Electronic Supplementary Information

Bio-inspired AIE pillar[5]arene probe with multiple binding sites to discriminate alkanediamines

Yibin Zhou,^a Hao Tang,^{*a} Zhao-Hui Li,^b Linxian Xu,^a Lingyun Wang,^a and Derong Cao^{*a}

^a State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.

E-mail: haotang@scut.edu.cn, drcao@scut.edu.cn

^b College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.

Table of Contents

1.Experimental	
Measurements and Materials	2
Synthesis and Characterization	3
2. NMR and HRMS Spectra of Compounds	8
3. Supplementary Figures and Table	19
4. Reference	31

1. Experimental

Measurements and Materials

¹H and ¹³C nuclear magnetic resonance (NMR) spectra were recorded on Bruker DRX 400 NMR or Bruker DRX 500 NMR spectrometer using CDCl₃ as a solvent and trimethylsilane as a reference. High resolution mass spectrometry (HRMS) was determined using a Bruker maXis impact instrument. Fluorescence spectra were mesured on a Hitachi F-4500 fluorescence spectrophotometer. UV–Vis absorption were recorded on a Helios Alpha UV-vis scanning spectraphotometer. Single-crystal X-ray diffraction experiments were conducted using a Bruker SMART II CCD area detector. The binding constants (*K*) and relative fluorescence quantum yield (Φ) were calculated by non-linear fitting of the binding isotherm with a 1:1 binding model using software *Scientist 3* (Micromath, USA) according to the procedure we reported before¹. Geometry optimizations of five complexes (H2⊃G6, H2⊃G8, H2⊃G10, H2⊃G12, and H1⊃G8) were performed using B3LYP/6–31G(d, p) method²⁻³. Compound 1 was prepared according to the reported procedures⁴. All solvents were obtained from commercial resources or dried according to the standard procedure. Other materials were purchased from Aladdin, J&K and were used for synthesis without further purification.

Syntheses and Characterization

Scheme S1. Synthetic routes of H1 and H2.

Compound 1 (986 mg, 1 mmol), 2-thiopheneboronic acid (167 mg, 1,3 mmol), K₂CO₃ (483 mg, 3.5 mmol) and Pd(PPh₃)₄ (50 mg, 0.32 mmol) were dissolved in toluene/ethanol/H₂O (25 mL/5 mL/2 mL) mixture. The mixture was stirred at 90 °C under N₂ atmosphere for 24 h. After cooling, the mixture was extracted with dichloromethane for three times. The combined organic layers were concentrated under reduced pressure and purified by silica gel chromatography using petroleum ether/ethyl acetate (10:1, v/v) as the eluent to afford pure compound 2 as a white solid (53% yield, 488 mg). M.p. 183–185 °C. ¹H NMR (500 MHz, CDCl₃, δ): 7.32–7.30 (m, 2H), 7.22 3

(s, 1H), 7.07–7.05 (m, 1H), 6.91–6.90 (m, 1H), 6.78 (s, 1H), 6.76 (s, 1H), 6.76 (s, 1H), 6.74 (s, 1H), 6.73 (s, 1H), 6.68 (s, 1H), 6.67 (s, 1H), 6.03 (s, 1H), 3.95 (s, 2H), 3.85 (s, 2H), 3.82 (s, 2H), 3.81 (s, 2H), 3.74 (s, 2H), 3.72 (s, 3H), 3.67 (s, 3H), 3.66 (s, 3H), 3.63 (s, 3H), 3.62 (s, 3H), 3.56 (s, 3H), 3.53 (s, 3H), 3.49 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, δ): 150.99, 150.95, 150.85, 150.73, 150.70, 150.65, 150.25, 147.91, 141.84, 140.64, 134.99, 133.05, 130.58, 129.48, 128.81, 128.48, 128.31, 128.27, 127.86, 127.10, 126.91, 126.70, 125.61, 124.91, 122.70, 118.62 (d, $J_{CF} =$ 318.8 Hz), 114.48, 114.18, 114.08, 114.02, 114.00, 113.75, 113.49, 113.21, 55.94, 55.83, 55.75, 55.72, 55.69, 55.49, 55.22, 55.19, 32.59, 31.36, 29.98, 29.46, 29.38. HRMS (m/z): calcd. for [M+Na]⁺ C₄₈H₄₇F₃NaO₁₁S₂: 943.2410; found 943.2404.

Compound 2 (461 mg, 0.5 mmol) and 1 mL N,N-dimethylformamide were dissolved in 10 mL dichloroethane. 1 mL POCl₃ was added under ice bath conditions and stirred for 40 min, then the mixture was stirred at 85 °C under N₂ atmosphere for 48 h. After the reaction was completed, saturated K₂CO₃ solution was added until no bubbles were formed. The mixture was extracted with dichloromethane for three times. The combined organic layers were concentrated under reduced pressure and purified by silica gel chromatography using petroleum ether/ethyl acetate/ dichloromethane (25:4:1, v/v) as the eluent to afford pure compound 3 as a white solid (76% yield, 360 mg). M.p. 144–146 °C. ¹H NMR (500 MHz, CDCl₃, δ): 9.87 (s, 1H), 7.64 (d, *J* = 3.8 Hz, 1H), 7.21 (s, 1H), 7.21 (s, 1H), 6.90 (d, J = 3.8 Hz, 1H), 6.75 (s, 1H), 6.74 (s, 1H), 6.71 (s, 1H), 6 1H), 6.70 (s, 1H), 6.66 (s, 1H), 6.61 (s, 1H), 5.98 (s, 1H), 3.87 (s, 2H), 3.81 (s, 2H), 3.78 (s, 2H), 3.77 (s, 2H), 3.69 (s, 5H), 3.65 (s, 3H), 3.63 (s, 3H), 3.62 (s, 3H), 3.58 (s, 3H), 3.54 (s, 3H), 3.45 (s, 3H), 3.43 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, δ): 182.77, 152.23, 150.88, 150.84, 150.79, 150.66, 150.64, 150.60, 150.19, 148.55, 143.58, 140.55, 136.64, 134.51, 131.71, 131.05, 129.60, 129.18, 128.50, 128.42, 128.28, 128.06, 127.61, 126.00, 124.38, 123.08, 118.56 (d, $J_{CF} = 318.3$ Hz), 114.27, 113.99, 113.94, 113.85, 113.65, 113.38, 112.98, 55.89, 55.79, 55.68, 55.64, 55.48, 55.17, 55.08, 32.76, 31.34, 29.87, 29.30, 29.24. HRMS (m/z): calcd. for [M+Na]⁺ C₄₉H₄₇F₃NaO₁₂S₂: 971.2359; found 971.2353.

4

Compound 3 (100 mg, 0.11 mmol) and tetraethyl ammonium hydroxide (124 mg, 0.22 mmol) were dissolved in 3 mL 1,4-dioxane. The mixture was reacted at 60 °C for half an hour and then transferred to room temperature for 3 hours. After the reaction was completed, the mixture was extracted with dichloromethane for three times. The combined organic layers were concentrated under reduced pressure and purified by silica gel chromatography using petroleum ether/ethyl acetate (3:1, v/v) as the eluent to afford pure compound 4 as a pale yellow solid (81% yield, 70 mg). M.p. 119–121 °C. ¹H NMR (500 MHz, CDCl₃, δ): 9.90 (s, 1H), 7.74 (d, *J* = 3.8 Hz, 1H), 7.40 (s, 1H), 7.13 (s, 1H), 7.11 (d, J = 3.8 Hz, 1H), 6.99 (s, 1H), 6.81 (s, 1H), 6.79 (s, 1H), 6.76 (s, 1H), 6.68 (s, 1H), 6.66 (s, 1H), 6.57 (s, 1H), 6.44 (s, 1H), 6.43 (s, 1H), 3.88-3.88 (m, 5H), 3.80 (s, 2H), 3.78 (s, 2H), 3.77 (s, 4H), 3.75 (s, 3H), 3.68 (s, 3H), 3.67 (s, 3H), 3.66 (s, 3H), 3.65 (s, 3H), 3.59 (s, 3H), 3.16 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, δ): 182.84, 155.18, 155.12, 151.91, 151.09, 150.91, 150.74, 150.68, 150.64, 150.60, 147.97, 142.32, 139.94, 136.81, 131.94, 129.74, 128.98, 128.12, 128.10, 127.97, 127.82, 127.64, 127.58, 125.36, 125.18, 124.65, 118.40, 114.57, 114.39, 114.29, 113.94, 113.86, 113.60, 113.34, 112.87, 56.38, 56.03, 55.93, 55.77, 55.76, 55.70, 55.56, 55.17, 32.59, 30.34, 30.22, 29.69, 28.97. HRMS (m/z): calcd. for [M+Na]⁺ C₄₈H₄₈NaO₁₀S: 839.2866; found 839.2860.

Compound 4 (600 mg, 0.74 mmol), ethyl bromoacetate (247 mg, 1.48 mmol) and K₂CO₃ (413 mg, 3 mmol) were dissolved in 15 mL acetonitrile. The mixture was stirred at 80 °C for 24 h. After cooling, the mixture was extracted with dichloromethane for three times. The combined organic layers were concentrated under reduced pressure and purified by silica gel chromatography using petroleum ether/ethyl acetate (3:1 v/v) as the eluent to afford pure compound 5 as a pale yellow solid (80% yield, 530 mg). M.p. 185–187 °C. ¹H NMR (400 MHz, CDCl₃, δ): 9.92 (s, 1H), 7.78 (d, *J* = 3.8 Hz, 1H), 7.34 (s, 1H), 7.11 (d, *J* = 3.8 Hz, 1H), 6.92 (s, 1H), 6.87 (s, 1H), 6.86 (s, 1H), 6.82–6.81 (m, 3H), 6.77 (s, 1H), 6.66 (s, 1H), 6.06 (s, 1H), 4.53 (s, 2H), 3.86 (s, 2H), 3.80–3.78 (m, 10H), 3.73–3.70 (m, 18H), 3.62 (s, 3H), 3.50 (s, 3H), -1.70 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃, δ): 182.91, 168.23, 156.59, 154.83, 151.52, 150.69, 150.61, 150.40, 150.32, 149.99, 149.75, 149.30, 142.84, 139.90, 137.13, 133.48, 128.94, 128.57, 128.43, 128.29, 128.04, 128.02, 127.31, 126.84, 126.22, 123.20, 115.31, 113.99, 113.94, 113.77, 113.19, 112.99, 112.55, 112.46, 111.73, 64.14, 60.68, 55.92, 55.82, 55.70, 55.55, 55.23, 55.08, 32.06, 31.03, 30.19, 28.85, 28.58, 10.39. HRMS (m/z): calcd. for [M+Na]⁺ C₅₂H₅₄NaO₁₂S: 925.3234; found 925.3228.

2-Methylquinoline (2.86g, 20 mmol) and ethyl bromoacetate (5 g, 30 mmol) were added in 25 mL round-bottomed flask, and stirred at 110 °C under N₂ atmosphere for 3 h. A large amount of solid precipitated after the reaction was over. Methanol was poured to dissolve the solid and recrystallized in ethyl acetate to obtain the crude product 6. The crude product 6 was put into the next step without further purification. Compound 6 (6 g, 30 mmol), malononitrile (4 g, 60 mmol), sodium ethoxide (4 g, 60 mmol) were dissolved in 35 mL ethanol. The mixture was stirred at room temperature for 16 h. After the reaction was completed, the mixture was extracted with dichloromethane for three times. The combined organic layers were concentrated under reduced pressure and purified by silica gel chromatography using petroleum ether/ethyl acetate (1:1, v/v) as the eluent to afford pure compound 7 as a yellowish green solid (22% yield, 1.3 g). M.p. 151–153 °C. ¹H NMR (400 MHz, CDCl₃, δ) 9.03 (d, *J* = 8.4 Hz, 1H), 7.73–7.69 (m, 1H), 7.44–7.40 (m, 1H), 7.33 (d, *J* = 8.8 Hz, 1H), 6.80 (s, 1H), 4.94 (s, 2H), 4.30 (q, *J* = 7.1 Hz, 2H), 2.52 (s, 3H), 1.30 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃, δ): 166.64, 153.86, 147.75, 138.86, 133.45, 126.84, 124.82, 120.99, 119.50, 118.28, 115.29, 109.58, 62.83, 52.78, 49.24, 21.73, 14.07. HRMS (m/z): calcd. for [M+H]⁺ C₁₇H₁₆N₂O₂: 294.1243; found 294.1237.

Compound 5 (300 mg, 0.26 mmol), compound 7 (70 mg, 0.24 mmol) and piperidine 0.3 mL were dissolved in 7 mL acetonitrile. The mixture was stirred at 80 °C under N₂ atmosphere for 24 h. After cooling, 50 mL methanol was added and large amounts of solids were precipitated. The crude product was obtained after reduced pressure filtration. Then, the crude product washed with methanol for three times (3×30 mL) to give pure H1 as a red solid (57% yield, 161 mg). M.p. 255–257 °C. ¹H NMR (400 MHz, CDCl₃, δ): 9.14–9.12 (m, 1H), 7.76–7.72 (m, 1H), 7.50–7.46 (m, 2H), 7.33–7.32 (m, 2H), 7.30 (d, J = 3.6 Hz, 1H), 7.17 (s, 1H), 6.96 (d, J = 3.6 Hz, 1H), 6.92 (s, 1H), 6.89 (s, 1H), 6.87 (s, 1H), 6.82 (s, 3H), 6.76 (s, 1H), 6.69 (d, J = 15.4 Hz, 1H), 6.62 (s, 1H), 6.17 (s, 1H), 4.96 (s, 2H), 4.51 (s, 2H), 4.36 (q, J = 7.1 Hz, 2H), 3.92 (s, 2H), 3.81–3.78 (m, 10H), 3.73–3.70 (m, 18H), 3.61 (s, 3H), 3.55 (s, 3H), 1.34 (t, J = 7.1 Hz, 3H), -1.67 (t, J = 6.7 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃, δ): 168.24, 167.03, 156.17, 153.58, 151.47, 150.69, 150.62, 150.34, 150.33, 149.93, 149.80, 149.38, 148.08, 147.55, 139.94, 139.09, 138.86, 133.57, 133.51, 133.45, 6

131.01, 128.93, 128.85, 128.51, 128.38, 128.27, 128.18, 127.91, 127.28, 126.69, 126.63, 126.43, 124.82, 123.47, 121.05, 119.53, 118.53, 116.84, 115.58, 115.30, 114.05, 113.96, 113.88, 113.40, 112.91, 112.72, 112.42, 111.58, 107.27, 64.01, 62.76, 60.60, 55.97, 55.79, 55.75, 55.71, 55.62, 55.47, 55.26, 55.04, 53.33, 50.68, 32.17, 31.08, 30.21, 28.83, 28.52, 14.10, 10.46. HRMS (m/z): calcd. for [M+Na]⁺ C₆₉H₆₇N₃NaO₁₃S: 1200.4292; found 1200.4287.

H1 (190 mg, 0.16 mmol) and NaOH (66 mg, 1.64 mmol) were dissolved in THF/H2O (25 mL/5 mL) mixture. The mixture was stirred at 73 °C for 12 h. After cooling, the mixture was concentrated under reduced pressure to remove THF and then 2 M HCl was added until no more solids precipitated. The crude product was obtained after reduced pressure filtration and purified by silica gel chromatography using ethyl acetate/ methanol (2:1, v/v) as the eluent to afford pure H2 as a red solid (82% yield, 148 mg). M.p. 176–178 °C. ¹H NMR (500 MHz, CDCl₃, δ): 9.07 (d, J = 8.3 Hz, 1H), 7.75–7.72 (m, 1H), 7.52–7.39 (m, 4H), 7.27 (s, 1H), 7.15 (s, 1H), 6.99–6.99 (m, 1H), 6.84 (s, 1H), 6.78 (s, 1H), 6.76 (s, 1H), 6.69–6.59 (m, 5H), 6.55 (s, 1H), 6.15 (s, 1H), 4.95 (s, 2H), 4.43 (s, 2H), 3.93 (s, 2H), 3.84 (s, 2H), 3.77 (s, 2H), 3.76 (s, 2H), 3.74–3.73 (m, 5H), 3.68 (s, 3H), 3.67 (s, 3H), 3.63 (s, 3H), 3.58 (s, 3H), 3.48–3.45 (m, 9H). ¹³C NMR (125 MHz, CDCl₃, δ): 170.38, 169.04, 154.84, 153.61, 151.40, 150.99, 150.85, 150.84, 150.78, 150.64, 150.46, 150.19, 148.14, 147.02, 139.52, 139.39, 138.86, 133.53, 133.12, 131.56, 128.85, 128.78, 128.32, 128.23, 128.11, 127.78, 127.72, 127.52, 127.18, 126.44, 125.75, 124.92, 120.99, 119.75, 118.74, 116.86, 115.94, 115.44, 114.99, 114.58, 114.40, 114.30, 114.09, 113.91, 113.61, 113.52, 106.96, 64.87, 57.02, 56.52, 56.24, 56.17, 55.97, 55.81, 55.48, 52.02, 50.64, 32.72, 30.14, 29.88, 29.64, 29.45. HRMS (m/z): calcd. for [M+Na]⁺ C₆₅H₅₉N₃NaO₁₃S: 1144.3666; found 1144.3661.

2. NMR and HRMS Spectra of Compounds

Figure S1. ¹H NMR spectrum of compound 2 (500 MHz, CDCl₃).

Figure S2. ¹³C NMR spectrum of compound 2 (125 MHz, CDCl₃).

Figure S3. HRMS spectrum of compound 2.

Figure S4. ¹H NMR spectrum of compound 3 (500 MHz, CDCl₃).

Figure S5. ¹³C NMR spectrum of compound 3 (125 MHz, CDCl₃).

Figure S7. ¹H NMR spectrum of compound 4 (500 MHz, CDCl₃).

Figure S8. ¹³C NMR spectrum of compound 4 (125 MHz, CDCl₃).

Figure S9. HRMS spectrum of compound 4.

Figure S10. ¹H NMR spectrum of compound 5 (400 MHz, CDCl₃).

Figure S11. ¹³C NMR spectrum of compound 5 (125 MHz, CDCl₃).

Figure S12. HRMS spectrum of compound 5.

Figure S13. ¹H NMR spectrum of compound 7 (400 MHz, CDCl₃).

Figure S14. ¹³C NMR spectrum of compound 7 (100 MHz, CDCl₃).

Figure S15. HRMS spectrum of compound 7.

Figure S16. ¹H NMR spectrum of compound H1 (400 MHz, CDCl₃).

Figure S17. ¹³C NMR spectrum of compound H1 (125 MHz, CDCl₃).

Figure S18. HRMS spectrum of compound H1.

Figure S19. ¹H NMR spectrum of compound H2 (500 MHz, CDCl₃).

Figure S20. ¹³C NMR spectrum of compound H2 (125 MHz, CDCl₃).

Figure S21. HRMS spectrum of compound H2.

3. Supplementary Figures and Table

Figure S22. (a) UV-visible absorption spectra of H1 and H2. (b) fluorescence spectra of H1 and H2 in ethyl acetate solution (25 μ M).

Figure S23. The intermolecular interactions in the crystal of H1.

Figure S24. The molecular stacks in the crystal of **H1**: viewed along the a-axis (a), b-axis (b), and c-axis (c), respectively. Hydrogen atoms are omitted for clarity.

	H1
CCDC	2106589
Empirical formula	$C_{69}H_{67}N_3O_{13}S$
Formula weight	1178.31
Temperature (K)	193
Crystal system	Triclinic
Space group	P -1
Ζ	2
D _{calcd} [Mg/m ³]	1.286
F (000)	1244
θ range [°]	2.085 - 25.000
$R_1[I>2\sigma(I)]$	0.0932
$wR_2 [I \ge 2\sigma(I)]$	0.1741
<i>a</i> [Å]	12.7652(9)
<i>b</i> [Å]	16.0114(13)
<i>c</i> [Å]	16.5435(12)
α [deg]	75.891(2)
β [deg]	82.879(2)
γ [deg]	68.192(2)
V[Å ³]	3042.5(4)
GOF	1.030
R(int)	0.1088
No. of reflens collected	56680
No. of unique reflens	10699
R_1 (all data)	0.1954
wR_2 (all data)	0.2271

Table S1. Crystal data and details of collection and refinement for H1.

Figure S25. Fluorescence spectra of **H1** (a) and **H2** (b) in ethanol/H₂O mixtures (10 μ M) with f_w values from 0 to 90%. Insets: photographs of **H1** and **H2** at $f_w = 0\%$ and 80% under 365 nm UV illumination. The changes in the fluorescence intensity of **H1** (c) and **H2** (d) with different f_w values.

Figure S26. Fluorescence spectra of **H1** (a) and **H2** (b) in dimthyl sulfoxide/glycerol mixture (10 μ M) with different glycerol volume fractions.

Figure S27. Fluorescence spectra of **H2** (25 μ M) before and after adding G8 (15 μ M) in toluene (a), chloroform (b), ethyl acetate (c), acetone (d), and methanol (e); the combined fluorescence spectra of **H2** (f) and **H2** \supset G8 complex (g) in different solvents.

Figure S28. ¹H NMR spectra for the binding of **H2** with guest **G8** (500 MHz, CDCl₃). (**a**) **G8** (15 mM); (**b**) **H2** (10 mM) and **G8** (15 mM); (**c**) **H2** (10 mM).

Figure S29. ESI-MS spectrum of H2 \supset G8 complex (m/z: calcd. for [H2 \supset G8+H]⁺ C₇₃H₈₀N₅O₁₃S: 1266.5473; found 1266.5468).

Figure S30. ESI-MS spectrum of H2 \supset G2 complex (m/z: calcd. for [H2 \supset G2+H]⁺ C₆₇H₆₈N₅O₁₃S: 1182.4534; found 1182.4529).

Figure S31. ESI-MS spectrum of H2 \supset G4 complex (m/z: calcd. for [H2 \supset G4+H]⁺ C₆₉H₇₂N₅O₁₃S: 1210.4847; found 1210.4842).

Figure S32. ESI-MS spectrum of H2 \supset G6 complex (m/z: calcd. for [H2 \supset G6+H]⁺ C₇₁H₇₆N₅O₁₃S: 1238.5160; found 1238.5155).

Figure S33. ESI-MS spectrum of $H2 \supset G10$ complex (m/z: calcd. for $[H2 \supset G10+H]^+ C_{75}H_{84}N_5O_{13}S$: 1294.5786; found 1294.5781).

Figure S34. ESI-MS spectrum of $H2 \supset G12$ complex (m/z: calcd. for $[H2 \supset G12+H]^+$ C₇₇H₈₈N₅O₁₃S: 1322.6099; found 1322.6094).

Figure S35. The fluorescence spectra of H1 (25 μ M) with different alkyldiamines (50 μ M) in ethyl acetate solution.

Figure S36. (a) Dependence of fluorescence of H2 on the concentration of G10 in ethyl acetate solution (from $0 - 65 \ \mu$ M). (b) Binding isotherm of H2⊂G10 complex fitted with 1:1 binding model. [H2] = 25 μ M for all samples.

Figure S37. (a) Dependence of fluorescence of H2 on the concentration of G12 in ethyl acetate solution (from $0 - 65 \ \mu$ M). (b) Binding isotherm of H2⊂G12 complex fitted with 1:1 binding model. [H2] = 25 μ M for all samples.

Figure S38. The complex structure of H2⊂G10 predicted by DFT calculation.

Figure S39. The complex structure of H2⊂G12 predicted by DFT calculation.

Figure S40. The complex structure of H1⊂G8 predicted by DFT calculation.

Figure S41. The linear relationship value of H2 with G8 (a), G10 (b), and G12 (c). The limit of detection (LOD) was calculated with the following equation: LOD = $3\sigma/S$. Here, σ was the standard deviation of the blank and S was the slope of the intensity of fluorescence against the guest's concentration.

Probes	LOD	Remark	Reference
Phenolphthalein with two crown loops	No data	Host-Guest interaction, On-Off type	Org. Biomol. Chem., 2009, 7, 4689–4694
pyrrolopyrrole aza- BODIPY	Putrescine: 36 nM Cadaverine: 32 nM 1,3-propanediamine: 33 nM	Colorimetric and fluorescent, rapid (30 s), high sensitivity, high selectivity	Sensors & Actuators: B. Chemical, 2020, 312 , 127953
Water-soluble pillar[5]arene modified silver nanoparticles	No data	Host–guest recognition, surface-enhanced Raman spectroscopy (SERS)-based selective assays	Chem.Commun., 2014, 50 , 869-871
Pyrene modified pillar[5]arene	No data	Host–guest recognition, fluorescence turn off	J. Am. Chem. Soc. 2011, 133 , 5668–5671
peptide-Pillar[5]arene conjugate	No data	Host-guest recognition, fluorescence turn off	<i>Nat. Commun.</i> , 2019, 10 , 3546
Polymer–Surfactant Complexation	Spermine: 330 nM	Electrostatic interactions	Anal. Chem. 2016, 88 , 7358-7364
	Putrescine: 780 nM	fluorescence turn-off	Sensors & Actuators: B. Chemical, 2018, 254 , 842-854
NC CN O COOH O O COOH O O COOH	1,8-diaminooctane: 16.8 nM 1,10-diaminodecane: 9.9 nM 1,12diaminododecan e: 7.6 nM	fluorescence turn-on, rapid, high sensitivity, high selectivity	This work

Table S2. The comparison of the AIE pillar[5]arene probe with others.

4. Reference

- 1. L. X. Xu, R. R. Wang, W. Cui, L. Y. Wang, H. Meier, H. Tang and D. R. Cao, *Chem. Commun.*, 2018, **54**, 9274-9277.
- 2. M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees and J. A. Pople, *J. Chem. Phys*, 1982, 77, 3654-3665.
- 3. A. D. Becke, J. Chem. Phys, 1993, 98, 5648-5652.
- W. Cui, L. Wang, L. Xu, G. Zhang, H. Meier, H. Tang and D. Cao, J. Phys. Chem. Lett., 2018, 9, 1047-1052.