N-Oxides Amplify Catalyst Reactivity and Isoselectivity in the Ring-Opening Polymerization of *rac*-β-Butyrolactone

Xiang Dong,^a Alexander M. Brown,^a Audra J. Woodside,^a Jerome R. Robinson^{*a}

^{*a*} 324 Brook St., Department of Chemistry, Brown University, Providence, RI 02912, United States Phone: (+1)-401-863-3249; e-mail: jerome_robinson@brown.edu

Supporting Information

1. General Methods	S03
2. Synthetic Details and Characterization	S04-S12
Scheme S1. Synthesis of 4-substituted lutidine-oxides (^R LO)	S04
Scheme S2. Synthesis of La complexes	S07
Figure S1. ${}^{1}H$ -, ${}^{13}C{}^{1}H$ - and ${}^{31}P{}^{1}H$ -NMR of 2-La(OPPh ₃) ₂	S08-S09
Figure S2. ¹ H- and ¹³ C{ ¹ H}- of $2-La(OMeLO)_2$	S10
Table S1. Diffusion coefficients and estimated hydrodynamic radii of	S11
$2-La(OPPh_3)_2$ and $2-La(OMeLO)_2$	
Figure S3 . ¹ H DOSY NMR of a mixture of 2-La(OPPh₃) ² and ferrocene	S11
Figure S4 . ¹ H DOSY NMR of a mixture of 2-La (^{OMe} LO) ₂ and ferrocene	S11
3. Experimental Procedures	S12-S13
4. Supporting Data and Spectra	S14-S21
Table S2. Impact of OMeLO equivalents on the ROP of rac-BBL	S14
Figure S5. ¹ H-NMR of P3HB	S14
Figure S6. GPC calibration curve and a typical GPC trace	S15
Figure S7. IG-SC-NMR of P3HB	\$15
Figure S8. Plot of P3HB M_n and $\mathcal{D}(M_w/M_n)$ as a function of conversion. I-La, HOCHPh ₂	S16
= 0.5 mol%, one LO = 1 mol%. [rac-BBL] = 2.4 M, 101, -30 °C.	016
Figure 59. Turnover frequencies (TOF) for the ROP of <i>rac</i> -BBL with $1-La + HOCHPh_2$	\$16
+ LO ([BBL] = 2.4 M, [BBL]:[1-La]:[LO]:[HOCHPh ₂] = 200:1:2:1	017
Table 53. Conversions in early stage of ROP of <i>rac</i> -BBL with 1-La + HOCHPn ₂ + *LO Eigenve S10. Decreases in rate constants (h_{1}) for the DOD of was DDL with 1-La +	517
Figure S10. Propagation rate constants (k_p) for the ROP of rac-BBL with 1-La +	517
$HOCHPn_2 + LO([BBL] = 0.3 M, [BBL]:[1-La]:[LO]:[HOCHPn_2] = 100.1.2.1$	
Table S4 POP of rag PRI with 1 Le \pm HOCUDE \pm 2 OMet O guaranteed at different	S18
Table S4. ROP of <i>tac-BBL</i> with 1-La + HOCHFII ₂ + 2 $^{-1}$ LO quenched at different times	510
Figure S11 ¹ H-NMR of 1-La in the presence of 0, 1, 2 and 3 equiv of $OM^{e}LO$	S19
Table S5. Equiv. of free OPPh ₃ generated when 1 equiv. ${}^{R}LO$ was add to a C ₆ D ₆ solution	S19
of 40 mM 2-La(OPPh ₃) $_2$	217
Figure S12. ¹ H-NMR and IG- ³¹ P-NMR of 2-La(OPPh ₃) ₂ and 2-La(OPPh ₃) ₂ in the	S20
presence of 1 equiv. of ^{R}LO	
Figure S13. ¹ H-NMR and of $1-La + OCHPh_2 + 2$ equiv. of ^{OMe} LO in the presence of 0.	S21
10, 50, and 100 equiv. of GBL	
Figure S14. ¹ H-NMR and of 1-La + OCHPh ₂ + 2 equiv. of $OMeLO$ in the presence of 0,	S21
10, 50, and 100 equiv. of GBL	
5. Computational Studies	S22-S90
Figure \$15. NBO analysis of Lutidine N-Oxides	S23
Table S6. Tabulated NBO and structural data for Lutidine N-Oxides	S23
Table S7. Cartesian coordinates of DFT-optimized LO structure	S24
Table S8. Cartesian coordinates of DFT-optimized NO2LO structure	S24-S25
Table S9. Cartesian coordinates of DFT-optimized ^{MeO} LO structure	S25
Table S10. Cartesian coordinates of DFT-optimized ^{CI} LO structure	S25-S26
Table S11. Cartesian coordinates of DFT-optimized NMe2LO structure	S26
Table S12. Comparison of natural charges (q) across optimized 1-La(OPPh ₃) ₂ , 1-	S27
$La(LO)_2$, 2-La(OPPh ₃) ₂ , and 2-La(LO) ₂ structures	
Table S13. Comparison of Wiberg bond indices across optimized 1-La(OPPh ₃) ₂ , 1-	S27
La(LO) ₂ , 2-La(OPPh ₃) ₂ , and 2-La(LO) ₂ structures	
Figure S16. Labeled ball and stick image of DFT-optimized 1-La(OPPh₃) ₂	S28

Table S14. Bond distances (Å) and metrical parameters for DFT-optimized 1- $L_2(OPPh_2)$	S28-S29
Table S15 Cartesian coordinates of DFT-optimized 1-La(OPPh_)	\$29-\$33
Figure S17 Labeled ball and stick image of DFT-optimized 1-La(LO)	S27-S33 S34
Table S16 Bond distances (Å) and metrical parameters for DFT-optimized 1-La(LO) ₂	\$34-\$35
Table S10 . Dona distances (17) and metrical parameters for D11 optimized 1 Da(D0) ₂ . Table S17 . Cartesian coordinates of DFT-optimized 1-La(LO) ₂ .	S35-S38
Figure S18 I abeled ball and stick image of DFT-optimized $2.La(OPPh_2)_2$	S39
Table S18. Bond distances (Å) and metrical parameters for DFT-optimized 2-	\$39-\$40
La(OPPh ₃) ₂ .	557 510
Table S19. Cartesian coordinates of DFT-optimized 2-La(OPPh ₃) ₂ .	S40-S44
Figure S19. Labeled ball and stick image of DFT-optimized $2-La(LO)_2$	S45
Table S20. Bond distances (Å) and metrical parameters for DFT-optimized 2-La(LO)2.	S45-S46
Table S21. Cartesian coordinates of DFT-optimized 2-La(LO) ₂	S46-S49
Figure S20. Computational BBL binding study	S50
Figure S21. Structure of BBL-1	S51
Table S22. Cartesian coordinates of BBL-1	S51-S55
Figure S22. Structure of BBL-2	S56
Table S23. Cartesian coordinates of BBL-2	S56-S60
Figure S23. Structure of BBL-3	S61
Table S24. Cartesian coordinates of BBL-3	S61-S65
Figure S24. Structure of BBL-4.	S66
Table S25. Cartesian coordinates of BBL-4	S66-S70
Figure S25. Structure of BBL-5	S71
Table S26. Cartesian coordinates of BBL-5	S71-S75
Figure S26. Structure of BBL-6	S76
Table S27. Cartesian coordinates of BBL-6 Einer S27. Cartesian coordinates of BBL-6	S76-S80
Figure S27. Structure of BBL-7	581
Table S28. Cartesian coordinates of BBL-/ F: C29. Gradient of CDBL 9	581-585
Figure 528. Structure of BBL-8	586
1 able 529. Carlesian coordinates of BBL-6 (Duried Volume (0, V) Colordations	580-590
b. Burled Volume ($\sqrt[90]{0}$ V bur) Calculations Table S20, $0/17$ (n) of ODDb. (CSD: TDEDLIC)	591-594
Table S30. % $V_{\text{bur}}(r_{3.5})$ of UPPII3 (CSD: IPEPIIO) Table S31. % $V_{\text{c}}(r_{3.5})$ of UP (CSD: PVDDNO11)	592 502
Table S31. 70 $V_{\text{bur}}(r_{3.5})$ of LO (CSD: r TKDNOTT) Table S32. 94 V_{c} (r_{c}) of LO (CSD: ACOHAC)	S92
Table S32. % $V_{bur}(73.5)$ of LU (CSD. ACOHAC) Table S33. % $V_{c}(r_{r_{s}})$ of 1-L $\rho(OPDh_{s})$.	592 503
Table S33a. $\% V_{bur}(r_{3.5})$ of 1-La(OI 1 13)2 Table S33b $\% V_{c}(r_{c.c})$ of 1-La(OPPh_2)	593
Table S339. $\frac{1}{100} \frac{1}{100} $	503
Table S34b % $V_{\rm bur}(r_{\rm s,s})$ of 2-La(OPPh_2)	593
Table S35a $%V_{bur}(r_{2.5})$ of 1-La(LO)	S94
Table S35b. % $V_{bur}(r_{6.5})$ of 1-La(LO)2	S94
Table S36a. $\%V_{bur}(r_{3.5})$ of 2-La(LO) ₂	S94
Table S36b. $\% V_{bur}(r_{6.5})$ of 2-La(LO) ₂	S94
7. References	S95-96

1. General Methods.

Instruments and measurements: Unless specified, all reactions were performed under inert conditions (N₂) using standard Schlenk techniques or in a MBraun drybox equipped with a standard catalyst purifier and solvent trap. Glassware was oven-dried for at least 2 h at 150 °C prior to use. Celite and 3 Å molecular sieves were heated under reduced pressure at 300 °C for at least 24 h and then cooled under vacuum prior to use. The following spectrometers were used for NMR characterization: Bruker Avance III HD Ascend (¹H: 600 MHz, ¹³C: 151 MHz, ³¹P: 243 MHz) and a Bruker DRX (¹H: 400 MHz, ¹³C: 101 MHz, ³¹P: 162 MHz). ¹H- and ¹³C-NMR shifts are referenced relative to the solvent signal (CDCl₃: ¹H: 7.26 ppm, ¹³C: 77.16 ppm; C₆D₆: ¹H: 7.16 ppm, ¹³C: 128.06 ppm), while ³¹P-NMR shifts are referenced relative to external solution standards (H₃PO₄, 0 ppm). Both instruments were equipped with Z-gradient BBFO probes. Polymer tacticity (*P*_m, percentage of *meso* diads) was measured using a ¹³C inverse-gated pulse sequence, followed by integration of the <u>C</u>=O resonances (Figure S7).

Gel permeation chromatography (GPC) measurements were performed using an Agilent 1260 equipped with two Poroshell 120 EC-C18 columns heated at 35 °C (4.6 x 100 mm, 2.7 μ m) and a UV-vis diode-array detector and refractive detector. The eluent was inhibitor-free THF, and the system was calibrated with standard polystyrene standards ranging from 580 to 1,500,000 Da. Reported molecular weights are those obtained from GPC corrected by a Mark-Houwink factor of 0.54.¹ Unless stated otherwise, all GPC samples were of the quenched crude reaction mixtures (not precipitated or purified polymers). Elemental analyses were performed by CENTC Elemental Analysis Facility at University of Rochester (Rochester, NY) for air-sensitive compounds (**1-RE** and **1-RE(OPPh_3)**₂) respectively. Samples were shipped in a sealed 2 mL vial that was placed in a 20 mL scintillation vial and sealed, which were then placed in a vacuum-sealed plastic bag.

Materials: Tetrahydrofuran, diethyl ether, toluene, hexanes, and pentane were purchased from Fisher Scientific. Solvents were sparged for 20 min with dry Ar and dried using a commercial two-column solvent purification system (LC Technologies). Solvents were further dried by storing them over 3 Å molecular sieves for at least 48 h prior to use. Ultrapure, deionized water (18.2 M Ω) was obtained from a Millipore Direct-Q 3 UV Water Purification System. Deuterated solvents were purchased from Cambridge Isotope Laboratories, Inc. C₆D₆ was degassed with 3 freeze-pump-thaw cycles and stored over 3 Å molecular sieves for at least 48 h prior to use. Qualitative assessment of moisture-content in these solvents was performed by adding 1 drop of a concentrated solution of a sodium benzophenone radical anion (purple) to 10 mL of solvent where maintenance of a dark blue color for at least 5 minutes was sufficient for use.

2,6-ditertbutyl phenol (Oakwood Chemical; 99% purity), para-formaldehyde (Alfa Aesar; 97% purity), benzylamine (TCI; 99% purity), triphenylphosphine oxide (Acros; 99% purity), hexamethylphosphoramide (TCI; 98% purity), triphenylphosphate (Sigma-Aldrich; 99% purity), potassium hexamethyldisilazide (Sigma-Aldrich; 95% purity), 1,1,3,3-tetramethyldisilazane (TCI, 97% purity), LaCl₃ (Strem; RE = La; 99.9% purity), and acetyl chloride (Acros; 99% purity) were purchased and used as received. Racemic butyrolactone (Sigma-Aldrich; 98% purity) was freshly distilled from CaH₂ under nitrogen and degassed by freeze-pump-thaw cycles prior to use. La[N(SiMe₃)₂]₃,² La[N(SiHMe₂)₂]₃(THF)₂,³ ^{Bn}L, **1-La**, **1-La**(**OPPh**₃)₂,⁴ were prepared according to reported procedures.

2. Synthetic Details and Characterization.

Scheme S1. Synthesis of 4-substituted lutidine-oxides (^RLO).

2,6-Lutidine-1-oxide (LO)

 H_2O_2 (20 mL, 174 mmol, 2.0 equiv., 27% in H_2O , 1.10 g/mL; MW = 34.01 g•mol⁻¹) was added to a stirring solution of 2,6-lutidine (9.30 g, 86.8 mmol, 1.0 equiv.; MW = 107.16 g•mol⁻¹) in AcOH (25 mL, 434 mmol, 5.0 equiv., 1.05 g/mL; MW = 60.05 g•mol⁻¹) in a 250 mL round-bottomed flask equipped with a Vigreux condenser. The reaction was heated at 80 °C for 20 h. A saturated Na₂S₂O₅ solution (10 mL) was added to the reaction to quench residual peroxide. The reaction was concentrated to ca. 25 mL at 60 °C under reduced pressure (ca. 0.5 Torr). The pH of the mixture was adjusted to 12 with a 25% NaOH solution. The mixture was extracted with CH₂Cl₂ (6 x 20 mL). The combined extraction was dried with Na₂SO₄, filtered, and evaporated under reduced pressure. **2,6-Lutidine-1-oxide** was obtained as a colorless oil. Yield: 9.10 g (20.3 mmol, 85% yield; MW: 123.16 g•mol⁻¹). The ¹H-NMR spectrum agrees with the previous report.⁵

¹H-NMR (400 MHz, CDCl₃, 298 K): δ (ppm) = 2.52 (s, 6H; Me), 7.05 (dd, J = 8.4, 7.6 Hz, 2H; 3,5-H), 7.12 (d, J = 7.6 Hz, 1H; 4-H);

¹H-NMR (400 MHz, C₆D₆, 298 K): δ (ppm) = 2.31 (s, 6H; Me), 6.28 (t, *J* = 7.6 Hz, 2H; 3,5-H), 6.39 (d, *J* = 7.6 Hz, 1H; 4-H).

¹³C{¹H}-NMR (101 MHz, CDCl₃, 298 K): δ (ppm) = 18.18 (<u>C</u>H₃), 122.58 (*m*-<u>C</u>H), 124.03 (*p*-<u>C</u>H), 148.47 (<u>C</u>CH₃).

4-Nitro-2,6-lutidine-1-oxide (^{NO2}LO)

H₂SO₄ (6.2 mL 114 mmol, 3.0 equiv., 98%, 1.84 g/mL; MW = 98.07 g•mol⁻¹) was added to 2,6-lutidine-1-oxide (4.66 g 37.8 mmol, 1.0 equiv.; MW = 123.16 g•mol⁻¹) in a 250 mL roundbottomed flask equipped with a Vigreux condenser. HNO₃ (4.8 mL 76 mmol, 2.0 equiv., 70% in water, 1.41 g/mL; MW = 63.01 g•mol⁻¹) was added dropwise. The reaction was heated at 110 °C for 4 h and allowed to warm to RT. The flask was then cooled in an ice bath, and water (50 mL) was added. The mixture was extracted with CH₂Cl₂ (3 x 25 mL). The combined organic layer was washed with saturated Na₂CO₃ solution (2 x 25 mL) and water (2 x 25 mL), dried with Na₂SO₄, filtered, and dried under reduced pressure. The resulting solid was washed with pentane (3 x 20 mL) and dried under reduced pressure. **4-Nitro-2,6-lutidine-1-oxide** was obtained as a lightyellow solid. Yield: 2.53 g (15.1 mmol, 40% yield; MW: 168.15 g•mol⁻¹). The ¹H-NMR spectrum agrees with the previous report.⁵

¹H-NMR (400 MHz, CDCl₃, 298 K): δ (ppm) = 2.58 (s, 6H; Me), 8.03 (s, 2H; 3,5-H);

¹H-NMR (400 MHz, C₆D₆, 298 K): δ (ppm) = 1.92 (s, 6H; Me), 7.14 (s, 2H; 3,5-H).

¹³C{¹H} -NMR (101 MHz, CDCl₃, 298 K): δ (ppm) = 18.43 (<u>C</u>H₃), 117.88 (<u>C</u>H), 123.93 (<u>C</u>CH₃), 150.22 (<u>C</u>NO₂).

4-Methoxy-2,6-lutidine-1-oxide (^{OMe}LO)

 K_2CO_3 (2.38 g 17.3 mmol, 2.0 equiv.; $MW = 138.20 \text{ g} \cdot \text{mol}^{-1}$) was added to a suspension of 4nitro-2,6-lutidine-1-oxide (1.45 g 8.62 mmol, 1.0 equiv.; $MW = 168.15 \text{ g} \cdot \text{mol}^{-1}$) in 15 mL MeOH in a 250 mL round-bottomed flask equipped with a Vigreux condenser. The reaction was heated in an oil bath at 70 °C for 12 h and allowed to reflux. The mixture was cooled and concentrated to ca. 10 mL under reduced pressure. Water (20 mL) was added and the mixture was extracted with CH₂Cl₂ (3 x 15 mL). The combined extraction was dried with Na₂SO₄, filtered, and dried under reduced pressure. **4-Methoxy-2,6-lutidine-1-oxide** was obtained as a white solid. Yield: 1.25 g (8.16 mmol, 95% yield; MW: 153.18 g \cdot mol⁻¹). The ¹H-NMR spectrum agrees with the previous report.⁵

¹H-NMR (400 MHz, CDCl₃, 298 K): δ (ppm) = 2.53 (s, 6H; ArMe), 3.81 (s, 3H; OMe), 6.69 (s, 2H; 3,5-H).

¹H-NMR (400 MHz, C₆D₆, 298 K): δ (ppm) = 2.37 (s, 6H; ArMe), 3.01 (s, 3H; OMe), 6.15 (s, 2H; 3,5-H).

¹³C{¹H}-NMR (101 MHz, C₆D₆, 298 K): δ (ppm) = 18.80 (<u>C</u>H₃), 55.32 (O<u>C</u>H₃), 109.60 (<u>C</u>H), 149.09 (<u>C</u>CH₃), 154.58 (<u>C</u>OCH₃).

4-Chloro-2,6-lutidine-1-oxide (ClLO)

A 250 mL round-bottomed flask was charged with 4-nitro-2,6-lutidine-1-oxide (3.33 g 19.8 mmol, 1.0 equiv.; $MW = 168.15 \text{ g} \cdot \text{mol}^{-1}$) and AcCl (21 mL, 297 mmol, 15 equiv., 1.10 g/mL; $MW = 78.50 \text{ g} \cdot \text{mol}^{-1}$) and equipped with a Vigreux condenser. The suspension was heated for 6 h in an oil bath at 60 °C and allowed to reflux. The precipitated solid was isolated by vacuum filtration, washed with acetone (3 x 5 mL), and then dissolved in CH₂Cl₂(15 mL). The solution was washed with 10% NaOH solution (15 mL) and water (15 mL). The organic layer was dried with Na₂SO₄, filtered, and dried under reduced pressure. **4-Chloro-2,6-lutidine-1-oxide** was obtained as a white solid. Yield: 1.85 g (11.7 mmol, 59% yield; MW: 157.60 g \cdot mol⁻¹). The ¹H-NMR spectrum agrees with the previous report.⁵

¹H-NMR (400 MHz, CDCl₃, 298 K): δ (ppm) = 2.49 (s, 6H; ArMe), 7.14 (s, 2H; 3,5-H);

¹H-NMR (400 MHz, C₆D₆, 298 K): δ (ppm) = 2.10 (s, 6H; ArMe), 6.32 (s, 2H; 3,5-H).

¹³C{¹H}-NMR (101 MHz, CDCl₃, 298 K): δ (ppm) = 18.38 (<u>C</u>H₃), 124.08 (<u>C</u>H), 130.30 (<u>C</u>Cl), 150.09 (<u>C</u>CH₃).

4-Dimethylamino-2,6-lutidine-1-oxide (^{NMe2}LO)

4-Chloro-2,6-lutidine-1-oxide (400 mg, 2.54 mmol, 1.0 equiv.; $MW = 157.60 \text{ g} \cdot \text{mol}^{-1}$) was added to an aqueous solution of NHMe₂ (4.8 mL, 38.1 mmol, 15 equiv., 40% in H₂O, 0.89 g/mL; MW =45.09 g \cdot mol⁻¹) in a 50 mL sealed vessel. The reaction vessel was heated for 9 h at 140 °C, and then allowed to cool to RT prior to opening. Water (5 mL) was added and the reaction mixture and was extracted with CH₂Cl₂ (9 x 10 mL). The combined extraction was dried with Na₂SO₄, filtered, and evaporated under reduced pressure to yield the crude product as a brown oil. Toluene (5 mL) was added to the crude product, then dried under reduced pressure, followed by CH₂Cl₂ (5 mL). Volatiles were removed under reduced pressure. **4-Dimethylamino-2,6-lutidine-1-oxide** was obtained as a white solid. Yield: 256 mg (1.54 mmol, 61% yield; MW: 166.22 g \cdot mol⁻¹). ¹H-NMR (400 MHz, CDCl₃, 298 K): δ (ppm) = 2.43 (s, 3H; ArMe), 2.92 (s, 6H; NMe₂), 6.30 (s, 2H; 3,5-H);

¹H-NMR (400 MHz, C₆D₆, 298 K): δ (ppm) = 2.18 (s, 3H; NMe₂), 2.53 (s, 6H; ArMe), 5.93 (s, 2H; 3,5-H).

¹³C{¹H}-NMR (101 MHz, C₆D₆, 298 K): δ (ppm) = 18.89 (<u>C</u>H₃), 38.90 (N<u>C</u>H₃), 106.72 (<u>C</u>H), 144.83 (<u>C</u>N), 147.78 (<u>C</u>CH₃).

Scheme S2. Synthesis of La complexes.

La(^{Bn}L)(OCHPh₂)(OPPh₃)₂ [2-La(OPPh₃)₂]

A 20 mL scintillation vial was charged with $H^{Bn}L$ (304 mg, 0.56 mmol, 1.0 equiv.; MW: 543.84 g•mol⁻¹), a Teflon-coated stir-bar, and THF (2 mL). To the stirring, clear, and colorless solution, La[N(SiHMe₂)₂]₃(THF)₂ (380 mg, 0.56 mmol, 1.0 equiv.; MW: 680.12 g•mol⁻¹) was added. The solution was heated at 60 °C for 2 h and conversion to **1-La** was confirmed by H-NMR analysis of a reaction aliquot. After the solution was cooled to RT, HOCHPh₂ (103 mg, 0.56 mmol, 1.0 equiv.; MW: 184.24 g•mol⁻¹) and OPPh₃ (311 mg, 1.12 mmol, 2.0 equiv.; MW: 278.29 g•mol⁻¹) was added. The solution was stirred for 1 min, and then all volatiles were removed under reduced pressure. The resulting solid was triturated with toluene (2 x 2 mL), washed with pentane (2 x 3 mL), and dried under reduced pressure to afford **2-La(OPPh₃)**₂ as a white solid. Yield: 725 mg (0.51 mmol, 91% yield; MW: 1420.54 g•mol⁻¹).

¹H-NMR (400 MHz, C₆D₆, 298 K): δ (ppm) = 1.58 (s, 18H; 4-^{*I*}Bu), 1.71 (s, 18H; 2-^{*I*}Bu), 3.35 (d, ²*J* = 12.3 Hz, 2H; N<u>CH</u>₂ArO), 3.87 (s, 2H; N<u>CH</u>₂Bn), 4.12 (d, ²*J* = 12.3 Hz, 2H; N<u>CH</u>₂ArO), 6.25 (s, 1H; O<u>CH</u>Ph₂), 6.86-6.91 (m, 12H; *m*-HoPph₃), 6.97-7.09 (m, 13H; *p*-HoPph₃, 5-HArO, HPh), 7.11-7.17 (m, 4H; HPh), 7.21 (d, *J* = 7.3 Hz, HBn), 7.56-7.61 (m, 14H; *o*-HOPPh₃, 3-HArO), 7.76 (d, *J* = 7.4 Hz, 4H; *o*-HOCHPh₂);

¹³C{¹H}-NMR (101 MHz, C₆D₆, 298 K): δ (ppm) = 30.6 (C<u>*Me*</u>₃), 32.5 (C<u>*Me*</u>₃), 34.3 (<u>*C*</u>Me₃), 35.8 (<u>*C*</u>Me₃), 51.4 (N<u>*C*</u>H₂Bn), 59.9 (N<u>*C*</u>H₂ArO), 82.4 (O<u>*C*</u>HPh₂), 123.2, 125.2, 125.5, 126.8, 127.5,

127.8, 127.9 128.2, 128.9 (d, $J_{P(31)-C(13)} = 12.6$ Hz; *m*-CoPPh3), 130.6 (d, $J_{P(31)-C(13)} = 106$ Hz; C–P), 132.0, 132.3 (d, $J_{P(31)-C(13)} = 2.2$ Hz; *p*-CoPPh3), 132.8 (d, $J_{P(31)-C(13)} = 10.6$ Hz; *o*-CoPPh3, 133.8, 135.6, 136.7, 151.9 (O-CH-<u>C</u>OCHPh2), 164.3 (CAr–O);

 ${}^{31}P{}^{1}H$ -NMR (162 MHz, C₆D₆, 298 K): δ (ppm) = 33.8 (br);

Elemental Analysis calcd. (%) for C₈₉H₉₂LaN₂O₅P₂: C 72.72, H 6.53, N 0.99; found: C 72.55, H 6.87, N 1.00.

Figure S1a. ¹H-NMR (C₆D₆, 400 MHz) spectra of **2-La(OPPh₃)**₂.

Figure S1b. ${}^{13}C{}^{1}H$ - NMR (C₆D₆, 101 MHz) spectra of 2-La(OPPh₃)₂.

Figure S1c. ${}^{31}P{}^{1}H$ -NMR (C₆D₆, 162 MHz) spectra of 2-La(OPPh₃)₂.

La(^{Bn}L)(OCHPh₂)(^{OMe}LO)₂ [2-La(^{OMe}LO)₂]

A 20 mL scintillation vial was charged with $H^{Bn}L$ (139 mg, 0.26 mmol, 1.0 equiv.; MW: 543.84 g•mol⁻¹), a Teflon-coated stir-bar, and THF (2 mL). To the stirring, clear, and colorless solution, La[N(SiHMe₂)₂]₃(THF)₂ (174 mg, 0.26 mmol, 1.0 equiv.; MW: 680.12 g•mol⁻¹) was added. The solution was heated at 60 °C for 2 h and conversion to **1-La** was confirmed by H-NMR analysis of a reaction aliquot. After the solution was cooled to RT, Ph₂CHOH (47 mg, 0.26 mmol, 1.0 equiv.; MW: 184.24 g•mol⁻¹) and 4-MeO-LO (78 mg, 10.51 mmol, 2.0 equiv.; MW: 153.18 g•mol⁻¹) was added. The solution was stirred for 1 min, and then all volatiles were removed under reduced pressure. The resulting solid was washed with cold pentane (2 x 2 mL) and dried under reduced pressure to afford **2-La(**^{OMe}LO)₂ as a white solid. Yield: 264 mg (0.23 mmol, 88% yield; MW: 1170.32 g•mol⁻¹). Note: The product was consistently found to contain ca. 1 equiv. pentane even after drying under reduced pressure (ca. 1 Torr) at RT.

¹H-NMR (600 MHz, C₆D₆, 298 K): δ (ppm) = 1.49 (s, 18H; 4-^{*i*}Bu), 1.91 (s, 18H; 2-^{*i*}Bu), 2.31 (s, 12H; ArMeo_{Me-LO}), 2.85 (s, 6H; OMe), 3.75 (d, ²J = 12.7 Hz, 2H; N<u>CH</u>₂ArO), 4.26 (s, 2H; N<u>CH</u>₂Bn), 5.05 (d, br, ²J = 12.7 Hz, 2H; N<u>CH</u>₂ArO), 5.75 (s, 1H; O<u>CH</u>Ph₂), 5.78 (s, 4H; 3,5-Ho_{Me-LO}), 6.96 (t, J = 7.2 Hz, 2H; *p*-H_{OCHPh2}), 7.10 (t, J = 7.4 Hz, 4H; *m*-H_{OCHPh2}), 7.17 (heavily overlapped with C₆D₅H, 1H; *p*-H_{Bn}), 7.27 (d, J = 2.4 Hz, 2H; 5-H_{ArO}), 7.30 (t, J = 7.2 Hz, 2H; *m*-H_{Bn}), 7.45 (d, J = 7.4 Hz, 4H; *o*-Ho_{CHPh2}), 7.56 (br, 2H; *o*-H_{Bn}), 7.67 (d, J = 2.4 Hz, 2H; 3-H_{ArO});

¹³C{¹H}-NMR (151 MHz, C₆D₆, 298 K): δ (ppm) = 19.38 (Ar<u>*Me*</u>_{OMe-LO}), 30.6 (C<u>*Me*</u>₃), 32.4 (C<u>*Me*</u>₃), 34.3 (<u>C</u>Me₃), 35.8 (<u>C</u>Me₃), 50.8 (N<u>C</u>H₂Bn), 55.0 (OMe), 60.6 (N<u>C</u>H₂ArO), 81.4 (O<u>C</u>HPh₂), 109.4 (3,5-C_{OMe-LO}), 123.3, 125.3, 125.7, 127.2, 127.3, 127.78 127.81, 128.3, 128.4, 132.5 (2,6-C_{OMe-LO}), 134.3, 135.4, 136.6, 150.6 (O-CH-<u>C</u>_{OCHPh2}), 158.6 (br, 4-C_{OMe-LO}), 164.0 (C_{Ar}-O);

Elemental Analysis calcd. (%) for $(C_{66}H_{84}LaN_3O_7 + C_5H_8)$: C 68.86, H 7.49, N 3.39; found: C 68.59, H 7.67, N 3.35.

Figure S2b. ¹³C{¹H}-NMR (C₆D₆, 151 MHz) spectra of 2-La(^{OMe}LO)₂ (*: pentane).

Table S1. Diffusion coefficients, *D*, and estimated hydrodynamic radii, r_H, measured by ¹H DOSY NMR of complexes (**1-La(OPPh₃)₂, 2-La(OPPh₃)₂, and 2-La(^{OMe}LO)₂**)

Species	$D_{ m Fc} \ (10^{-10} \ { m m^2/s})^a$	D (10 ⁻¹⁰ m ² /s)	$D_{ m Fc}/D$	r _H (DOSY) ^b (Å)	r _H (theo.) ^c (Å)
$\mathbf{F}\mathbf{c}^{d}$	-	-	-	-	2.166
1-La(OPPh ₃) ₂ ^e	12.8	4.13	3.10	6.71	6.764
2-La(OPPh ₃) ₂	15.3	5.07	3.02	6.54	-
2-La(^{OMe} LO) ₂	13.5	4.83	2.80	6.05	-

a - DOSY measured diffusion coefficient of ferrocene (Fc) in the experiment of the corresponding complex. DOSY measured diffusion coefficient of the sample $b - r_H = D_{Fc}/D_{sample} \cdot r_H(Fc, \text{ theo.})$. $c - r_H(\text{theo.})$ is the average of half lengths of the principal axes of the homogeneous ellipsoid with the same principal moments of inertia of the molecule, which are determined from the crystal structure. d - Fc was added to each sample as an internal standard to cancel the fluctuation of temperature and viscosity, of which the diffusion coefficient varies. e - From ref. 4. Previously proven to be monomeric in the solid (X-ray diffraction) and solution (DOSY).

Figure S3. ¹H DOSY NMR (400 MHz, C₆D₆) of a mixture of **2-La(OPPh₃)**₂ and ferrocene (Fc). **2-La(OPPh₃)**₂ (14 mg, 0.010 mmol, 1.0 equiv; MW: 1420.54 g•mol⁻¹) and Fc (3.5 mg, 0.019 mmol, 1.9 equiv; MW: 186.04 g•mol⁻¹) were dissolved in 0.5 mL C₆D₆. Diffusion time was (Δ , d20) 100 ms, and the rectangular gradient pulse duration (δ , p30) was 1000 µs.

Figure S4. ¹H DOSY NMR (400 MHz, C₆D₆) of a mixture of **2-La**(^{OMe}LO)₂ and ferrocene (Fc). **2-La**(^{OMe}LO)₂ (12 mg, 0.010 mmol, 1.0 equiv; MW: 1170.32 g•mol⁻¹) and Fc (2.0 mg, 0.011 mmol, 1.1 equiv; MW: 186.04 g•mol⁻¹) were dissolved in 0.5 mL C₆D₆. Diffusion time was (Δ , d20) 100 ms, and the rectangular gradient pulse duration (δ , p30) was 1000 µs.

3. Experimental Procedures Typical polymerization procedures

<u>Reactions at ambient temperature</u>: In a glovebox, a 2 mL scintillation vial was charged with **1-La** (5.0 mg, 0.0052 mmol, 1.0 equiv.; MW: 957.27 g•mol⁻¹), and toluene (0.382 mL). A toluene solution of HOCHPh₂ (2% m/m, 0.055 mL, $\rho = 0.867$ g/mL; 0.96 mg, 0.0052 mmol, 1.0 equiv.; MW: 184.24 g•mol⁻¹) then a toluene solution of ligand, e.g., ^{OMe}LO (5% m/m, 0.037 mL, $\rho = 0.867$ g/mL; 1.6 mg, 0.0105 mmol, 2.0 equiv.; MW: 153.18 g•mol⁻¹) were added to the clear, colorless solution. After approximately one minute, *rac*-BBL (0.085 mL, $\rho = 1.06$ g/mL, 90 mg, 1.04 mmol, 200 equiv.; MW: 86.09 g•mol⁻¹) was added to the catalyst solution. The conversion was checked by ¹H NMR by adding a reaction aliquot to a 0.02 mL of a ca. 5 wt% toluene solution of benzoic acid (BzOH), followed by addition of CDCl₃ (~0.5 mL). After the desired conversion and/or time was reached, the reaction was quenched by the addition of a toluene solution of BzOH (5% m/m, ca. 0.1 mL), and volatiles were removed under reduced pressure.

Note: The ROP of *rac*-BBL is exothermic ($\Delta G_p^\circ = -14.1 \text{ kcal} \cdot \text{mol}^{-1}$),⁶ and highly active catalysts under the concentrated reaction conditions (2.4 M) can produce a significant exotherm (i.e. reaction is warm to touch). In order to avoid unintended warming of the reaction for the kinetic studies, propagation rates (k_p) were measured under reaction conditions that were diluted 8-fold (0.3 M rather than 2.4 M). The higher solvent volume and slower rates allowed for efficient heat-transfer and stable reaction temperatures.

<u>Reactions at -30 °C</u>: The following modifications to the procedure for the ambient temperature reaction were made: Before addition of *rac*-BBL, both catalyst solution and *rac*-BBL were chilled at -30 °C in the glovebox freezer. After the solution temperatures equilibrated, the *rac*-BBL was added to the catalyst solution and the reaction was run in the freezer.

<u>Sample for end-group analysis</u>: The sample prepared for end-group analysis was isolated from the ROP of *rac*-BBL at -30 °C using [BBL]:[**1-La**]:[^{OMe}LO]:[Ph₂CHOH] = 200:1:2:1, [BBL] = 2.4 M. After quenching with BzOH and removing the volatiles, the residue was washed with MeOH (3 x 1 mL) to remove most of the residual free ligand and BzOH. The sample was then dried under reduced pressure to afford the sample used for end-group analysis by NMR.

Procedure for titration experiment with OMeLO

In a glovebox, a J-Young tube was charged with **1-La** (21.0 mg, 0.022 mmol, 1.0 equiv.; MW: 957.27 g•mol⁻¹) and C₆D₆. After taking a baseline ¹H NMR, a solution of ^{OMe}LO in C₆D₆ (2.2% m/m, $\rho = 0.950$ g/mL, 0.016 mL, 0.34 mg, 0.0219 mmol, 0.10 equiv.; MW: 153.18 g•mol⁻¹) was added. Subsequent equivalents of ^{OMe}LO were added in an analogous manner and spectra collected.

Procedure for Titration experiment with γ-butyrolactone (GBL)

In a glovebox, a J-Young tube was charged with a C_6D_6 solution of **1-La-OCHPh**₂ (2% m/m, $\rho = 0.950$ g/mL, 0.325 mL, 6.2 mg, 0.0066 mmol, 1.0 equiv.; MW: 936.06 g·mol⁻¹) and a C₆D₆ solution of **OMeLO** (2% m/m, $\rho = 0.950$ g/mL, 0.106 mL, 2.0 mg, 0.0132 mmol, 2 equiv.; MW: 153.18 g·mol⁻¹). The total volume was brought to 0.550 mL with C₆D₆. After taking a ¹H NMR, the J-

Young tube was returned to the glovebox and γ -butyrolactone (GBL) (5.7 mg, 0.066 mmol, 0.005 mL, 10 equiv.) was added. A ¹H NMR was taken. Subsequent equivalents of GBL were added in an analogous manner and spectra collected.

4. Supporting Data and Spectra

		rac-BBL	1-La 1 HOCH ^{OMe} LC 	$\frac{IPh_2}{O} \xrightarrow{O} O$	P3HB	$\begin{bmatrix} [BBL] = 2.4\\ \\ \\ \hline [BBL]\\ \\ \hline [La] \end{bmatrix} = 200$	M)	
-	Entry	OMeLO	Time (h)	Conv.	M n, calc b	$M_{ m n,exp}{}^c$	$D^{c,d}$	$P_{\mathrm{m}}{}^{e}$
		(equiv)		$(\%)^a$	(kg/mol)	(kg/mol)		
-	1	0	1	20	3.6	2.8	1.05	0.57
	2	1	0.1	54	9.5	n.d.	n.d.	n.d.
			1	95	16.5	10.8	1.20	0.67
	3	2	0.1	95	16.5	12.5	1.16	0.73
	4	3	0.1	96	16.7	12.8	1.14	0.73

Table S2. Impact of ^{OMe}LO equivalents on the ROP of *rac*-BBL.

a – Determined by ¹H-NMR integration of BBL and PHB methine resonances in the crude reaction mixture. *b* – [BBL]/[La]/[HOCHPh₂] × Conv. × 0.08609 + 0.18424 kg•mol⁻¹. *c* – Determined by gel permeation chromatography (GPC) at 30 °C in THF using polystyrene standards and corrected by Mark-Houwink factor of 0.54. $d - M_w/M_n$. *e* – Probability of *meso*-linkages between repeat units. Determined by integration of P3HB <u>C</u>=O resonances using inverse gated (IG) ¹³C-NMR.

Figure S5. ¹H-NMR (600 MHz, CDCl₃) of P3HB (Table 1, entry 6). Reaction was performed in toluene at ambient temperature with [BBL]:[**1-La**]:[^{OMe}LO]:[Ph₂CHOH] = 200:1:2:1 and [BBL] = 2.4 M within 1 h. The polymer was precipitated from and washed with MeOH. Peaks of Ph₂CH and CH-OH are consistent with those of benzhydryl-3-oxobutanoate.⁷

Figure S6. GPC calibration curve using polystyrene standards (orange) and GPC trace (blue) of Table 1, entry 5. The reaction was performed in toluene at ambient temperature for 0.1 h with [BBL]:[**1-La**]:[^{OMe}LO]:[HOCHPh₂] = 200:1:2:1 and [BBL] = 2.4 M. Conversion = 95%, $M_n = 12.5 \text{ kg/mol}$ (corrected by Mark-Houwink factor of 0.54), D = 1.16

Figure S7. Carbonyl region of IG-¹³C-NMR (151 MHz, CDCl₃) of P3HB with different P_m . Table 1, entry 9. Reaction was performed in toluene at -30 °C for 1 h with [BBL]:[**1**-La]:[^{OMe}LO]:[HOCHPh₂] = 200:1:2:1 and [BBL] = 2.4 M. Conversion = 99%.

Figure S8. Plot of P3HB M_n and \mathcal{D} (M_w/M_n) as a function of conversion. **1-La**, HOCHPh₂ = 0.5 mol%, ^{OMe}LO = 1 mol%. [*rac*-BBL] = 2.4 M, Tol, -30 °C.

Figure S9. Turnover frequencies (TOF, min⁻¹) plotted versus σ_p (Hammett para-substituent constant) for the ROP of *rac*-BBL with **1-La** + HOCHPh₂ + ^{**R**}**LO**. Reactions were performed in toluene at ambient temperature with [BBL]:[**1-La**]:[^{**R**}**LO**]:[HOCHPh₂] = 200:1:2:1 and [BBL] = 2.4 M.

	$\begin{array}{c} \textbf{1-La}\\ \textbf{1 HOCHPh}_2\\ \textbf{2 }^{R}LO\\ \textbf{Tol, 25 }^{\circ}C \end{array} \qquad \begin{array}{c} \textbf{0}\\ $								
NMe	² LO	OMe	LO	L	0	CI	LO	NO2	LO
Time	Conv.	Time	Conv.	Time	Conv.	Time	Conv.	Time	Conv.
(min)	$(\%)^a$	(min)	(%) ^a (min	(min)	$(\%)^a$	(min)	$(\%)^{a}$	(min)	$(\%)^{a}$
2	3.4	0.12	3.7	0.17	4.7	0.17	3.6	5	1.8
5	8.5	0.25	7.4	0.5	9.5	0.33	5.7	10	3.3
9	16.8	0.5	14.7	1	15.2	0.5	7.3	25	5.7
17	29.4	1	31.5	1.5	21.3	1	11.6	40	6.9
25	38.8	2	57.1	2	26.4	2	20.5		
		3	70.6						

Table S3. Conversions in early stage of ROP of *rac*-BBL with 1-La + HOCHPh₂ + ^RLO

a – Determined by ¹H-NMR integration of BBL and P3HB methine resonances in the crude reaction mixture.

Figure S10. Propagation rate constants (k_p) for the ROP of *rac*-BBL with **1-La** + Ph₂CHOH + **^RLO**. Reactions were performed in toluene at ambient temperature with [BBL]:[**1-La**]:[^RLO]:[HOCHPh₂] = 100:1:2:1 and [BBL] = 0.3 M.

	O O Tol,	DCHPh ₂ MeLO -30 °C	о рзнв	[BBL] = 2.4 M [BBL] [La] = 200	
Entry	Time (min)	Conv. (%) ^{<i>a</i>}	$M_{ m n, \ calc}^c$	$M_{ m n,exp}{}^c$	$D^{c,d}$
			(kg/mol)	(kg/mol)	
1	1	1	0.4	n.d.	n.d.
2	2	3	0.70	n.d.	n.d.
3	3	6	1.2	n.d.	n.d.

2.4

5.9

9.0

11.4

13.3

15.2

16.5

2.3

5.5

8.3

10.2

12.4

13.8

15.0

1.04

1.05

1.05

1.06

1.07

1.08

1.08

13

33

51

65

76

87

95

4

5

6

7

8

9

10

5

10

15

20

25

30

40

Table S4. ROP of *rac*-BBL with 1-La + HOCHPh₂ + 2 ^{OMe}LO quenched at different times.

a – Determined by ¹H-NMR integration of BBL and PHB methine resonances in the crude reaction mixture. *b* – [BBL]/[La]/[HOCHPh₂] × Conv. × 0.08609 + 0.18424 kg•mol⁻¹. *c* – Determined by gel permeation chromatography (GPC) at 30 °C in THF using polystyrene standards and corrected by Mark-Houwink factor of 0.54. d – M_w/M_n .

Figure S11. ¹H-NMR (400 MHz, C_6D_6 , 298 K) of **1-La** (30 mM) in the presence of 0, 1, 2 and 3 equiv of ^{OMe}LO.

Table S5. Equiv free OPPh₃ generated upon addition of 1 equiv ^RLO to 2-La(OPPh₃)₂ (C₆D₆ solution, RT, 40 mM).

a – Determined by integration of inverse-gated (IG) ³¹P-NMR of free (26 ppm) and coordinated (34 ppm) OPPh₃ resonances. b – The generation of more than one equiv OPPh₃ from only one equiv ^{NMe2}LO suggests that a significant amount of another adduct, [La(^{Bn}L)(OCHPh₂)(^{NMe2}LO)], must also be formed with this strong donor. c – Not determined; no signal for free OPPh₃ was observed.

Figure S12. ¹H-NMR (400 MHz, C₆D₆, 298 K) and IG-³¹P-NMR (162 MHz, C₆D₆, 298 K) of **2-La(OPPh₃)**₂ (40 mM) and **2-La(OPPh₃)**₂ (40 mM) in the presence of 1 equiv. of **^RLO**.

Figure S13. ¹H-NMR (400 MHz, C₆D₆) of **1-La**, OCHPh₂ + 2 equiv. of ^{OMe}LO in the presence of 100 (blue, bottom), 50 (red), 10 (green) and 0 (purple) equiv. of GBL, and ^{OMe}LO in the presence of 100 equiv. of GBL (top, yellow). CH (Ar) corresponds to ^{OMe}LO and CH₂ to γ -butyrolactone (GBL).

Figure S14. ¹H-NMR (400 MHz, C₆D₆) of **1-La**, OCHPh₂ + 1 equiv. of ^{OMe}LO in the presence of 100 (blue, bottom), 50 (red), 10 (green) and 0 (purple) equiv. of GBL, and ^{OMe}LO in the presence of of 100 equiv. of GBL (top, yellow). CH (Ar) corresponds to ^{OMe}LO and CH₂ to γ -butyrolactone (GBL).

5. Computational Studies.

Methods: All calculations were performed employing the Gaussian 09 package (revision D.01).⁸

<u>La complexes</u>: Complexes were optimized at the rM06-L level of theory⁹ with Grimme's D3 dispersion correction¹⁰ using the Stuttgart [7s6p5d|5s4p3d]¹¹ ECP46MWB¹¹⁻¹² contracted pseudopotential basis set on lanthanum and the 6-31G* basis set used on all other atoms.¹³ The standard "fine" grid size was used for numerical integrations while a convergence criterion of 10⁻⁶ was used for all calculations. Optimized geometries were confirmed as minima by frequency analysis (the absence of negative frequencies). To validate the selected methodology, the Mean Unsigned Error (MUE) between the predicted and the experimentally determined (SC-XRD) bond lengths in the primary coordination sphere of **1-La(OPPh_3)**² was calculated by the following equation.

$$MUE = \frac{\sum_{i=1}^{n} |y_i - x_i|}{n}$$

<u>BBL binding studies</u>: Eight isomers of **2-La(LO)**₂ coordinated by BBL were identified by inspection and constructed in Avogadro. Geometry optimization of the complexes were performed in Gaussian 09 using the same level of theory as described above, and the ground state energies were obtained to evaluate the ΔG_{rxn} associated with BBL binding.

<u>Natural Bond Order Analysis:</u> NBO 3.1¹⁴ calculations were performed at the M06-L level of theory using the def2-TZVP basis set.¹⁵ Solvation effects associated with toluene were accounted for in the single point calculations using the SMD continuum solvation model.¹⁶ Input geometries were generated from the crystallographic data or constructed using Avogadro.¹⁷ Wilberg bond orders and natural charges were reported from the constructed output files.

<u>Free ligands (only)</u>: For 4-substituted lutidine *N*-oxide (^RLO) calculations, structures were optimized at the M06-2X level of theory¹⁸ employing the def2-TZVP basis set.¹⁵ NBO calculations were performed with the same level of theory and basis set.

Figure S15. Graphs illustrating N-O Bond length, v_{N-O} , q_N , and q_O as a function of σ_p for lutidine N-oxide structures.

Table S6.	Table of N-O	Bond lengt	h, vn-o, a	$q_{\rm N}$, and	qo as a	function	of σ_p for	lutidine	N-oxide
structures.									

R	σ _p	N-O Bond Length	VN-O	Natural Charge	Natural Charge
		(Å)	(cm ⁻¹)	$(q_{\rm N})$	(q_0)
NMe ₂	-0.83	1.30116	1285.26	0.04481	-0.65764
OMe	-0.268	1.29356	1298.77	0.06075	-0.62840
Н	0	1.28346	1309.54	0.08642	-0.60003
Cl	0.227	1.28273	1312.83	0.08406	-0.59850
NO ₂	0.778	1.26381	1354.10	0.11326	-0.54126

Atom	Х	Y	Z
Ν	0	-0.65882	0.00038
С	1.18731	0.01341	0.0001
С	1.18886	1.39543	-0.00005
С	0.00003	2.10448	-0.00003
С	-1.18883	1.39545	-0.00005
С	-1.18732	0.01344	0.00011
С	2.40848	-0.83405	-0.00004
Н	2.14324	1.90408	-0.00016
С	-2.40849	-0.83401	-0.00004
Н	0.00003	3.18541	-0.00014
Н	-2.14319	1.90414	-0.00016
0	-0.00003	-1.94228	-0.00021
Н	-3.2983	-0.20907	-0.00021
Н	-2.41112	-1.48756	0.87333
Н	-2.41087	-1.48761	-0.87338
Н	3.2983	-0.20912	-0.00028
Н	2.41082	-1.48771	-0.87333
Н	2.41113	-1.48752	0.87339

 Table S7. Cartesian coordinates of LO optimized with M06-2X/Def2-TZVP.

Table S8. Cartesian coordinates of ^{NO2}LO optimized with M06-2X/Def2-TZVP.

Atom	Х	Y	Z
Ν	-1.60028	-0.00001	0.00028
С	-1.06449	-1.13601	0.00012
С	0.4103	-1.25428	0.00001
С	1.14876	0.00001	0.00002
С	0.41029	1.25428	0.00002
С	-1.06452	1.13599	0.00009
С	-1.81718	-2.47395	0.00003
Н	1.15676	-2.07871	-0.00003
С	-1.81722	2.47393	-0.00007
Ν	2.60567	0.00001	-0.00002
Н	1.15673	2.07872	-0.00004
0	-2.90609	0.00001	-0.00025
0	3.07679	-1.02808	-0.00019
0	3.0768	1.02809	0.0001
Н	-0.98448	-3.20718	-0.00004
Н	-2.57445	-2.17403	-0.7993
Н	-2.57448	-2.17414	0.79933
Н	-0.98452	3.20716	-0.0001
Н	-2.57459	2.17413	0.79918

|--|

Atom	Х	Y	Z
Ν	-1.4199	0.19516	0.00019
С	-0.50413	1.19459	-0.00039
С	0.85161	0.90647	-0.00087
С	1.28111	-0.41235	-0.00082
С	0.32066	-1.41944	-0.00056
С	-1.01936	-1.1109	-0.00011
С	-1.0536	2.57609	-0.00033
Н	1.54289	1.73545	-0.0014
С	-2.10957	-2.1215	0.00032
0	2.57218	-0.80163	-0.00127
Н	0.63183	-2.45479	-0.00066
0	-2.68262	0.47596	0.00098
С	3.56264	0.20888	0.00181
Н	4.5192	-0.30548	0.00348
Н	3.48249	0.83315	0.895
Н	3.48657	0.83479	-0.89058
Н	-1.69194	-3.12538	-0.00168
Н	-2.74943	-1.97892	-0.87138
Н	-2.74658	-1.98141	0.87456
Н	-0.24607	3.30409	-0.0024
Н	-1.6894	2.72406	0.87369
Н	-1.69286	2.72267	-0.87202

 Table S9. Cartesian coordinates of MeOLO optimized with M06-2X/Def2-TZVP.

Table S10. Cartesian coordinates of ~LO optimized with M06-2X/Def2-1ZV

Atom	Х	Y	Z
Ν	1.41199	0	0.00008
С	0.73885	-1.18669	0.00001
С	-0.64226	-1.19467	0.00001
С	-1.33725	0.00001	0.00002
С	-0.64226	1.19467	-0.00001
С	0.73886	1.18669	0
С	1.58295	-2.40941	-0.00001
Н	-1.16398	-2.14099	-0.00002
С	1.58295	2.40941	0

Cl	-3.06503	0	-0.00001
Н	-1.16398	2.141	-0.00004
0	2.69472	-0.00001	-0.00006
Н	0.95797	-3.29883	-0.00018
Н	2.23605	-2.41004	0.87363
Н	2.2363	-2.40984	-0.87345
Н	0.95797	3.29883	-0.00017
Н	2.23632	2.40985	-0.87343
Н	2.23604	2.41002	0.87365

_

 $Table \ S11. \ Cartesian \ coordinates \ of \ {}^{NMe2}LO \\ optimized \ with \ M06-2X/Def2-TZVP.$

Atom	Х	Y	Z
Ν	1.76028	0.00002	0.0001
С	1.0796	-1.17569	-0.00111
С	-0.29866	-1.19107	-0.00517
С	-1.04168	-0.00012	-0.00933
С	-0.29877	1.19091	-0.0052
С	1.07948	1.17566	-0.00116
С	1.9185	-2.40413	0.00247
Н	-0.7835	-2.15517	-0.00525
С	1.91826	2.4042	0.00225
Ν	-2.40596	-0.00006	-0.01764
Н	-0.78378	2.15493	-0.00489
0	3.06143	0.00009	0.00422
С	-3.12371	-1.25512	0.00814
С	-3.12333	1.25522	0.00851
Н	-2.89351	-1.83362	0.90844
Н	-2.88302	-1.87048	-0.86373
Н	-4.19115	-1.05508	-0.00374
Н	-2.883	1.87058	-0.86347
Н	-2.8923	1.83351	0.90875
Н	-4.19084	1.05548	-0.00246
Н	1.29075	-3.29209	0.0026
Н	2.57101	-2.40485	0.87622
Н	2.57425	-2.40763	-0.86887
Η	1.29042	3.29209	0.00212
Н	2.57404	2.40752	-0.86907
Н	2.57074	2.40522	0.87602

Table S12. Comparison of natural charges (q) across optimized **1-La(OPPh₃)₂, 1-La(LO)₂, 2-La(OPPh₃)₂**, and **2-La(LO)**₂ structures. Natural charges were calculated with NBO 3.1 using the M06-L functional and Def2-TZVP basis set (see computational methods).

	1-La(OPPh ₃) ₂	1-La(LO)2	2-La(OPPh ₃) ₂	2-La(LO) ₂
qLa(1)	1.98683	1.92241	2.08173	1.9921
q O(1)	-0.91116	-0.92309	-0.90916	-0.88704
$q_{O(2)}$	-0.90204	-0.92832	-0.91293	-0.9271
<i>q</i> O(3)	-1.15147	-0.63383	-1.15874	-0.64161
$q_{O(4)}$	-1.15244	-0.61308	-1.14579	-0.61556
$q_{O(5)}$	N/A	N/A	-0.99826	-1.00459
$q_{\rm N(1)}$	-0.46224	-0.46834	-0.47775	-0.47773
$q_{ m N(2)}$	-1.83539	-1.85027	N/A	N/A
$q_{\rm N(3)}$	N/A	0.06952	N/A	0.07744
$q_{ m N(4)}$	N/A	0.08294	N/A	0.06423
$q_{\mathrm{P(1)}}$	1.98456	N/A	1.98832	N/A
q P(2)	1.98683	N/A	1.98017	N/A

Table S13. Comparison of Wilberg bond indices across optimized **1-La(OPPh₃)₂, 1-La(LO)₂, 2-La(OPPh₃)₂, and 2-La(LO)₂** structures. Bond indices were calculated with NBO 3.1 using the M06-L functional and Def2-TZVP basis set (see computational methods).

Bond	1-La(OPPh ₃) ₂	1-La(LO)2	$2-La(OPPh_3)_2$	$2-La(LO)_2$
O(3) - P(1)	1.0196	N/a	1.0272	N/A
O(4) - P(2)	1.0284	N/a	1.0345	N/A
O(3) - N(3)	N/A	1.1461	N/A	1.1485
O(4) - N(4)	N/A	1.1644	N/A	1.1541

Figure S16. Labeled ball and stick image of DFT-optimized **1-La(OPPh₃)**₂. H-atoms other than those of the Si–H from the N(SiHMe₂)₂ group were removed for clarity.

Table S14. Comparison of select bond distances (Å) and metrical parameters of the X-ray / DFT calculated structures of $1-La(OPPh_3)_2$. The mean unsigned error (MUE) is 0.0465.

Distance (Å)	X-ray	DFT
La(1)–O(1)	2.276(2)	2.352
La(1)–O(2)	2.267(2)	2.340
La(1)–O(3)	2.482(2)	2.502
La(1)–O(4)	2.457(2)	2.490
La(1)–N(1)	2.828(2)	2.885
La(1)–N(2)	2.459(3)	2.479
Angle (°)		
O(1)–La(1)–O(2)	144.92(8)	143.16
O(1)–La(1)–O(3)	96.74(7)	96.49
O(1)–La(1)–O(4)	84.02(7)	81.62
O(1)–La(1)–N(1)	71.33(7)	71.57
O(1)–La(1)–N(2)	109.07(8)	109.14
O(2)–La(1)–O(3)	85.42(7)	86.13
O(2)–La(1)–O(4)	87.84(7)	85.10

O(2)–La(1)–N(1)	73.92(7)	72.90
O(2)–La(1)–N(2)	105.42(8)	105.88
O(3)–La(1)–O(4)	169.24(7)	165.65
O(3)-La(1)-N(1)	85.97(7)	82.39
O(3)-La(1)-N(2)	96.63(8)	100.31
O(4)-La(1)-N(1)	84.11(7)	83.53
O(4)-La(1)-N(2)	93.24(8)	93.71
N(1)-La(1)-N(2)	177.28(8)	177.05
Angle (°)		
P(1)–O(3)–La(1)	167.6(1)	160.24
P(2)–O(4)–La(1)	163.0(1)	156.94

Table S15. Cartesian coordinates of DFT-optimized 1-La(OPPh₃)₂. EM06L = -4695.07004313

Atom	X	Y	Z
La	-0.29981	-1.12441	0.41677
Р	-3.74097	-1.48595	-1.45500
Р	2.86892	0.44494	2.21830
Si	-0.68865	-2.32960	3.51336
Si	-1.14850	-4.61708	1.53020
0	-1.53853	0.78492	1.01052
0	0.92655	-2.09454	-1.32405
0	1.86782	-0.37776	1.41819
0	-2.27603	-1.50307	-1.05007
Ν	0.29273	0.97205	-1.47470
Ν	-0.88206	-2.98133	1.95315
С	-1.90097	2.00475	0.69177
С	-2.68182	2.79876	1.58781
С	-3.21061	2.20371	2.90052
С	-2.06846	1.73578	3.81483
Н	-1.48231	0.93847	3.34954
Н	-2.47598	1.34691	4.75887
Н	-1.39683	2.56965	4.06600
С	-4.12874	1.00989	2.59502
Н	-5.01097	1.33205	2.02287
Н	-4.49363	0.55516	3.52739
Н	-3.60650	0.23436	2.02395
C	-4.03659	3.21514	3.69943
Н	-3.44566	4.09286	3.99347
Н	-4.40195	2.74214	4.61975

Н	-4.91331	3.56853	3.14158
С	-2.98944	4.11350	1.22096
Н	-3.55859	4.72400	1.91677
С	-2.60834	4.68217	0.00284
С	-2.91820	6.12510	-0.38782
С	-3.63497	6.88584	0.72586
Н	-4.60251	6.43053	0.97328
Н	-3.82733	7.92037	0.41444
Н	-3.03676	6.92139	1.64535
С	-3.80695	6.14868	-1.63881
Н	-3.33988	5.61227	-2.47483
Η	-3.99682	7.17976	-1.96774
Н	-4.77923	5.67757	-1.43997
С	-1.60302	6.85217	-0.70303
Н	-0.92460	6.82899	0.16014
Н	-1.78529	7.90346	-0.96541
Н	-1.07976	6.38459	-1.54646
С	-1.91934	3.85626	-0.88488
Н	-1.68055	4.23038	-1.88418
С	-1.55096	2.54916	-0.57846
С	-0.97878	1.70336	-1.69057
Η	-1.71235	0.92442	-1.95735
Η	-0.88262	2.34571	-2.58894
С	1.36692	1.80041	-0.89676
Η	2.15273	1.10496	-0.57673
Η	0.93211	2.23246	0.01047
С	2.02037	2.90614	-1.69463
С	1.37060	4.12081	-1.93938
Η	0.35442	4.25854	-1.57668
С	2.02739	5.17353	-2.56952
Η	1.50204	6.11228	-2.74321
С	3.35882	5.03836	-2.95459
Н	3.87719	5.86387	-3.43991
С	4.02685	3.84392	-2.69802
Н	5.07490	3.73169	-2.97403
С	3.36105	2.78997	-2.07716
Н	3.89255	1.85886	-1.87022
С	0.67020	0.32745	-2.75881
Н	0.75636	1.10505	-3.54257
Н	-0.18979	-0.30738	-3.02934
С	1.93172	-0.48819	-2.74119
С	3.01788	-0.09908	-3.52018
Н	2.92581	0.82287	-4.10000

С	4.19730	-0.84425	-3.58075
С	5.33998	-0.40032	-4.49338
С	5.73666	1.04749	-4.17858
Н	6.07926	1.15358	-3.13887
Н	4.89474	1.73610	-4.31860
Н	6.55180	1.38091	-4.83621
С	4.87222	-0.47187	-5.95378
Н	4.58563	-1.49575	-6.22435
Н	5.66750	-0.14729	-6.63970
Н	4.00037	0.17210	-6.12303
С	6.58057	-1.27971	-4.34331
Н	6.97325	-1.26756	-3.31674
Н	7.37903	-0.91846	-5.00394
Н	6.37862	-2.32480	-4.60869
С	4.24825	-2.00662	-2.80388
Н	5.16424	-2.59086	-2.82028
С	3.19434	-2.45659	-2.00425
С	3.32682	-3.73267	-1.16322
С	4.72751	-4.34167	-1.27227
Η	4.97455	-4.63206	-2.30132
Η	4.78334	-5.24658	-0.65423
Н	5.50514	-3.64978	-0.91949
С	2.32024	-4.78818	-1.64169
Η	1.29544	-4.41332	-1.57327
Η	2.39773	-5.69940	-1.03110
Н	2.51583	-5.06604	-2.68571
С	3.08852	-3.44184	0.32892
Н	3.74144	-2.63436	0.68747
Н	3.30576	-4.33859	0.92705
Н	2.05257	-3.15402	0.53617
С	1.98587	-1.69963	-1.99767
С	0.62807	-3.16939	4.56618
Н	1.54563	-3.32598	3.98374
Н	0.28825	-4.15504	4.91108
Н	0.89244	-2.58202	5.45447
С	-2.26719	-2.15239	4.52899
Н	-2.08478	-1.64769	5.48676
Н	-2.71239	-3.13102	4.75297
Н	-3.01709	-1.56416	3.98423
С	-1.53446	-4.71530	-0.31498
Н	-2.52682	-4.31158	-0.55461
Н	-1.50155	-5.74646	-0.69006
Н	-0.80510	-4.13601	-0.90068

С	0.32003	-5.75244	1.86761
H	1.19714	-5.41979	1.29713
Н	0.10879	-6.78798	1.57064
Н	0.60877	-5.76494	2.92551
С	-4.00040	-2.71936	-2.74725
C	-2.86971	-3.29317	-3.33878
Н	-1.87934	-3.00260	-2.98969
С	-3.02270	-4.23846	-4.34918
Н	-2.14189	-4.68758	-4.80379
С	-4.29655	-4.61193	-4.76905
Н	-4.41359	-5.35515	-5.55577
С	-5.42497	-4.04182	-4.18097
Н	-6.42028	-4.33897	-4.50593
С	-5.27895	-3.09699	-3.17194
Н	-6.16263	-2.65867	-2.70671
С	-4.82869	-1.83621	-0.05986
С	-6.18823	-1.49780	-0.08521
Н	-6.60729	-0.97653	-0.94669
С	-6.99975	-1.79660	1.00373
Н	-8.05343	-1.52520	0.98377
С	-6.45976	-2.43020	2.12197
Н	-7.09600	-2.66084	2.97462
С	-5.10725	-2.75796	2.15558
Н	-4.67697	-3.24193	3.03033
С	-4.28838	-2.46021	1.06973
Н	-3.22135	-2.68740	1.11786
С	-4.27478	0.10418	-2.11753
С	-4.29907	0.34785	-3.49606
Н	-4.09539	-0.46261	-4.19579
С	-4.57801	1.62603	-3.96960
Н	-4.59462	1.81359	-5.04160
С	-4.83126	2.66366	-3.07378
Н	-5.04042	3.66511	-3.44732
С	-4.80995	2.42641	-1.70130
Н	-4.97615	3.23708	-0.99323
С	-4.53043	1.15210	-1.22256
Н	-4.48753	0.97593	-0.14730
С	2.98406	-0.08995	3.94054
С	3.73558	-1.23458	4.24179
Н	4.26388	-1.76125	3.44643
С	3.81077	-1.69789	5.54974
Н	4.39605	-2.58687	5.77620
С	3.13052	-1.02927	6.56560

Н	3.19013	-1.39314	7.58984
С	2.36904	0.09918	6.27156
Н	1.83311	0.61910	7.06299
С	2.29645	0.57123	4.96459
Н	1.70652	1.45960	4.74194
С	2.43212	2.19679	2.18403
С	1.09343	2.54843	2.41586
Н	0.36187	1.77692	2.66199
С	0.67522	3.86350	2.24034
Н	-0.37540	4.11661	2.38307
С	1.58785	4.83315	1.82586
Н	1.25505	5.85687	1.66346
С	2.91713	4.49065	1.59374
Н	3.62229	5.24009	1.23880
С	3.34121	3.17713	1.77163
Н	4.37362	2.91097	1.54973
С	4.52611	0.29168	1.52410
С	4.66537	-0.10391	0.18884
Н	3.78866	-0.37614	-0.40197
С	5.93379	-0.18380	-0.38109
Н	6.02315	-0.51030	-1.41646
С	7.06066	0.14027	0.36868
Н	8.04951	0.07662	-0.08243
С	6.92658	0.53701	1.69894
Н	7.80714	0.78405	2.28868
С	5.66426	0.60986	2.27718
Н	5.56048	0.90881	3.32104
Н	-0.21623	-0.91038	3.26421
Н	-2.32449	-5.20212	2.26206

Figure S17. Labeled ball and stick image of DFT-optimized **1-La(LO)**₂. H-atoms other than those of the Si–H from the N(SiHMe₂)₂ group were removed for clarity.

Table S16. Comparison of select bond distances (Å) and metrical parameters for the DFT calculated structures of $1-La(LO)_2$.

Distance (Å)	DFT
La(1)–O(1)	2.364
La(1)–O(2)	2.321
La(1)–O(3)	2.554
La(1)–O(4)	2.600
La(1)–N(1)	2.825
La(1)–N(2)	2.488
Angle (°)	
O(1)–La(1)–O(2)	90.30
O(1)–La(1)–O(3)	145.24
O(1)–La(1)–O(4)	82.97
O(1)–La(1)–N(1)	73.00
O(1)–La(1)–N(2)	108.28
O(2)–La(1)–O(3)	89.43
O(2)–La(1)–O(4)	89.62
O(2)–La(1)–N(1)	72.29
O(2)–La(1)–N(2)	106.44

O(3)–La(1)–O(4)	86.50
O(3)–La(1)–N(1)	166.72
O(3)–La(1)–N(2)	93.28
O(4)–La(1)–N(1)	80.61
O(4)–La(1)–N(2)	99.68
N(1)–La(1)–N(2)	178.71
Angle (°)	
P(1)–N(3)–La(1)	133.64
P(2)-N(4)-La(1)	141.87

 Table S17. Cartesian coordinates of DFT-optimized 1-La(LO)2. EM06L = -3275.060363

Atom	X	Y	Z
La	0.07843	-1.20463	0.32087
Si	1.94421	-4.12572	-0.59786
Si	-0.35345	-4.70646	1.27474
0	2.10945	-0.00116	0.20647
0	-2.23046	-1.03693	0.48729
0	-0.12494	-1.12983	-2.22397
0	0.28224	-0.68215	2.85979
Ν	-0.58880	1.54011	0.28184
Ν	0.61175	-3.63507	0.34972
С	2.64267	1.19912	0.03892
С	3.98987	1.37583	-0.40299
С	4.93021	0.17767	-0.59537
С	4.39014	-0.80937	-1.63679
Н	3.38441	-1.15693	-1.38603
Н	5.04287	-1.69175	-1.70468
Н	4.36147	-0.34518	-2.63258
С	5.09708	-0.53665	0.75309
Н	5.53718	0.13881	1.49890
Н	5.75884	-1.40880	0.65189
Н	4.13039	-0.87692	1.12935
С	6.32732	0.59521	-1.06037
Н	6.30350	1.11568	-2.02668
Н	6.95043	-0.29980	-1.18348
Н	6.83085	1.24817	-0.33631
С	4.47034	2.67753	-0.57384
Н	5.48838	2.80568	-0.92914
С	3.72628	3.82429	-0.29203

С	4.27317	5.24190	-0.44200
С	5.66599	5.25922	-1.06958
Н	6.40058	4.72965	-0.44976
Н	6.01580	6.29319	-1.18254
Н	5.66935	4.79575	-2.06448
С	4.35441	5.90355	0.94056
Н	3.36979	5.94170	1.42342
Н	4.72860	6.93381	0.86218
Н	5.02805	5.34725	1.60450
С	3.33407	6.06985	-1.33010
Н	3.21557	5.61310	-2.32099
Н	3.72582	7.08680	-1.46887
Н	2.33526	6.16173	-0.88523
С	2.43206	3.62287	0.18170
Н	1.82843	4.48498	0.47507
С	1.86679	2.35702	0.32258
С	0.50922	2.26817	0.96483
Н	0.60408	1.75944	1.93923
Н	0.17118	3.29887	1.19128
С	-0.82969	1.95383	-1.11883
Н	-1.50067	1.19931	-1.55339
Н	0.14277	1.85201	-1.61755
С	-1.38931	3.33063	-1.38977
С	-0.56956	4.46342	-1.33849
Н	0.48643	4.33983	-1.10523
С	-1.07093	5.72866	-1.62841
Н	-0.41243	6.59535	-1.58455
С	-2.40438	5.88151	-1.99864
Н	-2.79914	6.86825	-2.23610
С	-3.22419	4.75952	-2.08622
Н	-4.26067	4.86483	-2.40306
С	-2.72226	3.49707	-1.78063
Н	-3.37045	2.62356	-1.85321
С	-1.77941	1.66867	1.16556
Н	-1.90464	2.73420	1.43980
Н	-1.49642	1.13505	2.08788
С	-3.09968	1.15190	0.67988
С	-4.19158	2.01543	0.65696
Н	-4.01771	3.06677	0.90143
С	-5.47398	1.58423	0.32141
С	-6.64218	2.56830	0.33090
С	-6.35215	3.72190	-0.63636
Н	-6.22506	3.35189	-1.66290
Н	-5.43516	4.25801	-0.36130
---	----------	----------	----------
Н	-7.17677	4.44829	-0.63784
С	-6.81388	3.13986	1.74467
Н	-7.03285	2.34378	2.46740
Н	-7.63910	3.86489	1.77665
Н	-5.90536	3.65369	2.08253
С	-7.95754	1.91237	-0.08582
Н	-7.90400	1.50009	-1.10158
Н	-8.76729	2.65305	-0.07123
Н	-8.24240	1.09821	0.59275
С	-5.61624	0.23218	-0.00175
Н	-6.60305	-0.12700	-0.27845
С	-4.56588	-0.68823	0.01911
С	-4.81044	-2.16047	-0.32136
С	-6.25351	-2.43155	-0.75180
Н	-6.97364	-2.21246	0.04681
Н	-6.36271	-3.49330	-1.00781
Н	-6.53926	-1.84752	-1.63626
С	-4.52208	-3.03989	0.90268
Н	-3.48106	-2.94655	1.22155
Н	-4.71580	-4.09704	0.67053
Н	-5.16543	-2.75743	1.74619
С	-3.90001	-2.58406	-1.47970
Н	-4.11611	-1.99775	-2.38391
Н	-4.04924	-3.64679	-1.72262
Н	-2.85014	-2.43138	-1.21721
С	-3.27175	-0.22515	0.39014
С	1.67160	-5.70898	-1.59503
Н	0.75052	-5.68363	-2.18976
Н	1.59566	-6.57725	-0.92626
Н	2.50656	-5.90237	-2.28131
С	3.57390	-4.35573	0.32949
Н	4.33026	-4.82865	-0.31064
Н	3.44843	-4.99224	1.21565
Н	3.99073	-3.39741	0.66281
С	-1.18411	-3.74906	2.67779
Н	-0.47915	-3.46681	3.47058
H	-1.98312	-4.33866	3.14606
Н	-1.65655	-2.81851	2.32763
С	-1.70209	-5.53618	0.24938
Н	-2.34506	-4.77821	-0.21946
Н	-2.35177	-6.18357	0.85236
Н	-1.27945	-6.14921	-0.55742

Н	2.20239	-3.01558	-1.57518
Н	0.45546	-5.80035	1.90947
Н	-0.72042	-3.70375	-1.85188
Н	-1.80665	-2.99018	-3.03958
С	-0.90151	-3.59742	-2.93255
Н	-1.08141	-4.58969	-3.35633
С	0.24445	-2.94869	-3.60445
Ν	0.55795	-1.67483	-3.20380
Н	0.80977	1.02183	-3.52588
Н	0.75834	-4.55684	-4.89121
С	1.00866	-3.54004	-4.59891
С	1.55626	-0.94873	-3.80035
С	1.72660	0.44805	-3.34232
С	2.06330	-2.85752	-5.18916
С	2.31903	-1.55315	-4.78832
Н	2.66815	-3.32969	-5.95888
Н	2.55929	0.92658	-3.86478
Н	1.91611	0.49205	-2.26314
Н	3.11995	-0.97056	-5.23669
Н	-1.23171	0.41083	4.53654
Н	-0.60997	1.70374	5.60801
С	-0.42406	1.13413	4.69361
Н	-0.46337	1.82577	3.84276
С	0.88831	0.45089	4.77268
Ν	1.16639	-0.47845	3.79856
Н	1.64429	-2.95584	2.77069
Н	1.59126	1.42736	6.52135
С	1.82905	0.68427	5.76428
С	2.32584	-1.21474	3.81940
С	2.48355	-2.25011	2.77864
С	3.03310	-0.00626	5.78719
С	3.26382	-0.96282	4.80875
Н	3.77115	0.18749	6.56074
Н	3.41380	-2.80488	2.92715
Н	2.52155	-1.79704	1.77853
Н	4.18084	-1.54639	4.79321

Figure S18. Labeled ball and stick image of DFT-optimized **2-La(OPPh₃)**₂. H-atoms were removed for clarity.

Table S18. Comparison of select bond distances (Å) and metrical parameters for the DFT calculated structures of $2-La(OPPh_3)_2$.

Distance (Å)	DFT
La(1)–O(1)	2.383
La(1)–O(2)	2.363
La(1)–O(3)	2.494
La(1)–O(4)	2.505
La(1)–O(5)	2.323
La(1) - N(1)	2.871
Angle (°)	
O(1)–La(1)–O(2)	146.63
O(1)-La(1)-O(3)	85.63
O(1)-La(1)-O(4)	80.96
O(1)–La(1)–O(5)	102.29
O(1)-La(1)-N(1)	73.86
O(2)-La(1)-O(3)	93.01
O(2)-La(1)-O(4)	99.13
O(2)–La(1)–O(5)	110.83

O(2)-La(1)-N(1)	73.21
O(3)–La(1)–O(4)	166.51
O(3)–La(1)–O(5)	85.16
O(3)-La(1)-N(1)	78.52
O(4)–La(1)–O(5)	95.91
O(4)–La(1)–N(1)	99.30
O(5)–La(1)–N(1)	163.44
Angle (°)	
P(1)–O(3)–La(1)	169.67
P(2)-O(4)-La(1)	136.72

Table S19. Cartesian coordinates of DFT-optimized 2-La(OPPh₃)₂. EM06L = -4476.178651

Atom	Χ	Y	Z
La	-0.90356	-0.52548	-0.31549
Р	-4.05013	1.32622	-1.23408
Р	2.21106	-1.16708	2.10906
0	-1.15358	1.59828	0.73636
0	0.05659	-1.74404	-2.09802
0	1.11414	-0.79043	1.12600
0	-3.01434	0.22335	-1.43736
N	0.95972	1.23156	-1.61241
С	-0.40272	2.66937	0.89858
С	-0.27967	3.34613	2.14928
С	-1.06053	2.87147	3.38076
С	-0.74748	1.40636	3.72401
Н	-0.90580	0.74166	2.86939
Н	-1.39485	1.06329	4.54415
Н	0.29065	1.29155	4.06712
С	-2.56274	3.01465	3.10349
Н	-2.81766	4.05806	2.86663
Н	-3.15122	2.71808	3.98322
Н	-2.86772	2.37953	2.26593
С	-0.73594	3.69877	4.62608
Н	0.33061	3.64701	4.88539
Н	-1.30198	3.30940	5.48190
Н	-1.00545	4.75616	4.50674
С	0.55454	4.47034	2.21461
Н	0.65789	4.97388	3.17252
С	1.27146	4.97713	1.12531

С	2.18046	6.20085	1.20040
С	2.34833	6.71440	2.62958
Н	1.39539	7.03877	3.06672
Н	3.02710	7.57669	2.64391
Н	2.77505	5.94866	3.29237
С	1.57525	7.32543	0.34804
Н	1.45076	7.00897	-0.69574
Н	2.21755	8.21723	0.35365
Н	0.58693	7.61758	0.72751
С	3.57069	5.85223	0.64737
Н	4.03861	5.04015	1.22023
Н	4.23638	6.72556	0.69198
Н	3.53136	5.51867	-0.39696
С	1.11312	4.31409	-0.09093
Н	1.63200	4.67572	-0.98175
С	0.31020	3.18964	-0.21619
С	0.20203	2.50445	-1.53936
Η	-0.84998	2.25150	-1.75950
Н	0.52279	3.19388	-2.34123
С	2.26341	1.25017	-0.94971
Н	2.62372	0.21322	-0.95706
Н	2.06684	1.47726	0.10338
С	3.38705	2.14900	-1.41057
С	3.34644	3.02209	-2.50073
Н	2.45168	3.08766	-3.11528
С	4.44328	3.82556	-2.81540
Н	4.38740	4.49615	-3.67185
С	5.59939	3.77657	-2.04348
Н	6.45153	4.40799	-2.28872
С	5.65452	2.90856	-0.95364
Н	6.55086	2.85817	-0.33568
С	4.56298	2.10539	-0.64955
Н	4.61132	1.42672	0.20490
С	0.97062	0.71827	-3.00430
Н	1.33437	1.49358	-3.70158
Н	-0.08498	0.53188	-3.26782
С	1.77942	-0.52764	-3.15872
С	3.06272	-0.46861	-3.68764
Н	3.44631	0.50552	-4.00331
С	3.86997	-1.60258	-3.78682
С	5.31044	-1.46504	-4.27320
С	6.07145	-0.53956	-3.31133
Н	6.06841	-0.94073	-2.28742

Н	5.61866	0.45900	-3.26886
Н	7.11866	-0.42040	-3.62356
С	5.33490	-0.84718	-5.67703
Н	4.80262	-1.48203	-6.39648
Н	6.36725	-0.72215	-6.03257
Н	4.85877	0.14054	-5.68947
С	6.03733	-2.80755	-4.32935
Н	6.09804	-3.28392	-3.34096
Н	7.06511	-2.66518	-4.68711
Н	5.54252	-3.51318	-5.00875
С	3.30198	-2.81571	-3.38265
Н	3.89946	-3.71912	-3.48096
С	2.01647	-2.93584	-2.84594
С	1.44150	-4.29686	-2.44864
С	2.39846	-5.45122	-2.74879
Н	2.65221	-5.51389	-3.81492
Н	1.92707	-6.40050	-2.46288
Н	3.33483	-5.36581	-2.17984
С	0.14951	-4.54480	-3.24064
Н	-0.56455	-3.73261	-3.07995
Н	-0.31912	-5.48996	-2.93056
Н	0.36046	-4.60722	-4.31631
С	1.14279	-4.33872	-0.94449
Н	2.07046	-4.31667	-0.35828
Н	0.59676	-5.25594	-0.68014
Н	0.53122	-3.48340	-0.64124
С	1.24387	-1.75043	-2.67980
С	-5.43415	1.04171	-2.35772
С	-5.63911	-0.25935	-2.82786
Н	-4.93536	-1.04584	-2.55742
С	-6.73311	-0.53505	-3.64259
Н	-6.88935	-1.54853	-4.00884
С	-7.61996	0.48069	-3.99100
Н	-8.47369	0.26154	-4.63001
С	-7.41509	1.77927	-3.52794
Н	-8.10271	2.57513	-3.80834
С	-6.32476	2.06132	-2.71202
Н	-6.15568	3.08067	-2.36275
C	-4.70479	1.31996	0.44855
С	-5.58907	2.30919	0.89693
Н	-5.87614	3.12832	0.23589
С	-6.08983	2.25868	2.19264
Н	-6.77070	3.03329	2.54034

~			
С	-5.71353	1.22161	3.04637
Н	-6.10149	1.18999	4.06324
С	-4.83573	0.23733	2.60384
Н	-4.52256	-0.56571	3.27005
С	-4.33447	0.28076	1.30611
Н	-3.63709	-0.48886	0.97709
С	-3.43448	2.98513	-1.58417
С	-3.21488	3.35817	-2.91923
Н	-3.53367	2.70020	-3.72823
С	-2.57569	4.55760	-3.21021
Н	-2.40029	4.83913	-4.24689
С	-2.14696	5.38999	-2.17558
Н	-1.62416	6.31779	-2.40420
С	-2.37208	5.03013	-0.84999
Н	-2.01260	5.66014	-0.03725
С	-3.01496	3.83226	-0.55332
Н	-3.15842	3.53657	0.48361
С	1.52444	-1.68654	3.69076
С	0.17690	-2.05775	3.74482
Н	-0.45191	-2.00278	2.85277
С	-0.36418	-2.49394	4.95221
Н	-1.40934	-2.79898	4.98674
С	0.42512	-2.54761	6.09716
Н	-0.00325	-2.88848	7.03835
С	1.76586	-2.16471	6.04573
Н	2.37983	-2.19757	6.94370
С	2.31734	-1.73464	4.84487
Н	3.36345	-1.42728	4.80373
С	3.31162	0.22930	2.43671
С	2.73793	1.50510	2.51644
Н	1.67039	1.63866	2.34011
С	3.53121	2.61301	2.78941
Н	3.06679	3.59787	2.82806
С	4.90182	2.45677	2.98767
Н	5.52364	3.32786	3.19000
С	5.47903	1.19052	2.91543
Н	6.55059	1.06805	3.06295
С	4.68809	0.07664	2.63988
Н	5.14370	-0.91090	2.56427
C	3.25454	-2.49818	1.47580
C	3.91499	-2.29784	0.25470
H	3.81561	-1.35167	-0.28189
C	4.68481	-3.31452	-0.29656
-			

Н	5.17703	-3.15366	-1.25470
С	4.79800	-4.53831	0.36085
Н	5.39446	-5.33636	-0.07845
С	4.13737	-4.74716	1.56912
Н	4.21595	-5.70689	2.07662
С	3.36662	-3.73074	2.12797
Н	2.84274	-3.89708	3.06909
Н	-6.66346	-3.56808	-1.35573
Н	-4.16901	-4.87773	2.80138
Н	-3.21719	-6.93366	3.80917
С	-3.10504	-5.09798	2.69052
С	-2.57226	-6.25348	3.25395
С	-1.21482	-6.53788	3.11280
Н	-0.79627	-7.44164	3.55340
С	-0.93696	-4.49844	1.85320
С	-0.39959	-5.65749	2.40623
Н	0.66378	-5.86813	2.28585
Н	-5.57050	-3.08039	0.82049
С	-5.57590	-3.55584	-1.28579
С	-4.96239	-3.28333	-0.06354
Н	-3.68199	-2.59861	2.06544
С	-2.87781	-2.93774	1.37089
С	-4.80028	-3.79468	-2.41740
С	-3.57190	-3.25468	0.04797
Н	-5.27541	-4.00894	-3.37426
С	-2.29397	-4.20509	1.98635
С	-2.80252	-3.48745	-1.09806
С	-3.40915	-3.75157	-2.32122
Н	-1.71092	-3.47383	-1.03103
Н	-2.79263	-3.93354	-3.20038
Н	-0.30079	-3.79125	1.32277
0	-1.93245	-1.95287	1.20148

Figure S19. Labeled ball and stick image of DFT-optimized $2-La(LO)_2$. H-atoms were removed for clarity.

Table S20	. Comparison	of select	bond	distances	(Å)	and	metrical	parameters	for	the	DFT
calculated	structures of 2-	-La(LO) ₂									

Distance (Å)	DFT
La(1)–O(1)	2.365
La(1)–O(2)	2.350
La(1)–O(3)	2.509
La(1)–O(4)	2.577
La(1)–O(5)	2.293
La(1) - N(1)	2.775
Angle (°)	
O(1)–La(1)–O(2)	141.86
O(1)–La(1)–O(3)	91.03
O(1)–La(1)–O(4)	76.48
O(1)–La(1)–O(5)	116.54
O(1)-La(1)-N(1)	75.58
O(2)-La(1)-O(3)	104.35
O(2)-La(1)-O(4)	89.74
O(2)-La(1)-O(5)	96.93

O(2)–La(1)–N(1)	72.06
O(3)–La(1)–O(4)	165.81
O(3)–La(1)–O(5)	95.09
O(3)-La(1)-N(1)	82.98
O(4)–La(1)–O(5)	84.76
O(4)–La(1)–N(1)	100.07
O(5)–La(1)–N(1)	167.82
Angle (°)	
P(1)-N(3)-La(1)	156.11
P(2)-N(4)-La(1)	114.07

Table S21. Cartesian coordinates of DFT-optimized $2-La(LO)_2$. EM06L (solvent corrected) = -3057.600901 (-3057.607037)

Atom	Χ	Y	Z
La	0.62347	-0.26391	-0.56337
0	-0.37311	-1.84327	-2.01453
0	0.61844	2.02761	-0.04118
0	-0.43770	-1.35820	1.42989
0	1.67753	0.27209	-2.85264
Ν	-1.94566	0.70056	-0.97457
С	-1.49352	-2.44740	-1.67503
С	-1.56073	-3.85496	-1.46217
С	-0.30117	-4.71766	-1.61175
С	0.80530	-4.27831	-0.63733
Н	1.10466	-3.23734	-0.80066
Н	1.70025	-4.90318	-0.77469
Н	0.49370	-4.37992	0.41127
С	0.23022	-4.60860	-3.04893
Н	-0.50150	-5.00745	-3.76290
Н	1.15883	-5.18772	-3.15982
Н	0.43241	-3.56693	-3.31126
С	-0.57710	-6.19496	-1.32451
Н	-0.94463	-6.35561	-0.30137
Н	0.34955	-6.77215	-1.43738
Н	-1.31441	-6.61897	-2.01747
С	-2.80138	-4.41834	-1.15239
Н	-2.85073	-5.49168	-0.98752
С	-3.98290	-3.67749	-1.02633
С	-5.33262	-4.30868	-0.68824

С	-5.20444	-5.78605	-0.31969
Н	-4.81677	-6.38488	-1.15307
Н	-6.18685	-6.19481	-0.05091
Н	-4.53503	-5.93476	0.53867
С	-6.26819	-4.18626	-1.89845
Н	-6.41138	-3.13690	-2.18531
Н	-7.25699	-4.61301	-1.67872
Н	-5.85610	-4.71382	-2.76768
С	-5.96990	-3.57477	0.50015
Н	-5.32199	-3.61119	1.38718
Н	-6.93358	-4.02977	0.76787
Н	-6.15769	-2.51886	0.26889
С	-3.89171	-2.30010	-1.24167
Н	-4.79093	-1.68091	-1.19700
С	-2.68402	-1.67695	-1.54206
С	-2.64451	-0.22295	-1.91269
Н	-2.09945	-0.12632	-2.86301
Н	-3.67072	0.14916	-2.08329
С	-2.62544	0.83013	0.33185
Н	-2.07151	1.60391	0.88477
Н	-2.46887	-0.12521	0.85242
С	-4.10347	1.13124	0.34504
С	-4.99682	0.15842	0.80464
Н	-4.60348	-0.80516	1.13601
С	-6.36696	0.40042	0.84506
Н	-7.04342	-0.36975	1.21421
С	-6.86802	1.62803	0.41930
Н	-7.93910	1.82160	0.44586
С	-5.98869	2.61174	-0.02772
Н	-6.37072	3.58118	-0.34514
С	-4.61886	2.36746	-0.05924
Н	-3.93440	3.15466	-0.37140
С	-1.71896	1.97983	-1.70385
Н	-2.64443	2.25935	-2.24182
Н	-0.98815	1.72281	-2.49470
С	-1.23458	3.18942	-0.95104
С	-1.91801	4.38950	-1.13113
Н	-2.82126	4.37753	-1.74717
С	-1.48366	5.59100	-0.57400
С	-2.29762	6.86567	-0.78527
С	-3.73680	6.64222	-0.29960
Н	-3.75876	6.36130	0.76100
Н	-4.23480	5.84383	-0.86430

Н	-4 33566	7 55481	-0.42365
C	-2.32778	7.21263	-2.27993
H	-1.31587	7.39336	-2.66387
Н	-2.92620	8 11624	-2.46114
Н	-2 76588	6 39940	-2 87214
C	-1 71525	8.05571	-0.02465
н	-1 67308	7 86746	1.05578
Н	-2 33848	8 94478	-0.18351
Н	-0.70056	8 30105	-0.36303
C	-0.29092	5 55093	0.15221
н	0.07399	6 47853	0.58255
C	0.46106	4 38886	0.35043
C	1 78460	4.30000	1 12825
C	2 12348	5 85207	1.12023
н	2.12348	6 55625	0.76600
Н	3 08023	5 83680	2 13895
н	1 36713	6 25233	2.13075
C	2 95293	3 95028	0.25777
н	2.79899	2 91326	-0.05809
н	3 89352	3 99790	0.82604
н	3.07028	A 57798	-0.63576
C	1 71616	3 53587	2 36733
н Н	0.83501	3 76623	2.30733
Н	2 60973	3.67580	2.90120
Н	1 67254	2 48598	2.77260
C C	-0.03056	3 16811	-0.19529
н	1 21151	0.29679	2 64334
Н	-0.24030	1 20238	2.04334
C C	0.25725	0.66502	3.04605
н	0.23723	1 37654	3.84562
C C	-0 57076	-0.44620	3 55003
N	-0.89962	-0.44020	2 64950
н	-0.87702	-1.42071	1.06063
Н	-0.75136	0 22323	5 55620
II C	-1.03459	-0 55605	4 85290
C	-1.72166	-0.55005	2 98055
C	-2.08/08	-2.47007	2.98033
C	-1 83216	-1 62443	5 23825
C	-1.05210	-1.02443	1 28501
с H	-2.17034	-2.57410	
Ц	-2.17120	-1.70010	2 24222
Ц	-1.20318	-4.1/100	2.2 4 232
и П	-1.20310	-3.07202 3 1117	1.441/0
11	-2.02213	-3.4141/	4.33402

Н	1.71388	2.80531	-2.07666
Н	2.89775	3.80911	-2.95174
С	2.42209	2.82564	-2.91375
Н	1.82969	2.66865	-3.82305
С	3.44267	1.75975	-2.77698
Ν	2.97556	0.47281	-2.81117
Н	2.47715	-2.15995	-2.15705
Н	5.16752	2.98679	-2.57526
С	4.80770	1.96186	-2.63094
С	3.80831	-0.61571	-2.81344
С	3.16347	-1.93845	-2.98392
С	5.67967	0.88259	-2.55479
С	5.17090	-0.40490	-2.67228
Η	6.74649	1.04026	-2.41527
Н	3.91923	-2.72817	-3.02214
Н	2.55087	-1.95695	-3.89302
Н	5.82014	-1.27638	-2.62366
0	2.77877	-0.69251	0.09284
С	3.93752	-0.51099	0.81075
С	5.01412	-1.51538	0.42516
С	6.36684	-1.20886	0.58739
Η	6.64423	-0.23944	1.00752
С	7.35417	-2.10999	0.20092
Η	8.40540	-1.85141	0.32371
С	6.99798	-3.34058	-0.35059
Н	7.76797	-4.04629	-0.65891
С	5.65025	-3.66040	-0.50340
Η	5.36209	-4.62163	-0.92956
С	4.66680	-2.75266	-0.11758
Н	3.60990	-2.97847	-0.25599
С	3.63231	-0.57969	2.30162
С	3.92059	0.48541	3.15366
Н	4.42368	1.36636	2.74948
С	3.54231	0.44945	4.49633
Н	3.76221	1.29780	5.14374
С	2.87011	-0.65967	4.99986
Н	2.56645	-0.68924	6.04572
С	2.58230	-1.73556	4.15578
Н	2.05148	-2.60572	4.54406
С	2.96225	-1.69482	2.81962
Н	2.72120	-2.52199	2.14990
Н	4.36938	0.49877	0.62280

Figure S20. Summary of *in silico* (*S*)-BBL binding studies to **2-La**(**LO**)₂. Hydrogen atoms and ortho tert-butyl groups were removed for clarity. Solvent corrected energies (PCM, toluene) are included in parentheses.

Figure S21. Labeled ball and stick image of BBL-1. Hydrogen atoms and tert-butyl groups were removed for clarity.

Table S22. Cartesian coordinates of **BBL-1**. EM06L (solvent corrected) = -3363.973201 Hartree (-3363.981588)

Atom	Χ	Y	Ζ
La	-0.32611	-0.62594	-0.13815
0	-1.23031	1.22590	-1.37503
0	1.67274	-1.28047	0.91556
0	-2.27919	-1.02607	1.51955
0	0.58030	-1.25634	-2.44370
Ν	1.88741	1.09620	-0.70556
С	-0.97367	2.51120	-1.35039
С	-2.01472	3.49130	-1.21968
С	-3.48673	3.07709	-1.31251
С	-3.88784	2.06848	-0.22923
Н	-3.22472	1.19736	-0.22452
Н	-4.91754	1.72505	-0.41107
Н	-3.86560	2.51441	0.77345
С	-3.71305	2.45261	-2.69854
Н	-3.44665	3.16316	-3.49158

Н	-4.77135	2.18434	-2.83088
Н	-3.10733	1.54992	-2.82618
С	-4.43860	4.26857	-1.18461
Н	-4.33155	4.78277	-0.21900
Н	-5.47570	3.91598	-1.25232
Н	-4.29031	5.00991	-1.97996
С	-1.65673	4.83841	-1.16184
Н	-2.44849	5.57658	-1.03837
С	-0.34112	5.30928	-1.27885
С	-0.05009	6.80375	-1.16164
С	-0.90639	7.59656	-2.15760
Н	-0.69390	7.28969	-3.18898
Н	-0.70193	8.67276	-2.07530
Н	-1.97966	7.45197	-1.98399
С	1.41891	7.12279	-1.43537
Н	2.08794	6.61604	-0.72743
Н	1.59511	8.20207	-1.34384
Н	1.71806	6.82051	-2.44680
С	-0.38561	7.26848	0.26364
Н	-1.43687	7.06895	0.51380
Н	-0.21549	8.34781	0.38048
Н	0.24175	6.74986	1.00376
С	0.64626	4.34505	-1.47979
Н	1.68389	4.64238	-1.63068
С	0.36452	2.97843	-1.48875
С	1.47214	2.01465	-1.79638
Н	1.16705	1.35307	-2.62191
Н	2.35467	2.58376	-2.14754
С	2.32032	1.80498	0.52344
Н	2.52605	1.01852	1.26364
Н	1.44525	2.36158	0.87604
С	3.48282	2.76677	0.42648
С	3.25704	4.14431	0.53132
Н	2.23482	4.50384	0.66510
С	4.30542	5.05838	0.47131
Н	4.10143	6.12512	0.56192
С	5.61190	4.60770	0.30461
Н	6.43525	5.31844	0.25384
С	5.85779	3.23935	0.22314
Н	6.87853	2.87306	0.11898
С	4.80689	2.32924	0.29228

Н	5.01765	1.26084	0.26996
С	2.95015	0.23276	-1.26223
Н	3.74148	0.87554	-1.69615
Н	2.48780	-0.28512	-2.11453
С	3.61997	-0.77304	-0.36071
С	4.95714	-1.04908	-0.64601
Н	5.43447	-0.46595	-1.43969
С	5.69618	-2.01255	0.03569
С	7.16368	-2.23567	-0.31908
С	7.93288	-0.91771	-0.14689
Н	7.86314	-0.55234	0.88610
Н	7.53675	-0.13207	-0.80310
Н	8.99642	-1.04859	-0.39056
С	7.27733	-2.68933	-1.78036
Н	6.74811	-3.63739	-1.94050
Н	8.32854	-2.83531	-2.06568
Н	6.84584	-1.94920	-2.46555
С	7.81893	-3.29343	0.56702
Н	7.78903	-3.01231	1.62738
Н	8.87261	-3.41953	0.28678
Н	7.33074	-4.27091	0.46457
С	5.03140	-2.70286	1.05168
Н	5.58352	-3.45101	1.61371
С	3.69757	-2.47326	1.39291
С	3.05451	-3.21541	2.56770
С	3.99677	-4.23469	3.21071
Н	4.30854	-5.01242	2.50152
Н	3.48239	-4.73426	4.04199
Н	4.90119	-3.76556	3.61842
С	1.80226	-3.98445	2.12339
Н	1.08035	-3.32592	1.63323
Н	1.31341	-4.45814	2.98832
Н	2.06508	-4.78252	1.41565
С	2.69437	-2.18246	3.64535
Н	3.60511	-1.74317	4.07341
Н	2.12882	-2.65016	4.46521
Н	2.09465	-1.37313	3.22144
С	2.95240	-1.49859	0.66102
Н	-0.43619	-1.99262	3.01246
Н	0.09964	-0.31837	2.91611
С	-0.47104	-1.02497	3.53163

Н	0.04967	-1.12378	4.48794
С	-1.86866	-0.58968	3.75298
Ν	-2.72698	-0.67068	2.68433
Н	-4.67577	-0.13137	0.79947
С	-2.36129	-0.15545	4.97443
С	-4.07728	-0.45826	2.82901
С	-4.92143	-0.76920	1.65456
С	-3.70365	0.16012	5.13401
С	-4.55689	-0.02075	4.05348
Н	-5.97909	-0.64340	1.90241
Н	-4.74088	-1.80228	1.32524
Н	1.37700	-3.28381	-0.81932
Н	2.26581	-4.54287	-1.70841
С	1.82459	-3.54500	-1.78757
Н	2.62246	-2.81457	-1.97013
С	0.79028	-3.52069	-2.84562
Ν	0.19174	-2.31568	-3.10663
Н	-1.80685	-0.47777	-3.19550
С	0.39060	-4.62735	-3.57968
С	-0.81133	-2.17712	-4.02681
С	-1.41022	-0.82867	-4.15737
С	-0.60466	-4.52427	-4.54338
С	-1.20339	-3.29031	-4.75534
Н	-2.22531	-0.84322	-4.88687
Н	-0.66074	-0.08421	-4.45321
Н	-2.00595	-3.16651	-5.47824
0	-1.16105	-2.73795	-0.64482
С	-2.23599	-3.57375	-0.82039
С	-3.29691	-2.94159	-1.71186
С	-3.89859	-3.64624	-2.75528
Н	-3.59268	-4.67813	-2.94078
С	-4.86314	-3.04773	-3.56567
Н	-5.31323	-3.61308	-4.38150
С	-5.25186	-1.73102	-3.33261
Н	-6.00647	-1.26077	-3.96135
С	-4.66680	-1.02028	-2.28479
Н	-4.96262	0.00936	-2.08606
С	-3.69489	-1.61994	-1.49265
Н	-3.24926	-1.06554	-0.66445
С	-2.84071	-4.02138	0.51704
С	-2.03060	-4.02914	1.65442

Н	-0.99424	-3.71525	1.54282
С	-2.53857	-4.38913	2.89741
Н	-1.88620	-4.37718	3.77214
С	-3.87730	-4.75792	3.02664
Η	-4.28187	-5.03237	4.00006
С	-4.68925	-4.78210	1.89577
Н	-5.73554	-5.07463	1.98118
С	-4.17277	-4.42104	0.65114
Н	-4.82432	-4.42428	-0.22364
Н	-1.91563	-4.50684	-1.34455
0	-2.19920	2.90126	2.48766
Н	-2.41561	4.81670	1.67568
0	-0.72369	1.41427	1.57602
С	-1.03439	2.53628	1.90793
С	-1.79195	4.33438	2.43847
Η	-0.13709	4.28701	0.91453
Н	-2.92135	5.00879	4.14032
С	-0.43093	3.90633	1.89920
С	-1.88714	4.98748	3.78186
Н	-1.27498	4.45880	4.52170
Н	-1.52909	6.02162	3.71605
Н	0.40184	4.01984	2.60416
Н	-1.66219	-0.08418	5.80438
Н	-5.62529	0.16059	4.14157
Н	-4.08381	0.50721	6.09115
Н	0.87595	-5.57740	-3.37004
Н	-0.91551	-5.39631	-5.11347

Figure S22. Labeled ball and stick image of BBL-2. Hydrogen atoms and tert-butyl groups were removed for clarity.

Table S23.	Cartesian	coordinates	of BBL-2 .	EM06L	(solvent	corrected)) = -3363.9	979013 H	Hartree
(-3363.9882	295)								

Atom	Χ	Y	Ζ
La	-0.55102	-0.15261	-0.16517
0	0.46320	-2.14622	0.60328
0	-0.04192	2.08142	-0.61283
0	-1.82687	-1.65489	-1.85942
0	-0.51214	0.25360	2.35186
Ν	2.10524	0.57597	0.67419
С	1.66304	-2.67556	0.66811
С	1.88973	-4.05417	0.37058
С	0.72381	-4.98775	0.02287
С	0.16655	-4.63228	-1.36151
Н	-0.15714	-3.58650	-1.41898
Н	-0.69467	-5.27290	-1.59964
Н	0.91988	-4.81503	-2.14142
С	-0.40816	-4.88713	1.05815
Н	-0.03643	-5.09148	2.07170
Н	-1.18893	-5.62843	0.83142
Н	-0.85840	-3.89121	1.05683
С	1.15582	-6.45647	-0.02344
Н	1.88612	-6.65289	-0.81872

Н	0.28222	-7.08955	-0.22479
Н	1.59562	-6.78550	0.92679
С	3.20294	-4.53204	0.37732
Н	3.37342	-5.57500	0.12556
С	4.31294	-3.74906	0.70615
С	5.74258	-4.28590	0.71915
С	5.82779	-5.71621	0.18963
Н	5.25904	-6.41771	0.81259
Н	6.87174	-6.05436	0.18200
Н	5.44440	-5.79290	-0.83653
С	6.28780	-4.26475	2.15347
Н	6.28109	-3.25013	2.57043
Н	7.32302	-4.63213	2.18617
Н	5.68161	-4.89810	2.81290
С	6.63327	-3.39580	-0.15771
Н	6.26996	-3.37161	-1.19532
Н	7.66801	-3.76547	-0.17234
Н	6.65637	-2.36345	0.21305
С	4.05717	-2.42708	1.07508
Н	4.88112	-1.78755	1.40091
С	2.77833	-1.87382	1.05574
С	2.58281	-0.48483	1.60037
Н	1.82750	-0.51220	2.40018
Н	3.53313	-0.15506	2.06287
С	2.98382	0.75595	-0.50454
Н	2.48362	1.49493	-1.14640
Н	2.96511	-0.20311	-1.02951
С	4.43482	1.12847	-0.29108
С	5.42930	0.15906	-0.46392
Н	5.13496	-0.85905	-0.72394
С	6.77908	0.46797	-0.31988
Н	7.53155	-0.30535	-0.47270
С	7.16243	1.76602	0.00620
Н	8.21632	2.01451	0.12158
С	6.18713	2.74802	0.16229
Н	6.47677	3.77272	0.39200
С	4.83979	2.43498	0.00633
Н	4.09026	3.21959	0.09073
С	1.97974	1.81681	1.47656
Н	2.93722	1.99477	2.00516
Н	1.24404	1.57826	2.25784

С	1.60596	3.09395	0.76840
С	2.23786	4.26160	1.19467
Н	2.99167	4.17094	1.98264
С	1.97534	5.51230	0.64047
С	2.73806	6.73881	1.13596
С	4.24553	6.51008	0.95363
Н	4.49269	6.33523	-0.10189
Н	4.59247	5.63863	1.52378
Н	4.81944	7.38161	1.29805
С	2.44644	6.95868	2.62611
Н	1.37765	7.14148	2.79502
Н	3.00372	7.82365	3.01216
Н	2.73126	6.08442	3.22444
С	2.35071	8.00682	0.37699
Н	2.56507	7.92169	-0.69600
Н	2.91816	8.86416	0.76105
Н	1.28409	8.23923	0.48937
С	1.02580	5.55536	-0.38420
Н	0.81201	6.51351	-0.84939
С	0.33963	4.43002	-0.84190
С	-0.69632	4.53689	-1.96310
С	-0.83006	5.96109	-2.50543
Н	-1.15740	6.66968	-1.73360
Н	-1.58110	5.97827	-3.30602
Н	0.11171	6.33309	-2.92903
С	-2.07542	4.12013	-1.43261
Н	-2.04060	3.11392	-1.00534
Н	-2.82421	4.12980	-2.23984
Н	-2.41841	4.81176	-0.65016
С	-0.28964	3.63763	-3.14052
Н	0.67191	3.96346	-3.55813
Н	-1.03787	3.69679	-3.94461
Н	-0.18879	2.59360	-2.83081
С	0.61153	3.16402	-0.24256
Н	-2.32201	1.18637	-1.97163
Н	-1.40100	0.40908	-3.28895
С	-2.39681	0.75165	-2.97969
Н	-2.71993	1.55686	-3.64630
С	-3.38152	-0.35452	-2.98918
N	-3.01605	-1.53198	-2.38358
Н	-2.47329	-4.23347	-2.31678

С	-4.62428	-0.27439	-3.59593
С	-3.85417	-2.61864	-2.35607
С	-3.32001	-3.85175	-1.73381
С	-5.49776	-1.35141	-3.58558
С	-5.09998	-2.52243	-2.95612
Н	-4.09603	-4.62050	-1.68274
Н	-2.92752	-3.66173	-0.72917
Н	-2.01281	2.24135	1.31943
Н	-2.50812	3.44630	2.54455
С	-1.87749	2.57156	2.36068
Н	-0.82382	2.86346	2.45652
С	-2.23882	1.47321	3.28692
Ν	-1.51339	0.31455	3.19171
Н	-0.81633	-2.21525	2.69631
С	-3.26953	1.52696	4.21539
С	-1.76718	-0.78478	3.97418
С	-0.88764	-1.95768	3.76034
С	-3.56257	0.43596	5.02235
С	-2.79926	-0.71802	4.89583
Н	-1.25595	-2.81882	4.32554
Н	0.14248	-1.73704	4.07030
Н	-3.00508	-1.60005	5.49704
0	-2.80557	0.31209	0.24757
С	-4.05627	0.30017	0.80015
С	-4.36997	-0.98149	1.55808
С	-5.47113	-1.03701	2.42067
Н	-6.11256	-0.15822	2.51410
С	-5.74878	-2.18161	3.15929
Н	-6.61063	-2.20227	3.82562
С	-4.92075	-3.29958	3.05299
Н	-5.13270	-4.19647	3.63320
С	-3.82109	-3.25834	2.20048
Н	-3.16174	-4.12271	2.11306
С	-3.55178	-2.10630	1.46118
Н	-2.68495	-2.07038	0.79666
С	-5.12337	0.69297	-0.22932
С	-4.93036	1.91708	-0.88218
Н	-4.03342	2.49075	-0.64958
С	-5.85620	2.40410	-1.79496
Н	-5.68511	3.36599	-2.27906
С	-7.01096	1.67036	-2.07407

Н	-7.74925	2.05229	-2.77810
С	-7.21097	0.44920	-1.43922
Н	-8.10463	-0.13683	-1.65473
С	-6.27175	-0.03924	-0.52814
Н	-6.44437	-1.00039	-0.04391
Н	-4.14071	1.10663	1.57218
0	2.34354	-1.02946	-4.07610
Н	3.35412	-2.78020	-4.64071
0	0.87020	-0.77156	-2.35752
С	1.82788	-1.31233	-2.86291
С	3.44332	-2.01140	-3.86626
Н	2.39400	-3.37838	-2.42396
Н	4.97811	-0.86891	-4.84993
С	2.82848	-2.37872	-2.51778
С	4.77521	-1.32320	-3.87487
Н	4.81399	-0.53629	-3.11138
Н	5.57333	-2.04304	-3.65961
Н	3.43222	-2.19300	-1.61930
Н	-4.89748	0.66610	-4.06672
Н	-5.74797	-3.39493	-2.92214
Н	-6.47706	-1.27217	-4.05060
Н	-3.84650	2.44659	4.27848
Н	-4.37962	0.48194	5.73826

Figure S23. Labeled ball and stick image of BBL-3. Hydrogen atoms and tert-butyl groups were removed for clarity.

Table S24. Cartesian coordinates of **BBL-3**. EM06L (solvent corrected) = -3363.973649 Hartree (-3363.981260)

Atom	Χ	Y	Ζ
La	-0.33137	-0.05414	-0.20177
0	-0.27518	1.95514	-1.52422
0	0.97568	-1.84586	0.58132
0	0.29245	0.84094	2.15569
0	-0.01983	-1.08988	-2.55957
Ν	2.36868	0.33697	-0.71164
С	0.52512	2.99241	-1.36823
С	0.04076	4.33570	-1.31967
С	-1.40847	4.66582	-1.69398
С	-2.40372	4.01359	-0.73088
Н	-2.35567	2.92508	-0.79814
Н	-3.42770	4.34315	-0.96819
Н	-2.19321	4.29518	0.31239
С	-1.69217	4.15090	-3.11364
Н	-1.05504	4.65904	-3.84877
Н	-2.74027	4.34023	-3.38957
Н	-1.50353	3.07563	-3.18158
С	-1.68316	6.17098	-1.68768
Н	-1.57149	6.60932	-0.68707
Н	-2.71515	6.35522	-2.01381
Н	-1.01874	6.71549	-2.37019

С	0.93962	5.35359	-0.98712
Н	0.55726	6.36679	-0.90213
С	2.30615	5.14987	-0.77773
С	3.27230	6.27722	-0.41951
С	2.54432	7.58126	-0.09655
Н	1.99385	7.97051	-0.96222
Н	3.26585	8.35096	0.20591
Н	1.82751	7.45181	0.72585
С	4.22574	6.52770	-1.59540
Н	4.79790	5.62491	-1.84316
Н	4.94412	7.32486	-1.35760
Н	3.67147	6.82604	-2.49408
С	4.10189	5.87546	0.80663
Н	3.45705	5.65327	1.66836
Н	4.78930	6.68237	1.09652
Н	4.70579	4.98291	0.60300
С	2.78167	3.85441	-0.98748
Н	3.85525	3.65501	-0.94410
С	1.93441	2.78905	-1.27652
С	2.51869	1.46238	-1.66664
Н	2.03234	1.11665	-2.59181
Н	3.59261	1.59660	-1.89679
С	3.01459	0.60737	0.59439
Н	2.83222	-0.27754	1.21687
Н	2.44398	1.42828	1.04723
С	4.47733	0.98371	0.61786
С	4.84687	2.24455	1.09732
Н	4.06386	2.93579	1.41376
С	6.18208	2.62933	1.17820
Н	6.43893	3.61591	1.56357
С	7.18287	1.75124	0.77082
Н	8.22935	2.04662	0.82694
С	6.83377	0.48561	0.30693
Н	7.60931	-0.21880	0.00763
С	5.49718	0.10191	0.23881
Н	5.24552	-0.90864	-0.07712
С	2.86589	-0.88050	-1.39995
Н	3.84469	-0.65500	-1.86529
Н	2.16895	-1.04242	-2.23557
С	3.01754	-2.13993	-0.59255
С	4.12106	-2.94377	-0.86978

Н	4.82462	-2.59570	-1.63258
С	4.36434	-4.14610	-0.20872
С	5.60758	-4.96252	-0.55201
С	6.85954	-4.10163	-0.32815
Н	6.92423	-3.76469	0.71462
Н	6.85337	-3.20680	-0.96373
Н	7.77248	-4.66717	-0.56150
С	5.55295	-5.38711	-2.02540
Н	4.67600	-6.01752	-2.22049
Н	6.44994	-5.95752	-2.30464
Н	5.48985	-4.51776	-2.69175
С	5.73158	-6.21910	0.30773
Н	5.80711	-5.97604	1.37520
Н	6.63425	-6.77886	0.03078
Н	4.87281	-6.88975	0.17596
С	3.45131	-4.50810	0.78584
Н	3.63330	-5.42162	1.34535
С	2.32415	-3.74964	1.10996
С	1.41550	-4.13373	2.28030
С	1.85911	-5.43232	2.95777
Н	1.82157	-6.28844	2.27120
Н	1.18872	-5.65468	3.79816
Н	2.87863	-5.36486	3.35861
С	-0.04242	-4.33248	1.83816
Н	-0.47153	-3.42262	1.40913
Н	-0.66263	-4.62960	2.69636
Н	-0.11942	-5.13201	1.08804
С	1.49399	-3.01577	3.33279
Н	2.50705	-2.94864	3.75119
Н	0.80090	-3.21589	4.16392
Н	1.24617	-2.04400	2.89174
С	2.06540	-2.55568	0.37439
Н	-0.53621	-1.21640	3.51913
Н	-2.24193	-1.18442	4.05602
С	-1.49910	-0.70571	3.41135
Н	-1.82509	-0.86271	2.37019
С	-1.39755	0.73941	3.72161
N	-0.46555	1.46036	3.01597
Н	1.66457	3.06097	2.42935
С	-2.21089	1.41078	4.62235
С	-0.33615	2.82035	3.14871

С	0.66257	3.48188	2.27879
С	-2.10373	2.78551	4.79479
С	-1.16229	3.48099	4.04580
Н	0.69145	4.55817	2.47360
Н	0.42529	3.33375	1.21445
Н	-0.18366	-3.27805	-1.00812
Н	-0.12934	-4.79715	-1.94365
С	-0.01986	-3.71059	-2.00652
Н	1.01652	-3.46397	-2.26938
С	-0.98450	-3.14634	-2.97499
Ν	-0.94608	-1.78720	-3.15972
Н	-1.70433	0.81216	-3.06502
С	-1.92952	-3.88180	-3.67787
С	-1.84412	-1.13189	-3.96266
С	-1.68953	0.33742	-4.05441
С	-2.84787	-3.25725	-4.51163
С	-2.80351	-1.87413	-4.63509
Н	-2.47979	0.76916	-4.67560
Н	-0.70926	0.60511	-4.46884
Н	-3.51431	-1.33914	-5.26027
0	-2.29466	-1.20591	-0.54168
С	-3.41392	-1.94994	-0.82606
С	-4.64386	-1.06709	-1.02889
С	-5.94777	-1.53560	-0.84250
Н	-6.10046	-2.54342	-0.45542
С	-7.04704	-0.73322	-1.14554
Н	-8.05465	-1.11760	-0.99004
С	-6.86276	0.55235	-1.65367
Н	-7.72173	1.17301	-1.90413
С	-5.56639	1.02979	-1.84421
Н	-5.40218	2.03036	-2.24898
С	-4.47192	0.23090	-1.52190
Н	-3.45481	0.60218	-1.65497
С	-3.59547	-3.05873	0.19799
С	-3.33063	-4.38377	-0.14983
Н	-3.06196	-4.61212	-1.18349
С	-3.39588	-5.40469	0.79670
Н	-3.17600	-6.43126	0.50599
С	-3.73289	-5.10960	2.11373
Н	-3.78144	-5.90251	2.85860
С	-4.00571	-3.78989	2.47300

Н	-4.27409	-3.55186	3.50253
С	-3.93853	-2.77523	1.52440
Н	-4.14793	-1.74488	1.80821
Н	-3.29394	-2.47085	-1.80482
0	-4.17385	0.51224	1.95504
Н	-6.04062	0.74785	1.04185
0	-2.28676	1.39246	1.01135
С	-3.45979	1.44716	1.29510
С	-5.42591	1.29717	1.76566
Н	-4.82976	2.69487	0.10401
Н	-6.42785	0.59903	3.53383
С	-4.59755	2.41252	1.13276
С	-6.11510	1.54161	3.07267
Н	-5.45513	2.06902	3.77206
Н	-7.00996	2.15436	2.91712
Н	-4.48313	3.31287	1.74766
Н	-2.94596	0.82812	5.17333
Н	-1.05111	4.55841	4.13920
Н	-2.74623	3.30749	5.50000
Н	-1.93769	-4.96043	-3.53758
Н	-3.59456	-3.83735	-5.04776

Figure S24. Labeled ball and stick image of BBL-4. Hydrogen atoms and tert-butyl groups were removed for clarity.

Table S25. Cartesian coordinates of BBL-4.	EM06L (solvent corrected) = -3363.97282 Hartree (-
3363.984779)	

Atom	Χ	Y	Ζ
La	-0.36139	-0.31032	-0.16423
0	-0.60748	1.93262	-0.82440
0	1.15391	-2.01340	0.32010
0	0.01099	0.32234	2.39375
0	0.38867	-0.63828	-2.66658
Ν	2.23166	0.62398	-0.56795
С	0.06697	3.06129	-0.94023
С	-0.58460	4.32569	-0.83248
С	-2.11253	4.41430	-0.71793
С	-2.61757	3.76230	0.57590
Н	-2.28271	2.72449	0.65978
Н	-3.71714	3.76303	0.60384
Н	-2.26867	4.31477	1.46038
С	-2.76992	3.70776	-1.91360
Н	-2.38226	4.09523	-2.86528
Н	-3.85704	3.87353	-1.90191
Н	-2.58461	2.63095	-1.88264
С	-2.60829	5.86236	-0.72043
Н	-2.22046	6.43537	0.13185
Н	-3.70375	5.87352	-0.65032
Н	-2.32943	6.39411	-1.63924

С	0.19764	5.48291	-0.87324
Н	-0.29954	6.44340	-0.77329
С	1.58334	5.47391	-1.04896
С	2.43021	6.74315	-1.10235
С	1.60803	8.00154	-0.82795
Н	0.82268	8.15003	-1.57983
Н	2.25617	8.88691	-0.85012
Н	1.12654	7.96643	0.15804
С	3.06746	6.87488	-2.49234
Н	3.69533	6.00712	-2.72876
Н	3.70011	7.77160	-2.55157
Н	2.29864	6.94994	-3.27160
С	3.54734	6.65755	-0.05412
Н	3.13344	6.54612	0.95745
Н	4.17112	7.56221	-0.06832
Н	4.20386	5.79849	-0.24034
С	2.18478	4.22709	-1.21469
Н	3.26123	4.16667	-1.39449
С	1.47288	3.03118	-1.16032
С	2.20631	1.76489	-1.52342
Н	1.77578	1.34176	-2.44382
Н	3.25102	2.04154	-1.76265
С	2.69218	1.00188	0.78887
Н	2.64266	0.08298	1.38978
Н	1.93212	1.68474	1.18444
С	4.05184	1.64549	0.93038
С	4.16848	3.03091	1.09064
Н	3.26603	3.64375	1.09030
С	5.41511	3.63150	1.24868
Н	5.48187	4.71042	1.38414
С	6.57080	2.85454	1.24806
Н	7.54594	3.32326	1.37140
С	6.46835	1.47278	1.10812
Н	7.36401	0.85318	1.13031
С	5.22032	0.87520	0.95903
Н	5.14358	-0.20881	0.88661
С	3.07788	-0.42484	-1.19415
Н	4.04428	0.03206	-1.48290
H	2.56506	-0.67204	-2.13469
С	3.38539	-1.68419	-0.42320
С	4.69039	-2.16926	-0.49991

Н	5.42244	-1.56952	-1.04840
С	5.09422	-3.35984	0.10064
С	6.55184	-3.80367	0.00241
С	7.46288	-2.69800	0.55513
Н	7.21818	-2.46953	1.60086
Н	7.36224	-1.76839	-0.01924
Н	8.51819	-3.00124	0.51066
С	6.91533	-4.05433	-1.46721
Н	6.29441	-4.85120	-1.89590
Н	7.96833	-4.35339	-1.56656
Н	6.76539	-3.15416	-2.07618
С	6.82099	-5.08420	0.79089
Н	6.59337	-4.96101	1.85753
Н	7.87923	-5.36299	0.70647
Н	6.22666	-5.92717	0.41600
С	4.11179	-4.08337	0.78163
Н	4.39689	-5.01655	1.25956
С	2.78197	-3.66996	0.87746
С	1.73776	-4.52684	1.59964
С	2.34170	-5.79787	2.20029
Н	2.76756	-6.45655	1.43235
Н	1.55807	-6.36384	2.72069
Н	3.13024	-5.57637	2.93112
С	0.64079	-4.96697	0.61743
Н	0.09193	-4.11095	0.21348
Н	-0.08271	-5.62412	1.11995
Н	1.07482	-5.52690	-0.22218
С	1.10668	-3.72987	2.75004
Н	1.84859	-3.52451	3.53410
Н	0.28175	-4.29882	3.20679
Н	0.71711	-2.77510	2.38665
С	2.40020	-2.43947	0.26629
Н	-1.56939	-1.70953	2.82784
Н	-0.31666	-1.73266	4.04458
С	-1.35516	-1.43126	3.86796
Н	-2.01119	-1.99989	4.53441
С	-1.52812	0.02266	4.08362
N	-0.76960	0.85152	3.29256
Н	-0.05818	4.07728	2.72575
С	-2.37918	0.58099	5.02495
С	-0.81058	2.21747	3.43590

С	0.09235	3.00557	2.56937
С	-2.46683	1.95918	5.17853
С	-1.66890	2.76510	4.37878
Н	-0.07787	2.78267	1.50882
Н	1.13990	2.75876	2.78336
Н	0.58121	-3.07330	-1.69693
Н	0.81505	-4.35847	-2.91591
С	0.79207	-3.27698	-2.75567
Н	1.79273	-2.86495	-2.93800
С	-0.22436	-2.64419	-3.62387
Ν	-0.37214	-1.28745	-3.50537
Н	-1.53027	1.04848	-2.86415
С	-1.03100	-3.32498	-4.52434
С	-1.31887	-0.59179	-4.21007
С	-1.40212	0.86018	-3.93816
С	-1.98510	-2.65208	-5.27653
С	-2.12415	-1.28033	-5.10473
Н	-2.23492	1.30870	-4.48759
Н	-0.47051	1.37491	-4.20714
Н	-2.87073	-0.71516	-5.65746
0	-2.02386	-1.42640	-1.30067
С	-3.14221	-2.17149	-1.53138
С	-4.42081	-1.33766	-1.40248
С	-5.68648	-1.93128	-1.33907
Н	-5.76735	-3.01954	-1.34951
С	-6.83785	-1.15133	-1.25338
Н	-7.81512	-1.63081	-1.20513
С	-6.74103	0.23977	-1.22917
Н	-7.64100	0.85106	-1.16852
С	-5.48423	0.84122	-1.28605
Н	-5.39082	1.92749	-1.25716
С	-4.33728	0.05620	-1.37757
Н	-3.35027	0.51701	-1.41294
С	-3.17505	-3.39795	-0.62955
С	-3.37534	-4.68043	-1.13646
Н	-3.52834	-4.80728	-2.21030
С	-3.36624	-5.79269	-0.29403
Н	-3.51328	-6.78869	-0.70954
С	-3.15751	-5.63278	1.07205
Н	-3.14173	-6.50019	1.72982
С	-2.94900	-4.35374	1.59053

Η	-2.76755	-4.22181	2.65835
С	-2.95543	-3.25279	0.74359
Н	-2.77375	-2.24835	1.13087
Н	-3.15166	-2.56026	-2.57810
0	-4.28466	1.40628	2.24364
Н	-5.32593	0.62035	3.87331
0	-2.59996	0.21903	1.25747
С	-3.69749	0.29211	1.76055
С	-5.41857	0.60521	2.78053
Н	-4.53884	-1.48054	2.78040
Н	-6.90844	2.14559	2.66178
С	-4.81255	-0.64012	2.13355
С	-6.73971	1.12365	2.30678
Η	-6.78710	1.11520	1.21275
Н	-7.54844	0.49116	2.69064
Η	-5.35410	-1.02134	1.25721
Η	-2.96806	-0.09553	5.64131
Н	-1.69588	3.84845	4.46539
Н	-3.13840	2.39596	5.91319
Н	-0.89766	-4.40060	-4.61259
Н	-2.61811	-3.18952	-5.97841

Figure S25. Labeled ball and stick image of BBL-5. Hydrogen atoms and tert-butyl groups were removed for clarity.

Table S26.	Cartesian	coordinates	of BBL-5 .	EM06L	(solvent	corrected) = -3363.9	74963 H	Iartree
(-3363.9860)73)								

Atom	Χ	Y	Ζ
La	-0.62172	-0.60401	-0.39980
0	-0.92977	1.24507	-1.84392
0	1.15044	-1.75165	0.65454
0	-1.02147	1.24602	1.32501
0	0.22822	-1.96040	-2.56292
Ν	1.78410	1.01578	-0.34426
С	-0.74330	2.54023	-1.71305
С	-1.78943	3.47829	-1.93541
С	-3.16462	3.00136	-2.41742
С	-3.83393	2.07963	-1.38637
Н	-3.19817	1.22288	-1.14259
Н	-4.78215	1.68753	-1.78107
Н	-4.06675	2.62122	-0.45883
С	-3.01021	2.23230	-3.73956
Н	-2.51726	2.85625	-4.49727
Н	-3.99684	1.94566	-4.12949
Н	-2.42053	1.32331	-3.59572
С	-4.12127	4.16900	-2.66620
Н	-4.31433	4.74742	-1.75250
Н	-5.08579	3.78420	-3.02104

Н	-3.74002	4.86020	-3.42898
С	-1.51039	4.83329	-1.73601
Н	-2.31661	5.54879	-1.87691
С	-0.25108	5.32114	-1.36701
С	0.03769	6.80264	-1.13230
С	-1.22923	7.65449	-1.19352
Н	-1.70311	7.61331	-2.18208
Н	-0.98913	8.70515	-0.98638
Н	-1.97216	7.32960	-0.45266
С	1.02026	7.31014	-2.19604
Н	1.96044	6.74489	-2.17200
Н	1.26241	8.37023	-2.03567
Н	0.59664	7.20692	-3.20287
С	0.67377	6.98950	0.25269
Н	0.01546	6.61252	1.04745
Н	0.87185	8.05162	0.45334
Н	1.62932	6.45540	0.33131
С	0.77688	4.38432	-1.23601
Н	1.79464	4.71796	-1.01987
С	0.55332	3.01883	-1.38525
С	1.70194	2.05693	-1.40785
Н	1.65619	1.48694	-2.35070
Н	2.65293	2.62175	-1.42740
С	2.01132	1.59852	0.99904
Н	2.12960	0.74452	1.68118
Н	1.07864	2.10806	1.26058
С	3.15180	2.57173	1.16734
С	2.86419	3.93011	1.33920
Н	1.82009	4.24928	1.34478
С	3.87896	4.86811	1.50296
Н	3.62930	5.91972	1.64196
С	5.20983	4.45811	1.50002
Н	6.00792	5.18775	1.62700
С	5.51183	3.10600	1.35410
Н	6.54895	2.77320	1.37604
С	4.49245	2.17060	1.19520
Н	4.73519	1.11062	1.12134
С	2.86717	0.09599	-0.76950
Н	3.75338	0.69090	-1.06808
Н	2.50053	-0.34206	-1.71069
С	3.34026	-0.99927	0.14848
С	4.71467	-1.21973	0.20928
---	----------	----------	----------
Н	5.36451	-0.53049	-0.33876
С	5.27706	-2.28194	0.91363
С	6.79195	-2.46860	0.92071
С	7.46992	-1.19076	1.43438
Н	7.13561	-0.94781	2.45108
Н	7.24337	-0.32689	0.79660
Н	8.56219	-1.30785	1.45453
С	7.27104	-2.74499	-0.51169
Н	6.81648	-3.66388	-0.90617
Н	8.36269	-2.86561	-0.54775
Н	7.00352	-1.92359	-1.18908
С	7.22860	-3.63406	1.80649
Н	6.92096	-3.49016	2.84997
Н	8.32170	-3.72922	1.79236
Н	6.81056	-4.58819	1.46136
С	4.38848	-3.13937	1.56881
Н	4.80281	-3.97259	2.12895
С	2.99926	-2.99209	1.53325
С	2.08597	-4.01769	2.22358
С	2.88358	-5.05216	3.02031
Н	3.54493	-5.65243	2.38231
Н	2.19036	-5.74406	3.51492
Н	3.49853	-4.58460	3.79998
С	1.24256	-4.78159	1.19073
Н	0.58287	-4.10148	0.64115
Н	0.61241	-5.52635	1.69725
Н	1.87764	-5.31661	0.47166
С	1.12460	-3.32364	3.19521
Н	1.66911	-2.70622	3.92262
Н	0.54298	-4.07067	3.75437
Н	0.42936	-2.68587	2.64660
С	2.45100	-1.89883	0.79685
Н	-1.09941	-0.96775	2.67600
Н	0.55426	-0.41196	2.83576
С	-0.41843	-0.42899	3.34722
Н	-0.31164	-0.99135	4.27871
С	-0.90226	0.93824	3.61820
N	-1.16216	1.72827	2.52776
Н	-0.86613	3.83973	0.80381
С	-1.07149	1.47086	4.88742

С	-1.55852	3.03672	2.66316
С	-1.77878	3.79097	1.41354
С	-1.48481	2.78355	5.06402
С	-1.71995	3.55904	3.93735
Η	-2.11925	4.80831	1.62928
Н	-2.51537	3.28754	0.77682
Η	-0.17278	0.46255	-3.63408
Η	0.34752	0.57024	-5.34310
С	0.18458	-0.11167	-4.50358
Н	-0.62955	-0.80476	-4.74847
С	1.42811	-0.85270	-4.19836
Ν	1.35321	-1.81408	-3.21753
Н	1.66375	-3.27563	-1.03505
С	2.65161	-0.63468	-4.81755
С	2.42121	-2.62305	-2.91025
С	2.17925	-3.68310	-1.90870
С	3.77288	-1.37999	-4.47557
С	3.63987	-2.38615	-3.52796
Н	3.12222	-4.13972	-1.59380
Н	1.52484	-4.46394	-2.32123
0	-2.22148	-1.77655	0.79738
С	-3.15706	-2.20337	1.70887
С	-4.31353	-2.92318	1.02198
С	-4.76892	-4.16315	1.47086
Н	-4.28463	-4.62551	2.33326
С	-5.82364	-4.81326	0.83056
Н	-6.16546	-5.78164	1.19427
С	-6.43629	-4.22610	-0.27357
Н	-7.26007	-4.73033	-0.77666
С	-5.98576	-2.98736	-0.73278
Н	-6.45017	-2.52426	-1.60261
С	-4.93430	-2.34318	-0.08934
Η	-4.57850	-1.37796	-0.45119
С	-3.70946	-1.06034	2.55821
С	-3.99620	-1.24242	3.91213
Н	-3.80993	-2.21775	4.36683
С	-4.50224	-0.19865	4.68368
Η	-4.70981	-0.35639	5.74164
С	-4.73489	1.04658	4.10383
Н	-5.12210	1.86863	4.70471
С	-4.45900	1.23655	2.75067

Н	-4.64314	2.20717	2.28879
С	-3.94654	0.19249	1.98680
Н	-3.70485	0.34869	0.93552
Н	-2.71190	-2.93463	2.42314
0	-3.60581	-3.15537	-3.10334
Н	-4.16100	-4.80216	-1.93676
0	-2.47851	-1.36878	-2.22723
С	-2.69822	-2.55836	-2.30326
С	-3.28284	-4.48324	-2.51052
Н	-2.31922	-3.83103	-0.57301
Н	-3.69240	-5.65080	-4.27133
С	-2.20331	-3.81946	-1.66024
С	-2.87470	-5.46359	-3.56766
Η	-2.01167	-5.09200	-4.13273
Н	-2.59811	-6.41887	-3.10689
Н	-1.16938	-4.06111	-1.93220
Н	2.70231	0.14371	-5.57492
Н	4.48410	-3.00643	-3.23615
Н	4.73192	-1.18840	-4.94983
Н	-2.03578	4.59619	4.01993
Н	-1.61622	3.19638	6.06085
Н	-0.86633	0.82286	5.73590

Figure S26. Labeled ball and stick image of **BBL-6**. Hydrogen atoms and tert-butyl groups were removed for clarity.

Table S27. Cartesian coordinates of **BBL-6**. EM06L (solvent corrected) = -3363.971269 Hartree (-3363.980546)

Atom	Χ	Y	Z
La	0.60113	-0.54060	0.59402
0	1.20136	1.66181	1.29911
0	-1.33108	-1.76476	0.08399
0	0.97783	0.72628	-1.65923
0	-0.00653	-1.00315	3.04258
Ν	-1.75637	1.15380	0.36872
С	0.94871	2.88414	0.89396
С	1.99029	3.82781	0.65417
С	3.45435	3.45082	0.90900
С	3.89757	2.30984	-0.01693
Н	3.27577	1.41856	0.11348
Н	4.94382	2.03381	0.18428
Н	3.84899	2.61102	-1.07213
С	3.64203	3.00176	2.36695
Н	3.28738	3.77144	3.06541
Н	4.70995	2.83362	2.57526
Н	3.09403	2.07700	2.56528
С	4.40325	4.62688	0.66667

Н	4.37098	4.97871	-0.37291
Н	5.43517	4.31471	0.87409
Н	4.17875	5.48066	1.31877
С	1.64047	5.09961	0.19492
Н	2.43784	5.80870	-0.00901
С	0.32086	5.51755	-0.01115
С	-0.04204	6.91828	-0.50086
С	1.18810	7.71705	-0.92954
Н	1.87706	7.89194	-0.09385
Н	0.88473	8.69842	-1.31589
Н	1.74743	7.20362	-1.72323
С	-0.75626	7.68349	0.62132
Н	-1.66497	7.15937	0.94295
Н	-1.04927	8.68942	0.28905
Н	-0.10709	7.79168	1.49924
С	-0.98835	6.82149	-1.70508
Н	-0.52704	6.26289	-2.53144
Н	-1.24795	7.82194	-2.07878
Н	-1.92508	6.31476	-1.44346
С	-0.68361	4.59643	0.29261
Н	-1.73417	4.88380	0.20270
С	-0.39989	3.30156	0.71851
С	-1.52039	2.40014	1.14425
Н	-1.33295	2.05480	2.17596
Н	-2.45889	2.98714	1.17572
С	-2.02604	1.40509	-1.06388
Н	-2.17481	0.41311	-1.51655
Н	-1.09358	1.81396	-1.46373
С	-3.15236	2.33417	-1.45472
С	-2.84971	3.59094	-1.99019
Н	-1.80354	3.88908	-2.08187
С	-3.85429	4.45863	-2.40931
Н	-3.59048	5.42685	-2.83400
С	-5.19031	4.08300	-2.29726
Н	-5.97928	4.75864	-2.62415
С	-5.50768	2.82827	-1.78352
Н	-6.54829	2.51276	-1.71632
С	-4.49871	1.96082	-1.37454
Н	-4.75515	0.96383	-1.02191
С	-2.85472	0.43841	1.06434
Н	-3.67980	1.15044	1.26621

Н	-2.43670	0.19000	2.05733
С	-3.45132	-0.79917	0.45465
С	-4.83763	-0.93261	0.45878
Н	-5.43327	-0.08189	0.80243
С	-5.47760	-2.09876	0.04281
С	-7.00355	-2.15481	0.01181
С	-7.53910	-1.00527	-0.85441
Н	-7.14466	-1.06350	-1.87722
Н	-7.25613	-0.02667	-0.44556
Н	-8.63614	-1.03482	-0.91006
С	-7.55334	-1.99739	1.43573
Н	-7.20904	-2.81441	2.08271
Н	-8.65236	-2.00406	1.43728
Н	-7.22506	-1.05328	1.88831
С	-7.52364	-3.47039	-0.56534
Н	-7.16319	-3.63516	-1.58872
Н	-8.62068	-3.46016	-0.59532
Н	-7.21923	-4.33329	0.04035
С	-4.65762	-3.17229	-0.32029
Н	-5.13488	-4.10065	-0.62071
С	-3.26139	-3.12083	-0.30605
С	-2.41546	-4.37131	-0.58008
С	-3.28264	-5.57357	-0.96117
Н	-3.98905	-5.84788	-0.16684
Н	-2.63768	-6.44281	-1.14249
Н	-3.85914	-5.39280	-1.87819
С	-1.63260	-4.74796	0.68823
Н	-0.93527	-3.95101	0.96943
Н	-1.04567	-5.66075	0.51304
Н	-2.31240	-4.94058	1.53026
С	-1.40872	-4.14503	-1.71646
Н	-1.90033	-3.71860	-2.60193
Н	-0.94907	-5.09780	-2.01303
Н	-0.60422	-3.47643	-1.39983
С	-2.63822	-1.89000	0.05243
Н	1.05456	-1.79959	-2.34487
Н	-0.64452	-1.42454	-2.22191
С	0.18033	-1.51240	-2.94605
Н	-0.06148	-2.32707	-3.63374
С	0.37115	-0.24779	-3.67705
Ν	0.74674	0.84871	-2.93951

Н	0.50089	3.32525	-1.79656
С	0.15697	-0.09550	-5.03960
С	0.86764	2.09467	-3.50982
С	1.22928	3.21047	-2.61076
С	0.29351	1.14081	-5.65390
С	0.64216	2.23288	-4.87104
Н	1.29214	4.14834	-3.17055
Н	2.18416	3.02550	-2.10633
Н	0.91475	1.47072	3.36950
Н	1.08047	1.95444	5.08803
С	0.87335	1.12001	4.41206
Н	1.67114	0.37117	4.49688
С	-0.43834	0.51567	4.72692
Ν	-0.80218	-0.58470	3.98851
Н	-2.15719	-2.25753	2.34688
С	-1.31094	0.97717	5.70213
С	-1.96457	-1.27628	4.23423
С	-2.20015	-2.48589	3.41656
С	-2.51588	0.33273	5.94852
С	-2.82540	-0.80429	5.21382
Н	-3.17442	-2.92530	3.64869
Н	-1.41432	-3.23185	3.58924
0	1.84675	-2.27930	-0.28153
С	2.94878	-3.06887	-0.47407
С	4.13244	-2.31153	-1.06684
С	5.39803	-2.90763	-1.11263
Н	5.51080	-3.93654	-0.76304
С	6.50388	-2.21031	-1.58876
Н	7.48314	-2.68865	-1.60276
С	6.35870	-0.90000	-2.04861
Н	7.22235	-0.34958	-2.41875
С	5.09893	-0.30762	-2.03401
Н	4.96966	0.71252	-2.39569
С	3.99573	-1.00778	-1.54472
Н	3.01424	-0.53218	-1.52028
С	2.56524	-4.28219	-1.31535
С	2.08021	-5.42951	-0.68466
Н	2.05432	-5.46043	0.40604
С	1.61965	-6.51384	-1.42610
Н	1.24410	-7.40098	-0.91627
С	1.63593	-6.46312	-2.81830

Н	1.27795	-7.30985	-3.40220
С	2.11563	-5.32242	-3.45903
Н	2.13587	-5.27677	-4.54755
С	2.57977	-4.24354	-2.71170
Н	2.96570	-3.35546	-3.21570
Н	3.31308	-3.47647	0.50129
0	4.55128	-1.73298	3.17917
Н	6.42738	-0.91483	3.63427
0	2.90110	-0.70423	1.97920
С	4.06433	-0.91151	2.21964
С	5.94705	-1.40992	2.78327
Н	5.59595	0.60525	1.86569
Н	6.78274	-3.35722	3.15936
С	5.40580	-0.46212	1.71568
С	6.67711	-2.64088	2.33818
Н	6.14177	-3.12662	1.51398
Η	7.67890	-2.37618	1.97996
Н	5.61572	-0.72497	0.67208
Н	-1.01672	1.85755	6.26788
Н	-3.74889	-1.35244	5.38283
Н	-3.19814	0.70453	6.70862
Н	0.74534	3.22617	-5.30047
Н	0.12109	1.25415	-6.72109
Н	-0.13382	-0.97798	-5.60351

Figure S27. Labeled ball and stick image of **BBL-7**. Hydrogen atoms and tert-butyl groups were removed for clarity.

Table S28. Cartesian coordinates of **BBL-7**. EM06L (solvent corrected) = -3363.983569 Hartree (-3363.993457)

Atom	Χ	Y	Ζ
La	-0.86225	-0.15962	-0.76006
0	-0.92873	2.25396	-0.89238
0	0.04251	-2.09498	-1.76029
0	0.41963	0.07979	1.42867
0	-3.20018	0.07178	-1.90355
Ν	1.83806	0.55414	-1.43821
С	-0.00776	3.15389	-0.59907
С	-0.27829	4.30047	0.20924
С	-1.71065	4.63138	0.63813
С	-2.27639	3.52967	1.54473
Н	-2.14296	2.54094	1.09371
Н	-3.35017	3.68917	1.72445
Н	-1.77765	3.53177	2.52310
С	-2.59674	4.77505	-0.60745
Н	-2.23540	5.58898	-1.24991
Н	-3.63293	5.00687	-0.32020
Н	-2.59666	3.85173	-1.19169
С	-1.80327	5.94687	1.41337
Н	-1.24371	5.91248	2.35724

Н	-2.85209	6.15307	1.66355
Н	-1.42799	6.79662	0.82887
С	0.79701	5.09661	0.61806
Н	0.59175	5.93231	1.28260
С	2.12432	4.86297	0.24310
С	3.31475	5.64691	0.78794
С	2.90026	6.64162	1.87062
Н	2.21579	7.40751	1.48439
Н	3.78254	7.15947	2.26794
Н	2.40169	6.13958	2.71093
С	4.00066	6.41453	-0.34923
Н	4.34068	5.73467	-1.14068
Н	4.87899	6.96278	0.01900
Н	3.31448	7.13938	-0.80500
С	4.32274	4.65911	1.39652
Н	3.85689	4.05256	2.18662
Н	5.17698	5.19220	1.83636
Н	4.71678	3.96299	0.64532
С	2.34092	3.82737	-0.66436
Н	3.34965	3.63641	-1.04061
С	1.31703	2.98991	-1.09190
С	1.62767	1.89020	-2.05992
Н	0.79675	1.75727	-2.76554
Н	2.50813	2.17561	-2.66069
С	2.76446	0.56543	-0.30415
Н	2.68670	-0.42149	0.16879
Н	2.35627	1.28046	0.42024
С	4.24251	0.86633	-0.44540
С	4.99421	0.70456	0.72737
Н	4.48480	0.35859	1.63065
С	6.35717	0.96536	0.76160
Н	6.91223	0.82741	1.68855
С	7.01161	1.39498	-0.39214
Н	8.08078	1.59826	-0.37561
С	6.28335	1.56002	-1.56436
Н	6.78097	1.89413	-2.47349
С	4.91201	1.30139	-1.59219
Н	4.37235	1.44329	-2.52478
С	2.19477	-0.44692	-2.48141
Н	3.10836	-0.13136	-3.01324
Н	1.37365	-0.42652	-3.20972

С	2.38327	-1.83774	-1.95896
С	3.65924	-2.32986	-1.71031
Н	4.51046	-1.66384	-1.87870
С	3.87135	-3.62236	-1.22933
С	5.28141	-4.05386	-0.83788
С	5.80915	-3.08405	0.23080
Н	5.14148	-3.06345	1.10471
Н	5.87633	-2.05773	-0.15205
Н	6.81085	-3.37966	0.57376
С	6.20829	-3.99688	-2.05854
Н	5.86840	-4.68412	-2.84349
Н	7.23607	-4.27368	-1.78508
Н	6.23918	-2.98879	-2.49053
С	5.31577	-5.46890	-0.26461
Н	4.68227	-5.56007	0.62764
Н	6.34022	-5.73427	0.02652
Н	4.97569	-6.21488	-0.99415
С	2.74472	-4.44313	-1.10737
Н	2.88974	-5.47220	-0.78668
С	1.43879	-4.01003	-1.35662
С	0.24121	-4.95567	-1.23667
С	0.67144	-6.40365	-0.99420
Н	1.33031	-6.77601	-1.78936
Н	-0.21493	-7.05075	-0.96554
Н	1.19469	-6.52528	-0.03661
С	-0.56385	-4.92906	-2.54457
Н	-0.89559	-3.91562	-2.78651
Н	-1.44657	-5.58011	-2.46189
Н	0.04476	-5.29670	-3.38091
С	-0.65978	-4.54960	-0.06152
Н	-0.13836	-4.69074	0.89508
Н	-1.56329	-5.17902	-0.03695
Н	-0.97757	-3.50187	-0.11815
С	1.24102	-2.64206	-1.70234
Н	0.32900	-2.45191	1.71671
Н	1.73833	-2.27116	0.67082
С	1.42591	-2.39997	1.71690
Н	1.83519	-3.35188	2.06826
С	1.89760	-1.28744	2.56437
Ν	1.32622	-0.05647	2.35029
Н	1.21302	2.61844	1.71145

С	2.87010	-1.40698	3.54805
С	1.68837	1.04885	3.08327
С	0.99839	2.31093	2.74386
С	3.26507	-0.31293	4.30513
С	2.66189	0.91518	4.06160
Н	1.30461	3.11719	3.41727
Н	-0.08933	2.18261	2.79190
Н	-2.50629	-2.61296	-1.51250
Н	-3.75632	-3.63226	-2.24252
С	-3.42689	-2.59714	-2.11302
Н	-3.15421	-2.17331	-3.08690
С	-4.48018	-1.79814	-1.44649
Ν	-4.28471	-0.44385	-1.37440
Н	-3.79099	1.95484	-0.33777
С	-5.64212	-2.32650	-0.90459
С	-5.18345	0.39360	-0.77031
С	-4.81502	1.82808	-0.71283
С	-6.58491	-1.50714	-0.29669
С	-6.34590	-0.14208	-0.23870
Н	-5.50484	2.37374	-0.06213
Н	-4.83198	2.29216	-1.70870
0	-2.30739	-1.21993	0.69345
С	-3.00765	-1.89429	1.65983
С	-4.14901	-1.06655	2.23911
С	-5.27100	-1.68327	2.79651
Н	-5.33037	-2.77408	2.79684
С	-6.30950	-0.92770	3.33284
Н	-7.18274	-1.42492	3.75467
С	-6.23271	0.46476	3.33210
Н	-7.04189	1.05844	3.75550
С	-5.11023	1.08970	2.79206
Н	-5.03520	2.17750	2.79482
С	-4.08015	0.32651	2.24811
Н	-3.21086	0.80277	1.79251
С	-2.09188	-2.34727	2.79296
С	-1.84642	-3.69893	3.02840
Н	-2.34905	-4.44373	2.40932
С	-0.94945	-4.10367	4.01746
Н	-0.75900	-5.16467	4.17599
С	-0.29809	-3.15244	4.79589
Н	0.40513	-3.46166	5.56861

С	-0.55452	-1.79616	4.58388
Н	-0.05297	-1.04493	5.19524
С	-1.44068	-1.39896	3.59051
Н	-1.63123	-0.33886	3.41585
Н	-3.46849	-2.82085	1.23916
0	-2.35672	0.87108	-5.12036
Н	-2.70442	2.83489	-5.77745
0	-0.91310	0.21749	-3.47525
С	-1.66975	1.02414	-3.96876
С	-3.00170	2.19851	-4.93734
Н	-2.76038	2.41918	-2.71951
Н	-4.92941	1.65952	-5.73691
С	-2.19602	2.39150	-3.65521
С	-4.48907	2.04899	-4.81330
Н	-4.72950	1.35919	-3.99555
Н	-4.94992	3.02004	-4.59688
Н	-1.44141	3.18407	-3.63793
Н	-5.78506	-3.40278	-0.96467
Н	-7.03649	0.53139	0.26248
Н	-7.48687	-1.92827	0.14033
Н	2.93857	1.80361	4.62406
Н	4.02889	-0.41483	5.07160
Н	3.30511	-2.39088	3.70544

Figure S28. Labeled ball and stick image of **BBL-8**. Hydrogen atoms and tert-butyl groups were removed for clarity.

Table S29. Cartesian coordinates of **BBL-8**. EM06L (solvent corrected) = -3363.976264 Hartree (-3363.986002)

Atom	Χ	Y	Ζ
La	0.92660	0.03546	-0.87398
0	0.37231	-2.29660	-0.91831
0	0.35432	2.06887	-1.93795
0	-0.25227	0.03644	1.44161
0	3.06815	-0.41094	-2.20099
Ν	-1.96901	-0.17531	-1.29906
С	-0.63463	-2.99530	-0.44017
С	-0.44849	-4.11553	0.42500
С	0.96454	-4.60191	0.75975
С	1.75286	-3.51777	1.51019
Н	1.68264	-2.54795	1.00585
Н	2.81565	-3.79277	1.58260
Н	1.38000	-3.39442	2.53591
С	1.69823	-4.96594	-0.53992
Н	1.19255	-5.80594	-1.03511
Н	2.73011	-5.28020	-0.32410
Н	1.72498	-4.11815	-1.23225
С	0.96148	-5.84759	1.64689
Н	0.48338	-5.66153	2.61767

Н	1.99493	-6.16071	1.84467
Н	0.44479	-6.69095	1.17101
С	-1.57940	-4.74320	0.95419
Н	-1.42948	-5.57420	1.63894
С	-2.89260	-4.35121	0.67009
С	-4.11827	-5.00943	1.29866
С	-3.73758	-6.05234	2.34847
Н	-3.15857	-6.87849	1.91664
Н	-4.64127	-6.48329	2.79819
Н	-3.13991	-5.61233	3.15828
С	-4.95103	-5.69445	0.20737
Н	-5.27342	-4.97553	-0.55631
Н	-5.85273	-6.15803	0.63174
Н	-4.37193	-6.47837	-0.29714
С	-4.98430	-3.93830	1.97667
Н	-4.41919	-3.39940	2.75060
Н	-5.86321	-4.39264	2.45538
Н	-5.34600	-3.19238	1.25833
С	-3.05249	-3.30565	-0.24169
Н	-4.05667	-2.97957	-0.52886
С	-1.96525	-2.64142	-0.80174
С	-2.18753	-1.55113	-1.80850
Н	-1.49128	-1.66404	-2.64886
Н	-3.20868	-1.64108	-2.22255
С	-2.79489	0.08997	-0.11585
Н	-2.57285	1.11680	0.20692
Н	-2.40646	-0.56917	0.66537
С	-4.29972	-0.08784	-0.11845
С	-4.89336	-0.24685	1.14126
Н	-4.24928	-0.28343	2.02335
С	-6.26946	-0.36604	1.28847
Н	-6.69880	-0.49151	2.28166
С	-7.09405	-0.34705	0.16527
Н	-8.17244	-0.44837	0.27234
С	-6.52297	-0.20221	-1.09427
Н	-7.15361	-0.19043	-1.98169
С	-5.14169	-0.06879	-1.23479
Н	-4.72643	0.04491	-2.23201
С	-2.11611	0.81374	-2.40722
Н	-3.07064	0.66269	-2.93851
Н	-1.31856	0.57662	-3.12444

С	-2.00543	2.24138	-1.97169
С	-3.14973	2.96871	-1.66332
Н	-4.11696	2.46392	-1.73906
С	-3.08910	4.28792	-1.21743
С	-4.36029	4.97072	-0.72156
С	-4.92249	4.15386	0.45393
Н	-4.17677	4.05694	1.25587
Н	-5.20365	3.13838	0.14464
Н	-5.81731	4.63228	0.87693
С	-5.41090	5.01910	-1.83720
Н	-5.05021	5.60018	-2.69521
Н	-6.34112	5.48240	-1.47976
Н	-5.66039	4.01333	-2.19773
С	-4.09860	6.39474	-0.23615
Н	-3.37593	6.41435	0.59021
Н	-5.03007	6.84842	0.12594
Н	-3.70765	7.03444	-1.03769
С	-1.82522	4.88967	-1.20250
Н	-1.75930	5.93477	-0.90953
С	-0.64184	4.21804	-1.52194
С	0.71418	4.92907	-1.50007
С	0.57038	6.44028	-1.30840
Н	-0.05483	6.89509	-2.08762
Н	1.55996	6.91321	-1.35696
Н	0.13540	6.69592	-0.33331
С	1.43059	4.70661	-2.84032
Н	1.55845	3.64204	-3.05200
Н	2.42020	5.18618	-2.82821
Н	0.85498	5.15199	-3.66226
С	1.58123	4.40815	-0.34345
Н	1.15166	4.70023	0.62462
Н	2.59237	4.84095	-0.39619
Н	1.67986	3.31628	-0.34826
С	-0.71987	2.82704	-1.82669
Н	0.45905	2.52483	1.59259
Н	-0.97429	2.52546	0.56105
С	-0.62628	2.69316	1.58993
Н	-0.83110	3.73761	1.84294
С	-1.29621	1.78408	2.53870
N	-1.03689	0.44259	2.39510
Н	-1.68419	-2.20615	1.94773

С	-2.15811	2.19549	3.54515
С	-1.60879	-0.49430	3.22447
С	-1.29449	-1.90860	2.93227
С	-2.74347	1.28035	4.40834
С	-2.45509	-0.06794	4.23710
Н	-1.72737	-2.56758	3.69091
Н	-0.21205	-2.06863	2.87907
Н	3.00706	2.23133	-1.68788
Н	4.42779	3.09012	-2.32708
С	3.90707	2.12809	-2.30836
Н	3.55204	1.88395	-3.31658
С	4.79127	1.06796	-1.77528
Ν	4.27513	-0.20105	-1.73936
Н	3.36840	-2.48976	-0.59388
С	6.08498	1.26994	-1.32151
С	4.98599	-1.26429	-1.25300
С	4.27400	-2.56193	-1.21352
С	6.84450	0.21251	-0.83607
С	6.28306	-1.05547	-0.81000
Н	4.92000	-3.34102	-0.79710
Н	3.92092	-2.86072	-2.20724
0	2.61262	0.81805	0.49587
С	3.50573	1.40614	1.35356
С	4.57671	0.44229	1.85035
С	5.81356	0.91507	2.29386
Н	6.01825	1.98734	2.24877
С	6.78079	0.03962	2.77887
Н	7.74388	0.42422	3.11356
С	6.51732	-1.32872	2.83731
Н	7.27080	-2.01609	3.21960
С	5.28164	-1.80858	2.40793
Н	5.06407	-2.87635	2.45374
С	4.32158	-0.92664	1.91734
Н	3.36033	-1.28866	1.55367
С	2.78924	2.01274	2.55567
С	2.81442	3.38478	2.79926
Н	3.38970	4.02954	2.13260
С	2.09591	3.93769	3.85993
Н	2.11612	5.01420	4.02689
С	1.35202	3.11386	4.69831
Н	0.78622	3.53931	5.52647

С	1.33455	1.73547	4.47293
Н	0.75233	1.08572	5.12740
С	2.04387	1.19111	3.40957
Н	2.01873	0.11592	3.22244
Н	4.04237	2.24808	0.85330
0	1.58627	-2.80658	-3.74223
Н	1.46962	-4.06126	-5.42298
0	0.66544	-0.71194	-3.48779
С	0.69924	-1.81751	-3.97416
С	0.81461	-3.73838	-4.60704
Н	-0.09106	-2.21551	-5.97632
Н	1.06323	-5.51292	-3.41734
С	-0.13650	-2.59569	-4.95168
С	0.26108	-4.87882	-3.80688
Н	-0.32165	-4.50765	-2.95328
Η	-0.39111	-5.49653	-4.43513
Η	-1.18369	-2.72616	-4.65833
Н	6.48038	2.28287	-1.34935
Н	6.82762	-1.90457	-0.40494
Н	7.85261	0.37791	-0.46450
Н	-2.89571	-0.82720	4.87928
Н	-3.41465	1.61023	5.19703
Н	-2.34893	3.26218	3.63625

6. Buried Volume (%V_{bur}) Calculations

All buried volume calculations of the free ligands and metal complexes were performed using SambVca 2.1.¹⁹ Abbreviations for tabulated values are provided within SambVca 2.1, but several are provided again below for convenience.

<u>Free ligands</u>: Structures of the free ligands, OPPh₃, PyO, and LO, were obtained from the deposited X-ray structures found in the Cambridge Structural Database (CSD; Structure codes: OPPh₃ = TPEPHO,²⁰ PyO = PYRDNO11,²¹ LO = ACOHAC²²). In the case of LO, the interstitial water molecule was removed. These coordinates were then uploaded via the web applet, and the oxygen of the oxide donor was selected as the center of the sphere. The *z*-axis and *xz*-plane were defined as follows: *z*-axis = O_{PyO} & N_{PyO}, O_{LO} & N_{LO}, O_{OPPh3} & POPPh₃ // *xz*-plane = OPPh₃: P & C_{OPPh3} (2-Ar), PyO: C (2,6-Ar), LO: C (2,6-Me₂). The distance of the coordination point from the center of the sphere was chosen to be 2.28 Å, with a scaling of 1.17 for all bond radii, and a sphere radius of 3.5 Å.

<u>Metal complexes</u>: Structures of the metal complexes, **1-La(OPPh_3)**₂, **1-La(LO)**₂, **2-La(OPPh_3)**₂, **2-La(LO)**₂, were obtained from the DFT optimized structures (SI, section 5). La was selected as the center of the sphere, and the *z*-axis and *xz*-plane were defined as follows: *z*-axis = La & ^{Bn}N // *xz*-plane = O_{Ar} & O_{Ar} . Bond radii were scaled to 1.17 and two sphere radii were used to capture the % *V*_{bur} related to the primary (3.5 Å) and secondary (6.5 Å) coordination spheres. Note: La and the N(SiHMe₂)₂ / OCHPh₂ groups were excluded from the volume calculations.

Quadrant	Vfree	$V_{ m bur}$	V_{total}	%V _{free}	%V _{bur}
SW	36.2	8.7	44.9	80.7	19.3
NW	36.4	8.4	44.9	81.2	18.8
NE	38.5	6.3	44.9	85.9	14.1
SE	39	5.9	44.9	86.9	13.1

Table S30. % *V*_{bur}(*r*_{3.5}) of OPPh₃ (CSD: TPEPHO)

 $%V_{\text{free}} = 83.7\% // \% V_{\text{bur}} = 16.3\%$

Table S31. % Vbur(r3.5) of PyO (CSD: ACOHAC)

Quadrant	$V_{ m free}$	$V_{ m bur}$	V_{total}	$\% V_{\rm free}$	$\% V_{ m bur}$
SW	39.3	5.5	44.9	87.7	12.3
NW	39.2	5.6	44.9	87.4	12.6
NE	39.3	5.5	44.9	87.7	12.3
SE	39.2	5.6	44.9	87.4	12.6

 $%V_{\text{free}} = 87.6\% // \% V_{\text{bur}} = 12.4\%$

Table S32. % *V*_{bur}(*r*_{3.5}) of LO (CSD: PYRDNO11)

Quadrant	$V_{\rm free}$	$V_{ m bur}$	V_{total}	$\% V_{ m free}$	$\% V_{ m bur}$
SW	37.9	7	44.9	84.4	15.6
NW	37.7	7.2	44.9	84	16
NE	37.8	7.1	44.9	84.2	15.8
SE	37.6	7.3	44.9	83.8	16.2

% V_{free} = 84.1% // % V_{bur} = 15.9%

Quadrant	$V_{\rm free}$	$V_{ m bur}$	V_{total}	$\% V_{\rm free}$	$\% V_{ m bur}$
SW	10.8	34	44.9	24.2	75.8
NW	16.5	28.4	44.9	36.8	63.2
NE	11.8	33	44.9	26.4	73.6
SE	16.9	27.9	44.9	37.7	62.3

 $%V_{\text{free}} = 31.3\% // \% V_{\text{bur}} = 68.7\%$

Table S33b. % *V*_{bur}(*r*_{6.5}) of 1-La(OPPh₃)₂

Quadrant	$V_{ m free}$	$V_{ m bur}$	$\mathbf{V}_{\text{total}}$	$\%V_{ m free}$	$%V_{ m bur}$
SW	63.4	223.9	287.4	22.1	77.9
NW	91.5	195.8	287.4	31.9	68.1
NE	87.7	199.6	287.4	30.5	69.5
SE	174.2	113.2	287.4	60.6	39.4

 $%V_{\text{free}} = 36.3\% // \% V_{\text{bur}} = 63.7\%$

Table S34a. % *V*_{bur}(*r*_{3.5}) of 2-La(OPPh₃)₂

Quadrant	$V_{ m free}$	$V_{ m bur}$	$\mathbf{V}_{\text{total}}$	$\% V_{\rm free}$	$\% V_{ m bur}$
SW	4.7	40.2	44.9	10.4	89.6
NW	11.3	33.5	44.9	25.2	74.8
NE	15.6	29.3	44.9	34.7	65.3
SE	20	24.8	44.9	44.7	55.3

 $%V_{\text{free}} = 28.8\% // \% V_{\text{bur}} = 71.2\%$

Table S34b. % *V*_{bur}(*r*_{6.5}) of 2-La(OPPh₃)₂

Quadrant	$V_{ m free}$	$V_{ m bur}$	V _{total}	$\% V_{ m free}$	$\% V_{ m bur}$
SW	49.6	237.8	287.4	17.3	82.7
NW	64.2	223.2	287.4	22.3	77.7
NE	94	193.4	287.4	32.7	67.3
SE	200.9	86.4	287.4	69.9	30.1

 $%V_{\text{free}} = 35.6\% // \% V_{\text{bur}} = 64.4\%$

Quadrant	$V_{ m free}$	$V_{ m bur}$	$\mathbf{V}_{\text{total}}$	$\% V_{\rm free}$	$\% V_{ m bur}$
SW	8.1	36.8	44.9	18	82
NW	13.5	31.4	44.9	30.1	69.9
NE	11.1	33.8	44.9	24.7	75.3
SE	18.7	26.2	44.9	41.6	58.4

Table S35a. % *V*_{bur}(*r*_{3.5}) of 1-La(LO)₂

 $%V_{\text{free}} = 28.6\% // \% V_{\text{bur}} = 71.4\%$

Table S35b. % *V*_{bur}(*r*_{6.5}) of 1-La(LO)₂

Quadrant	$V_{ m free}$	$V_{ m bur}$	V_{total}	$\% V_{\rm free}$	$\% V_{ m bur}$
SW	117.4	169.9	287.4	40.9	59.1
NW	106.1	181.3	287.4	36.9	63.1
NE	125.9	161.4	287.4	43.8	56.2
SE	185.6	101.7	287.4	64.6	35.4

 $%V_{\text{free}} = 46.5\% // \% V_{\text{bur}} = 53.5\%$

Table S36a. % *V*_{bur}(*r*_{3.5}) of 2-La(LO)₂

Quadrant	$V_{ m free}$	$V_{ m bur}$	V_{total}	%V _{free}	$\% V_{ m bur}$
SW	7	37.8	44.9	15.6	84.4
NW	11.3	33.6	44.9	25.2	74.8
NE	14.4	30.5	44.9	32.1	67.9
SE	9.3	35.5	44.9	20.8	79.2

 $%V_{\text{free}} = 23.4\% // \% V_{\text{bur}} = 76.6\%$

Table S36b. % *V*_{bur}(*r*_{6.5}) of 2-La(LO)₂

Quadrant	$V_{ m free}$	$V_{ m bur}$	$\mathbf{V}_{\text{total}}$	$%V_{ m free}$	$%V_{\rm bur}$
SW	156.7	130.7	287.4	54.5	45.5
NW	105.2	182.2	287.4	36.6	63.4
NE	143.2	144.2	287.4	49.8	50.2
SE	104.7	182.6	287.4	36.4	63.6

 $%V_{\text{free}} = 44.4\% // \% V_{\text{bur}} = 55.6\%$

7. References Cited.

(1) Save, M.; Schappacher, M.; Soum, A., Controlled Ring-Opening Polymerization of Lactones and Lactides Initiated by Lanthanum Isopropoxide, 1. General Aspects and Kinetics. *Macromolecular Chemistry and Physics* **2002**, *203*, 889-899.

(2) Bradley, D. C.; Ghotra, J. S.; Hart, F. A., Low co-ordination numbers in lanthanide and actinide compounds. Part I. The preparation and characterization of tris{bis(trimethylsilyl)-amido}lanthanides. *Journal of the Chemical Society, Dalton Transactions* **1973**, 1021-1023.

(3) Smith, A. R.; Livinghouse, T., Rapid and Efficient Procedure for the Synthesis of Group 3 Metal Tris[bis(dimethylsilyl)amide] THF Complexes. *Organometallics* **2013**, *32*, 1528-1530.

(4) Dong, X.; Robinson, J. R., The role of neutral donor ligands in the isoselective ring-opening polymerization of rac- β -butyrolactone. *Chemical Science* **2020**, *11*, 8184-8195.

(5) Zohuri, G. H.; Seyedi, S. M.; Sandaroos, R.; Damavandi, S.; Mohammadi, A., Novel Late Transition Metal Catalysts Based on Iron: Synthesis, Structures and Ethylene Polymerization. *Catalysis Letters* **2010**, *140*, 160-166.

(6) Duda, A.; Penczek, S., Mechanisms of Aliphatic Polyester Formation. In *Biopolymers Online*, Wiley VCH: 2002; Vol. 3b, pp 371-429.

(7) Li, W.; Ma, X.; Fan, W.; Tao, X.; Li, X.; Xie, X.; Zhang, Z., Ru-Catalyzed Asymmetric Hydrogenation of 3-Oxoglutaric Acid Derivatives via Solvent-Assisted Pinpoint Recognition of Carbonyls in Close Chemical Propinquity. *Organic Letters* **2011**, *13*, 3876-3879.

(8) Frisch, M. J. T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Pe-tersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.; P.; Izmaylov, A. F. B., J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;; Rendell, A. B., J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09, Revision D.01*, G09, Revision D.01; Wallingford, CT, 2009.

(9) Zhao, Y.; Truhlar, D. G., A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. *The Journal of Chemical Physics* **2006**, *125*, 194101.

(10) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *The Journal of Chemical Physics* **2010**, *132*, 154104.

(11) Dolg, M.; Stoll, H.; Savin, A.; Preuss, H., Energy-adjusted pseudopotentials for the rare earth elements. *Theoret. Chim. Acta* **1989**, *75*, 173-194.

(12) Dolg, M.; Stoll, H.; Preuss, H., A combination of quasirelativistic pseudopotential and ligand field calculations for lanthanoid compounds. *Theoret. Chim. Acta* **1993**, *85*, 441-450.

(13) (a) Rassolov, V. A.; Pople, J. A.; Ratner, M. A.; Windus, T. L., 6-31G* basis set for atoms K through Zn. *The Journal of Chemical Physics* **1998**, *109*, 1223-1229. (b) Petersson, G. A.; Bennett, A.; Tensfeldt, T. G.; Al-Laham, M. A.; Shirley, W. A.; Mantzaris, J., A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. *The Journal of Chemical Physics* **1988**, *89*, 2193-2218. (c) Petersson, G. A.; Al-Laham, M. A., A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. *The Journal of Chemical Physics* **1991**, *94*, 6081-6090.

(14) E.D. Glendening, A. E. R., J.E. Carpenter, F. Weinhold, , NBO Version 3.1. TCI , University of Wisconsin, Madison, 1998.

(15) (a) Weigend, F.; Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys Chem Chem Phys* **2005**, *7*, 3297-305. (b) Weigend, F., Accurate Coulomb-fitting basis sets for H to Rn. *Phys. Chem. Chem. Phys.* **2006**, *8*, 1057-1065.

(16) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem. B* **2009**, *113*, 6378-6396.

(17) Hanwell, M.; Curtis, D.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G., Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. *Journal of Cheminformatics* **2012**, *4*, 17 - 17.

(18) Zhao, Y.; Truhlar, D. G., The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theoretical Chemistry Accounts* **2008**, *120*, 215-241.

(19) Falivene, L.; Cao, Z.; Petta, A.; Serra, L.; Poater, A.; Oliva, R.; Scarano, V.; Cavallo, L., Towards the online computer-aided design of catalytic pockets. *Nature Chemistry* **2019**, *11*, 872-879.

(20) Bandoli, G.; Bortolozzo, G.; Clemente, D. A.; Croatto, U.; Panattoni, C., Crystal and molecular structure of triphenylphosphine oxide. *Journal of the Chemical Society A: Inorganic, Physical, Theoretical* **1970**, 2778-2780.

(21) Marsh, R. E.; Kapon, M.; Hu, S.; Herbstein, F. H., Some 60 new space-group corrections. *Acta Crystallographica Section B* **2002**, *58*, 62-77.

(22) Planas, J. G.; Mohamed, G. G.; Sillanpää, R.; Kivekäs, R.; Teixidor, F.; Viñas, C., Interplay of hydrogen bonding and π - π interactions in the molecular complex of 2,6-lutidine N-oxide and water. *Journal of Molecular Structure* **2006**, 787, 121-126.