analysis.

6. Scaled-up version of the asymmetric reaction and further transformations

A dry round flask under nitrogen atmosphere was charged with Sc(OTf)₃ (5 mol%, 98.4 mg), L₃-PrPr₂ (5 mol%, 124.0 mg), NaBAr^F₄ (10 mol%, 176 mg), diazoacetoacetate enone **2a** (4.8 mmol, 1.15 g), and CH₂Cl₂ (20 mL). The reaction mixture was stirred at 35 \degree for 30 min. Then, indole **1a** (4 mmol, 0.468 g) was added and the reaction mixture continued stirring at 35 \degree for 45 h. Subsequently, Rh₂(OAc)₄ (2 mol%, 40 mg) was added into the reaction system under nitrogen atmosphere and the reaction mixture was stirred at 35 \degree for another 3 h. The residue was purified by flash chromatography on silica gel (Eluent: petroleum ether/ethyl acetate = 6:1) to afford the desired product **3aa**.

To a round flask were added **3aa** (32.9 mg, 0.1 mmol), CH₃I (80 μ L) and CH₃CN (1 mL). The reaction mixture was stirred at rt for 5 h. Finally, the mixture was purified by flash chromatography on silica gel (Eluent: petroleum ether/ethyl acetate = 3/1) to afford the desired product **4a** and **4a'** respectively.

A dry reaction tube was charged with the mixture of DMU and L-tartaric acid (70:30, 0.7 g), then the mixture was heated to 80 °C until the solids melt to liquid. Subsequently, PhNHNH₂ • HCl (17.6 mg, 0.12 mmol) and **4a** (34.3 mg, 0.1 mmol) were added into the reaction system simultaneously under stirring at 80 °C for 2 h. After completion of the reaction as monitored by TLC, H₂O (1 mL) were added into the reaction system to quench the reaction. The crude product was purified by silica gel column chromatography (petroleum ether:ethyl acetate = 8:1), affording the product **5a**.

The corresponding products 5a' were also obtained through above procedure.

7. The analytical and spectral characterization data of products

¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 15.6 Hz, 1H), 6.86 (d, J = 15.6 Hz, 1H), 3.89 (s, 3H), 3.82 (s, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 180.5, 165.6, 161.0, 135.8, 130.7, 52.5, 52.3.
IR: 2957, 2140, 1716, 1649, 1618, 1436, 1294, cm⁻¹.
HRMS (FTMS+c ESI): Calcd for C₈H₉N₂O₅⁺ [M+H⁺] 213.0506; Found 213.0509.

¹**H NMR** (400 MHz, CDCl₃) δ 8.08 (d, *J* = 15.6 Hz, 1H), 6.85 (d, *J* = 15.6 Hz, 1H), 4.35 (q, *J* = 7.2 Hz, 2H), 4.27 (q, *J* = 7.2 Hz, 2H), 1.36 (t, *J* = 6.4 Hz, 3H), 1.32 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 180.7, 165.2, 160.6, 135.7, 131.1, 61.9, 61.2, 14.3, 14.1.

IR: 2985, 2140, 1720, 1649, 1619, 1469, 1371 cm⁻¹.

HRMS (FTMS+c ESI): Calcd for $C_{10}H_{13}N_2O_5^+$ [M+H⁺] 241.0819; Found 241.0818.

¹**H NMR** (400 MHz, CDCl₃) δ 8.13 (d, *J* = 15.2 Hz, 1H), 7.42 – 7.30 (m, 10H), 6.89 (d, *J* = 15.6 Hz, 1H), 5.30 (s, 2H), 5.25 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 180.5, 164.9, 160.4, 136.2, 135.4, 134.8, 130.9, 128.8, 128.8, 128.6, 128.5, 128.4, 128.3, 67.4, 66.9.

IR: 3034, 2139, 1716, 1649, 1618, 1455, 1328 cm⁻¹.

HRMS (FTMS+c ESI): Calcd for $C_{20}H_{17}N_2O_5^+$ [M+H⁺] 365.1132; Found 365.1130.

¹**H NMR** (400 MHz, CDCl₃) δ 8.05 (d, *J* = 15.6 Hz, 1H), 7.38 – 7.12 (m, 10H), 6.82 (d, *J* = 15.6 Hz, 1H), 4.47 (t, *J* = 7.2 Hz, 2H), 4.40 (t, *J* = 7.2 Hz, 2H), 3.00 (q, *J* = 6.4 Hz, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 180.5, 164.9, 160.3, 137.4, 136.9, 135.8, 130.8, 128.9, 128.8, 128.6, 128.5, 126.8, 126.6, 66.1, 65.7, 35.0, 34.9.

IR: 2958, 2139, 1717, 1648, 1618, 1386, 1329 cm⁻¹.

HRMS (FTMS+c ESI): Calcd for C₂₂H₂₁N₂O₅⁺ [M+H⁺] 393.1445; Found 393.1442.

¹**H NMR** (400 MHz, CDCl₃) δ 8.09 (d, *J* = 15.2 Hz, 1H), 7.37 – 7.12 (m, 10H), 6.86 (d, *J* = 15.6 Hz, 1H), 4.28 (t, *J* = 6.5 Hz, 2H), 4.20 (t, *J* = 6.5 Hz, 2H), 2.76 – 2.63 (m, 4H), 2.11 – 1.94 (m, 4H).

¹³**C NMR** (101 MHz, CDCl₃) δ 180.4, 165.0, 160.4, 140.8, 140.5, 135.8, 130.8, 128.4, 128.3, 128.3, 128.2, 126.1, 125.9, 65.1, 64.4, 32.0, 31.9, 29.9, 29.9.

IR: 2954, 2138, 1717, 1648, 1618, 1328, 1293 cm⁻¹.

HRMS (FTMS+c ESI): Calcd for $C_{24}H_{25}N_2O_5^+$ [M+H⁺] 421.1758; Found 421.1765.

Diethyl (S)-2-hydroxy-4,9-dihydro-3H-carbazole-1,4-dicarboxylate (3aa)

Yellow oil. 70% yield, 93% ee, $[\alpha]_{436}^{24.1}$ = -105.7 (c = 0.348, CH₂Cl₂).

HPLC (Daicel chiralcel ADH, n-hexane/i-PrOH 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 18.36 min, t (minor) = 14.54 min. ¹H NMR (400 MHz, CDCl₃) δ 12.98 (s, 1H), 8.80 (s, 1H), 7.58 – 7.50 (m, 1H), 7.35 – 7.28 (m, 1H), 7.14 – 7.05 (m, 2H), 4.47 (q, J = 7.2 Hz, 2H), 4.23 – 3.96 (m, 3H), 3.17 – 2.97 (m, 2H), 1.48 (t, J = 7.2 Hz, 3H), 1.18 (t, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.8, 135.6, 130.3, 126.3, 120.7, 120.1, 118.0, 110.8, 99.8, 94.4, 61.5, 61.0, 36.0, 32.4, 14.5, 14.1. IR: 3474, 2922, 2856, 1720, 1640, 1561, 1453, 1228, 1078, 1033 cm⁻¹.

HRMS (FTMS+c ESI): Calcd for C₁₈H₂₀NO₅⁺ [M+H⁺] 330.1336; Found 330.1333.

	Retention Time	Area	% Area
1	14.536	1662841	3.42
2	18.362	46949219	96.58

Diethyl (S)-2-hydroxy-5-methyl-4,9-dihydro-3H-carbazole-1,4-dicarboxylate (3ab)

Yellow liquid. 48% yield, 93% ee, $[\alpha]_{436}^{24.8} = -283.9$ (*c* = 0.406, CH₂Cl₂).

HPLC (Daicel chiralcel ADH, n-hexane/i-PrOH 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 20.16 min, t (minor) = 14.14 min. ¹**H NMR** (400 MHz, CDCl₃) δ 12.98 (s, 1H), 8.82 (s, 1H), 7.15 (d, J = 8.4Hz, 1H), 6.98 (t, J = 8.0 Hz, 1H), 6.83 (d, J = 8.0 Hz, 1H), 4.46 (q, J = 7.2 Hz, 2H), 4.32-4.26 (m, 1H), 4.07 (m, 2H), 3.16 - 2.97 (m, 2H), 2.71 (s, 3H), 1.47 (t, J = 7.2 Hz, 3H), 1.16 (t, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.9, 135.6, 130.3, 129.2, 125.2, 121.6, 120.8, 108.7, 100.7, 94.5, 61.5, 61.0, 36.8, 33.4, 19.7, 14.5, 14.0.

IR: 3475, 2920, 2854, 1711, 1638, 1460, 1316, 1256, 1075, 1032 cm⁻¹.

HRMS (FTMS+c ESI): Calcd for C₁₉H₂₂NO₅⁺ [M+H⁺] 344.1492; Found 344.1492.

	Retention Time	Area	% Area
1	14.136	678905	3.22
2	20.157	20417808	96.78

Diethyl (S)-2-hydroxy-6-methyl-4,9-dihydro-3H-carbazole-1,4-dicarboxylate (3ac)

Yellow solid. 63% yield, 89% ee, M.p. 90 – 94 °C, $[\alpha]_{436}^{24.7} = -324.2$ (*c* = 0.194, CH₂Cl₂).

HPLC (Daicel chiralcel ADH, n-hexane/i-PrOH 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 18.89 min, t (minor) = 13.08 min. ¹H NMR (400 MHz, CDCl₃) δ 12.97 (s, 1H), 8.71 (s, 1H), 7.32 (s, 1H), 7.19 (d, J = 8.0 Hz, 1H), 6.94-6.87 (m, 1H), 4.46 (q, J = 7.2 Hz, 2H), 4.19 – 4.01 (m, 3H), 3.15 – 2.96 (m, 2H), 2.44 (s, 3H), 1.47 (t, J = 7.2 Hz, 3H), 1.20 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.9, 134.0, 130.4, 129.3, 126.5, 122.2, 117.7, 110.4, 99.3, 94.5, 61.4, 60.9, 36.1, 32.4, 21.6, 14.5, 14.1.

IR: 3474, 3428, 2980, 2913, 1724, 1645, 1599, 1308, 1227, 1077 cm⁻¹.

HRMS (FTMS+c ESI): Calcd for C19H22NO5+ [M+H+] 344.1492; Found 344.1491.

	Retention Time	Area	% Area
1	13.079	4128146	5.21
2	18.893	75103214	94.79

Diethyl (S)-2-hydroxy-7-methyl-4,9-dihydro-3H-carbazole-1,4-dicarboxylate (3ad)

Yellow solid. 63% yield, 94% ee, M.p. 95 – 100 °C, $[\alpha]_{589}^{23.3} = -63.4$ (*c* = 0.410, CH₂Cl₂).

HPLC (Daicel chiralcel ADH, n-hexane/i-PrOH 95/5, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 41.44 min, t (minor) = 33.40 min. ¹H NMR (400 MHz, CDCl₃) δ 12.95 (s, 1H), 8.67 (s, 1H), 7.42 (d, J = 8.0 Hz, 1H), 7.12 (s, 1H), 6.93 (m, 1H), 4.46 (q, J = 7.2 Hz, 2H), 4.19 – 3.98 (m, 3H), 3.14 – 2.99 (m, 2H), 2.44 (s, 3H), 1.47 (t, J = 7.2 Hz, 3H), 1.18 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.9, 136.1, 130.4, 129.6, 124.1, 121.7, 117.7, 110.8, 99.6, 94.5, 61.4, 60.9, 36.1, 32.4, 21.7,

14.5, 14.1.

IR: 3473, 2922, 2855, 1719, 1639, 1456, 1312, 1260, 1079, 1028, cm⁻¹.

HRMS (FTMS+c ESI): Calcd for C₁₉H₂₂NO₅⁺ [M+H⁺] 344.1492; Found 344.1491.

2

41.443

43610178

97.24

1	2
Т	.Э

Diethyl (S)-2-hydroxy-8-methyl-4,9-dihydro-3H-carbazole-1,4-dicarboxylate (3ae)

Yellow solid. 65% yield, 95% ee, M.p. 147 - 151 °C, $[\alpha]_{436}^{24.3} = -59.0$ (c = 0.266, CH₂Cl₂).

HPLC (Daicel chiralcel ADH, n-hexane/i-PrOH 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 13.15 min, t (minor) = 8.28 min. ¹**H NMR** (400 MHz, CDCl₃) δ 12.89 (s, 1H), 8.77 (s, 1H), 7.40 (d, J = 8.0 Hz, 1H), 7.03 (t, J = 7.6 Hz, 1H), 6.90 (d, J = 7.2, Hz, 1H), 4.46 (q, J = 7.2 Hz, 2H), 4.19 – 3.98 (m, 3H), 3.18 – 2.98 (m, 2H), 2.46 (s, 3H), 1.50 (t, J = 7.2 Hz, 3H), 1.18 (t, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.8, 135.1, 130.0, 125.8, 121.4, 120.2, 119.7, 115.8, 100.3, 94.4, 61.4, 60.9, 36.2, 32.4, 16.3, 14.3, 14.1.

IR: 3481, 2980, 2932, 1728, 1651, 1450, 1310, 1226, 1099, 1026, cm⁻¹.

HRMS (FTMS+c ESI): Calcd for C₁₉H₂₂NO₅⁺ [M+H⁺] 344.1492; Found 344.1491.

Diethyl (S)-8-ethyl-2-hydroxy-4,9-dihydro-3H-carbazole-1,4-dicarboxylate (3af)

Yellow oil. 62% yield, 92% ee, $[\alpha]_{589}^{26.2}$ = -53.8 (c = 0.418, CH₂Cl₂).

HPLC (Daicel chiralcel ADH, n-hexane/i-PrOH 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 14.15 min, t (minor) = 7.36 min, ¹H NMR (400 MHz, CDCl₃) δ 12.88 (s, 1H), 8.83 (s, 1H), 7.41 (d, J = 8.0 Hz, 1H), 7.06 (t, J = 7.6 Hz, 1H), 6.93 (d, J = 7.2 Hz, 1H), 4.46 (q, J = 7.2 Hz, 2H), 4.19 – 3.99 (m, 3H), 3.16 – 2.98 (m, 2H), 2.84 (q, J = 7.6 Hz, 2H), 1.50 (t, J = 7.2 Hz, 3H), 1.38 (t, J = 7.6 Hz, 3H), 1.19 (t, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.9, 134.4, 129.9, 126.0, 125.9, 120.3, 119.5, 115.9, 100.2, 94.3, 61.4, 60.9, 36.1, 32.4, 24.1, 14.3, 14.1, 13.6.

IR: 3484, 2923, 2855, 1729, 1641, 1457, 1255, 1221, 1086, 1033, cm⁻¹.

HRMS (FTMS+c ESI): Calcd for C₂₀H₂₄NO₅⁺ [M+H⁺] 358.1649; Found 358.1648.

Diethyl (S)-2-hydroxy-6-methoxy-4,9-dihydro-3H-carbazole-1,4-dicarboxylate (3ag)

Yellow solid. 56% yield, 99% ee, M.p.126 – 129 °C, $[\alpha]_{589}^{24.4} = -37.8$ (c = 0.410, CH₂Cl₂).

 $HPLC (Daicel chiralcel ADH, n-hexane/i-PrOH 90/10, 1.0 \text{ mL/min}, \lambda = 254 \text{ nm}, t (major) = 23.96 \text{ min}, t (minor) = 18.63 \text{ min}.$

¹**H NMR** (400 MHz, CDCl₃) δ 12.99 (s, 1H), 8.69 (s, 1H), 7.20 (d, J = 8.8 Hz, 1H), 7.01 (d, J = 2.4 Hz, 1H), 6.75 (dd, J = 8.8, 2.4 Hz, 1H), 4.47 (q, J = 7.2 Hz, 2H), 4.20 – 4.00 (m, 3H), 3.86 (s, 3H), 3.14 – 3.00 (m, 2H), 1.48 (t, J = 7.2 Hz, 3H), 1.20 (t, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.8, 154.5, 131.0, 130.7, 126.8, 111.4, 110.5, 100.1, 99.6, 94.4, 61.5, 60.9, 55.8, 36.0, 32.3, 14.5, 14.2.

IR: 3476, 2922, 2853, 1715, 1639, 1455, 1302, 1212, 1151, 1033, cm⁻¹.

HRMS (FTMS+c ESI): Calcd for C₁₉H₂₂NO₆⁺ [M+H⁺] 360.1441; Found 360.1441.

2

23.955

9001395

99.91

Diethyl (S)-2-hydroxy-8-methoxy-4,9-dihydro-3H-carbazole-1,4-dicarboxylate (3ah)

Yellow oil. 62% yield, 93% ee, $[\alpha]_{436}^{25.6} = -25.2$ (*c* = 0.178, CH₂Cl₂)

HPLC (Daicel chiralcel ADH, n-hexane/i-PrOH 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 11.29 min, t (minor) = 8.64 min. ¹**H NMR** (400 MHz, CDCl₃) δ 12.94 (s, 1H), 8.93 (s, 1H), 7.16 (d, J = 8.0 Hz, 1H), 7.02 (t, J = 8.0 Hz, 1H), 6.58 (d, J = 7.6 Hz, 1H), 4.47 (q, J = 7.2 Hz, 2H), 4.18 – 4.00 (m, 3H), 3.95 (s, 3H), 3.15 – 2.98 (m, 2H), 1.49 (t, J = 7.2 Hz, 3H), 1.18 (t, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.9, 145.8, 129.8, 127.5, 125.8, 120.4, 110.9, 101.1, 100.3, 94.5, 61.4, 60.9, 55.3, 36.2, 32.4, 14.4, 14.1.

IR: 3486, 2924, 2854, 1727, 1641, 1561, 1441, 1317, 1259, 1074, cm⁻¹.

HRMS (FTMS+c ESI): Calcd for C₁₉H₂₂NO₆⁺ [M+H⁺] 360.1441; Found 360.1441.

	Retention Time	Area	% Area
1	8.645	716746	3.50
2	11.295	19771383	96.50

Diethyl (S)-6-(benzyloxy)-2-hydroxy-4,9-dihydro-3H-carbazole-1,4-dicarboxylate (3ai)

Yellow solid. 45% yield, 94% ee, M.p.136 -141 °C, $[\alpha]_{436}^{24.2} = -196.1$ (*c* = 0.282, CH₂Cl₂).

HPLC (Daicel chiralcel ADH, n-hexane/i-PrOH 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 35.51 min, t (minor) = 26.67 min. ¹H NMR (400 MHz, CDCl₃) δ 12.97 (s, 1H), 8.70 (s, 1H), 7.51 – 7.44 (m, 2H), 7.42 – 7.35 (m, 2H), 7.34 – 7.28 (m, 1H), 7.20 (d, J = 8.8 Hz, 1H), 7.09 (d, J = 2.4 Hz, 1H), 6.83 (dd, J = 8.8, 2.4 Hz, 1H), 5.11 (s, 2H), 4.51-4.35 (m, 2H), 4.15 – 3.96 (m, 3H), 3.14 – 2.98 (m, 2H). 1.46 (t, J = 7.2 Hz, 3H), 1.16 (t, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.8, 153.7, 137.8, 131.1, 131.0, 128.5, 127.7, 127.5, 126.8, 111.4, 111.3, 101.7, 99.7, 94.4, 70.8, 61.5, 60.9, 36.0, 32.3, 14.5, 14.2.

IR: 3473, 3428, 2979, 2926, 1725, 1645, 1452, 1315, 1227, 1151, 1026, cm⁻¹.

HRMS (FTMS+c ESI): Calcd for $C_{25}H_{26}NO_6^+$ [M+H⁺] 436.1754; Found 436.1754.

	Retention Time	Area	% Area
1	26.673	459559	2.72
2	35.515	16420657	97.28

Diethyl (S)-6-fluoro-2-hydroxy-4,9-dihydro-3H-carbazole-1,4-dicarboxylate (3aj)

Yellow solid. 43% yield, 93% ee, M.p. 134 -138 °C, $[\alpha]_{436}^{25.6} = -398.0$ (*c* = 0.204, CH₂Cl₂).

HPLC (Daicel chiralcel ADH, n-hexane/i-PrOH 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 23.53 min, t (minor) = 17.15 min. ¹H NMR (400 MHz, CDCl₃) δ 13.03 (s, 1H), 8.80 (s, 1H), 7.23 – 7.15 (m, 2H), 6.81 (td, J = 18.4, 9.6, 2.8 Hz, 1H), 4.47 (q, J = 7.2 Hz, 2H), 4.20 – 3.97 (m, 3H), 3.15 – 2.97 (m, 2H), 1.47 (t, J = 7.2 Hz, 3H), 1.19 (t, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.7, 158.3 (d, J = 235.3 Hz), 132.2, 132.1, 126.8 (d, J = 10.6 Hz), 111.3 (d, J = 9.9 Hz), 108.7 (d, J = 26.4 Hz), 103.1 (d, J = 24.4 Hz), 99.9 (d, J = 4.6 Hz), 94.2, 61.6, 61.1, 35.9, 32.2, 14.5, 14.1.

¹⁹F NMR (376 MHz, CDCl₃) δ -124.0.

IR: 3470, 3423, 2920, 2854, 1723, 1641, 1449, 1308, 1225, 1144, cm⁻¹.

HRMS (FTMS+c ESI): Calcd for C₁₈H₁₉FNO₅⁺ [M+H⁺] 348.1242; Found 348.1241.

Diethyl (S)-7-fluoro-2-hydroxy-4,9-dihydro-3H-carbazole-1,4-dicarboxylate (3ak)

Yellow solid. 48% yield, 96% ee, M.p. 131-136 °C, $[\alpha]_{589}^{23.1} = -68.7$ (c = 0.448, CH₂Cl₂).

HPLC (Daicel chiralcel ADH, n-hexane/i-PrOH 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 21.61 min, t (minor) = 15.04 min. ¹H NMR (400 MHz, CDCl₃) δ 12.97 (s, 1H), 8.79 (s, 1H), 7.43 (dd, J = 8.8, 5.2 Hz, 1H), 7.01 (dd, J = 9.6, 2.0 Hz, 1H), 6.87 (m, 1H), 4.47 (q, J = 7.2 Hz, 2H), 4.18 – 4.01 (m, 3H), 3.16 – 2.98 (m, 2H), 1.48 (t, J = 7.2 Hz, 3H), 1.18 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.6, 159.1 (d, J = 237.4 Hz), 135.5 (d, J = 12.12 Hz), 130.6, 122.9, 118.6 (d, J = 10.1 Hz), 108.5 (d, J = 17.17 Hz), 99.7, 97.4 (d, J = 27.3Hz), 94.3, 61.6, 61.1, 36.0, 32.3, 14.6, 14.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -122.5.

IR: 3472, 2923, 2857, 1726, 1632, 1451, 1376, 1234, 1032, cm⁻¹.

HRMS (FTMS+c ESI): Calcd for C₁₈H₁₉FNO₅⁺ [M+H⁺] 348.1242; Found 348.1241.

Diethyl (S)-6-chloro-2-hydroxy-4,9-dihydro-3H-carbazole-1,4-dicarboxylate (3al)

Yellow solid. 47% yield, 93% ee, M.p.117 -121 °C, $[\alpha]_{436}^{25.4} = -224.3$ (*c* = 0.236, CH₂Cl₂).

HPLC (Daicel chiralcel ADH, n-hexane/i-PrOH 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 25.14 min, t (minor) = 17.72 min. **¹H NMR** (400 MHz, CDCl₃) δ 13.04 (s, 1H), 8.83 (s, 1H), 7.51 (s, 1H), 7.22 (d, *J* = 8.4 Hz, 1H), 7.07 –6.98 (m, 1H), 4.48 (q, *J* = 7.2 Hz, 2H), 4.24 – 3.89 (m, 3H), 3.24 – 2.95 (m, 2H), 1.48 (t, *J* = 7.2 Hz, 3H), 1.20 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.5, 134.0, 131.9, 127.4, 125.8, 120.8, 117.5, 111.6, 99.5, 94.1, 61.6, 61.1, 35.8, 32.2, 14.5, 14.1. IR: 3468, 3417, 2925, 2854, 1724, 1648, 1596, 1444, 1309, 1227, 1084, cm⁻¹.

HRMS (FTMS+c ESI): Calcd for C₁₈H₁₉^{34.9689}ClNO₅⁺ [M+H⁺] 364.0946; Found 364.0945, C₁₈H₁₉^{36.9659}ClNO₅H⁺ 366.0916; Found 366.0915.

	Retention Time	Area	% Area
1	17.720	637020	3.50
2	25.142	17559097	96.50

Diethyl (S)-7-chloro-2-hydroxy-4,9-dihydro-3H-carbazole-1,4-dicarboxylate (3am)

Yellow solid. 55% yield, 95% ee, M.p.113 – 116 °C, $[\alpha]_{436}^{24.9} = -343.3$ (c = 0.242, CH₂Cl₂).

HPLC (Daicel chiralcel ADH, n-hexane/i-PrOH 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 22.61 min, t (minor) = 16.06 min. ¹H NMR (400 MHz, CDCl₃) δ 13.01 (s, 1H), 8.79 (s, 1H), 7.43 (d, J = 8.4 Hz, 1H), 7.30 (d, J = 2.0 Hz, 1H), 7.06 (dd, J = 8.4, 2.0 Hz, 1H), 4.47 (q, J = 7.2 Hz, 2H), 4.19 – 3.99 (m, 3H), 3.18 – 2.98 (m, 2H), 1.48 (t, J = 7.2 Hz, 3H), 1.17 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.6, 136.0, 131.1, 126.3, 124.9, 120.7, 118.8, 110.8, 99.8, 94.2, 61.6, 61.1, 35.9, 32.2, 14.5, 14.1. IR: 3468, 3411, 2922, 2954, 1723, 1647, 1596, 1306, 1223, 1079, 1028, cm⁻¹.

HRMS (FTMS+c ESI): Calcd for C₁₈H₁₉^{34.9689}ClNO₅⁺ [M+H⁺] 364.0946; Found 364.0946, C₁₈H₁₉^{36.9659}ClNO₅H⁺ 366.0916; Found 366.0916.

	Retention Time	Area	% Area
1	16.058	1027700	2.29
2	22.613	43841249	97.71

Diethyl (S)-6-bromo-2-hydroxy-4,9-dihydro-3H-carbazole-1,4-dicarboxylate (3an)

Yellow solid. 55% yield, 93% ee, M.p. 133 – 137 °C, $[\alpha]_{436}^{25.3} = -423.0$ (*c* = 0.226, CH₂Cl₂).

.HPLC (Daicel chiralcel ADH, n-hexane/i-PrOH 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 26.40 min, t (minor) = 18.18 min. ¹H NMR (400 MHz, CDCl₃) δ 13.04 (s, 1H), 8.83 (s, 1H), 7.66 (s, 1H), 7.19-7.12 (m, 2H), 4.47 (q, *J* = 7.2 Hz, 2H), 4.19 – 3.98 (m, 3H), 3.17 – 2.99 (m, 2H), 1.48 (t, *J* = 7.2 Hz, 3H), 1.21 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.5, 134.3, 131.7, 128.1, 123.3, 120.6, 113.3, 112.1, 99.3, 94.1, 61.6, 61.1, 35.8, 32.2, 14.5, 14.1. IR: 3468, 3412, 2922, 2854, 1721, 1640, 1562, 1448, 1227, 1080, cm⁻¹.

HRMS (FTMS+c ESI): Calcd for $C_{18}H_{19}^{78.9183}BrNO_{5^+}$ [M+H⁺] 408.0441; Found 408.0441, $C_{18}H_{19}^{80.9163}BrNO_{5}H^+$ 410.0421; Found 410.0420.

	Retention Time	Area	% Area
1	18.183	445561	3.22
2	26.399	13411627	96.78

Diethyl (S)-8-bromo-2-hydroxy-4,9-dihydro-3H-carbazole-1,4-dicarboxylate (3ao)

Yellow solid. 54% yield, 91% ee, M.p.151 -156 °C, $[\alpha]_{436}^{23.9} = -64.5$ (*c* = 0.254, CH₂Cl₂).

HPLC (Daicel chiralcel ADH, n-hexane/i-PrOH 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 8.67 min, t (minor) = 6.61 min. ¹H NMR (400 MHz, CDCl₃) δ 12.95 (s, 1H), 9.02 (s, 1H), 7.47 (d, J = 8.0 Hz, 1H), 7.22 (d, J = 7.6 Hz, 1H), 6.98 (t, J = 8.0 Hz, 1H), 4.52 – 4.40 (q, J = 7.2 Hz, 2H), 4.18 – 3.98 (m, 3H), 3.21 – 3.00 (m, 2H), 1.53 (t, J = 7.2 Hz, 3H), 1.18 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.5, 134.3, 131.1, 127.5, 122.8, 121.2, 117.2, 104.3, 100.7, 94.1, 61.6, 61.1, 36.2, 32.2, 14.2, 14.1.

IR: 3468, 2923, 2856, 1722, 1648, 1569, 1425, 1309, 1206, 1090, cm⁻¹.

HRMS (FTMS+c ESI): Calcd for $C_{18}H_{19}^{78.9183}BrNO_{5^+}$ [M+H⁺] 408.0441; Found 408.0442, $C_{18}H_{19}^{80.9163}BrNO_{5}H^+$ 410.0421; Found 410.0421.

	Retention Time	Area	% Area
1	6.614	394468	4.27
2	8.670	8845375	95.73

Diethyl (S)-2-hydroxy-6-iodo-4,9-dihydro-3H-carbazole-1,4-dicarboxylate (3ap)

Yellow solid. 43% yield, 91% ee, M.p. 122 - 123 °C, $[\alpha]_{436}^{24.7} = -153.6$ (c = 0.138, CH₂Cl₂).

HPLC (Daicel chiralcel ADH, n-hexane/i-PrOH 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 25.23 min, t (minor) = 18.76 min. ¹H NMR (400 MHz, CDCl₃) δ 13.05 (s, 1H), 8.83 (s, 1H), 7.93 – 7.83 (m, 1H), 7.37 (dd, J = 8.4, 1.6 Hz, 1H), 7.08 (d, J = 8.4 Hz, 1H), 4.47 (q, J = 7.2 Hz, 2H), 4.18 – 3.98 (m, 3H), 3.19 – 2.96 (m, 2H), 1.47 (t, J = 7.2 Hz, 3H), 1.21 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.5, 134.8, 131.3, 128.9, 128.8, 126.9, 112.7, 98.9, 94.1, 83.6, 61.7, 61.2, 35.8, 32.2, 14.6, 14.2. IR: 3467, 2923, 2856, 1723, 1640, 1561, 1449, 1227, 1079, 1026 cm⁻¹.

HRMS (FTMS+c ESI): Calcd for C₁₈H₁₉INO₅⁺ [M+H⁺] 456.0302; Found 456.0302.

Diethyl (4S)-9-methyl-2-oxo-2,3,4,9-tetrahydro-1H-carbazole-1,4-dicarboxylate (3aq)

Yellow liquid. 62% yield, 63:37 d.r. (determined by ¹H NMR), 79% ee for the major isomer and 78% ee for the minor isomer, $[\alpha]_{589}^{24.2} = -35.1$ (c = 0.262, CH₂Cl₂).

Dissolved in MeOH for SFC; SFC (Daicel chiralcel OD-3, CO₂/MeOH=80/20, flow rate = 1.5 mL/min, λ = 254 nm) t_{major isomer} = 1.83 min (major), 1.64 min (minor); t_{minor isomer} = 5.93 min (major), 3.43 min (minor);

¹**H NMR** (400 MHz, CDCl₃) δ 7.70 (dd, J = 8.0, 2.8 Hz, 1H), 7.36 – 7.24 (m, 2H), 7.22 – 7.12 (m, 1H), 4.65 (d, J = 2.6 Hz, 1H), 4.43 (dd, J = 6.8, 2.4 Hz, 1H), 4.35 – 4.16 (m, 2H), 4.17 – 4.02 (m, 2H), 3.68 – 3.59 (m, 3H), 3.15 (dd, J = 14.2, 6.7 Hz, 1H), 2.95 (dd, J = 14.2, 2.2 Hz, 1H), 1.32 – 1.23 (m, 3H), 1.19 (t, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl3) δ 199.6, 173.0, 166.8, 137.9, 130.9, 125.1, 122.5, 119.9, 119.2, 109.3, 107.7, 62.6, 61.4, 54.7, 40.0, 38.9, 29.9, 14.0.

IR: 2981, 1729, 1469, 1413, 1370, 1335, 1241, 1176, 1031, 856 cm⁻¹.

HRMS (FTMS+c ESI): Calcd for C₁₉H₂₂NO₅⁺ [M+H⁺] 344.1492; Found 344.1486.

Dimethyl (S)-2-hydroxy-4,9-dihydro-3H-carbazole-1,4-dicarboxylate (3ar)

Yellow solid. 65% yield, 95% ee, M.p.164 -168 °C, $[\alpha]_{589}^{24.1} = -82.7$ (*c* = 0.318, CH₂Cl₂).

HPLC (Daicel chiralcel ADH, n-hexane/i-PrOH 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 27.06 min, t (minor) = 20.69 min. ¹H NMR (400 MHz, CDCl₃) δ 12.87 (s, 1H), 8.81 (s, 1H), 7.55 – 7.47 (m, 1H), 7.36 – 7.28 (m, 1H), 7.16 – 7.06 (m, 2H), 4.12 – 4.04 (m, 1H), 3.98 (s, 3H), 3.64 (s, 3H), 3.16 – 3.00 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 173.3, 135.7, 130.1, 126.2, 120.7, 120.1, 117.8, 110.8, 99.7, 94.3, 52.2, 52.1, 35.81, 32.5. IR: 3473, 2922, 2855, 1719, 1639, 1456, 1312, 1260, 1079, 1028, cm⁻¹.

HRMS (FTMS+c ESI): Calcd for C₁₆H₁₆NO₅⁺ [M+H⁺] 302.1023; Found 302.1021.

	Retention Time	Area	% Area
1	20.687	790329	2.30
2	27.060	33631551	97.70

Dibenzyl (S)-2-hydroxy-4,9-dihydro-3H-carbazole-1,4-dicarboxylate (3as)

Yellow solid. 48% yield, 93% ee, M.p. 116-119 °C, $[\alpha]_{589}^{20.4} = -47.1$ (*c* = 0.316, CH₂Cl₂).

HPLC (Daicel chiralcel ADH, n-hexane/i-PrOH 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 31.28 min, t (minor) = 24.47 min. ¹**H NMR** (400 MHz, CDCl₃) δ 12.89 (s, 1H), 8.74 (s, 1H), 7.53 – 7.36 (m, 6H), 7.29 – 7.23 (m, 3H), 7.23 – 7.16 (m, 3H), 7.10 – 6.99 (m, 2H), 5.53 – 5.32 (m, 2H), 5.12 (d, *J* = 12.4 Hz, 1H), 5.00 (d, *J* = 12.4 Hz, 1H), 4.14 (dd, *J* = 7.6, 3.2 Hz, 1H), 3.18 – 3.03 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 172.5, 135.7, 135.6, 135.0, 130.2, 129.0, 128.9, 128.4, 128.3, 128.0, 127.9, 127.0, 126.1, 120.8, 120.1, 118.1, 110.7, 99.7, 94.4, 67.2, 66.7, 36.1, 32.5.

IR: 3470, 2923, 2855, 1716, 1639, 1453, 1405, 1311, 1256, 1074 cm⁻¹.

HRMS (FTMS+c ESI): Calcd for C₂₈H₂₄NO₅⁺ [M+H⁺] 454.1649; Found 454.1647.

Diphenethyl (S)-2-hydroxy-4,9-dihydro-3H-carbazole-1,4-dicarboxylate (3at)

Yellow liquid. 55% yield, 90% ee, $[\alpha]_{436}^{16.9} = -173.9$ (*c* = 0.184, CH₂Cl₂).

HPLC (Daicel chiralcel ODH, n-hexane/i-PrOH 95/5, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 40.29 min, t (minor) = 36.68 min. ¹H NMR (400 MHz, CDCl₃) δ 12.91 (s, 1H), 8.19 (s, 1H), 7.49 – 7.29 (m, 6H), 7.25 – 7.14 (m, 3H), 7.12 – 6.96 (m, 5H), 4.83 – 4.54 (m, 2H), 4.83 – 4.54 (m, 2H), 4.08 – 3.84 (m, 1H), 3.23 – 2.91 (m, 4H), 2.81 (t, *J* = 6.8 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 172.6, 137.7, 135.5, 130.1, 129.2, 128.8, 128.6, 128.3, 127.2, 126.3, 126.1, 120.5, 119.9, 117.8, 110.8, 99.5, 94.3, 65.4, 65.0, 35.8, 34.9, 32.3.

IR: 3445, 2922, 2853, 1727, 1644, 1598, 1453, 1310, 1225, 1080 cm⁻¹.

HRMS (FTMS+c ESI): Calcd for C₃₀H₂₈NO₅⁺ [M+H⁺] 482.1960; Found 482.1959.

	Retention Time	Area	% Area
1	36.683	1010535	4.86
2	40.292	19769017	95.14

Bis(3-phenylpropyl) (S)-2-hydroxy-4,9-dihydro-3H-carbazole-1,4-dicarboxylate (3au)

Yellow liquid. 53% yield, 92% ee, $[\alpha]_{589}^{17.5} = -60.8$ (*c* = 0.462, CH₂Cl₂).

HPLC (Daicel chiralcel ODH, n-hexane/i-PrOH 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 25.50 min, t (minor) = 19.00 min ¹H NMR (400 MHz, CDCl₃) δ 13.03 (s, 1H), 8.71 (s, 1H), 7.64 – 7.56 (m, 1H), 7.35 – 7.27 (m, 3H), 7.25 – 7.16 (m, 5H), 7.17 – 7.09 (m, 3H), 6.95 (d, J = 6.8 Hz, 2H), 4.41 (t, J = 6.7 Hz, 2H), 4.14 – 3.91 (m, 3H), 3.23 – 2.98 (m, 2H), 2.78 (t, J = 7.6 Hz, 2H), 2.47 (t, J = 8.0 Hz, 2H), 2.24 – 2.10 (m, 2H), 1.87 – 1.77 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 172.7, 141.1, 140.5, 135.6, 130.1, 128.6, 128.4, 128.3, 128.3, 126.3, 126.3, 125.8, 120.8, 120.2, 118.0, 110.8, 99.9, 94.3, 64.8, 64.1, 35.9, 32.4, 32.2, 31.9, 30.3, 30.2.

IR: 3472, 3025, 2953, 1723, 1645, 1595, 1449, 1309, 1221, 1077 cm⁻¹.

HRMS (FTMS+c ESI): Calcd for C₃₂H₃₂NO₅⁺ [M+H⁺] 510.2275; Found 510.2275.

Diethyl 5-hydroxy-1-methyl-6,7-dihydro-1H-indole-4,7-dicarboxylate (3av)

Yellow liquid. 42% yield, 52% ee, $[\alpha]_{589}^{22.8} = +100.3$ (*c* = 0.382, CH₂Cl₂).

HPLC (Daicel chiralcel ADH, n-hexane/i-PrOH 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 7.11 min, t (minor) = 9.24 min. ¹H NMR (400 MHz, CDCl₃) δ 12.64 (s, 1H), 6.52 (s, 1H), 6.35 (s, 1H), 4.41 – 4.24 (m, 2H), 4.17 – 4.04 (m, 2H), 3.75 (dd, J = 6.8, 3.6 Hz, 1H), 3.63 (s, 3H), 3.06 – 2.91 (m, 2H), 1.40 (t, J = 7.2 Hz, 3H), 1.21 (t, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.3, 171.0, 169.5, 121.9, 119.2, 114.9, 105.4, 97.1, 61.3, 60.6, 36.2, 33.7, 32.3, 14.3, 14.1. IR: 2982, 1730, 1645, 1600, 1407, 1327, 1217 cm⁻¹.

HRMS (FTMS+c ESI): Calcd for C₁₅H₂₀NO₅⁺ [M+H⁺] 294.1336; Found 294.1336.

	Retention Time	Area	% Area
1	7.115	15773189	76.20
2	9.241	4926180	23.80

Diethyl 1-ethyl-5-hydroxy-6,7-dihydro-1H-indole-4,7-dicarboxylate (3aw)

Yellow liquid. 40% yield, 72% ee, $[\alpha]_{589}^{22.1} = +157.8$ (*c* = 0.282, CH₂Cl₂).

HPLC (Daicel chiralcel ADH, n-hexane/i-PrOH 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 7.85 min, t (minor) = 11.24 min. **¹H NMR** (400 MHz, CDCl₃) δ 12.66 (s, 1H), 6.61 (s, 1H), 6.40 (s, 1H), 4.42 - 4.23 (m, 2H), 4.21 - 3.84 (m, 4H), 3.75 (dd, J = 6.8, 3.2 Hz, 1H), 3.00 - 2.97 (m, 2H), 1.45 - 1.36 (m, 6H), 1.21 (t, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.3, 171.0, 169.5, 119.5, 118.5, 114.6, 105.7, 97.1, 61.23, 60.5, 41.0, 36.3, 32.5, 16.1, 14.2, 14.0. IR: 2981, 1730, 1643, 1602, 1408, 1234, 1029 cm⁻¹.

HRMS (FTMS+c ESI): Calcd for $C_{16}H_{22}NO_5^+$ [M+H⁺] 308.1492; Found 308.1492.

Diethyl 5-hydroxy-1-octyl-6,7-dihydro-1H-indole-4,7-dicarboxylate (3ax)

Yellow liquid. 36% yield, 71% ee, $[\alpha]_{589}^{24.2} = +81.0$ (*c* = 0.516, CH₂Cl₂,).

HPLC (Daicel chiralcel ADH, n-hexane/i-PrOH 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 6.98 min, t (minor) = 8.90 min. ¹H NMR (400 MHz, CDCl₃) δ 12.65 (s, 1H), 6.58 (d, J = 2.8 Hz, 1H), 6.38 (d, J = 2.8 Hz, 1H), 4.43 – 4.01 (m, 5H), 4.02 – 3.89 (m, 1H), 3.87 – 3.70 (m, 2H), 3.05 – 2.89 (m, 2H), 1.40 (t, J = 7.2 Hz, 3H), 1.35 – 1.24 (m, 11H), 1.21 (t, J = 7.2 Hz, 3H), 0.88 (t, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.3, 171.0, 169.4, 120.4, 118.6, 114.6, 105.5, 97.1, 61.2, 60.5, 46.6, 36.5, 32.6, 31.8, 31.1, 29.3, 29.2, 26.9, 22.6, 14.2, 14.0.

IR: 2927, 2855, 1732, 1642, 1601, 1495, 1327, 1235 cm⁻¹.

HRMS (FTMS+c ESI): Calcd for C₂₂H₃₄NO₅⁺ [M+H⁺] 392.2431; Found 392.2431.

Diethyl 1-benzyl-5-hydroxy-6,7-dihydro-1H-indole-4,7-dicarboxylate (3ay)

Yellow liquid. 40% yield, 64% ee, $[\alpha]_{589}^{22.5} = +58.5$ (*c* = 0.294, CH₂Cl₂).

HPLC (Daicel chiralcel ADH, n-hexane/i-PrOH 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 7.03 min, t (minor) = 11.34 min. ¹H NMR (400 MHz, CDCl₃) δ 12.67 (s, 1H), 7.37 – 7.24 (m, 3H), 7.06 – 7.02 (m, 2H), 6.59 (d, J = 2.8 Hz, 1H), 6.44 (d, J = 2.8 Hz, 1H), 5.27 (d, J = 16.0 Hz, 1H), 5.07 (d, J = 16.0 Hz, 1H), 4.44 – 4.23 (m, 2H), 4.13 – 4.04 (m, 1H), 4.03 – 3.94 (m, 1H), 3.58 (dd, J = 6.4, 4.0 Hz, 1H), 2.89 – 2.86 (m, 2H), 1.41 (t, J = 7.2 Hz, 3H), 1.17 (t, J = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 171.3, 170.9, 169.7, 137.8, 128.8, 127.6, 126.5, 121.9, 118.9, 115.6, 105.8, 97.1, 61.3, 60.6, 50.5, 36.4, 32.4, 14.3, 14.0.

IR: 2980, 1729, 1641, 1601, 1408, 1326, 1223 cm⁻¹.

HRMS (FTMS+c ESI): Calcd for C₂₁H₂₄NO₅⁺ [M+H⁺] 370.1649; Found 370.1652.

Diethyl 1-(furan-2-ylmethyl)-5-hydroxy-6,7-dihydro-1H-indole-4,7-dicarboxylate (3az)

Yellow liquid, 31% yield, 80% ee, $[\alpha]_{589}^{25.1} = +65.2$ (*c* = 0.166, CH₂Cl₂).

HPLC (Daicel chiralcel ADH, n-hexane/i-PrOH 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 7.56 min, t (minor) = 10.24 min.

¹**H NMR** (400 MHz, CDCl₃) δ 12.67 (s, 1H), 7.39 – 7.33 (m, 1H), 6.59 (d, *J* = 2.8 Hz, 1H), 6.39 (d, *J* = 3.2 Hz, 1H), 6.32 (dd, *J* = 3.2, 1.9 Hz, 1H), 6.22 – 6.19 (m, 1H), 5.24 (d, *J* = 15.6 Hz, 1H), 4.98 (d, *J* = 16.0 Hz, 1H), 4.41 – 4.25 (m, 2H), 4.16 – 4.03 (m, 2H), 3.85 (t, *J* = 5.2 Hz, 1H), 2.96 (d, *J* = 4.8 Hz, 2H), 1.39 (t, *J* = 7.2 Hz, 3H), 1.21 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.2, 170.9, 169.7, 150.5, 142.7, 121.2, 118.7, 115.4, 110.4, 108.0, 105.9, 96.9, 61.3, 60.5, 43.6, 36.2, 32.2, 14.2, 14.0.

IR: 3119, 2981, 2932, 1730, 1641, 1601, 1327, 1236 cm⁻¹.

HRMS (FTMS+c ESI): Calcd for C₁₉H₂₂NO₆⁺ [M+H⁺] 360.1442; Found 360.1442.

2

10.241

524395

9.91

Diethyl 5-hydroxy-1-phenyl-6,7-dihydro-1H-indole-4,7-dicarboxylate (3ba)

Yellow liquid 39% yield, 60% ee, $[\alpha]_{589}^{22.2} = -23.5$ (*c* = 0.202, CH₂Cl₂).

HPLC (Daicel chiralcel ADH, n-hexane/i-PrOH 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 8.26 min, t (minor) = 6.58 min.

¹**H NMR** (400 MHz, CDCl₃) δ 12.70 (s, 1H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.34 (t, *J* = 8.4 Hz, 3H), 6.78 (s, 1H), 6.57 (s, 1H), 4.49 – 4.26 (m, 2H), 4.07 – 3.87 (m, 2H), 3.79 (dd, *J* = 7.9, 3.6 Hz, 1H), 3.08 – 2.94 (m, 2H), 1.44 (t, *J* = 7.2 Hz, 3H), 1.07 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.5, 171.2, 169.9, 139.7, 129.2, 127.1, 125.3, 122.2, 119.6, 116.6, 107.1, 97.2, 61.1, 60.7, 36.9, 33.2, 14.3, 13.9.

IR: 2982, 1730, 1642, 1600, 1502, 1329, 1225 cm⁻¹.

HRMS (FTMS+c ESI): Calcd for C₂₀H₂₂NO₅⁺ [M+H⁺] 356.1492; Found 356.1494.

	Retention Time	Area	% Area
1	6.577	1008843	19.71
2	8.256	4108873	80.29
Diethyl 5-hydroxy-6,7-dihydro-1H-indole-4,7-dicarboxylate (3bb)

Yellow liquid. 13% yield, 0% ee.

HPLC (Daicel chiralcel IF, n-hexane/i-PrOH 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 8.23 min, t (minor) = 7.24 min. ¹H NMR (400 MHz, CDCl₃) δ 12.67 (s, 1H), 8.72 (s, 1H), 6.69 (t, J = 2.7 Hz, 1H), 6.45 (t, J = 2.7 Hz, 1H), 4.35 (qd, J = 7.1, 1.2 Hz, 2H), 4.25 (qd, J = 7.2, 1.6 Hz, 2H), 3.98 (dd, J = 11.6, 7.6 Hz, 1H), 3.05 (dd, J = 17.2, 11.6 Hz, 1H), 2.89 (dd, J = 17.2, 8.0 Hz, 1H), 1.42 (t, J = 7.1 Hz, 3H), 1.32 (t, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl3) δ 171.4, 171.3, 169.5, 117.5, 117.1, 114.3, 106.7, 97.4, 61.6, 60.7, 37.7, 32.1, 14.2, 14.1. IR: 3394, 2982, 1727, 1643, 1603, 1409, 1375, 1327, 1226, 1091, 1029 cm⁻¹.

Tetraethyl 5,5'-(1H-pyrrole-2,5-diyl)bis(2-diazo-3-oxohexanedioate) (3bc)

$$EtO_2C \xrightarrow{N_2} V \xrightarrow{N_2} CO_2Et \xrightarrow{N_2} CO_2Et \xrightarrow{N_2} CO_2Et$$

Yellow liquid, 11% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.77 (s, 1H), 5.92 (d, J = 2.8 Hz, 2H), 4.31 (q, J = 7.1 Hz, 4H), 4.21 – 4.13 (m, 6H), 3.73 – 3.60 (m, 2H), 3.38 – 3.26 (m, 2H), 1.34 (t, J = 7.2 Hz, 6H), 1.26 (t, J = 7.1 Hz, 6H).

¹³C NMR (101 MHz, CDCl3) δ 190.4, 190.4, 172.1, 161.2, 161.1, 127.2, 106.4, 61.6, 61.3, 42.2, 39.7, 39.6, 14.3, 14.0.

IR: 3367, 2983, 2138, 1717, 1652, 1373, 1306, 1211, 1168, 1025 cm⁻¹.

HRMS (FTMS+c ESI): Calcd for $C_{24}H_{30}N_5O_{10}^+$ [M+H⁺] 548.1987; Found 548.1987.

Diethyl (1S,4S)-1-methyl-2-oxo-2,3,4,9-tetrahydro-1H-carbazole-1,4-dicarboxylate (4a)

White solid, 45 yield, 90% ee, M.p.141-143 °C, $[\alpha]_{436}^{23.6} = +67.1$ (*c* = 0.134, CH₂Cl₂).

HPLC (Daicel chiralcel ODH, n-hexane/i-PrOH 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 15.84 min, t (minor) = 26.68 min ¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 7.61 (d, *J* = 8.0 Hz, 1H), 7.35 (d, *J* = 8.0 Hz, 1H), 7.22 (t, *J* = 7.2 Hz, 1H), 7.15 (t, *J* = 7.6 Hz, 1H), 4.29 - 4.04 (m, 5H), 3.29 (dd, *J* = 14.8, 6.0 Hz, 1H), 2.93 (dd, *J* = 14.4, 6.4 Hz, 1H), 1.75 (s, 3H) 1.26 (t, *J* = 7.2 Hz, 3H), 1.19 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 203.9, 172.2, 170.6, 136.8, 133.8, 125.6, 122.9, 120.3, 119.3, 111.3, 107.6, 62.4, 61.3, 55.6, 39.9, 38.7, 21.9, 14.1, 13.8.

IR: 3360, 2959, 2924, 2854, 1731, 1458, 1371, 1257, 1177, 1014 cm⁻¹.

HRMS (FTMS+c ESI): Calcd for C₁₉H₂₂NO₅⁺ [M+H⁺] 344.1492; Found 344.1489.

Diethyl (1R,4S)-1-methyl-2-oxo-2,3,4,9-tetrahydro-1H-carbazole-1,4-dicarboxylate (4a')

Yellow liquid, 37% yield, 88% ee, $[\alpha]_{436}^{23.6} = -58.8$ (*c* = 0.214, CH₂Cl₂).

HPLC (Daicel chiralcel ODH, n-hexane/i-PrOH 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 17.50 min, t (minor) = 10.31 min. ¹H NMR (400 MHz, CDCl₃) δ 8.33 (s, 1H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.37 (d, *J* = 8.0 Hz, 1H), 7.25 – 7.21 (m, 1H), 7.18 (t, J = 7.2 Hz, 1H), 4.33 (dd, *J* = 6.4, 2.0 Hz, 1H), 4.23 – 4.02 (m, 4H), 3.12 (dd, *J* = 14.4, 6.4 Hz, 1H), 3.00 (dd, *J* = 14.4, 2.0 Hz, 1H), 1.79 (s, 3H), 1.23 – 1.19 (m, 3H). 1.19 – 1.14 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 203.7, 172.8, 170.7, 136.5, 134.7, 125.6, 122.9, 120.4, 118.9, 111.3, 107.8, 62.5, 61.4, 54.8, 41.1, 38.5, 21.8, 14.0, 13.9.

IR: 3371, 2983, 2936, 1723, 1456, 1370, 1334, 1238, 1181, 1100 cm⁻¹.

HRMS (FTMS+c ESI): Calcd for C₁₉H₂₂NO₅⁺ [M+H⁺] 344.1492; Found 344.1493.

	Retention Time	Area	% Area
1	10.305	642763	5.87
2	17.503	10307095	94.13

Ethyl~(5S,10bS)-10b-methyl-1-oxo-2-phenyl-1,2,4,5,10,10b-hexahydropyrazolo[4,3-a] carbazole-5-carboxylate~(5a)

White solid 80% yield, 90% ee, M.p.192-194 °C, $[\alpha]_{589}^{24.3} = +22.7$ (*c* = 0.176, CH₂Cl₂).

HPLC (Daicel chiralcel ADH, n-hexane/i-PrOH 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 12.27 min, t (minor) = 9.44 min. ¹H NMR (400 MHz, CDCl₃) δ 8.83 (s, 1H), 7.96 – 7.89 (m, 2H), 7.62 (d, J = 8.0 Hz, 1H), 7.39 (q, J = 8.0 Hz, 3H), 7.24 – 7.17 (m, 2H), 7.15 – 7.09 (m, 1H), 4.38 (d, J = 7.2 Hz, 1H), 4.13 – 4.01 (m, 2H), 3.33 (d, J = 13.6 Hz, 1H), 3.09 (dd, J = 13.6, 7.6 Hz, 1H), 1.76 (s, 3H), 1.15 (t, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 173.7, 172.1, 163.6, 137.9, 137.0, 131.7, 128.8, 125.9, 125.3, 122.9, 120.2, 119.5, 119.1, 111.6, 107.2, 61.2, 50.5, 40.3, 29.7, 26.6, 24.3, 14.1.

IR: 3350, 2977, 2924, 2854, 1697, 1596, 1496, 1457, 1368, 1178 cm⁻¹.

HRMS (FTMS+c ESI): Calcd for C₂₃H₂₂N₃O₃⁺ [M+H⁺] 388.1655; Found 388.1654.

	Retention Time	Area	% Area
1	9.437	3082707	5.00
2	12.273	58553741	95.00

Ethyl (5S,10bR)-10b-methyl-1-oxo-2-phenyl-1,2,4,5,10,10b-hexahydropyrazolo[4,3-a]carbazole-5-carboxylate (5a')

Yellow solid, 78% yield, 90% ee, M.p.175-178 °C, $[\alpha]_{436}^{22.6} = -82.3$ (c = 0.102, CH₂Cl₂).

HPLC (Daicel chiralcel ODH, n-hexane/i-PrOH 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 11.36 min, t (minor) = 7.28 min. **¹H NMR** (400 MHz, CDCl₃) δ 8.78 (s, 1H), 7.91 – 7.86 (m, 2H), 7.55 (d, J = 8.0 Hz, 1H), 7.43 – 7.33 (m, 3H), 7.23 – 7.16 (m,

2H), 7.14 – 7.07 (m, 1H), 4.34 – 4.20 (m, 3H), 3.39 – 3.23 (m, 2H), 1.85 (s, 3H), 1.35 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 173.8, 173.1, 164.2, 137.8, 136.9, 131.4, 128.9, 125.6, 125.5, 122.9, 120.3, 119.3, 118.9, 111.6, 107.6, 61.6, 50.5, 41.7, 26.7, 23.5, 14.2.

IR: 3349, 2979, 2927, 1701, 1595, 1495, 1455, 1373, 1297, 1178 cm⁻¹.

HRMS (FTMS+c ESI): Calcd for $C_{23}H_{22}N_3O_3^+$ [M+H⁺] 388.1655; Found 388.1653.

Diethyl (S)-2-diazo-5-(1H-indol-3-yl)-3-oxohexanedioate (6a)

Colourless solid, 94% yield, 91% ee, M.p.85-88 °C, $[\alpha]_{589}^{23.9} = +107.5$ (*c* = 0.574, CH₂Cl₂).

HPLC (Daicel chiralcel ODH, n-hexane/i-PrOH 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 31.71 min, t (minor) = 43.17 min. ¹**H NMR** (400 MHz, CDCl₃) δ 8.34 (s, 1H), 7.74 (d, *J* = 7.6 Hz, 1H), 7.32 (d, *J* = 8.4 Hz, 1H), 7.15 (m, 2H), 7.06 (d, *J* = 2.4 Hz, 1H), 4.48 (dd, *J* = 10.4, 4.0 Hz, 1H), 4.27 (q, *J* = 7.2 Hz, 2H), 4.12 (m, 2H), 3.94 (dd, *J* = 18.4, 10.4 Hz, 1H), 3.26 (dd, *J* = 18.4, 4.0 Hz, 1H), 1.30 (t, *J* = 7.2 Hz, 3H), 1.18 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 190.9, 173.8, 161.3, 136.2, 126.3, 122.3, 122.2, 119.7, 119.3, 112.7, 111.3, 76.2, 61.5, 61.0, 43.2, 37.9, 14.3, 14.1.

IR: 3394, 2960, 2930, 2866, 2137, 1720, 1653, 1375, 1270, 1120 cm⁻¹.

HRMS (FTMS+c ESI): Calcd for C₁₈H₂₀N₃O₅⁺ [M+H⁺] 358.1397; Found 358.1398.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

fl (ppm)

9.021 9.021 7.485 7.485 7.235 9.298 9.445 7.445 7.4435 7.4435 7.4435 7.4435 7.4435 7.4435 7.4445 7.4112 7.4

— 12.947

EtO₂C OH H CO₂Et

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

8. X-ray crystal structure of product 5a

Single crystal of $(C_{23}H_{21}N_3O_3)$ **5a** was recrystallized from mixed solvents of EtOAc and n-hexane. The absolute configuration of the product **5a** was determined to be (S,S) according to X-ray crystal structural analysis. CCDC 2020511 contains the supplementary crystallographic data which can be obtained free of charge from The Cambridge Crystallographic Data Center.

The colourless crystal in flake-shape, with approximate dimensions of $0.222 \times 0.085 \times 0.069 \text{ mm}^3$, was selected and mounted for the single-crystal X-ray diffraction. The data set was collected by Bruker D8 Venture Photon II diffractometer at 143(2)K equipped with micro-focus Cu radiation source ($K_{\alpha} = 1.54178\text{ Å}$). Applied with face-indexed numerical absorption correction, the structure solution was solved and refinement was processed by SHELXTL (version 6.14) and OLEX 2.3 program package^{a, b, c, d}. The structure was analyzed by ADDSYM routine implemented in PLATON suite and no higher symmetry was suggested^e.

Formula	$C_{23}H_{21}N_3O_3$
Formula mass (amu)	387.43
Space group	P21
<i>a</i> (Å)	14.9940(4)
<i>b</i> (Å)	7.9399(2)
<i>c</i> (Å)	18.0476(5)
α (deg)	90
β (deg)	110.222(1)
γ (deg)	90
$V(\text{\AA}^3)$	2016.14(9)
Ζ	4
λ (Å)	1.54178
<i>T</i> (K)	143 K
ρ_{calcd} (g cm ⁻³)	1.276
μ (mm ⁻¹)	0.697
Transmission factors	0.797,1.000
$\theta_{\rm max}$ (deg)	81.381
No. of unique data, including $F_0^2 < 0$	8393
No. of unique data, with $F_o^2 > 2\sigma(F_o^2)$	7234
No. of variables	535
$R(F)$ for $F_{o}^{2} > 2\sigma(F_{o}^{2})^{a}$	0.0474
$R_{ m w}(F_{ m o}{}^2)^{\ b}$	0.1117
Goodness of fit	1.047

^{*a*} $R(F) = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|.$

^b $R_{\rm w}(F_{\rm o}^{2}) = \left[\sum \left[w(F_{\rm o}^{2} - F_{\rm c}^{2})^{2}\right] / \sum wF_{\rm o}^{4}\right]^{1/2}; w^{-1} = \left[\sigma^{2}(F_{\rm o}^{2}) + (Ap)^{2} + Bp\right], \text{ where } p = \left[\max(F_{\rm o}^{2}, 0) + 2F_{\rm c}^{2}\right] / 3.$

9. Unsuccessful substrate scopes.

10. Reference

(1)Y. H. Wen, X. Huang, J. L. Huang, Y. Xiong, B. Qin, X. M. Feng, Synlett., 2005, 2445.

(2) P. V. Ramachandran, M. T. Rudd, M. V. R. Reddy, *Tetrahedron.*, 2005, 46, 2547.

- (3) C. Tarigopula, G. K. Thota, R. Balamurugan, Eur. J. Org. Chem., 2016, 5855.
- (4) S. Sakthivel, R. Balamurugan, J. Org. Chem., 2018, 83, 12171.
- ^a G. M. Sheldrick, Acta Cryst., 2008, A64, 112.
- ^bG. M. Sheldrick, Acta Cryst., 2015, A71, 3.
- ^cG. M. Sheldrick, Acta Cryst., 2015, C71, 3.
- ^d O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst., 2009, 42, 339.
- ^e A. L. Spek, J. Appl. Cryst., 2003, 36, 7.