Electronic Supplementary Information

Activator-induced quencher-detachment-based turn-on probe with a cationic substrate moiety for acetylcholinesterase

Masahiro Oe, Koji Miki,* Akito Masuda, Kohei Nogita and Kouichi Ohe*

Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

Index

1. Experimental Section	
1.1. Materials and Methods	S2
1.2. Synthesis	S3-S10
1.3. UV-vis and Fluorescence Spectra	S11-S13
1.4. Electrochemical Measurements	S14-S15
1.5. Theoretical Calculation	S16
1.6. Enzyme Assay	S17-S19
1.7. In Vitro Cell Experiment	S20
2. References	S21
3. Cartesian Coordinates of the Optimized Geometry	S22-S27
4. NMR Spectra	S28-S35

1. Experimental Section

1.1. Materials and Methods

Potassium carbonate (K₂CO₃), *N*,*N*-dimethylformamide (DMF), acetone, methanol (MeOH), hexane, ethyl acetate (AcOEt) *N*,*N*-diisopropylethylamine (EtN(*i*-Pr)₂), and sodium hydroxide (NaOH) were purchased from Nacalai Tesque (Japan). Pyridine, dimethylsulfoxide (DMSO), chloroform (CHCl₃), acetonitrile (MeCN), acetic acid (AcOH), choline chloride, Dulbecco's modified Eagle's medium (DMEM), Dulbecco's Phosphate-Buffer Saline (-) (D-PBS(-)), trifluoroacetic acid (TFA) and tetra-*n*-butylammonium hexafluorophosphate were purchased from FUJIFILM Wako Pure Chemicals Inc. (Japan). Dichloromethane (CH₂Cl₂) and diethyl ether (Et₂O) was purchased from Kishida Chemical Co., Ltd. (Japan). 1-[Bis(dimethylamino)methylene]-1*H*-1,2,3-triazolo[4,5-*b*]pyridinium 3-Oxide Hexafluorophosphate (HATU) and 1-hydroxybenzotriazole (HOBt) were purchased from WATANABE CHEMICAL IND., LTD. (Japan). Silica gel (SiO₂, 230–400 mesh) and Al₂O₃ (neutral, 40–160 μm) for column chromatography was purchased from Silicycle (Canada) and Oakwood Chemical (USA), respectively. Pyridine and DMF were distilled over CaH₂ under N₂ before use. MeOH was distilled over Mg under N₂ before use. All other materials were purchased and used without further purification.

Buffer aqueous solutions (pH 2.0–2.2) were prepared by dissolving hydrochloric acid (HCl) and potassium chloride (KCl) in water (MilliQ). Buffer aqueous solutions (pH 3.1–6.9) were prepared by dissolving citric acid and sodium dihydrogenphosphate (NaH₂PO₄) in water (MilliQ). Buffer aqueous solutions (pH 7.5–8.7) were prepared by dissolving NaH₂PO₄ and disodium hydrogenphosphate (Na₂HPO₄) in water (MilliQ). Buffer aqueous solutions (pH 9.0–11.0) were prepared by dissolving sodium bicarbonate (NaHCO₃) and sodium carbonate (Na₂CO₃) in water (MilliQ). All buffer aqueous solutions were stored in refrigerator and used within one week.

Purification of probes was performed by the instrument equipped with HPLC column oven, UV detector (GL-7450, GL Sciences Inc., Japan) and HPLC pump (GL-7410, GL Sciences Inc., Japan). Liquid chromatography-mass spectrometer (LC-MS) was carried out with LCMS-2020 (absorbance at 700 nm) with a reversed-phase column (Shim-pack XR-ODS II, 150×2.0 mm) (Shimadzu Industrial System Co., Ltd., Japan).

UV-vis absorption spectra of dyes were measured by UV-vis-NIR spectrophotometer (UH5300, Hitachi High-Technologies Co., Japan). Emission spectra of dyes were measured by fluorescence spectrophotometer (RF-6000, Shimadzu Co., Japan). High-resolution mass spectra were measured by Exactive Plus Orbitrap (ESI, Thermo Fisher Scientific Inc., USA). NMR spectra were recorded on JEOL JNM-ECZ 400 (400 MHz) or JEOL JNM-ECX 400 spectrometer (400 MHz). LSM 710 (Zeiss, Germany) was used for laser scanning confocal microscopy of SUIT-2 cells.

1.2. Synthesis Synthesis of CyCE2 and CyC2 Scheme S1

To a flame-dried Schlenk flask, $1c^{1}$ (1.5 g, 7.5 mmol), *S*-3-iodopropyl thioacetate (6)² (2.4 g, 9.8 mmol), and MeCN (8.0 mL) were successively added at room temperature under nitrogen atmosphere. After refluxing for 1 d, the organic solvent was removed under reduced pressure. The residue was dissolved in a small amount of CH₂Cl₂. After the solution was added to Et₂O, the product was gradually precipitated. The precipitate was washed with Et₂O. The volatiles were removed under reduced pressure to afford indole **2cb** (2.0 g, 4.6 mmol, 61%) as a red solid. **2cb**: mp 135.5–137.0 °C; IR(ATR) 2999, 2869, 2829, 1688, 1622, 1604, 1469, 1417, 1356, 1299, 1205, 1176, 1130, 10333, 958, 928, 836, 823, 771, 667, 623, 552, 511 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 1.70 (s, 6H), 2.21–2.29 (m, 2H), 2.31 (s, 3H), 3.02 (t, *J* = 7.3 Hz, 2H), 3.14 (s, 3H), 4.89 (t, *J* = 7.3 Hz, 2H), 7.52–7.57 (m, 2H), 7.94 (t, *J* = 8.7 Hz, 1H). HRMS (ESI) calcd for C₁₆H₂₁CINOS ([M⁺]) 310.1027, found 310.1027.

To a solution of indole $1b^3$ (0.41 g, 1.6 mmol) in MeCN (0.8 mL) was added 4^4 (0.46 g, 1.8 mmol) at room temperature. After refluxing for 5 d, the organic solvent was removed under reduced pressure. The residue was dissolved in a small amount of MeOH. After the solution was added to AcOEt, the product was gradually precipitated. The precipitate was washed with AcOEt. The volatiles were removed under reduced pressure to afford indole **2ba** (0.62 g, 1.5 mmol, 91%) as a green solid.

2ba: mp 142.5–144.0 °C; IR(ATR) 3450, 3028, 2868, 1721, 1616, 1562, 1439, 1407, 1168, 1120, 1033, 1008, 822, 765, 689, 613, 565 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆, 25 °C) δ 0.49–0.60 (m, 1H), 0.68–0.81 (m, 1H), 1.26–1.40 (m, 2H), 1.58 (s, 3H), 2.17 (t, *J* = 7.3 Hz, 2H), 2.24–2.33 (m, 2H), 2.98 (s, 3H), 5.80 (d, *J* = 17.0 Hz, 1H), 5.87 (d, *J* = 15.6 Hz, 1H), 7.37 (d, *J* = 7.8 Hz, 2H), 7.52–7.64 (m, 4H), 7.77–7.85 (m, 2H). HRMS (ESI) calcd for C₂₂H₂₅NO₅S ([M + H]⁺) 416.1526, found 416.1530.

To a solution of indole **2cb** (1.4 g, 3.2 mmol) in AcOH/Ac₂O (18 mL/7.8 mL) was added malonaldehyde dianilide hydrochloride (**5**)⁵ (1.0 g, 3.9 mmol) at room temperature. After stirring at 100 °C for 1 h, the crude solution was cooled to room temperature. After the solution was added to cold Et₂O, and kept it at 0 °C for 12 h. The precipitate was filtered. The volatile was removed under reduced pressure to afford **3cb** (1.4 g) as a purple solid. **3cb** was used for the next step without further purification.

In a flame-dried Schlenk flask, indole **2ba** (0.36 g, 0.87 mmol), **3cb** (0.64 g, 1.0 mmol), and pyridine (8.5 mL) were successively added at room temperature under nitrogen atmosphere. After stirring at 40 °C for 2 h, the organic solvent was removed under reduced pressure and the residue was subjected to column chromatography on SiO₂ (eluent: CH₂Cl₂-MeOH, v:v = 15:1) to afford a crude product. The organic solvents were removed under reduced pressure and the residue was dissolved in a small amount of MeOH. After adding Et₂O slowly, the product was gradually precipitated. The precipitate was washed with Et₂O. The volatiles were removed under reduced pressure to afford Cy5 derivative **proCyC2** (0.12 g, 0.16 mmol, 18%) as a red solid.

proCyC2: mp 120.0–122.0 °C; IR(ATR) 3421, 2972, 2867, 2827, 1683, 1573, 1488, 1455, 1373, 1327, 1212, 1171, 1100, 1033, 1007, 925, 792, 718, 674, 595, 562 cm⁻¹; ¹H NMR (400 MHz, CD₃OD, 25 °C) δ 0.59–0.70 (m, 1H), 0.91–1.02 (m, 1H), 1.42–1.52 (m, 2H), 1.73 (s, 3H), 1.73 (s, 3H), 1.75 (s, 3H), 2.03 (t, *J* = 7.3 Hz, 2H), 2.07–2.04 (m, 2H), 2.25 (dt, *J* = 12.8, 3.2 Hz, 1H), 2.31 (s, 3H), 2.51 (dt, *J* = 12.4, 3.7 Hz, 1H), 2.95 (t, *J* = 7.3 Hz, 2H), 4.13 (t, *J* = 7.3 Hz, 2H), 5.41 (s, 2H), 6.28 (d, *J* = 13.8 Hz, 1H), 6.33 (d, *J* = 13.8 Hz, 1H), 6.56 (dd, *J* = 12.4, 12.4 Hz, 1H), 7.26–7.30 (m, 3H), 7.35–7.41 (m, 4H), 7.50 (d, *J* = 7.3 Hz, 1H), 7.54 (d, *J* = 2.3 Hz, 1H), 7.83 (d, *J* = 8.7 Hz, 2H), 8.21–8.29 (m, 2H). ¹³C NMR (100 MHz, CD₃OD, 25 °C) δ 25.9, 26.3, 26.9, 26.9, 27.8, 28.4, 28.8, 30.6, 42.1, 44.1, 48.2, 50.8, 55.3, 105.1, 105.8, 112.1, 113.2, 123.6, 124.1, 126.5, 127.8, 127.9, 129.8, 130.0, 131.8, 138.5, 140.7, 142.3, 144.6, 144.8, 145.1, 146.2, 155.5, 156.1, 156.2, 174.0, 174.7, 197.0. HRMS (ESI) calcd for C₄₁H₄₄ClN₂O₆S₂ ([M – H]⁻) 759.2335, found 759.2331.

To a flame-dried Schlenk flask, Cy5 derivative **proCyC2** (88 mg, 0.12 mmol) and DMF (1.1 mL) were successively added at room temperature under nitrogen atmosphere. To this solution were added $EtN(i-Pr)_2$ (40 µL, 0.23 mmol), HATU (88 mg, 0.23 mmol), HOBt (16 mg, 0.12 mmol) and choline chloride (97 mg, 0.70 mmol) in order at 0 °C. After stirring at room temperature for 24 h, the reaction mixture was diluted with AcOEt. The precipitate was subjected to column chromatography on Al₂O₃ (eluent: CH₃Cl-MeOH, v:v = 15:1) to afford a crude product. The organic solvents were removed under reduced pressure and the residue was dissolved in a small amount of a solution

(CH₃Cl-MeOH, v:v = 15:1). After adding Et₂O slowly, the product was gradually precipitated. The precipitate was washed with Et₂O. The volatiles were removed under reduced pressure to afford Cy5 derivative **proCyCE2** (0.35 g, 35 μ mol, 30%) as a red solid.

proCyCE2: mp 135.0–137.0 °C; IR(ATR) 3649, 2968, 2867, 2828, 1734, 1685, 1489, 1455, 1374, 1328, 1217, 1100, 1052, 1033, 1007, 926, 794, 718, 685, 595, 563, 552 cm⁻¹; ¹H NMR (400 MHz, CD₃OD, 25 °C) δ 0.43–0.52 (m, 1H), 0.71–0.81 (m, 1H), 1.26–1.40 (m, 2H), 1.64 (s, 6H), 1.66 (s, 3H), 1.91–1.98 (m, 2H), 2.04–2.19 (m, 3H), 2.22 (s, 3H), 2.40 (dt, *J* = 9.1, 4.1 Hz, 1H), 2.86 (t, *J* = 6.9 Hz, 2H), 3.03 (s, 9H), 3.52 (t, *J* = 4.6 Hz, 2H), 4.05 (t, *J* = 6.9 Hz, 2H), 4.29–4.32 (m, 2H), 5.28 (d, *J* = 16.5 Hz, 1H), 5.34 (d, *J* = 16.9 Hz, 1H), 6.20 (d, *J* = 13.7 Hz, 1H), 6.28 (d, *J* = 13.3 Hz, 1H), 6.48 (dd, *J* = 12.3, 12.3 Hz, 1H), 7.18–7.26 (m, 3H), 7.31 (d, *J* = 7.8 Hz, 4H), 7.41 (d, *J* = 7.3 Hz, 1H), 7.46 (d, *J* = 1.8 Hz, 1H), 7.71 (d, *J* = 8.2 Hz, 2H), 8.15 (dd, *J* = 13.7, 12.3 Hz, 2H). ¹³C NMR (100 MHz, CD₃OD, 25 °C) δ 25.4, 26.1, 26.9, 27.7, 28.2, 28.8, 30.6, 34.3, 42.5, 44.1, 48.1, 50.8, 54.4, 55.2, 58.7, 66.0, 71.4, 105.1, 105.8, 112.1, 113.2, 126.6, 124.1, 126.5, 127.7, 127.8, 128.3, 129.8, 130.0, 131.9, 138.6, 140.7, 142.2, 144.5, 144.8, 146.5, 155.3, 156.0, 173.6, 173.7, 174.8, 197.0. HRMS (ESI) calcd for C₄₆H₅₇ClN₃O₆S₂ ([M⁺]) 846.3372, found 846.3379.

To a flame-dried Schlenk flask, Cy5 derivative **proCyCE2** (5.2 mg, 5.2 μ mol), K₂CO₃ (7.5 mg, 54 μ mol), choline chloride (7.3 mg, 52 μ mol) and DMF (0.35 mL) were successively added at room temperature under nitrogen atmosphere. After stirring at 40 °C for 5 h, the crude was purified by HPLC analysis (YMC-Triart Phenyl column 250 × 4.6 mm, acetonitrile/ammonium acetate buffer (pH 4.8)) to afford **CyCE2** (Figure S1b). HRMS (ESI) of **CyCE2** calcd for C₄₄H₅₄ClN₃O₅S₂ ([M + H]⁺) 804.3266, found 804.3263.

The similar deprotection procedure for **proCyC2** in MeOH was conducted to afford **CyC2**. HRMS (ESI) of **CyC2** calcd for $C_{39}H_{42}ClN_2O_5S_2$ ([M – H][–]) 717.2222, found 717.2229.

Fig. S1 LC-MS analysis of (a) a blank solution (MeCN-ammonium acetate buffer (pH 4.8), v:v = 1:1) and (b) a solution of **CyCE2** (MeCN-ammonium acetate buffer (pH 4.8), v:v = 1:1). Mobile phase: ammonium acetate buffer (pH 4.8) (phase A) and MeCN (phase B). The gradient program was set as follows: 0–6 min, 0–95% B; 6–7 min, 95–100% B; 7–9 min, 100% B; 9–10 min, 100–0% B (0.4 mL/min).

Synthesis of CyCE1

Scheme S3

To a flame-dried Schlenk flask, Cy5 derivative **proCyC1**⁶ (0.13 g, 0.18 mmol) and DMF (0.9 mL) were successively added at room temperature under nitrogen atmosphere. To this solution were added EtN(*i*-Pr)₂ (63 μ L, 0.36 mmol), HATU (0.14 g, 0.37 mmol), HOBt (26 mg, 0.19 mmol) and choline chloride (0.16 g, 1.2 mmol) in order at 0 °C. After stirring at room temperature for 24 h, the reaction mixture was diluted with CH₂Cl₂. The organic solutions was washed with saturated NaHCO₃ aqueous solution (10 mL×3) and dried over Na₂SO₄. The organic solvents were removed under reduced pressure and the residue was subjected to column chromatography on SiO₂ (eluent: CH₂Cl₂-MeOH, v:v = 7:1) to afford a crude product. The organic solvents were removed under reduced pressure and the feature of CH₂Cl₂. After adding Et₂O slowly, the product was gradually precipitated. The precipitate was washed with Et₂O. The volatiles were removed under reduced pressure to afford Cy5 derivative **proCyCE1** (0.17 g, 0.16 mmol, 86%) as a red solid.

proCyCE1: mp 61.0–62.5 °C; IR(ATR) 3670, 2971, 2869, 2826, 1739, 1480, 1448, 1374, 1332, 1228, 1217, 1148, 1103, 1063, 1042, 1016, 998, 924, 833, 772, 708, 626, 555 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆, 25 °C) δ 0.46–0.56 (m, 1H), 0.79–0.91 (m, 1H), 1.29 (t, *J* = 6.9 Hz, 3H), 1.34–1.42 (m, 2H), 1.68 (s, 3H), 1.69 (s, 6H), 1.89–1.96 (m, 2H), 2.14–2.21 (m, 3H), 2.34 (s, 3H), 2.42 (t, *J* = 13.3 Hz, 1H), 2.92 (t, *J* = 7.3 Hz, 2H), 3.05 (s, 9H), 3.54–3.57 (m, 2H), 4.11–4.20 (m, 4H), 4.32–4.35 (m, 2H), 6.28 (d, *J* = 13.7 Hz, 1H), 6.37 (d, *J* = 14.2 Hz, 1H), 6.57 (dd, *J* = 12.4, 12.4 Hz, 1H), 7.22–7.30 (m, 2H), 7.34–7.44 (m, 4H), 7.56 (d, *J* = 7.3 Hz, 1H), 7.64 (d, *J* = 7.3 Hz, 1H), 8.27–8.38 (m, 2H). ¹³C NMR (100 MHz, DMSO-d₆, 25 °C) δ 12.2, 23.7, 24.1, 26.7, 26.9, 27.0, 27.3, 27.3, 30.6, 32.9, 42.3, 49.2, 52.9, 53.1, 57.6, 63.7, 79.2, 103.0, 103.5, 110.5, 111.2, 122.4, 122.6, 124.5, 125.1, 125.7, 128.6, 128.6, 139.0, 141.4, 141.5, 142.9, 153.1, 154.6, 170.4, 172.0, 173.1, 195.2. HRMS (ESI) calcd for C₄₁H₅₇N₃O₃S ([M²⁺]) 335.7055, found 335.7059.

Cy5 derivative CyCE1 was synthesized in a similar manner to CyCE2 using Cy5 derivative proCyCE1 instead of proCyCE2. HRMS (ESI) of CyCE1 calcd for $C_{39}H_{54}N_3O_2S$ ([M⁺]) 628.3931, found 628.3931.

Synthesis of CyCE3

Scheme S4

In a flame-dried Schlenk flask, indole **2bb**⁶ (0.27 g, 0.56 mmol), **3ac**⁷ (0.36 g, 0.78 mmol), and pyridine (6.0 mL) were successively added at room temperature under nitrogen atmosphere. After stirring at 40 °C for 2 h, the organic solvent was removed under reduced pressure and the residue was subjected to column chromatography on SiO₂ (eluent: CH₂Cl₂-MeOH, v:v = 15:1) to afford a crude product. The organic solvents were removed under reduced pressure and the residue was dissolved in a small amount of MeOH. After adding Et₂O slowly, the product was gradually precipitated. The precipitate was washed with Et₂O. The volatiles were removed under reduced pressure to afford Cy5 derivative **proCyC3** (0.29 g, 0.42 mmol, 75%) as a red solid.

proCyC3: mp 165.0–166.5 °C; IR(ATR) 3423, 2971, 2907, 2828, 1738, 1685, 1565, 1489, 1449, 1374, 1333, 1216, 1179, 1128, 1101, 1085, 1034, 1016, 924, 796, 750, 708, 603, 553 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆, 25 °C) *δ* 0.42–0.53 (m, 1H), 0.75–0.85 (m, 1H), 1.28–1.36 (m, 2H), 1.63–1.80 (m, 15H), 1.86–1.94 (m, 2H), 1.96–2.06 (m, 2H), 2.14 (t, *J* = 12.8 Hz, 1H), 2.32 (s, 3H), 2.40 (t, *J* = 11.9 Hz, 1H), 2.92 (t, *J* = 7.8 Hz, 2H), 4.09–4.14 (m, 4H), 6.29 (d, *J* = 13.7 Hz, 1H), 6.44 (d, *J* = 13.7 Hz, 1H), 6.57 (dd, *J* = 12.4, 12.3 Hz, 1H), 7.19–7.28 (m, 2H), 7.31–7.42 (m, 3H), 7.46 (d, *J* = 7.8 Hz, 1H), 7.54 (d, *J* = 6.8 Hz, 1H), 7.62 (d, *J* = 7.3 Hz, 1H), 8.28 (dd, *J* = 12.8, 12.3 Hz, 1H), 8.34 (dd, *J* = 13.3, 12.8 Hz, 1H). HRMS (ESI) calcd for C₃₈H₄₈N₂O₆S₂ ([M – H]⁻) 691.2881, found 691.2872.

Cy5 derivative **proCyCE3** was obtained in the similar manner to **proCyCE2** using Cy5 derivative **proCyC3** instead of **proCyC2**.

proCyCE3: a red solid (85%): mp 88.0–89.5 °C; IR(ATR) 3386, 2969, 2936, 2868, 1735, 1682, 1573, 1479, 1447, 1375, 1332, 1215, 1176, 1127, 1099, 1055, 1033, 999, 923, 840, 794, 752, 707, 600, 557 cm⁻¹; ¹H NMR (400 MHz, CD₃OD, 25 °C) δ 0.57–0.70 (m, 1H), 0.89–0.98 (m, 1H), 1.46–1.54 (m, 2H), 1.71 (s, 3H), 1.73 (s, 3H), 1.76 (s, 3H), 1.89–1.95 (m, 2H), 1.99–2.08 (m, 4H), 2.16–2.27 (m, 3H), 2.36 (s, 3H), 2.46 (t, *J* = 13.3 Hz, 1H), 2.83–2.92 (m, 2H), 2.98 (t, *J* = 7.3 Hz, 2H), 3.15 (s, 9H), 3.63–3.66 (m, 2H), 4.13 (t, *J* = 7.4 Hz, 2H), 4.18–4.26 (m, 2H), 4.41–4.44 (m, 2H), 6.28 (d, *J* = 13.7 Hz, 1H), 6.46 (d, *J* = 13.8 Hz, 1H), 6.65 (dd, *J* = 12.8, 12.4 Hz, 1H), 7.23–7.31 (m, 3H), 7.37–7.46 (m, 4H), 7.51 (d, *J* = 7.3 Hz, 1H), 8.19 (dd, *J* = 13.3, 13.3 Hz, 1H), 8.28 (dd, *J* = 13.3, 12.8 Hz, 1H). ¹³C NMR (100 MHz, CD₃OD, 25 °C) δ 23.5, 25.2, 25.5, 27.1, 27.4, 27.9, 28.0, 28.2, 28.8, 30.7, 30.7, 34.2, 41.8, 43.7,

45.0, 50.9, 51.8, 54.4, 54.8, 58.8, 66.0, 71.5, 104.2, 105.5, 111.5, 112.6, 123.4, 123.5, 125.9, 126.7, 127.1, 129.8, 129.9, 140.5, 142.9, 143.4, 144.5, 154.3, 156.2, 172.1, 173.7, 175.8, 197.0. HRMS (ESI) calcd for C₄₃H₆₀N₃O₆S₂ ([M⁺]) 778.3918, found 778.3918.

Cy5 derivative CyCE3 was synthesized in a similar manner to CyCE2 using Cy5 derivative proCyCE3 instead of proCyCE2. HRMS (ESI) of CyCE3 calcd for $C_{41}H_{57}N_3O_5S_2$ ([M + H]⁺) 736.3812, found 736.3816.

Synthesis of CyCE4

Scheme S5

Indole **2aa** was obtained in the similar manner to **2ba** using indole $1a^8$ instead of **1b**.

2aa: a green solid (90%): mp 258.0–260.0 °C; IR(ATR) 3133, 3039, 1606, 1453, 1405, 1175, 1121, 1034, 1009, 826, 764, 687, 657, 612, 600, 553 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆, 25 °C) δ, 1.59 (s, 6H), 2.97 (s, 3H), 5.82 (s, 2H), 7.36–7.41 (m, 2H), 7.52-7.63 (m, 4H), 7.78-7.87 (m, 2H). HRMS (ESI) calcd for C₁₈H₁₉NO₃S ([M + H]⁺) 330.1158, found 330.1162.

To a solution of indole **2aa** (0.61 g, 1.9 mmol) in AcOH/Ac₂O (3.6 mL/8.1 mL) was added **5** (0.57 g, 2.2 mmol) at room temperature. After stirring at 100 °C for 1 h, the crude solution was cooled to room temperature. After the solution was added to cold Et_2O , and kept it at 0 °C for 12 h. The precipitate was filtered. The volatile was removed under reduced pressure to afford **3aa** (0.69 g) as a red solid. **3aa** was used for the next step without further purification.

In a flame-dried Schlenk flask, indole **2bb** (0.22 g, 0.45 mmol), **3aa** (0.31 g, 0.62 mmol), and pyridine (4.8 mL) were successively added at room temperature under nitrogen atmosphere. After stirring at 40 °C for 3 h, the organic solvent was removed under reduced pressure and the residue was subjected to column chromatography on SiO₂ (eluent: CH₃Cl-MeOH, v:v = 15:1) to afford a crude product. The organic solvents were removed under reduced pressure and the residue mount of MeOH. After adding Et₂O slowly, the product was

gradually precipitated. The precipitate was washed with Et_2O . The volatiles were removed under reduced pressure to afford Cy5 derivative **proCyC4** (80 mg, 0.11 mmol, 25%) as a red solid.

proCyC4: mp 113.0–115.0 °C; IR(ATR) 3427, 2973, 2868, 2827, 1681, 1628, 1561, 1449, 1374, 1331, 1212, 1129, 1101, 1034, 1006, 919, 790, 750, 708, 681, 595, 553 cm⁻¹; ¹H NMR (400 MHz, CD₃OD, 25 °C) δ 0.62–0.70 (m, 1H), 0.94–1.02 (m, 1H), 1.40–1.53 (m, 2H), 1.73 (s, 3H), 1.73 (s, 3H), 1.74 (s, 3H), 2.01–2.04 (m, 4H), 2.21 (dt, *J* = 13.3, 3.6 Hz, 1H), 2.31 (s, 3H), 2.50 (dt, *J* = 12.3, 4.1 Hz, 1H), 2.96 (t, *J* = 7.3 Hz, 2H), 4.18 (t, *J* = 7.3 Hz, 2H), 5.32–5.41 (m, 2H), 6.24 (d, *J* = 13.8 Hz, 1H), 6.34 (d, *J* = 13.7 Hz, 1H), 6.53 (dd, *J* = 12.3, 12.3 Hz, 1H), 7.24 (dd, *J* = 7.8, 6.4 Hz, 2H), 7.28 (d, *J* = 8.2 Hz, 1H), 7.32 (d, *J* = 5.9 Hz, 1H), 7.36 (d, *J* = 8.2 Hz, 2H), 7.38–7.44 (m, 2H) 7.49 (d, *J* = 7.3 Hz, 1H), 7.51 (d, *J* = 7.3 Hz, 1H), 7.83 (d, *J* = 8.2 Hz, 2H), 8.18–8.29 (m, 2H). HRMS (ESI) calcd for C₄₁H₄₆N₂O₆S₂ ([M – H]⁻) 725.2725, found 725.2723.

Cy5 derivative **proCyCE4** was obtained in the similar manner to **proCyCE2** using Cy5 derivative **proCyC4** instead of **proCyC2**.

proCyCE4: a red solid (44%): mp 125.0–127.0 °C; IR(ATR) 3417, 2948, 2868, 2827, 1735, 1685, 1573, 1480, 1449, 1375, 1331, 1216, 1174, 1130, 1100, 1033, 1006, 920, 790, 750, 707, 681, 589, 555, 564 cm⁻¹; ¹H NMR (400 MHz, CD₃OD, 25 °C) δ 0.41–0.52 (m, 1H), 0.72–0.83 (m, 1H), 1.29–1.39 (m, 2H), 1.60 (s, 3H), 1.66 (s, 6H), 1.89–1.96 (m, 2H), 2.02–2.14 (m, 3H), 2.21 (s, 3H), 2.33 (t, J = 12.8 Hz, 1H), 2.85 (t, J = 7.3 Hz, 2H), 3.02 (s, 9H), 3.50–3.52 (m, 2H), 4.07 (t, J = 7.3 Hz, 2H), 4.26–4.31 (m, 2H), 5.24 (d, J = 16.9 Hz, 1H), 5.36 (d, J = 16.9 Hz, 1H), 6.10 (d, J = 13.7 Hz, 1H), 6.26 (d, J = 13.7 Hz, 1H), 6.44 (dd, J = 12.3, 12.3 Hz, 1H), 7.13–7.35 (m, 8H), 7.38 (d, J = 7.3 Hz, 1H), 7.43 (d, J = 7.7 Hz, 1H), 7.71 (d, J = 9.2 Hz, 2H), 8.08–8.16 (m, 2H). ¹³C NMR (100 MHz, CD₃OD, 25 °C) δ 25.2, 25.4, 27.0, 27.9, 28.0, 28.2, 28.9, 30.6, 34.2, 41.9, 44.1, 47.7, 50.5, 54.4, 55.3, 58.7, 65.9, 71.3, 104.9, 105.7, 111.8, 112.1, 123.5, 123.6, 126.2, 126.7, 127.4, 127.6, 127.8, 129.9, 129.9, 138.6, 140.9, 142.2, 144.0, 144.2, 146.3, 155.3, 155.6, 173.7, 174.0, 174.3, 197.0. HRMS (ESI) calcd for C₄₆H₅₈N₃O₆S₂ ([M⁺]) 812.3762, found 812.3758.

Cy5 derivative CyCE4 was synthesized in a similar manner to CyCE2 using Cy5 derivative proCyCE4 instead of proCyCE2. HRMS (ESI) of CyCE4 calcd for $C_{44}H_{55}N_3O_5S_2$ ([M + H]⁺) 770.3656, found 770.3638.

Synthesis of CyCE5

Scheme S6

Cy5 derivatives **proCyC5** was obtained in the similar manner to **proCyC3** using indole **2ba** and **3ab**⁶ instead of **2bb** and **3ac**, respectively.

proCyC5: a red solid (19%): mp 115.0–116.0 °C; IR(ATR) 3435, 2972, 2907, 2828, 1724, 1626, 1479, 1452, 1376, 1331, 1212, 1171, 1132, 1102, 1037, 1008, 925, 791, 752, 709, 596, 553 cm⁻¹; ¹H NMR (400 MHz, CD₃OD, 25 °C) δ 0.60–0.71 (m, 1H), 0.93–1.02 (m, 1H), 1.40–1.52 (m, 2H), 1.73 (s, 9H), 2.01–2.10 (m, 4H), 2.22 (t, *J* = 14.1 Hz, 1H), 2.30 (s, 3H), 2.49 (t, *J* = 12.3 Hz, 1H), 2.96 (t, *J* = 6.4 Hz, 2H), 4.18 (t, *J* = 6.9 Hz, 2H), 5.36 (s, 2H), 6.24 (d, *J* = 13.3 Hz, 1H), 6.33 (d, *J* = 13.3 Hz, 1H), 6.52 (dd, *J* = 11.9, 11.8 Hz, 1H), 7.21–7.29 (m, 3H), 7.31–7.44 (m, 5H), 7.47–7.52 (m, 2H), 7.83 (d, *J* = 8.2 Hz, 2H), 8.17–8.28 (m, 2H). HRMS (ESI) calcd for C₄₁H₄₆N₂O₆S₂ ([M – H]⁻) 725.2725, found 725.2728.

Cy5 derivative **proCyCE5** was obtained in the similar manner to **proCyCE2** using Cy5 derivative **proCyC5** instead of **proCyC2**.

proCyCE5: a red solid (36%): mp 131.0–133.0 °C; IR(ATR) 3425, 2965, 2927, 2861, 1734, 1683, 1574, 1479, 1451, 1375, 1331, 1215, 1130, 1099, 1033, 1006, 923, 790, 752, 708, 684, 595, 553 cm⁻¹; ¹H NMR (400 MHz, CD₃OD, 25 °C) δ 0.55–0.65 (m, 1H), 0.83–0.94 (m, 1H), 1.38–1.51 (m, 2H), 1.73 (s, 3H), 1.74 (s, 3H), 1.74 (s, 3H), 2.02–2.09 (m, 2H), 2.14–2.25 (m, 3H), 2.31 (s, 3H), 2.50 (dt, *J* = 8.2, 5.0 Hz, 1H), 2.97 (t, *J* = 7.3 Hz, 2H), 3.12 (s, 9H), 3.61 (t, *J* = 4.6 Hz, 2H), 4.20 (t, *J* = 7.3 Hz, 2H), 4.38–4.41 (m, 2H), 5.33 (d, *J* = 16.5 Hz, 1H), 5.39 (d, *J* = 16.9 Hz, 1H), 6.30 (d, *J* = 13.7 Hz, 1H), 6.37 (d, *J* = 13.7 Hz, 1H), 6.56 (dd, *J* = 12.3, 12.3 Hz, 1H), 7.24–7.45 (m, 8H), 7.49 (d, *J* = 7.8 Hz, 1H), 7.52 (d, *J* = 7.3 Hz, 1H), 7.81 (d, *J* = 8.3 Hz, 2H), 8.17–8.30 (m, 2H). ¹³C NMR (100 MHz, CD₃OD, 25 °C) δ 25.4, 26.1, 26.9, 27.8, 28.3, 28.9, 30.6, 30.8, 34.3, 42.5, 44.1, 47.9, 51.0, 54.4, 54.8, 58.7, 66.0, 71.3, 104.9, 105.6, 111.6, 112.4, 123.5, 126.1, 126.8, 127.3, 127.6, 127.8, 128.3, 129.8, 129.9, 138.8, 140.4, 142.9, 143.3, 145.0, 146.4, 154.5, 156.4, 172.4, 173.6, 176.0, 196.9. HRMS (ESI) calcd for C₄₆H₅₈N₃O₆S₂ ([M⁺]) 812.3762, found 812.3762.

Cy5 derivative CyCE5 was synthesized in a similar manner to CyCE2 using Cy5 derivative proCyCE5 instead of proCyCE2. HRMS (ESI) of CyCE5 calcd for $C_{44}H_{55}N_3O_5S_2$ ([M + H]⁺) 770.3656, found: 770.3641.

1.3. UV-vis and Fluorescence Spectra

For UV-vis and fluorescence spectra measurements, the sample solutions $(5.0 \times 10^{-6} \text{ M})$ were prepared by mixing a solution of probes in DMSO $(30 \,\mu\text{L}, 5.0 \times 10^{-4} \text{ M})$ with deoxygenated buffer aqueous solution (2970 μ L). To estimate R_c of probes, the normalized absorbance of the open-ring structure ($\lambda = 640 \text{ nm}$) was fitted to sigmoid curve (Figure S3). Since it is assumed that the equilibrium shifts to the open-ring form under acidic conditions, the maximum absorbance of each probe in an acidic solution is defined as 1. R_c was calculated by using the following equation,

$$R_c = 1 - A_{640}$$

where A_{640} is the normalized absorbance of open-ring structure of a probe at pH 7.4 estimated by utilizing the sigmoid curve.

Fig. S2 UV-vis absorption spectra of (a) **CyCE1**, (b) **CyCE3**, (c) **CyCE4**, (d) **CyCE5**, (e) **CyCE2**, and (f) **CyC2** (5.0×10⁻⁶ M) in buffer solutions.

Fig. S3 Fluorescence spectra of (a) **CyCE1**, (b) **CyCE3**, (c) **CyCE4**, (d) **CyCE5**, (e) **CyCE2**, and (f) **CyC2** (5.0×10⁻⁶ M) in buffer solutions. Excitation wavelength is 650 nm.

Fig. S4 (a) Normalized absorbance at 640 nm and (b) normalized fluorescence intensity at 670 nm ($\lambda_{ex} = 650$ nm) of CyCE1–5 and CyC2 (5.0×10^{-6} M) in buffer solutions.

	buffered	l solution (pl	H = 2.0)	CH ₃ CN (0.1% TFA)
probe	3	λ_{max}	$E_{\rm g,abs}$	λ_{max}	$E_{\rm g,abs}$
	$(cm^{-1} M^{-1})$	(nm)	(eV)	(nm)	(eV)
CyCE1	1.5×10^{5}	642	1.87	644	1.86
CyCE2	1.4×10^{5}	650	1.85	651	1.85
CyCE3	2.4 ×10 ⁵	644	1.86	646	1.86
CyCE4	7.4×10^{4}	646	1.86	647	1.85
CyCE5	9.0 ×10 ⁴	645	1.86	646	1.86
CyC2	4.3×10^{4}	650	1.84	651	1.84
CyME4	1.8×10^{5}	652	1.84	644	1.86

Table S1. Photophysical properties of CyCE1–CyCE5, CyC2 and CyME4 and their band gap estimated from absorption edge.

The HOMO-LUMO band gap was estimated from the absorption edge. The $(h\nu \times \alpha)^2$ values, where α is absorption coefficient, were plotted against $h\nu$ (eV). The absorption edge (eV) was determined as a cross point ($E_{g,abs}$, band gap) of a tangent line and $(h\nu \times \alpha)^2 = 0$, see Fig. S5.

CyME4 (reported in ref. 6)

Fig. S5 Tauc plot of (a) a buffered solution (pH 2.0) and (b) CH₃CN solution (0.1% TFA) of CyCE2.

1.4. Electrochemical Measurements

A solution of CyCE1–CyCE5 and CyME4 (30 μ L, 1.0×10^{-2} M) in DMF and tetra-*n*-butylammonium hexafluorophosphate (2970 μ L, 0.1 M) in CH₃CN (0.1% TFA) was well mixed prior to measurement. Pt electrode (counter), glassy carbon electrode (working), and Ag/AgCl electrode were used. In order to shift the equilibrium to their open-ring forms, TFA (0.1%) was added to the sample solution. The cyclic voltammogram and differential pulse voltammogram were measured at a rate of 25 mV/sec by electrochemical analyzer (610C-S, ALS Co., Ltd., Japan) (Fig. S6). The one-electron reduction potential (E_{red} [V]) of probes was determined by differential pulse voltammetry because the clear reversible signal was not detected in cyclic voltammetry.

The experimentally determined energy (E_{LUMO} [eV]) at the LUMO was estimated according to the reported equation:

$$E_{\text{LUMO}} = -(E_{\text{red}} + E_{\text{abs}}(\text{Fc}^+/\text{Fc}))$$

where the value of $E_{abs}(Fc^+/Fc)$: 4.970 V was used.⁹

The energy $(E_{HOMO} [eV])$ at the HOMO was calculated by using the energy gap (E_g) determined from absorption edge in CH₃CN (Table S1).

Table S2.	Experime	ntally d	letermined	energy	levels	of Cy	vCE1–	CvCE5	and C	vME4
	1	2		0,			/	•		

dye	$E_{ m red}$	E_{LUMO}	$E_{\rm HOMO}$	$E_{\rm g,abs}$
	$(V \text{ vs Fc}^+/\text{Fc})^b$	$(eV)^c$	(eV)	(eV)
CyCE1	-1.18	-3.79	-5.65	1.86
CyCE2	-1.11	-3.86	-5.71	1.85
CyCE3	-1.15	-3.82	-5.68	1.86
CyCE4	-1.15	-3.82	-5.67	1.85
CyCE5	-1.14	-3.83	-5.69	1.86
CyME4	-1.19	-3.78	-5.64	1.86

Fig. S6 Cyclic voltammograms and differential pulse voltammograms of (a) **CyCE1**, (b) **CyCE2**, (c) **CyCE3**, (d) **CyCE4**, (e) **CyCE5**, and (f) **CyME4**.

1.5. Theoretical Calculation

The density functional theory (DFT) calculation was performed for the geometry optimization of **CyCE1–5** at the B3LYP/6-31G(d,p)¹⁰ level by using Gaussian 16 package.¹¹ The energy-minimized structures at the ground state estimated are summarized in Fig. S7. The ground states of **CyCE1–5** were calculated by the time-dependent (TD) DFT calculations at the CAM-B3LYP/6-31G(d)¹² level by using Gaussian 16 package. The optimized structures with frontier orbitals were visualized by Avogadro software.¹³ The cartesian coordinates of the optimized structures are summarized at the end of the ESI (section 3).

Fig. S7 Kohn-Sham HOMO and LUMO energy levels for the optimized structures at the ground (S₀) state (TD-CAM-B3LYP/6-31G(d)//B3LYP/6-31G(d)) of **CyCE1–5**. Top: LUMO, middle: HOMO, bottom: without electron density distribution.

1.6. Enzyme Assay

Enzyme assay with acetylcholineesterase (AChE)

AChE from Electrophorus electricus (Aldrich) was diluted with 0.1 M phosphate buffer solution to make different AChE concentrations. AChE solution (200 μ L) was diluted with the mixture of a probe (20 μ L, dissolved in DMSO) solution and a phosphate buffer solution (pH 8.0, 1780 μ L) at 37 °C. Final concentration of the probes were 1.0 μ M. The AChE concentration was 0–50 U/mL for the assay. Fluorescence intensity excited at 650 nm was recorded for 600 min at 37 °C. The fluorescence intensity at 0 min is defined as 1.

Inhibition assay by using neostigmine

For inhibition assay of enzyme activity, final concentration of probe CyCE2 was fixed to 1.0 μ M (Fig. S8) or 5.0 μ M (Fig. 2c). Final concentration of AChE was 10 U/mL (Fig. S8) or 50 U/mL (Fig. 2c) for the assay. AChE inhibitor, neostigmine (FUJIFILM Wako Pure Chemicals Inc.), was dissolved in 10 μ L DMSO at different concentrations, and then mixed with the phosphate buffer solution (190 μ L) of AChE. The mixed solutions were incubated at 37 °C for 30 min to inhibit enzyme activity. To the inhibitor-treated AChE solution was then added the probe (20 μ L, dissolved in DMSO) solution in the phosphate buffer solution (1780 μ L). Enzymatic reaction was performed at 37 °C. Excitation wavelength for measurement was 640 nm.

Michaelis-Menten kinetics

Michaelis constant K_m and maximum rate V_{max} were determined by monitoring the time-dependent increment of absorbance of **CyCE2**. The initial rate $V(\mu M \min^{-1})$ of AChE-mediated reaction was determined from the absorbance increment ([AChE]₀ = 25 U/mL, temp.: rt). The absorbance increment was monitored every 1 sec for 3.5 min and the initial reaction rate *V* was obtained from the slope of the linear fitting (conc. (μ M) vs time (min)). The relationship between the initial reaction rate *V* and the concentration of **CyCE2** ([S]₀, μ M) was plotted. From the Lineweaver-Burk plot (1/*V* vs 1/[S]₀), Michaelis constant *K*_m and maximum rate *V*_{max} were calculated.

Fig. S8 Fluorescence spectra ($\lambda_{ex} = 640 \text{ nm}$) of CyCE2 solution incubated for 3 h with AChE (10 U/mL) and neostigmine (0 μ M, 1 μ M, 10 μ M, 100 μ M, 1000 μ M) as an inhibitor of AChE at 37 °C. AChE was pretreated with neostigmine for 30 min at 37 °C.

From the absorbance measurement, the linear relationship of absorbance at 640 nm in CyC2/CyCE2 solution (pH = 8.0) was confirmed.

 $\Delta I_{abs} = 2.77 \times 10^{-2} \, [\mu M^{-1}]$

, in which ΔI_{abs} is the absorbance change when 1 μ M of CyCE2 converts to 1 μ M of CyC2.

Based on this linear relationship, the initial rate V_0 (μ M min⁻¹) of the AChE-mediated reaction was determined. $V_0 = (6.60 \times 10^{-5} \times 60) / 0.0277 = 0.143 [\mu$ M min⁻¹]

Fig. S9 Time-dependent absorbance change at 640 nm of CyCE2 (5.0 μ M) with 50 U/mL AChE. The fitting line is $I_{abs} = 6.60 \times 10^{-5} \times t \text{ [sec]} + 0.0533 (R^2 = 0.9985)$

Fig. S10 (a) Michaelis-Menten kinetics and (b) Lineweaver-Burke plot for AChE-catalyzed reaction of **CyCE2**. Conditions: AChE (25 U/mL) with different concentration (1.0 μ M, 2.0 μ M, 3.0 μ M, 5.0 μ M, 10.0 μ M, 30.0 μ M, 50.0 μ M, 100.0 μ M) of **CyCE2** in phosphate buffer solution (pH 8.0).

1.7. In Vitro Cell Experiments

Cell culture

PC-12 cell line was purchased from RIKEN BioResource Research Center (Tsukuba, Japan). PC-12 cells was cultured in RPMI-1640 with 10% FBS and 1% penicillin/streptomycin. Cells were cultured well-humidified incubator with 5% CO₂ and 95% air at 37 °C.

MTT cytotoxicity Assay

PC-12 cells was seeded into a 96-well microtiter plate at a density of 1×10^5 cells per well. The cells were incubated for 24 h for cell attachment. PC-12 cells were incubated at 37 °C for an additional 12 h with different concentrations of **CyCE2** (0, 1, 5, 10, 50, 100 and 500 μ M). Then the cells were washed with PBS. Subsequently, MTT (200 μ L, 0.5 mg/mL) was added to each well and the cells were incubated at 37 °C. After 4 h, the remaining MTT solution was removed, and the formazan crystals were dissolved in 200 μ L of DMSO with gentle agitation for 5 min. The absorbance at 550 nm was measured using 800TSTM Absorbance Microplate Reader (BioTek Instruments, USA).

Confocal fluorescence imaging

PC-12 cells were seeded in a 35 mm dish (μ -Dish^{35 mm, high}, ibidi, Germany) at a density of 8×10⁵ cells. The cells were incubated for 24 h for cell attachment. **CyCE2** dissolved in DMSO (0.2 mM) was diluted in the cell culture medium without phenol red to have a final concentration of 5 μ M. PC-12 cells were incubated with the medium at 37 °C for 90 min. Fluorescence images of the cells were acquired by confocal laser scanning microscope (63× objective lens). Excitation lasers of 633 nm (emission: 647–759 nm) was used for detecting fluorescence signals. For positive control, before **CyCE2** was added to the medium, PC-12 cells were treated with 10 μ M Phorbol 12-myristate 13-acetate (PMA, Adipogen) for 60 min. For negative control, PC-12 cells were pretreated with neostigmine (10 μ M) for 30 min and also incubated with the inhibitor (10 μ M) during the treatment of **CyCE2**.

2. References

- 1. L. Sanguinet and G. Szaloki, J. Org. Chem., 2015, 80, 3949.
- 2. E. Block, et al. J. Am. Chem. Soc., 2006, 128, 14949-14961.
- 3. V. E. Kuznetsova and A. V. Chudinov, Russ. Chem. Bull. Int. Ed., 2008, 57, 608.
- 4. H. R. Moon, P. Chun and J. Kim, Bull. Korean Chem. Soc., 2013, 34, 1487.
- Q. Wang, X. Wang, Y. Sun, X. Yang, L. Zhang, Q. Zhang, Z.-Q. Hu and H.-Y. Hu, *Chem. Commun.*, 2019, 55, 5064.
- 6. M. Oe, K. Miki and K. Ohe, Org. Biomol. Chem., 2020, 18, 8620.
- 7. H. Zhu, Y. Xu, M. Zhang, B. Li, W. Wang, B. Wang and Y. Yang, Talanta, 2018, 185, 568.
- P. Gaur, A. Kumar, G. Dey, R. Kumar, S. Bhattacharyya and S. Ghosh, ACS Appl. Mater. Interfaces, 2016, 8, 10690.
- 9. A. V. Kulinich, N. A. Derevyanko, A. A. Ishchenko, N. B. Gusyak, I. M. Kobasa, P. P. Romańczyk and S. S. Kurek, *Dyes Pigm.* **2019**, *161*, 24.
- 10. (a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648. (b) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B 1988, 37, 785.
- Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H.; Nakai, T. Vreven, K. Throssell, J. A., Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- 12. T. Yanai, D. P. Tew and N. C. Handy, Chem. Phys. Lett. 2004, 393, 51.
- M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek and G. R. Hutchison, J. Cheminformatics 2012, 4, 17.

3. Cartesian Coordinates of the Optimized Geometry

CyCE1				Н	2.62486	-0.57168	1.77616
С	3.24464	-5.46146	1.81482	Н	2.89574	0.95389	-0.19471
С	2.69809	-6.44048	0.9829	Н	3.72572	-0.31018	-1.07727
С	1.57684	-6.16944	0.19258	Н	5.57068	-0.31484	0.65799
С	1.04226	-4.88589	0.2592	Н	4.73754	0.93713	1.54817
C	1.58803	-3.88368	1.06645	Н	-2.19176	-2.97478	-1.08394
C	2.68771	-4 17653	1 86436	Н	-0.2541	-5 90646	-1 78475
N	-0.10203	-4 37891	-0 39577	н	-1 3295	-4 55573	-2 07188
C	-0.10203	-3.0003	-0.01339	н	-1.3233	-0.50755	0.5183
C	0.76094	-3.0775 2.60825	0.00403	и П	2 75117	1 15/57	1 20645
C	1 56607	-2.00625	0.30403	п	-3.73117	-1.15457	-1.20045
C	1.50027	-1.50/15	0.12051	п	-2.88333	1.29/11	0.44755
C	0.20127	-2.11110	2.27575	п	-5.50080	0.05285	-1.20095
C	2.84904	-0.98884	0.78602	H	-8.69151	4./313	-1.08/51
C	3.54538	0.08079	-0.06896	H	-8.80822	6.92406	0.05875
C	4.87991	0.52804	0.53842	Н	-6.98479	7.67282	1.55035
С	5.57185	1.59115	-0.28057	Н	-4.99442	6.2367	1.93107
0	6.86356	1.792	0.15662	Н	-2.52986	3.37624	0.11233
0	5.11098	2.22287	-1.19928	Н	-2.97354	4.96728	0.74556
С	-1.5092	-2.42345	-0.44458	Н	-3.43001	4.51546	-0.90262
С	-0.92427	-5.20038	-1.28755	Н	-4.17019	3.85999	2.76841
С	-1.91319	-1.12046	-0.12086	Н	-5.43568	2.65668	2.49066
С	-3.10671	-0.55809	-0.56253	Н	-3.74276	2.25318	2.1645
С	-3.53866	0.72219	-0.2008	Η	-7.8464	3.04999	-2.26294
С	-4.74917	1.27561	-0.61556	Н	-6.72819	1.70931	-2.36301
С	-5.25867	2.53297	-0.27139	Н	7.56358	2.57383	-1.63192
Ν	-6.43885	2.99541	-0.7475	Н	7.09427	3.77216	-0.41839
С	-6.75437	4.26919	-0.21321	Н	8.93204	2.95165	1.11326
С	-5.71822	4.67255	0.63039	Н	9.39538	1.73938	-0.09096
С	-4.65146	3.5911	0.66785	Н	10.49733	2.41014	-2.15455
C	-7.88253	5.05211	-0.44109	Н	11.00338	4.10764	-2.37706
C	-7.94306	6.28741	0.21132	Н	9.28982	3.66237	-2.56561
C	-6 91234	6 71028	1 05527	Н	11 16029	3 70562	1 23754
C	-5 78916	5 9017	1 27108	н	11.63304	2 47816	0.02823
C	-3.31203	A 13005	0.11678	н	12 04582	A 1050A	-0.23403
C	-3.31203	3 0/8/7	2 1087	н	0 3732	5 31570	0.7123
C	7 22065	2.04047	1,66725	и П	10.24911	5 80522	0.7125
C	-1.33903	2.2073	-1:00/23	п	10.34011 9 64621	5.00552	-0.70080
C	9.09012	2.00072	-0.30201	п	0.04021	0.01656	-0.92093
	8.98012	2.74062	0.04272	п	-9.00/90	0.91050	-1.0/033
N	9.99452	3./1491	-0.54776	H	-/.85216	0.61951	-0.35999
C	10.2083	3.45281	-2.0201	H	-8.9/433	1.987	-0.26015
C	11.30648	3.50/66	0.17562	H	-2.69852	-5.21632	-0.05192
C	9.55418	5.14608	-0.34945	H	-1.6086	-6.56548	0.2437
С	-8.3524	1.39944	-0.94048	Н	-2.23859	-7.59586	-1.94142
С	-2.04588	-5.94492	-0.54588	Н	-3.28994	-6.21409	-2.3059
С	-2.86732	-6.81859	-1.49735	Н	-4.72732	-8.34675	-1.55614
S	-4.23421	-7.60744	-0.54317				
Н	4.10008	-5.70073	2.43771	CyCE2			
Н	3.13506	-7.43333	0.95887	С	4.635	-4.76639	-3.34826
Н	1.14156	-6.94585	-0.4262	С	4.84819	-5.50693	-2.18308
Н	3.10613	-3.4339	2.53588	С	4.01036	-5.36115	-1.07352
Н	0.89027	-0.66428	-0.06418	С	2.96458	-4.44799	-1.17612
Н	1.82214	-1.91396	-0.86537	С	2.74067	-3.69355	-2.32983
Н	1.10277	-1.96094	2.95648	С	3.57545	-3.8542	-3.42888
Н	-0.27783	-1.16433	2.19987	Ν	1.94743	-4.16017	-0.23034
Н	-0.40443	-2.84756	2.7324	С	1.01557	-3.32476	-0.76188
Н	3.54118	-1.82287	0.9446	С	1.53377	-2.7967	-2.11222
				-			

С	1.98172	-1.31937	-1.79137	Н	2.24259	1.40193	-2.17754
С	0.54574	-2.88567	-3.28851	Н	3.72261	1.87294	-4.11547
С	2.84874	-0.57849	-2.81886	Н	5.0876	1.08129	-3.28625
С	3.16898	0.82305	-2.27476	Н	-0.3348	-3.49854	0.86454
С	4.15718	1.63701	-3.13976	Н	1.20851	-4.54264	1.71247
С	4.43626	2.93197	-2.41094	Н	2.76287	-5.26682	1.34373
0	5.56658	2.84009	-1.6563	Н	-0.9957	-1.52692	-1.40165
0	3.71848	3.9059	-2.40271	Н	-2.475	-2.36232	1.17049
С	-0.15709	-2.99174	-0.07882	Н	-3.04812	-0.37351	-1.1081
С	2.16846	-4.35966	1.22873	Н	-4.58931	-1.15805	1.44141
С	-1.13541	-2.08488	-0.48098	Н	-9.07085	1.63197	1.64811
С	-2.30403	-1.82136	0.24112	Н	-10.22908	3.29725	0.22276
С	-3.25337	-0.89604	-0.17836	Н	-7.03442	3.17207	-2.65372
C	-4.43389	-0.60531	0.51984	н	-4.58868	-0.21028	-2.56895
C	-5.41463	0.30733	0.1464	н	-6.33851	-0.39493	-2.37398
N	-6.52127	0.54931	0.90509	Н	-5.6869	0.9832	-3.27196
C	-7.38293	1.48036	0.28414	Н	-3.35247	1.73054	-1.27958
C	-6 80936	1 89768	-0.91831	н	-4 46946	2.89305	-2.00507
C	-5 4808	1 18575	-1 11834	н	-4 29676	2.81393	-0 24597
C C	-8 61318	1.16575	0 72241	н	-5 9041	-0 22932	2 7365
C C	-9 26858	2 89827	-0.0816	н	-7 42827	0.63144	2.7505
C C	-9.20030	3 32243	-1 28121	н	5 93834	4 81228	-1 11321
C C	-7.45707	2 82756	-1.71624	н	1 75507	3 03016	-0.10956
C C	5 52208	0.33108	2 4088	и и	6 50852	2 2221	-0.10950
C C	-3.32298	2 21/60	-2.4088	и и	7 7/311	2.3321	0.03518
C C	6 9272	0.09290	2 19506	н ц	9 25726	2 07484	2 10002
C C	-0.0373 5 70122	-0.06369	2.18590	п u	0.33730 8.00767	2 1670	3.19903
C C	6 20065	2 20676	-0.04034	п	0.99707	2 44257	1.73042
U N	0.80903	5.50070 4 17059	1 46512	п	7.00433 9.09652	2.44237	2.00742
N C	7.14557 9.10125	4.17038	2 22478	п	0.00033 7.10529	0.01410	0.44201
C C	8.10135	5.3/493	2.32478	н	7.10538	6.03831 5.01509	0.44201
C	7.80207	5.4512	1.03929	H	8.68956	5.21528	0.45126
C	5.9216	4.49615	2.29651	H	6.25662	5.07759	3.15652
C	-/.59645	-1.41023	2.02273	Н	5.23229	5.09152	1./001/
C	2.86882	-3.13228	1.78045	Н	5.43696	3.57903	2.63469
C	4.24312	-2.95/33	1.56609	Н	-8.51603	-1.23351	1.45416
C	4.84638	-1.72458	1.80599	H	-6.98731	-2.10561	1.43444
S	-8.79571	-3.64062	3.09781	Н	4.83939	-3.7732	1.1692
С	-7.93561	-2.03329	3.37896	Н	5.90113	-1.56615	1.61178
С	2.13099	-2.07996	2.3422	Н	-9.01373	-3.93098	4.39562
С	2.73069	-0.84635	2.59012	Н	-7.02466	-2.20665	3.96
С	4.07674	-0.6585	2.27159	Н	-8.58857	-1.3687	3.95231
Cl	-9.53549	4.49652	-2.26958	Н	1.07528	-2.21354	2.55993
S	4.76982	1.00817	2.26682	Н	2.15945	-0.02244	3.00456
0	6.25591	0.81685	2.22804				
0	4.28454	1.69682	3.48735				
0	4.24516	1.6075	1.00064	CyCE3			
Н	5.29203	-4.90345	-4.20074	С	7.81893	2.98473	1.65678
Н	5.66917	-6.21499	-2.13708	С	8.52388	2.42291	0.59068
Н	4.17313	-5.95672	-0.18239	С	7.94353	1.4422	-0.22
Н	3.41218	-3.2904	-4.34167	С	6.63663	1.06234	0.07184
Н	2.52902	-1.3339	-0.84236	С	5.90817	1.62289	1.12523
Н	1.0743	-0.73388	-1.60486	С	6.50573	2.58201	1.93355
Н	0.16169	-3.90277	-3.40219	Ν	5.84221	0.08591	-0.57052
Н	-0.30323	-2.20916	-3.17364	С	4.63339	-0.05754	0.04226
Н	1.05219	-2.61446	-4.21828	С	4.52323	0.9928	1.16867
Н	2.33925	-0.5034	-3.78863	С	3.41187	2.00776	0.73216
Н	3.78133	-1.12848	-2.98737	С	4.26047	0.36949	2.55882
Н	3.58468	0.73746	-1.26374	С	3.10643	3.17462	1.68104

С	1.99041	4.08308	1.13004	Н	1.63412	-2.54213	-1.28103
С	0.59511	3.44767	1.15799	Н	0.0887	-1.77988	1.27637
С	-0.39693	4.15264	0.25562	Н	-0.66256	-3.41483	-1.21348
0	-1.65183	3.67417	0.4604	Н	-5.49733	-5.41737	-0.49594
0	-0.13201	5.00135	-0.56545	Н	-7.05839	-5.7124	1.40664
С	3.67626	-0.96975	-0.39005	Н	-6.53242	-4.77182	3.63227
С	6.32227	-0.69794	-1.70849	Н	-4.42113	-3.5162	4.00451
С	2.419	-1.19857	0.18923	Н	-1.63336	-1.02078	2.14245
C	1.44605	-2.04187	-0.33258	н	-3.03267	-1.40806	3.14651
C	0.22219	-2.26036	0.3117	Н	-3.24913	-1.06009	1.42147
C	-0.81569	-3 02466	-0.21253	н	-1 79869	-3 56814	3 90424
C	-2 02248	-3 33562	0.42448	н	-1 31492	-4 77259	2 70167
N	-2.02240	-3.000/15	-0 1917	н	-0.43861	-3 7388	2.70107
C	4 08/30	4 20082	0.71173	и и	2 20026	-5.2500	2.02517
C	2 76709	2 75002	1.0622	н ц	2 52700	-4.10779	1 77242
C	-5.70798	-3.73998	1.9023	п	-3.33709	-5.25479	-1.//545
C	-2.4213	-3.06275	1.880/5	н	-2.4/108	5.19014	-0.08/0/
C	-5.25902	-5.00028	0.4/5/5	н	-2.5797	3.54277	-1.38444
C	-6.13395	-5.16359	1.55392	H	-4.22103	2.80362	0.2014
C	-5.83622	-4.63251	2.81185	H	-3.92458	4.18927	1.27642
C	-4.64675	-3.92446	3.02384	Н	-5.23421	6.08889	1.17249
С	-2.59387	-1.54175	2.15321	H	-5.9737	6.59439	-0.37128
С	-1.4266	-3.70051	2.88444	Н	-4.20015	6.52815	-0.21541
С	-3.18249	-4.22896	-1.63592	Н	-6.47371	2.97218	-0.33435
С	-2.65232	4.13418	-0.46747	Н	-6.40861	3.93028	1.19597
С	-3.98332	3.8709	0.23264	Н	-7.27962	4.57623	-0.22568
Ν	-5.16167	4.63481	-0.37409	Н	-5.16998	3.55334	-2.2077
С	-5.13845	6.06364	0.08648	Н	-6.04313	5.11639	-2.23539
С	-6.43356	3.97248	0.10619	Н	-4.26111	5.11711	-2.24827
С	-5.14818	4.5977	-1.88864	Н	-4.2221	-3.46594	-3.34656
С	-4.15874	-3.22308	-2.27901	Н	-5.15841	-3.39214	-1.8637
С	6.97858	-2.0213	-1.28421	Н	7.8065	-1.81007	-0.59865
С	7.49182	-2.80642	-2.49344	Н	6.2505	-2.62364	-0.7296
S	8.22085	-4.39644	-1.90741	Н	6.67372	-3.01812	-3.18868
С	-4.8995	-0.77997	-2.36893	Н	8.25636	-2.23261	-3.02543
С	-3.76303	-1.75551	-2.06582	Н	8.61854	-4.84182	-3.11562
S	-4.60922	0.85356	-1.62117	Н	-5.84368	-1.12261	-1.93515
0	-5.88013	1.61108	-1.87485	Н	-5.05186	-0.61463	-3.43853
0	-3.42854	1.44935	-2.3084	Н	-2.8809	-1.49649	-2.66125
0	-4.38495	0.59983	-0.16137	Н	-3.49168	-1.60297	-1.01782
Н	8.29345	3.73452	2.281				
Н	9.54221	2.74005	0.39083				
Н	8.50845	0.99561	-1.0305	CyCE3 with	ith hydroger	n bond	
Н	5.97536	3.01229	2.77667	Ċ	3.72632	-5.28575	1.89816
Н	2.49779	1.43293	0.55751	С	2.97855	-6.12866	1.07338
Н	3.69927	2.41724	-0.24401	С	1.84854	-5.66028	0.39654
Н	3.24351	-0.0151	2.66122	C	1.50678	-4.32008	0.56614
Н	4.95748	-0.44921	2.75495	C	2.25791	-3.45276	1.36911
Н	4 40643	1 12239	3 33692	C	3 36412	-3 94038	2.05353
н	4 00584	3 78311	1 81785	N	0 40624	-3 6281	0.02962
н	2 82304	2 80177	2 67404	C	0.3634	-2 34287	0.48054
н	2.02394	4 37225	0 10019	C	1 61027	-2.3+207	1 33034
н	1 96706	5 015/6	1 70439	C	2 50066	-1.0/649	0 53074
н	0.18274	3 /005	2 17260	C	2.50000	-1.59105	0.55714 0.75216
н	0.102/4	2.4093 2.4062	0.81204	C	3 82100	-1.30193	1 12512
н	3 00000	2.4003 -1 5679	-1 2602	C	1 62260	0.72055	0.25000
н ц	5 10170	-1.JU28	-1.2072	C	4.03309	0.29430	0.23988
п	J.481/9	-0.8/300	-2.30490	C	0.000/4	0.33394	0.70703
п	7.03154	-0.0/2/3	-2.2008/		0.79122	1.58256	-0.05456
н	2.16817	-0.68803	1.11393	U	8.13629	1.51057	0.15649

0	6.31943	2.39914	-0.80649	Н	-8.9447	6.76097	-0.15747
С	-0.67274	-1.48205	0.13886	Н	-7.45723	7.9988	1.38417
С	-0.57658	-4.2838	-0.85014	Н	-5.22406	7.08057	1.98162
С	-0.85836	-0.14046	0.49509	Н	-2.04367	4.72537	0.55499
С	-1.9907	0.52084	0.01319	Н	-2.83336	6.22136	1.08276
C	-2.44051	1,79768	0.32821	н	-3.06227	5.636	-0.57304
C	-3 66629	2 21404	-0 22232	н	-3 95362	4 97952	3 05731
C	-1 15179	3 32251	0.03168	н	-1 00101	3 51 570	2 75346
N	5 68076	3 45340	0.54304	и П	3 1/1/5	3 18/1/	2.75540
C	-5.00920	1 64076	-0.34394	11	7 16205	2.01619	1 2.50571
C	-0.32274	4.04070	-0.12452	п	-7.10303	2.91010	-1.09575
C	-5.4/2/	5.52705	0.75175	н	-5.5/1//	2.29197	-2.20/02
C	-4.19315	4.5276	0.94197	Н	8.62466	2.448/2	-1.63034
C	-7.5799	5.13293	-0.46691	Н	8.69141	3.48297	-0.19738
С	-7.96982	6.35431	0.09238	Н	10.58294	2.09408	0.73561
С	-7.13121	7.0533	0.96335	Н	10.50144	1.02991	-0.67745
С	-5.87233	6.53742	1.2996	Н	11.27278	1.80094	-2.84782
С	-2.95497	5.3236	0.46902	Н	12.07625	3.38917	-2.99287
С	-4.03683	4.09434	2.41947	Н	10.306	3.30282	-2.81695
С	-6.28199	2.45648	-1.44985	Н	12.89437	2.39637	0.41276
С	8.90799	2.47807	-0.57429	Н	12.82439	1.30883	-1.0025
С	10.35609	2.05577	-0.33211	Н	13.53857	2.93828	-1.1628
N	11.4132	2,90501	-1.03241	н	11.42737	4.37171	0.51112
C	11 25153	2 84453	-2 53285	н	12 1715	4 89059	-1 02706
C	12 76888	2.01155	-0.66884	н	10 30012	4.09059	-0.80204
C	11 2442	4 24250	0.57565	и П	6 21024	1 12942	0.07204
C	((2527	4.54259	-0.37303	п	-0.21034	1.13042	0.20015
C	-0.02527	1.10852	-0.75241	н	-/./1019	1.02039	-0.02854
C	-1.658/9	-5.05/46	-0.07856	Н	-1.19484	-5./0906	0.6705
C	-2.51554	-5.89543	-1.0329	Н	-2.3103	-4.34774	0.43855
S	-3.87883	-6.77822	-0.17192	Н	-2.96182	-5.26851	-1.80868
С	-5.85615	-1.32363	-0.54454	Н	-1.91598	-6.66962	-1.52456
С	-6.06924	-0.13424	-1.48413	Н	-4.60415	-5.64982	0.01968
S	-4.69717	-2.57896	-1.20212	Н	-6.78568	-1.85205	-0.31716
0	-4.55048	-3.53496	-0.06204	Н	-5.41125	-0.99908	0.40159
0	-3.4233	-1.81559	-1.47045	Н	-5.0979	0.10343	-1.93438
0	-5.31915	-3.13338	-2.42256	Н	-6.7191	-0.42527	-2.3154
Н	4.58563	-5.67733	2.43309				
Н	3.2639	-7.17051	0.96719				
Н	1.25356	-6.32824	-0.21496	CvCE4			
Н	3.93603	-3.30104	2.71899	C	-7.20217	1.60097	-2.12528
Н	1 92939	-0 11713	0.43813	C	-7 87319	1 21266	-0.96398
н	2 63272	-1 43369	-0.47796	C	-7 26463	0.37076	-0.0278
н	0.83551	-0.58080	2 7/580	C	-5.96515	-0.0501	-0.0270
и П	0.65501	2 25062	2.74303	C C	5 27057	0.22822	1 44520
п	0.55694	-2.23902	3.22007 2.27755	C	-3.27037	0.55625	-1.44339
п	2.17031	-1.55401	3.37733	C N	-5.89000	1.15907	-2.5/508
H	4.4/513	-1.64537	1.19368	N	-5.14/89	-0.91/06	0.46414
Н	3.78582	-0.33507	2.14621	C	-3.96077	-1.15883	-0.158/3
Н	4.08652	1.24268	0.22458	С	-3.88538	-0.29105	-1.43334
Н	4.68412	-0.06545	-0.77483	С	-2.76333	0.77341	-1.16905
Н	6.65353	-0.36459	0.78937	С	-3.6469	-1.09693	-2.73045
Н	6.04062	0.92352	1.80229	С	-2.53305	1.8488	-2.23752
Н	-1.48305	-1.89053	-0.46358	С	-1.36175	2.75525	-1.82927
Н	-1.03831	-3.52615	-1.48563	С	-1.09186	3.87826	-2.84788
Н	-0.00574	-4.95184	-1.50408	С	0.15794	4.66379	-2.5166
Н	-0.1602	0.3864	1.14273	0	0.06468	5.23818	-1.28105
Н	-2.62583	-0.07858	-0.63978	0	1.13194	4.78509	-3.22051
Н	-1.87893	2.42833	1.01496	Ċ	-2.97216	-1.96329	0.40077
н	-4 08596	1 49147	-0.90916	C	-5 59049	-1 51838	1 72214
н	-8 2/1510	4 50088	-1 1367	C	-1 75260	_2 3160	-0 1026
11	-0.24319	н.Јууоо	-1.1307	C	-1.75209	-2.3109	-0.1920

С	-0.68514	-2.89856	0.48277	Н	7.63571	-5.80455	-2.64018
С	0.51531	-3.22939	-0.15342	Н	5.25504	-5.49169	-3.28118
С	1.6985	-3.52302	0.52209	Н	1.97715	-2.9823	-2.66495
С	2.92793	-3.85594	-0.0492	Н	3.43645	-3.55	-3.47972
N	4 08258	-3 81166	0.66287	н	3 55499	-2 30984	-2.22105
C	5 17216	-4 3186	-0.08855	н	2 68585	-5.96538	-2 82148
C	4 71200	-4.67786	-1 35845	н	2.00000	-6 40304	-1 1115
C C	3 23142	4 35245	1 47108	u u	1 32735	5 36404	1 85748
C	5.25142	4.33243	-1.47108	11	2 50901	2 5905	-1.03740
C	0.30107	-4.47049 5.01057	0.25175	11	5 26429	2 25505	2.70207
C	1.5/955	-3.01637	-0.03302	п	3.20428 2.11776	-3.23393	2.2724
C	6.93561	-5.38351	-1.92631	H	2.11//6	5.16157	-1.00953
C	5.59366	-5.21023	-2.28838	Н	1.44269	6./8995	-1.28105
C	3.03233	-3.22251	-2.51789	Н	0.08117	6.43508	0.907
C	2.3949	-5.5983	-1.83315	Н	1.01429	4.93937	1.15141
C	4.23197	-3.10/37	1.95133	Н	3.61645	5.2924	1.03038
С	1.27739	5.82291	-0.79036	Н	4.19342	6.86496	1.70825
С	1.0345	5.93747	0.71252	Н	3.64802	6.76281	0.01543
Ν	2.09395	6.73523	1.47242	Н	0.93786	6.61372	3.25043
С	3.49549	6.38009	1.02448	Н	2.16293	5.31752	3.04447
С	1.95761	6.38582	2.93624	Н	2.66615	6.99243	3.50197
С	1.87122	8.20806	1.28697	Н	0.89237	8.47386	1.68742
С	3.89354	-1.63074	1.82389	Н	2.65085	8.75197	1.8215
С	-6.22577	-2.90375	1.52511	Н	1.91716	8.45039	0.22567
С	-6.69785	-3.49955	2.85329	Н	-7.07132	-2.81726	0.83396
S	-7.41121	-5.17129	2.53782	Н	-5.49503	-3.57123	1.05524
С	4.49174	-0.85611	0.82086	Н	-5.86062	-3.58973	3.55213
С	4.10374	0.46636	0.62308	Н	-7.46053	-2.8614	3.30937
С	3.1189	1.02779	1.43855	Н	-7.76478	-5.43419	3.81148
С	2.56228	0.28903	2.48173	Н	5.25123	-1.29267	0.17716
С	2.94859	-1.03873	2.66801	Н	4.55184	1.07319	-0.15597
S	2.48677	2.67546	1.05553	Н	1.82594	0.75208	3.12959
0	3.60126	3.36809	0.34138	Н	2.49628	-1.62234	3.46686
0	2.16632	3.30081	2.37802				
0	1.28127	2.45918	0.21326				
Н	-7.69836	2.24414	-2.8445	CyCE5			
Н	-8.88696	1.55661	-0.78629	C	3.99085	5.27346	2.70962
Н	-7.80372	0.05563	0.85856	С	4.1028	5.889	1.4607
Н	-5.39105	1.45411	-3.28912	С	3.24206	5.55214	0.41179
Н	-1.82448	0.2327	-1.00926	С	2.27815	4.57904	0.66088
Н	-2.98831	1.26825	-0.21651	С	2.15628	3.94767	1.90067
Н	-2.62094	-1.46125	-2.81406	С	3.0124	4.2977	2.9375
Н	-4.32529	-1.95173	-2.79243	Ν	1.25609	4.10755	-0.20174
Н	-3.83459	-0.46114	-3.59879	С	0.41291	3.26945	0.46087
Н	-3.4379	2.45388	-2.37005	C	1.01914	2.9418	1.83811
Н	-2.31539	1.38595	-3.2089	C	1.57304	1.47572	1.66789
н	-0 45229	2 16045	-1 69312	C	0.06813	3 09161	3 03857
н	-1 5622	3 20367	-0.85097	C	2 53306	0.9281	2 73318
н	-1 94337	4 57002	-2 87794	C	2.93300	-0.49806	2 33752
н	-0.04063	3 47802	-3 85507	C	4 02717	-0.49000	3 24675
н	-0.74705	-2 32617	1 /1175	C	4.02717	-1.12775	2 65797
н	-3.13371	-2.52017	2 40147	0	5.4815A	-2. 4 7200 _2 38177	1 8515
н	-6 30259	-1.3720	2.17958	0	3 75775	-2.30174	7 78080
н	-0.50258	-0.62708	-1 24706	C	-0 75122	-3.47412 2772	2.10707 -0 12751
н Ц	-1.0034	-2.10/1/	-1.24700	C	-0.75155	2.1123 A 14054	1 68161
н Ц	-0.13339	-3.02037 3.10 <i>122</i>	1.73808	C	1.41223	4.14704	-1.00101
п u	0.32398	-3.18400	-1.23070 1 5009	C	-1.03932	1.04449	0.41394
п	1.0/04/	-3.40090	1.J7702	C	-2.80333	1.41090	-0.22041
п	0.00112	-4.204/1	1.2//92	C	-3.00239	0.40823	0.54044
TT	0 10171	5 1 5 0 2 2	11.7050.7	1 '		111111111111	11/16/17

С	-5.72633	-0.93018	0.24564
Ν	-6.8312	-1.34385	-0.43347
С	-7.5946	-2.26327	0.32421
С	-6.94955	-2.49123	1.54108
С	-5.67943	-1.65821	1.6027
C	-8.79434	-2.88385	-0.01194
C	-9 34072	-3 76891	0.92336
C	-8 70528	-4 01415	2 14304
C	-0.70520	-3.3728	2.14304
C C	5 74071	0.66513	2.40000
C	-J.74971	-0.00515	2.70001
C	-4.43937	-2.37972	1.71256
C	-7.23925	-0.89064	-1./0353
C	5.66514	-3.48/96	0.95672
C N	0.09018	-2.96/58	-0.03916
N	7.06012	-3.93723	-1.16341
C	7.92144	-3.17389	-2.14557
С	7.83434	-5.10521	-0.62387
С	5.84292	-4.4501	-1.90213
С	-8.10479	0.3786	-1.71895
C	2.19208	2.92378	-2.11856
С	3.58259	2.8825	-1.94538
С	4.27686	1.68094	-2.06959
S	-9.52849	2.36218	-2.98765
С	-8.53866	0.81136	-3.12142
С	1.52478	1.75875	-2.52432
С	2.21515	0.55507	-2.65622
С	3.58229	0.51119	-2.37763
Н	-9.14975	-4.70471	2.85195
S	4.41027	-1.08425	-2.21477
0	5.87621	-0.77396	-2.25776
0	3.94607	-1.94457	-3.33018
0	3.97706	-1.57434	-0.86946
Н	4.66335	5.55788	3.51215
Н	4.86126	6.64824	1.29998
Н	3.32502	6.0519	-0.54672
Н	2.92695	3.83161	3.91384
Н	2.08324	1.42084	0.69988
Н	0.7097	0.8052	1.58977
Н	-0.39148	4.08331	3.05335
н	-0.72789	2.34465	3.03703
Н	0.62588	2.9685	3.97041
н	2.06556	0.92695	3.72677
н	3 42283	1 56439	2 79743
н	3 32218	-0.4981	1 30679
н	2 06935	-1 15406	2 34494
н	3 64522	-1.13400	4 26012
п	1 013/1	-0.48851	3 20081
п ц	1.00247	2 15154	1 11221
п п	-1.00247	<i>J</i> 10010	-1.11321
п	0.4232	4.19919 5.09001	-2.14245
п	1.9205	3.08001	-1.92307
п	-1.42318	1.40859	1.3803/
п	-3.05182	1.82629	-1.19030
н	-3.383/1	0.0/3/4	1.31323
н	-5.06/27	0.43/88	-1.23983
Н	-9.30134	-2.69565	-0.95167
Н	-10.27591	-4.26914	0.69388
H	-7.0135	-3.566	3.41127
н	-4.85832	-0.0369	2.84843

Н	-6.6228	-0.0129	2.70392
Н	-5.83355	-1.2227	3.72507
Н	-3.50775	-2.01044	1.73881
Н	-4.50295	-3.16602	2.63337
Н	-4.39097	-3.27612	0.87132
Н	-6.33972	-0.73292	-2.36439
Н	-7.78433	-1.71385	-2.23292
Н	5.99474	-4.36883	1.51851
Н	4.71174	-3.70203	0.47198
Н	6.30437	-2.07008	-0.51956
Н	7.63602	-2.73197	0.46688
Н	8.19734	-3.84863	-2.95697
Н	8.81628	-2.83188	-1.62365
Н	7.341	-2.32163	-2.51003
Н	8.13587	-5.74292	-1.45556
Н	7.20719	-5.67207	0.06326
Н	8.71754	-4.73488	-0.10242
Н	6.19679	-5.09955	-2.70398
Н	5.22354	-5.02383	-1.21485
Н	5.27481	-3.61842	-2.32161
Н	-8.98725	0.19262	-1.0971
Н	-7.54007	1.18488	-1.23756
Н	4.12278	3.78301	-1.66972
Н	5.34701	1.62878	-1.90417
Н	-9.80588	2.48513	-4.30072
Н	-7.6647	0.99327	-3.75433
Н	-9.14754	0.0328	-3.59034
Н	0.45479	1.7834	-2.70932
Н	1.69965	-0.35355	-2.94873

4. NMR spectra ¹H NMR of proCyC2 (CD₃OD)

¹H NMR of proCyCE2 (CD₃OD)

¹H NMR of proCyCE1 (DMSO-d₆)

¹H NMR of proCyC3 (DMSO-d₆)

¹³C NMR of proCyCE3 (CD₃OD)

¹H NMR of proCyCE4_(CD₃OD)

¹H NMR of proCyC5 (CD₃OD)

¹³C NMR of proCyCE5 (CD₃OD)

single pulse decoupled gated NOE		2 8 7 8 8 1 9 9 9 8 1 8 8 8 8 9 9 8 7 9 8 7 9 8 9 9 9 9 9 9 9
6.926 6.042 3.6417 2.417	64646000000000000000000000000000000000	
1 11		
	g	1 4 J
		t
		PP:
200 175	150 125 100	75 50 25 0