Supporting Information For:

Self-Sorting Behavior in Supramolecular Fullerene Polymerization Directed by Host-Guest Complexation between Calix[5]arene and C₆₀

Takehiro Hirao,[‡] Naoka Fujii,[‡] Yoshiki Iwabe and Takeharu Haino*

Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1

Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, JAPAN

To whom correspondence should be addressed: *E-mail: haino@hiroshima-u.ac.jp

[‡]These two authors contributed equally.

Contents

General	S3
Method	
Figure S1-S9. DOSY experiments for 1:1 mixtures of (<i>rac</i>)-1 and 2	
Figure S10. DOSY analysis for 1:1 mixtures of (<i>rac</i>)-1 and 2	S10
Figure S11. CD spectra of mixtures of 1 and 2	S11
Figure S12. Summary of D values of 1:1 mixtures of $(R:S = 1:3)$ -1 and 2	S11
Figure S13-S15. DOSY experiments for 1:1 mixtures of $(R:S = 1:3)$ -1 and 2	S12-S13
Figure S16. DOSY analysis for 1:1 mixtures of $(R:S = 1:3)$ -1 and 2	
Figure S17. DOSY analysis for 1:1 mixtures of (<i>rac</i>)-1 and 3	S14
Figure S18. Determination of binding constants between (S)-4 and 2	
Figure S19. Determination of binding constants between (S)-1 and 5	S16
References	S17

General:

All solvents were commercial reagent grade and were used without further purification. UV/vis absorption spectra were recorded on a JASCO V-560 spectrometer. DOSY experiments were carried out on JEOL JNM-ECA500 spectrometer, and chemical shifts were reported on the delta scale in ppm relative to residual chloroform ($\delta = 7.26$ for ¹H). Circular dichroism (CD) spectra were recorded on a JASCO J-1500 spectrometer. Previously synthesized (*S*)-1,^[1] (*R*)-1,^[1] 2,^[1] 3,^[2] (*S*)-4,^[3] and 5^[3] were used for this work.

Method:

Determination of affinity constants corresponding to the interaction between the calix[5] arene moiety of (rac)-1 and the fullerene moiety of 2.

A hyperbolic curve was obtained by plotting the total concentrations of 1:1 mixtures of (*rac*)-1 and 2 against the extinction coefficients (ε). Curve fitting analysis was carried out using Igor pro program. The fitting functions are given by eq. S1,

$$\varepsilon(C_t) = \frac{KC_t + 1 - \sqrt{2KC_t + 1}}{K^2 C_t^2} (\varepsilon_1 - \varepsilon_a) + \varepsilon_a \#(S1)$$

where C_t , K, ε_1 , and ε_a indicate the total concentration of the compound, the affinity constant, the ε of the monomer, the ε of the aggregates, respectively.^[4]

Determination of diffusion coefficients of the existing molecular species in solutions.

Chloroform-*d* solutions of a 1:1 mixture of (*rac*)-1 and 2 were placed in an NMR sample tube (3 mm Φ). The pulse-field gradient diffusion NMR spectra were recorded using a bipolar pulse pair stimulated echo pulse sequence on a JEOL JNM-ECA500 spectrometer with a three mm inverse H3X/FG probe at 24 °C. The resulting DOSY data were analyzed using a MestReNova program to obtain the diffusion coefficient values shown in Table 1 and Fig. S10. The signal decay of selected aliphatic protons was fit to fitting functions given by eq. S2, where *I* and *I*₀ indicate the NMR signal intensities in the presence and absence of gradient pulses, respectively. *D* is the diffusion coefficient value.

$$I = I_0 e^{-xD} \# (S2)$$

The x denotes $[-\gamma^2 g^2 \delta^2 (\Delta - \delta/3)]$, where γ , g, δ , and Δ represent the gyromagnetic ratio, gradient strength, its duration, and separation between the edges of the gradient pulses, respectively.^[5]

Determination of degree of polymerization (DP) by a cylindrical model.^{[6]-[11]}

According to a cylindrical mode, diffusion coefficient (D) can be expressed by eq. S3.

$$D = \frac{k_B T}{3\pi\eta L} (\ln p + \nu) \# (S3)$$

 $k_{\rm B}$, *T*, η , and L are the Boltzmann constant, temperature, solvent viscosity, and length of the cylinder. *p* indicates the axial ratio of the cylinder (p = L/d). *v* is the end-effect correction term, which was approximated as follows: $v = 0.312 + 0.565p^{-1} - 0.100p^{-2}#(S4)$

We previously estimated the *d* value of the supramolecular polymers from the molecular model to be 3.6 nm.^[1] The eqs. S3 and S4 allowed to calculate the *L* values of the supramolecular polymers using the *D* values obtained experimentally (Fig. S10). Finally, the DP values were estimated based on a length of 5.1 nm for one helix turn (Table 1).

Figure S1. Stack plot of ¹H NMR spectra obtained from the diffusion experiment for a 1:1 mixture of (*rac*)-1 and 2 in chloroform-*d* at the concentration of 30 mmol L⁻¹, showing the methyl protons of calix[5]arene moieties of (*rac*)-1.

Figure S2. Stack plot of ¹H NMR spectra obtained from the diffusion experiment for a 1:1 mixture of (*rac*)-1 and 2 in chloroform-*d* at the concentration of 25 mmol L⁻¹, showing the methyl protons of calix[5]arene moieties of (*rac*)-1.

Figure S3. Stack plot of ¹H NMR spectra obtained from the diffusion experiment for a 1:1 mixture of (*rac*)-1 and 2 in chloroform-*d* at the concentration of 20 mmol L⁻¹, showing the methyl protons of calix[5]arene moieties of (*rac*)-1.

Figure S4. Stack plot of ¹H NMR spectra obtained from the diffusion experiment for a 1:1 mixture of (*rac*)-1 and 2 in chloroform-*d* at the concentration of 15 mmol L⁻¹, showing the methyl protons of calix[5]arene moieties of (*rac*)-1.

Figure S5. Stack plot of ¹H NMR spectra obtained from the diffusion experiment for a 1:1 mixture of (*rac*)-1 and 2 in chloroform-*d* at the concentration of 10 mmol L⁻¹, showing the methyl protons of calix[5]arene moieties of (*rac*)-1.

Figure S6. Stack plot of ¹H NMR spectra obtained from the diffusion experiment for a 1:1 mixture of (*rac*)-1 and 2 in chloroform-*d* at the concentration of 7.0 mmol L⁻¹, showing the methyl protons of calix[5]arene moieties of (*rac*)-1.

Figure S7. Stack plot of ¹H NMR spectra obtained from the diffusion experiment for a 1:1 mixture of (*rac*)-1 and 2 in chloroform-*d* at the concentration of 5.0 mmol L⁻¹, showing the methyl protons of calix[5]arene moieties of (*rac*)-1.

Figure S8. Stack plot of ¹H NMR spectra obtained from the diffusion experiment for a 1:1 mixture of (*rac*)-1 and 2 in chloroform-*d* at the concentration of 2.5 mmol L⁻¹, showing the methyl protons of calix[5]arene moieties of (*rac*)-1.

Figure S9. Stack plot of ¹H NMR spectra obtained from the diffusion experiment for a 1:1 mixture of (*rac*)-1 and 2 in chloroform-*d* at the concentration of 1.0 mmol L⁻¹, showing the methyl protons of calix[5]arene moieties of (*rac*)-1.

Figure S10. Plot of ¹H NMR signal intensities obtained from the diffusion experiments (Figs. S1-S9) and their fitting curves (red lines) for a 1:1 mixture of (*rac*)-1 and 2 in chloroform-*d* at the concentrations of (a) 30, (b) 25, (c) 20, (d) 15, (e)10, (f) 7.0, (g) 5.0, (h) 2.5, and (i) 1.0 mmol L⁻¹.

Figure S11. CD spectra of (blue line) a 1:1 mixture of (*S*)-**1** ($1.0 \times 10^{-2} \text{ mol } L^{-1}$) and **2** ($1.0 \times 10^{-2} \text{ mol } L^{-1}$), and (solid line) a 1:1 mixture of (*S*)-**1** ($1.0 \times 10^{-2} \text{ mol } L^{-1}$) and **2** ($1.0 \times 10^{-2} \text{ mol } L^{-1}$) with (*R*)-**1** ($0.50 \times 10^{-2} \text{ mol } L^{-1}$) in toluene at 5 °C. The spectrum shown in blue line is from Ref. [1] with permission of the publisher.

Figure S12. (a) Plot of diffusion coefficients (*D*s) of a 1:1 mixture of (*R*)-1 and 2 (circle), a 0.25:0.75:1 mixture of (*R*)-1, (*S*)-1 and 2 (cross), and a 1:1 mixture of (*rac*)-1 and 2 (rhombus) in chloroform-*d* at 25 °C. The *D* values of a 1:1 mixture of (*R*)-1 and 2 are from Ref.[1] with permission of the publisher. (b) Summary of diffusion coefficient (*D*) and the degree of polymerization (DP) values at various concentrations. The spectra and fitting analysis are shown in Figs. S1-S10, S13-S16. ^aObserved at 25 °C. Estimated error in D < 10%. The error values are shown in Figs. S10 and S16. ^bEstimated by a cylindrical model. ^cShorter than one-helix turn (DP < 4).

Figure S13. Stack plot of ¹H NMR spectra obtained from the diffusion experiment for a 0.25:0.75:1 mixture of (*R*)-1, (*S*)-1 and 2 in chloroform-*d* at the concentration of 30 mmol L⁻¹, showing the methyl protons of calix[5]arene moieties of (*R*),(*S*)-mixture of 1.

Figure S14. Stack plot of ¹H NMR spectra obtained from the diffusion experiment for a 0.25:0.75:1 mixture of (*R*)-1, (*S*)-1 and 2 in chloroform-*d* at the concentration of 15 mmol L⁻¹, showing the methyl protons of calix[5]arene moieties of (*R*),(*S*)-mixture of 1.

Figure S15. Stack plot of ¹H NMR spectra obtained from the diffusion experiment for a 0.25:0.75:1 mixture of (*R*)-1, (*S*)-1 and 2 in chloroform-*d* at the concentration of 5.0 mmol L⁻¹, showing the methyl protons of calix[5]arene moieties of (*R*),(*S*)-mixture of 1.

Figure S16. Plot of ¹H NMR signal intensities obtained from the diffusion experiments (Figs. S13-S15) and their fitting curves (red lines) for a 0.25:0.75:1 mixture of (*R*)-1, (*S*)-1 and 2 in chloroform-*d* at the concentrations of (a) 30, (b) 15, and (c) 5.0 mmol L⁻¹.

Figure S17. Stack plot of ¹H NMR spectra obtained from the diffusion experiment for 1:1 mixtures of (a) (*rac*)-1 and 3 and (b) (*R*)-1 and 3 in chloroform-*d* at the concentration of 15 mmol L⁻¹, showing the methyl protons of calix[5]arene moieties of (*rac*)-1 and (*R*)-1, respectively. Plots of ¹H NMR signal intensities obtained from the diffusion experiments (panel a and b) and their fitting curves (red lines) for 1:1 mixtures (c) (*rac*)-1 and 3 and (d) (*R*)-1 and 3.

Figure S18. (a) Changes in the UV/vis absorption spectrum of **2** $(1.0 \times 10^{-5} \text{ mol } \text{L}^{-1})$ seen upon the addition of (*S*)-**4**. Concentrations of (*S*)-**4** are (1-31): 0.00, 0.10, 0.20, 0.30, 0.40, 0.51, 0.61, 0.70, 0.82, 0.91, 1.0, 1.2, 1.4, 1.6, 1.8, 2.2, 2.4, 2.6, 2.8, 3.1, 3.3, 3.5, 3.7, 3.9, 4.1, 4.3, 4.5, 4.7, 4.8, 5.0, $6.0 \times 10^{-5} \text{ mol } \text{L}^{-1}$. The red and blue lines correspond to the UV/vis absorption spectra of **2** $(3.1 \times 10^{-5} \text{ mol } \text{L}^{-1})$ and (*S*)-**4** $(1.0 \times 10^{-5} \text{ mol } \text{L}^{-1})$, respectively. (b) Images exported from HypSpec Graphs^[12] showing the fitting over the whole spectrum.

Figure S19. (a) Changes in the UV/vis absorption spectrum of **5** $(1.0 \times 10^{-5} \text{ mol } \text{L}^{-1})$ seen upon the addition of (*S*)-**4**. Concentrations of (*S*)-**1** are (1-25): 0.00, 0.10, 0.19, 0.29, 0.38, 0.49, 0.59, 0.68, 0.79, 0.87, 0.98, 1.2, 1.4, 1.6, 1.8, 2.0, 2.1, 2.3, 2.5, 2.7, 3.0, 3.2, 3.4, 3.6, 3.8×10^{-5} mol L⁻¹. The red and blue lines correspond to the UV/vis absorption spectra of **5** $(2.2 \times 10^{-5} \text{ mol } \text{L}^{-1})$ and (*S*)-**1** $(1.0 \times 10^{-5} \text{ mol } \text{L}^{-1})$, respectively. (b) Images exported from HypSpec Graphs^[12] showing the fitting over the whole spectrum.

References:

- [1]: T. Hirao, Y. Iwabe, N. Fujii, T. Haino, J. Am. Chem. Soc., 2021, 143, 4339-4345.
- [2]: T. Hirao, M. Tosaka, S. Yamago, T. Haino, Chem. -Eur. J., 2014, 20, 16138-16146.
- [3]: T. Hirao, Y. Iwabe, N. Hisano, T. Haino, Chem. Commun., 2020, 56, 6672-6675.
- [4]: J. S. Park, K. Y. Yoon, D. S. Kim, V. M. Lynch, C. W. Bielawski, K. P. Johnston and J. L. Sessler, Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 20913–20917.
- [5]: L. Escobar, Y.-S. Li, Y. Cohen, Y. Yu, J. Rebek Jr. and P. Ballester, Chem. -Eur. J., 2020, 26, 8220-8225.
- [6]: M. M. Tirado and J. G. J. de la Torre, J. Chem. Phys., 1979, 71, 2581-2587.
- [7]: M. M. Tirado and J. G. J. de la Torre, J. Chem. Phys., 1980, 73, 1986-1993.
- [8]: M. M. Tirado, C. L. Martínez and J. G. J. de la Torre, J. Chem. Phys., 1984, 81, 2047-2052.
- [9]: A. Ortega and G. J. de la Torre, J. Chem. Phys., 2003, 119, 9914-9919.
- [10]: A. Wong, R. Ida, L. Spindler and G. Wu, J. Am. Chem. Soc., 2005, 127, 6990-6998.
- [11]: Y. Yamauchi, Y. Hanaoka, M. Yoshizawa, M. Akita, T. Ichikawa, M. Yoshio, T. Kato and M. Fujita, J. Am. Chem. Soc., 2010, 132, 9555–9557.
- [12]: P. Gans, A. Sabatini, A. Vacca, Talanta 1996, 43, 1739-1753.