Self-Sorting Behavior in Supramolecular Fullerene Polymerization Directed by HostGuest Complexation between Calix[5]arene and \mathbf{C}_{60}

Takehiro Hirao, ${ }^{*}$ Naoka Fujii, ${ }^{\ddagger}$ Yoshiki Iwabe and Takeharu Haino*

Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1

Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, JAPAN

To whom correspondence should be addressed: *E-mail: haino@hiroshima-u.ac.jp
*These two authors contributed equally.

Contents

General S3
Method S3-S4
Figure S1-S9. DOSY experiments for 1:1 mixtures of (rac)-1 and $\mathbf{2}$ S5-S9
Figure S10. DOSY analysis for 1:1 mixtures of (rac)-1 and $\mathbf{2}$ S10
Figure S11. CD spectra of mixtures of 1 and 2 S11
Figure S12. Summary of D values of 1:1 mixtures of $(R: S=1: 3)-\mathbf{1}$ and 2 S11
Figure S13-S15. DOSY experiments for 1:1 mixtures of $(R: S=1: 3) \mathbf{- 1}$ and $\mathbf{2}$ S12-S13
Figure S16. DOSY analysis for 1:1 mixtures of $(R: S=1: 3)-\mathbf{1}$ and 2 S13
Figure S17. DOSY analysis for 1:1 mixtures of (rac)-1 and $\mathbf{3}$ S14
Figure S18. Determination of binding constants between $(S)-\mathbf{4}$ and 2 S15
Figure S19. Determination of binding constants between (S) - $\mathbf{1}$ and $\mathbf{5}$ S16
References S17

General:

All solvents were commercial reagent grade and were used without further purification. UV/vis absorption spectra were recorded on a JASCO V-560 spectrometer. DOSY experiments were carried out on JEOL JNM-ECA500 spectrometer, and chemical shifts were reported on the delta scale in ppm relative to residual chloroform ($\delta=7.26$ for ${ }^{1} \mathrm{H}$). Circular dichroism (CD) spectra were recorded on a JASCO J-1500 spectrometer. Previously synthesized $(S) \mathbf{- 1},{ }^{[1]}(R) \mathbf{- 1},{ }^{[1]} \mathbf{2},{ }^{[1]} \mathbf{3},{ }^{[2]}(S)-4,{ }^{[3]}$ and $5^{[3]}$ were used for this work.

Method:

Determination of affinity constants corresponding to the interaction between the calix[5]arene moiety of (rac)-1 and the fullerene moiety of 2 .

A hyperbolic curve was obtained by plotting the total concentrations of 1:1 mixtures of $(\mathrm{rac}) \mathbf{- 1}$ and $\mathbf{2}$ against the extinction coefficients (ε). Curve fitting analysis was carried out using Igor pro program. The fitting functions are given by eq. S1,
$\varepsilon\left(C_{t}\right)=\frac{K C_{t}+1-\sqrt{2 K C_{t}+1}}{K^{2} C_{t}^{2}}\left(\varepsilon_{1}-\varepsilon_{a}\right)+\varepsilon_{a} \#(S 1)$
where $C_{\mathrm{t}}, K, \varepsilon_{1}$, and ε_{a} indicate the total concentration of the compound, the affinity constant, the ε of the monomer, the ε of the aggregates, respectively. ${ }^{[4]}$

Determination of diffusion coefficients of the existing molecular species in solutions.
Chloroform- d solutions of a 1:1 mixture of $(r a c)-\mathbf{1}$ and $\mathbf{2}$ were placed in an NMR sample tube ($3 \mathrm{~mm} \Phi$). The pulse-field gradient diffusion NMR spectra were recorded using a bipolar pulse pair stimulated echo pulse sequence on a JEOL JNMECA500 spectrometer with a three mm inverse H3X/FG probe at $24^{\circ} \mathrm{C}$. The resulting DOSY data were analyzed using a MestReNova program to obtain the diffusion coefficient values shown in Table 1 and Fig. S10. The signal decay of selected aliphatic protons was fit to fitting functions given by eq. S 2 , where I and I_{0} indicate the NMR signal intensities in the presence and absence of gradient pulses, respectively. D is the diffusion coefficient value.
$I=I_{0} e^{-x D} \#(S 2)$
The x denotes $\left[-\gamma^{2} g^{2} \delta^{2}(\Delta-\delta / 3)\right]$, where γ, g, δ, and Δ represent the gyromagnetic ratio, gradient strength, its duration, and separation between the edges of the gradient pulses, respectively. ${ }^{[5]}$

Determination of degree of polymerization (DP) by a cylindrical model. ${ }^{[6]-[11]}$
According to a cylindrical mode, diffusion coefficient (D) can be expressed by eq. S3.
$D=\frac{k_{B} T}{3 \pi \eta L}(\ln p+v) \#(S 3)$
k_{B}, T, η, and L are the Boltzmann constant, temperature, solvent viscosity, and length of the cylinder. p indicates the axial ratio of the cylinder $(p=L / d) . v$ is the end-effect correction term, which was approximated as follows:
$v=0.312+0.565 p^{-1}-0.100 p^{-2} \#(S 4)$
We previously estimated the d value of the supramolecular polymers from the molecular model to be $3.6 \mathrm{~nm} .{ }^{[1]}$ The eqs. S3 and S4 allowed to calculate the L values of the supramolecular polymers using the D values obtained experimentally (Fig. S10). Finally, the DP values were estimated based on a length of 5.1 nm for one helix turn (Table 1).

Figure S1. Stack plot of ${ }^{1} \mathrm{H}$ NMR spectra obtained from the diffusion experiment for a $1: 1$ mixture of (rac) $\mathbf{- 1}$ and $\mathbf{2}$ in chloroform- d at the concentration of $30 \mathrm{mmol} \mathrm{L}^{-1}$, showing the methyl protons of calix[5]arene moieties of (rac)-1.

Figure S2. Stack plot of ${ }^{1} \mathrm{H}$ NMR spectra obtained from the diffusion experiment for a $1: 1$ mixture of (rac) $\mathbf{- 1}$ and $\mathbf{2}$ in chloroform- d at the concentration of $25 \mathrm{mmol} \mathrm{L}^{-1}$, showing the methyl protons of calix[5]arene moieties of (rac)-1.

Figure S3. Stack plot of ${ }^{1} \mathrm{H}$ NMR spectra obtained from the diffusion experiment for a $1: 1$ mixture of (rac)-1 and $\mathbf{2}$ in chloroform- d at the concentration of $20 \mathrm{mmol} \mathrm{L}^{-1}$, showing the methyl protons of calix[5]arene moieties of $(\mathrm{rac}) \mathbf{- 1}$.

Figure S4. Stack plot of ${ }^{1} \mathrm{H}$ NMR spectra obtained from the diffusion experiment for a $1: 1$ mixture of $(\mathrm{rac}) \mathbf{- 1}$ and $\mathbf{2}$ in chloroform- d at the concentration of $15 \mathrm{mmol} \mathrm{L}^{-1}$, showing the methyl protons of calix[5]arene moieties of $(\mathrm{rac}) \mathbf{- 1}$.

Figure S5. Stack plot of ${ }^{1} \mathrm{H}$ NMR spectra obtained from the diffusion experiment for a $1: 1 \mathrm{mixture}$ of (rac)-1 and $\mathbf{2}$ in chloroform- d at the concentration of $10 \mathrm{mmol} \mathrm{L}^{-1}$, showing the methyl protons of calix[5]arene moieties of (rac)-1.

Figure S6. Stack plot of ${ }^{1} \mathrm{H}$ NMR spectra obtained from the diffusion experiment for a $1: 1$ mixture of (rac)-1 and $\mathbf{2}$ in chloroform- d at the concentration of $7.0 \mathrm{mmol} \mathrm{L}^{-1}$, showing the methyl protons of calix[5] arene moieties of (rac)-1.

Figure S7. Stack plot of ${ }^{1} \mathrm{H}$ NMR spectra obtained from the diffusion experiment for a $1: 1$ mixture of (rac) $\mathbf{- 1}$ and $\mathbf{2}$ in chloroform- d at the concentration of $5.0 \mathrm{mmol} \mathrm{L}^{-1}$, showing the methyl protons of calix[5] arene moieties of (rac)-1.

Figure S8. Stack plot of ${ }^{1} \mathrm{H}$ NMR spectra obtained from the diffusion experiment for a $1: 1$ mixture of (rac) $\mathbf{- 1}$ and $\mathbf{2}$ in chloroform- d at the concentration of $2.5 \mathrm{mmol} \mathrm{L}^{-1}$, showing the methyl protons of calix[5] arene moieties of (rac)-1.

Figure S9. Stack plot of ${ }^{1} \mathrm{H}$ NMR spectra obtained from the diffusion experiment for a $1: 1$ mixture of (rac)-1 and $\mathbf{2}$ in chloroform- d at the concentration of $1.0 \mathrm{mmol} \mathrm{L}^{-1}$, showing the methyl protons of calix[5]arene moieties of (rac)-1.

Figure S10. Plot of ${ }^{1} \mathrm{H}$ NMR signal intensities obtained from the diffusion experiments (Figs. S1-S9) and their fitting curves (red lines) for a 1:1 mixture of (rac)-1 and $\mathbf{2}$ in chloroform- d at the concentrations of (a) 30, (b) 25 , (c) 20, (d) 15 , (e) 10 , (f) 7.0 , (g) 5.0 , (h) 2.5 , and (i) $1.0 \mathrm{mmol} \mathrm{L}^{-1}$.

Figure S11. CD spectra of (blue line) a $1: 1$ mixture of $(S) \mathbf{- 1}\left(1.0 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ and $\mathbf{2}\left(1.0 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}\right)$, and (solid line) a 1:1 mixture of $(S)-\mathbf{1}\left(1.0 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ and $\mathbf{2}\left(1.0 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ with $(R) \mathbf{- 1}\left(0.50 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ in toluene at $5^{\circ} \mathrm{C}$. The spectrum shown in blue line is from Ref. [1] with permission of the publisher.

(b)

	$C\left(\mathrm{mmol} \mathrm{L}^{-1}\right)$	5.0	15	30
$(R) \mathbf{- 1}$ and $\mathbf{2}$	$D\left(10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}\right)^{\mathrm{a}}$	2.16	1.34	0.57
	DP^{b}	---c	7	32
$(R: S=\mathbf{1}: 3)-\mathbf{1}$ and $\mathbf{2}$	$D\left(10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}\right)^{\mathrm{a}}$	2.37	1.59	1.11
	DP^{b}	---c	4	10
$(\mathrm{rac}) \mathbf{- 1}$ and 2	$D\left(10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}\right)^{\mathrm{a}}$	2.67	1.91	1.37
	DP^{b}	---c	---c	7

Figure S12. (a) Plot of diffusion coefficients $(D \mathrm{~s})$ of a $1: 1$ mixture of $(R) \mathbf{- 1}$ and $\mathbf{2}$ (circle), a $0.25: 0.75: 1$ mixture of $(R)-\mathbf{1}$, (S)-1 and $\mathbf{2}$ (cross), and a $1: 1$ mixture of (rac)-1 and $\mathbf{2}$ (rhombus) in chloroform- d at $25^{\circ} \mathrm{C}$. The D values of a $1: 1$ mixture of $(R)-\mathbf{1}$ and $\mathbf{2}$ are from Ref.[1] with permission of the publisher. (b) Summary of diffusion coefficient (D) and the degree of polymerization (DP) values at various concentrations. The spectra and fitting analysis are shown in Figs. S1-S10, S13-S16. ${ }^{\text {a Observed at }} 25^{\circ} \mathrm{C}$. Estimated error in $D<10 \%$. The error values are shown in Figs. S10 and S16. ${ }^{\text {b }}$ Estimated by a cylindrical model. 'Shorter than one-helix turn ($\mathrm{DP}<4$).

Figure S13. Stack plot of ${ }^{1} \mathrm{H}$ NMR spectra obtained from the diffusion experiment for a $0.25: 0.75: 1$ mixture of $(R) \mathbf{- 1},(S) \mathbf{- 1}$ and $\mathbf{2}$ in chloroform- d at the concentration of $30 \mathrm{mmol} \mathrm{L}^{-1}$, showing the methyl protons of calix[5]arene moieties of $(R),(S)$ mixture of $\mathbf{1}$.

Figure S14. Stack plot of ${ }^{1} \mathrm{H}$ NMR spectra obtained from the diffusion experiment for a $0.25: 0.75: 1$ mixture of $(R)-\mathbf{1},(S) \mathbf{- 1}$ and $\mathbf{2}$ in chloroform- d at the concentration of $15 \mathrm{mmol} \mathrm{L}^{-1}$, showing the methyl protons of calix[5]arene moieties of $(R),(S)$ mixture of $\mathbf{1}$.

Figure S15. Stack plot of ${ }^{1} \mathrm{H}$ NMR spectra obtained from the diffusion experiment for a $0.25: 0.75: 1$ mixture of $(R) \mathbf{- 1},(S) \mathbf{- 1}$ and $\mathbf{2}$ in chloroform- d at the concentration of $5.0 \mathrm{mmol} \mathrm{L}^{-1}$, showing the methyl protons of calix[5]arene moieties of $(R),(S)$ mixture of $\mathbf{1}$.

Figure S16. Plot of ${ }^{1} \mathrm{H}$ NMR signal intensities obtained from the diffusion experiments (Figs. S13-S15) and their fitting curves (red lines) for a $0.25: 0.75: 1$ mixture of $(R) \mathbf{- 1},(S) \mathbf{- 1}$ and $\mathbf{2}$ in chloroform- d at the concentrations of (a) 30 , (b) 15 , and (c) $5.0 \mathrm{mmol} \mathrm{L}^{-1}$.

3: $\mathrm{R}=-\mathrm{CH}_{2}-1$
(a)

(b)

Figure S17. Stack plot of ${ }^{1} \mathrm{H}$ NMR spectra obtained from the diffusion experiment for $1: 1$ mixtures of (a) (rac)-1 and $\mathbf{3}$ and (b) (R) $\mathbf{- 1}$ and $\mathbf{3}$ in chloroform- d at the concentration of $15 \mathrm{mmol} \mathrm{L}^{-1}$, showing the methyl protons of calix[5]arene moieties of $(r a c) \mathbf{- 1}$ and $(R)-\mathbf{1}$, respectively. Plots of ${ }^{1} \mathrm{H}$ NMR signal intensities obtained from the diffusion experiments (panel a and b) and their fitting curves (red lines) for 1:1 mixtures (c) (rac)-1 and $\mathbf{3}$ and (d) (R)-1 and $\mathbf{3}$.

Figure S18. (a) Changes in the UV/vis absorption spectrum of $2\left(1.0 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ seen upon the addition of $(S)-4$. Concentrations of $(S)-4$ are (1-31): $0.00,0.10,0.20,0.30,0.40,0.51,0.61,0.70,0.82,0.91,1.0,1.2,1.4,1.6,1.8,2.2,2.4$, $2.6,2.8,3.1,3.3,3.5,3.7,3.9,4.1,4.3,4.5,4.7,4.8,5.0,6.0 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$. The red and blue lines correspond to the UV/vis absorption spectra of $2\left(3.1 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ and $(S)-4\left(1.0 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}\right)$, respectively. (b) Images exported from HypSpec Graphs ${ }^{[12]}$ showing the fitting over the whole spectrum.

Figure S19. (a) Changes in the UV/vis absorption spectrum of $5\left(1.0 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ seen upon the addition of (S)-4. Concentrations of $(S)-1$ are (1-25): $0.00,0.10,0.19,0.29,0.38,0.49,0.59,0.68,0.79,0.87,0.98,1.2,1.4,1.6,1.8,2.0,2.1$, $2.3,2.5,2.7,3.0,3.2,3.4,3.6,3.8 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$. The red and blue lines correspond to the UV/vis absorption spectra of 5 $\left(2.2 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ and $(S)-\mathbf{1}\left(1.0 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}\right)$, respectively. (b) Images exported from HypSpec Graphs ${ }^{[12]}$ showing the fitting over the whole spectrum.

References:

[1]: T. Hirao, Y. Iwabe, N. Fujii, T. Haino, J. Am. Chem. Soc., 2021, 143, 4339-4345.
[2]: T. Hirao, M. Tosaka, S. Yamago, T. Haino, Chem. -Eur. J., 2014, 20, 16138-16146.
[3]: T. Hirao, Y. Iwabe, N. Hisano, T. Haino, Chem. Commun., 2020, 56, 6672-6675.
[4]: J. S. Park, K. Y. Yoon, D. S. Kim, V. M. Lynch, C. W. Bielawski, K. P. Johnston and J. L. Sessler, Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 20913-20917.
[5]: L. Escobar, Y.-S. Li, Y. Cohen, Y. Yu, J. Rebek Jr. and P. Ballester, Chem. -Eur. J., 2020, 26, 8220-8225.
[6]: M. M. Tirado and J. G. J. de la Torre, J. Chem. Phys., 1979, 71, 2581-2587.
[7]: M. M. Tirado and J. G. J. de la Torre, J. Chem. Phys., 1980, 73, 1986-1993.
[8]: M. M. Tirado, C. L. Martínez and J. G. J. de la Torre, J. Chem. Phys., 1984, 81, 2047-2052.
[9]: A. Ortega and G. J. de la Torre, J. Chem. Phys., 2003, 119, 9914-9919.
[10]: A. Wong, R. Ida, L. Spindler and G. Wu, J. Am. Chem. Soc., 2005, 127, 6990-6998.
[11]: Y. Yamauchi, Y. Hanaoka, M. Yoshizawa, M. Akita, T. Ichikawa, M. Yoshio, T. Kato and M. Fujita, J. Am. Chem. Soc., 2010, 132, 9555-9557.
[12]: P. Gans, A. Sabatini, A. Vacca, Talanta 1996, 43, 1739-1753.

