Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Electronic supplementary information

Synthesis of 1,4-enynes via nickel-catalyzed cross-coupling of allylic alcohols with alkynylzinc reagents

Xue-Yi He^a and Zhong-Xia Wang*^{a,b}

^{*a*} CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China. Telephone 86 551 63603043, E-mail: zxwang@ustc.edu.cn.

^b Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China.

Contents

1.	General Information	S 2
2.	Preparation of alkynylzinc reagents	S2
3.	Optimization of reaction conditions	S2
4.	General procedure for the catalytic coupling	S4
5.	Characterization data	S4
6.	Gram scale reaction	S16
7.	Transformation of 1,4-enynes	S17
8.	Mechanistic studies	S18
9.	References	S20
10.	Copies of NMR spectra of the reaction products	S22

1. General information

All reactions were performed under nitrogen atmosphere using standard Schlenk and vacuum line techniques. All chemicals were purchased as reagent grade and used without further purification unless otherwise noted. Toluene and THF were purified by JC Meyer Phoenix Solvent Systems. DME, nBu₂O, and 1,4-dioxane were distilled under nitrogen over sodium and degassed prior to use. DMF, DMA, and NMP was dried over 4 Å molecular sieves, fractionally distilled under reduced pressure, and stored under a nitrogen atmosphere. ZnCl₂ and LiCl were purchased from commercial vendors and dried under vacuum at 140 $\,$ °C for 12 h prior to use. MeMgCl was purchased from commercial vendors and used as received. MeZnCl was prepared via reaction of ZnCl₂ with 1.0 equiv of MeMgCl in the presence of 2.0 equiv of LiCl. Concentration of MeZnCl was titrated using Knochel's method.¹ Allyl alcohols were prepared according to literature methods.² NMR spectra were recorded on a Bruker av400 or Bruker av500 spectrometer at 25 °C. The chemical shifts of the ¹H NMR spectra were referenced to TMS, and the chemical shifts of the ¹³C NMR spectra were referenced to internal solvent resonance. The chemical shifts of the ¹⁹F NMR spectra were referenced to external CF₃COOH. High-resolution mass spectra (HRMS) were acquired on a Thermo Fisher LTQ Orbitrap XL mass spectrometer.

2. Preparation of alkynylzinc reagents

To a stirred solution of terminal alkyne (5 mmol) in THF (5 mL) was added dropwise *n*BuLi (2.5 M solution in hexane, 2.1 mL, 5.25 mmol) at -78 °C. After the mixture was stirred for 1 h at -78 °C, dried ZnCl₂ (715.5 mg, 5.25 mmol) in THF (5 mL) was added. The cooling bath was removed after 15 min, and the resulting mixture was slowly warmed to room temperature with stirring. The concentration of the resulting alkynylzinc solution was titrated using Knochel's method.¹

3. Optimization of reaction conditions

Table S1. Optimization of reaction conditions employing (*E*)-3-phenylprop-2-en-1-ol and PhC=CZnCl as the model substrates^{*a*}

Entry	[Ni]	Solvent	Temp. (°C)	Time (h)	Yield $(\%)^b$
1	NiCl ₂ (PMe ₃) ₂	toluene	120	16	-
2^c	Ni(OTf) ₂	toluene	120	16	25
3 ^c	NiBr ₂	toluene	120	16	54
4	NiBr ₂ (glyme)	toluene	120	16	_
5	NiCl ₂ (PCy ₃) ₂	toluene	120	16	-
6	NiCl ₂ (PPh ₃) ₂	toluene	120	16	_
7	NiCl ₂ (dppe)	toluene	120	16	63
8	NiCl ₂ (dppf)	toluene	120	16	48
9	NiCl ₂ (dppe)	toluene	120	24	74
10	NiCl ₂ (dppe)	toluene	120	34	76
11	NiCl ₂ (dppe)	toluene	110	24	88 ^d
12	NiCl ₂ (dppe)	toluene	100	24	82
13	NiCl ₂ (dppe)	<i>n</i> Bu ₂ O	110	24	66
14	NiCl ₂ (dppe)	toluene/nBu ₂ O (3/1)	110	24	82
15	NiCl ₂ (dppe)	dioxane	110	24	36
16	NiCl ₂ (dppe)	DME	110	24	<5
17	NiCl ₂ (dppe)	NMP	110	24	-
18 ^e	NiCl ₂ (dppe)	toluene	110	24	70

^{*a*} Unless otherwise specified, the reactions were carried out according to the conditions indicated by the above equation. ^{*b*} NMR yield, determined by ¹H NMR spectra using C₂H₂Cl₄ as an internal standard. ^{*c*} 10 mol% of dppe was employed. ^{*d*} Isolated yields. ^{*e*} 5 mol% of NiCl₂(dppe) was used.

Table S2. Optimization of reaction conditions employing (*E*)-3-phenylprop-2-en-1-ol and Me₃SiC=CZnCl as the model substrates^{*a*}

	OH + Me ₃ Si	ZnCI MeZnCI (1.2 equiv NiCl ₂ (dppe)(10 m Toluene (2 cm ³)	v) ol%)	SiMe ₃
1a (0.2 mr	nol) 2b (0.4	mmol)		3ab
Entry	Temp. (°C)	Time (h)	Yield $(\%)^b$	_
1	110	24	99	_
2 ^{<i>c</i>}	110	16	90 ^{<i>d</i>}	_
3 ^e	110	24	53 ^d	_
4 ^f	110	24	99	_
5^{f}	100	24	99	_
6 ^f	90	24	96	_
7 ^f	100	18	97	_

^{*a*} Unless otherwise specified, the reactions were carried out according to the conditions indicated by the above equation. ^{*b*} Isolated yields. ^{*c*} 5 mol% of NiCl₂(dppe) was used. ^{*d*} NMR yield, determined by ¹H NMR spectra using C₂H₂Cl₄ as an internal standard. ^{*e*} No MeZnCl was used. ^{*f*} 0.3 mmol of alkynylzinc reagent was employed.

4. General procedure for the catalytic coupling

(1) ArC=CZnCl was used as the nucleophile: NiCl₂(dppe) (10.6 mg, 10 mol%) and allyl alcohol (0.5 mL, 0.4 M solution in THF, 0.2 mmol) were charged to a Schlenk tube under nitrogen. To the stirred mixture was added MeZnCl (0.42 mL, 0.57 M solution in THF, 0.24 mmol) at room temperature. After the mixture was stirred for 5 min, a solution of ArC=CZnCl (1 mL, 0.4 M solution in THF, 0.4 mmol) was added. The mixture was stirred for an additional 5 min. Solvent was removed in vacuo and then toluene (2 mL) was added. The resulting mixture was heated at 110 $^{\circ}$ C (oil bath temperature) for 24 h and then cooled to room temperature. A 20% aqueous solution of NH₄Cl (10 mL) was added. The mixture was extracted with ethyl acetate (3 × 10 mL). The combined organic phases were dried over anhydrous Na₂SO₄, concentrated by rotary evaporation, and purified by column chromatography (silica gel).

(2) Me₃SiC=CZnCl was used as the nucleophile: NiCl₂(dppe) (10.6 mg, 10 mol%) and allyl alcohol (0.5 mL, 0.4 M in THF, 0.2 mmol) were charged to a Schlenk tube under nitrogen. To the stirred mixture was added MeZnCl (0.42 mL, 0.57 M solution in THF, 0.24 mmol) at room temperature. After the mixture was stirred for 5 min, a solution of Me₃SiC=CZnCl (0.65 mL, 0.46 M solution in THF, 0.3mmol) was added. The resulting solution was stirred for an additional 5 min. Solvent was removed in vacuo and then toluene (2 mL) was added. The reaction mixture was heated at 100 °C (oil bath temperature) for 24 h and then cooled to room temperature. A 20% aqueous solution of NH₄Cl (10 mL) was added. The resulting mixture was extracted with ethyl acetate (3 × 10 mL). The combined organic phases were dried over anhydrous Na₂SO₄, concentrated by rotary evaporation, and purified by column chromatography (silica gel).

5. Characterization data

(*E*)-pent-1-en-4-yne-1,5-diyldibenzene $(3aa)^3$

Eluent: EtOAc/petroleum ether 1/200 (v/v), light yellow oil, yield 38.4 mg (88%). ¹H NMR (400 MHz, CDCl₃): δ 7.49–7.42 (m, 2H), 7.41–7.36 (m, 2H), 7.34–7.27 (m, 5H), 7.25–7.19 (m, 1H), 6.71 (dt, *J* = 15.7, 1.6 Hz, 1H), 6.25 (dt, *J* = 15.7, 5.7 Hz, 1H), 3.36 (dd, *J* = 5.6, 1.8

Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 137.22, 131.77, 131.55, 128.67, 128.39, 127.97, 127.48, 126.41, 124.38, 123.77, 86.87, 83.00, 23.15.

(*E*)-trimethyl(5-phenylpent-4-en-1-yn-1-yl)silane (**3ab**)⁴

Eluent: EtOAc/petroleum ether 1/200 (v/v), light yellow oil, yield 42.7 mg (99%). ¹H NMR (400 MHz, CDCl₃): δ 7.41–7.35 (m, 2H), 7.35–7.29 (m, 2H),7.28–7.20 (m, 1H), 6.65 (dt, *J* = 15.7, 1.9 Hz, 1H), 6.17 (dt, *J* = 15.7, 5.7 Hz, 1H), 3.19 (dd, *J* = 5.7, 1.9 Hz, 2H), 0.21 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 137.22, 131.58, 128.65, 127.47, 126.40, 124.12, 103.76, 87.23, 23.60, 0.25.

(*E*)-1-methoxy-4-(5-phenylpent-1-en-4-yn-1-yl)benzene (**3ba**)⁴

Eluent: EtOAc/petroleum ether 1/60 (v/v), light yellow oil, yield 43.2 mg (87%). ¹H NMR (400 MHz, CDCl₃): δ 7.48–7.41 (m, 2H), 7.35–7.26 (m, 5H), 6.85 (d, *J* = 8.8 Hz, 2H), 6.64 (dt, *J* = 15.6, 1.9 Hz, 1H), 6.11 (dt, *J* = 15.7, 5.7 Hz, 1H), 3.80 (s, 3H), 3.34 (dd, *J* = 5.7, 1.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 159.14, 131.76, 130.92, 130.04, 128.37, 127.92, 127.54, 123.83, 122.15, 114.07, 87.17, 82.82, 55.41, 23.10.

(*E*)-(5-(4-methoxyphenyl)pent-4-en-1-yn-1-yl)trimethylsilane (**3bb**)⁴

Eluent: EtOAc/petroleum ether 1/60 (v/v), light yellow oil, yield 48.5 mg (99%). ¹H NMR (400 MHz, CDCl₃): δ 7.29 (d,*J* = 8.7 Hz, 2H), 6.84 (d,*J* = 8.7 Hz, 2H), 6.56 (dt, *J* = 15.8, 1.8 Hz, 1H), 6.01 (dt, *J* = 15.7, 5.7 Hz, 1H), 3.80 (s, 3H), 3.15 (dd, *J* = 5.7, 1.8 Hz, 2H), 0.19 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 159.12, 130.92, 130.01, 127.51, 121.88, 114.04, 104.07, 86.97, 55.39, 23.55, 0.26.

(*E*)-methyl(4-(5-phenylpent-1-en-4-yn-1-yl)phenyl)sulfane (**3ca**)

Eluent: EtOAc/petroleum ether 1/150 (v/v), light yellow oil, yield 41.2 mg (78%). ¹H NMR (400 MHz, CDCl₃): δ 7.47–7.43 (m, 2H), 7.33–7.27 (m, 5H), 7.20 (d, *J* =8.4 Hz, 2H), 6.66 (dt, *J* = 15.7, 1.8 Hz, 1H), 6.20 (dt, *J* = 15.7, 5.7 Hz, 1H), 3.36 (dd, *J* = 5.7, 1.8 Hz, 2H), 2.47 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 137.50, 134.22, 131.76, 130.90, 128.39, 127.97, 126.82, 123.83, 123.74, 86.84, 83.02, 23.13, 16.02. HRMS (ESI): m/z 265.1056 [M+H]⁺, calcd. for C₁₈H₁₇S 265.1051.

(*E*)-trimethyl(5-(4-(methylthio)phenyl)pent-4-en-1-yn-1-yl)silane (**3cb**)

Eluent: EtOAc/petroleum ether 1/120 (v/v), yellow oil, yield 51.6 mg (99%). ¹H NMR (500 MHz, CDCl₃): δ 7.27 (d, *J* = 6.7 Hz, 2H), 7.19 (d, *J* = 6.7 Hz, 2H), 6.57 (dt, *J* = 15.7, 1.9 Hz, 1H), 6.11 (dt, *J* = 15.7, 5.7 Hz, 1H), 3.16 (dd, *J* = 5.7, 1.8 Hz, 2H), 2.47 (s, 3H), 0.19 (s, 9H). ¹³C NMR (126 MHz, CDCl₃): δ 137.49, 134.21, 130.91, 126.82, 126.80, 123.57, 103.71, 87.23, 23.57, 16.02, 0.24. HRMS (ESI): m/z 283.0947 [M+Na]⁺, calcd. for C₁₅H₂₀NaSSi 283.0953.

(*E*)-1-methoxy-3-(5-phenylpent-1-en-4-yn-1-yl)benzene (**3d**)

Eluent: EtOAc/petroleum ether 1/60 (v/v), light yellow oil, yield 42.3 mg (85%). ¹H NMR (400 MHz, CDCl₃): δ 7.48–7.41 (m, 2H), 7.35–7.26 (m, 5H), 6.85 (dt, *J* = 8.8 Hz,2H), 6.64 (dt, *J* = 15.7, 1.8 Hz, 1H), 6.10 (dt, *J* = 15.7, 5.7 Hz, 1H), 3.80 (s, 3H), 3.34 (dd, *J* = 5.7, 1.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 159.16, 131.77, 130.94, 130.06, 128.38, 127.92, 127.55, 123.85, 122.16, 114.09, 87.18, 82.83, 55.42, 23.10. HRMS (ESI): m/z 249.1296 [M+H]⁺, calcd. for C₁₈H₁₇O 249.1279.

(*E*)-1-phenoxy-3-(5-phenylpent-1-en-4-yn-1-yl)benzene (**3ea**)

Eluent: EtOAc/petroleum ether 1/60 (v/v), light yellow oil, yield 51.4 mg (83%). ¹H NMR (400 MHz, CDCl₃): δ 7.48–7.40 (m, 2H), 7.37–7.23 (m, 6H), 7.16–7.07 (m, 2H), 7.05 (t, *J* = 1.9 Hz, 1H), 7.03–6.98 (m, 2H), 6.91–6.85 (m, 1H), 6.67 (dt, *J* = 15.7, 1.9 Hz, 1H), 6.22 (dt, *J* = 15.7, 5.6 Hz, 1H), 3.34 (dd, *J* = 5.6, 1.9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 157.57, 157.40, 139.17, 131.78, 131.01, 129.95, 129.89, 128.39, 128.00, 125.27, 123.70, 123.33, 121.60, 118.94, 118.07, 116.76, 86.62, 83.12, 23.10. HRMS (ESI): m/z 311.1455 [M+H]⁺, calcd. for C₂₃H₁₉O 311.1436.

(*E*)-trimethyl(5-(3-phenoxyphenyl)pent-4-en-1-yn-1-yl)silane (**3eb**)

Eluent: EtOAc/petroleum ether 1/60 (v/v), light yellow oil, yield 55.6 mg (91%). ¹H NMR (400 MHz, CDCl₃): δ 7.38–7.29 (m, 2H), 7.25 (d, J = 7.7 Hz, 1H), 7.13–7.06 (m, 2H), 7.05–6.97 (m, 3H), 6.90–6.83 (m, 1H), 6.59 (dt, J = 15.8, 1.9 Hz, 1H), 6.12 (dt, J = 15.7, 5.6 Hz, 1H), 3.15 (dd, J = 5.6, 1.9 Hz, 2H), 0.18 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 157.52, 157.39, 139.16, 131.02, 129.92, 129.87, 125.01, 123.32, 121.60, 118.90, 118.02, 116.77, 103.49, 87.38, 23.55, 0.24. HRMS (ESI): m/z 329.1358 [M+Na]⁺, calcd. for C₂₀H₂₂NaOSi 329.1338.

(E)-1-fluoro-4-(5-phenylpent-1-en-4-yn-1-yl)benzene (**3fa**)⁵

Eluent: EtOAc/petroleum ether 1/200 (v/v), colorless oil, yield 36.8 mg (78%). ¹H NMR (500 MHz, CDCl₃): δ 7.48–7.42 (m, 2H), 7.37–7.27 (m, 5H), 6.99 (t, *J* = 8.8 Hz,2H), 6.67 (dt, *J* = 15.7, 1.9 Hz, 1H), 6.16 (dt, *J* = 15.7, 5.6 Hz, 1H), 3.34 (dd, *J* = 5.6, 1.9 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 162.32 (d, *J* = 246.3 Hz), 133.39 (d, *J* = 3.6 Hz), 131.77, 130.41, 128.40, 128.01, 127.88 (d, *J* = 8.2 Hz), 124.14 (d, *J* = 2.2 Hz), 123.73, 115.50 (d, *J* = 22.0 Hz), 86.73, 83.08, 23.08. ¹⁹F NMR (471 MHz, CDCl₃): δ –114.91.

(*E*)-(5-(4-fluorophenyl)pent-4-en-1-yn-1-yl)trimethylsilane (**3fb**)

Eluent: EtOAc/petroleum ether 1/120 (v/v), colorless oil, yield 46.1 mg (99%). ¹H NMR (400 MHz, CDCl₃): δ 7.37–7.28 (m, 2H), 6.99 (t, J = 8.7 Hz, 1H,2H), 6.59 (dt, J = 15.8, 1.8 Hz, 1H), 6.07 (dt, J = 15.7, 5.6 Hz, 1H), 3.16 (dd, J = 5.7, 1.9 Hz, 2H), 0.19 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 162.29 (d, J = 246.4 Hz), 133.35 (d, J = 3.4 Hz), 130.41, 127.86 (d, J = 8.0 Hz), 123.85 (d, J = 2.3 Hz), 115.53 (d, J = 21.6 Hz), 103.59, 87.34, 23.53, 0.24. ¹⁹F NMR (471 MHz, CDCl₃): δ–114.92. HRMS (ESI): m/z 233.1151 [M+H]⁺, calcd. for C₁₄H₁₈FSi 233.1162.

(*E*)-1-chloro-4-(5-phenylpent-1-en-4-yn-1-yl)benzene (**3ga**)⁴

Eluent: EtOAc/petroleum ether 1/200 (v/v), light yellow oil, yield 26.7 mg (53%). ¹H NMR (400 MHz, CDCl₃): δ 7.49–7.41 (m, 2H), 7.34–7.27 (m, 6H), 6.66 (dt, *J* = 15.7, 1.9 Hz, 1H), 6.22 (dt, *J* = 15.7, 5.6 Hz, 1H), 3.35 (dd, *J* = 5.6, 1.9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 135.72, 133.07, 131.76, 130.38, 128.81, 128.41, 128.04, 127.62, 125.10, 123.66, 86.53, 83.20, 23.11.

(*E*)-(5-(4-chlorophenyl)pent-4-en-1-yn-1-yl)trimethylsilane (**3gb**)

Eluent: EtOAc/petroleum ether 1/120 (v/v), light yellow oil, yield 46.7 mg (94%). ¹H NMR (400 MHz, CDCl₃): δ 7.27 (s, 4H), 6.58 (dt, *J* = 15.7, 1.8 Hz, 1H), 6.13 (dt, *J* = 15.7, 5.6 Hz, 1H), 3.17 (dd, *J* = 5.6, 1.8 Hz, 2H), 0.19 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 135.69, 133.05, 130.39, 128.79, 127.61, 124.83, 103.37, 87.49, 23.57, 0.24. HRMS (ESI): m/z 249.0884 [M+H]⁺, calcd. for C₁₄H₁₈ClSi 249.0866.

(*E*)-1-(5-phenylpent-1-en-4-yn-1-yl)-4-(trifluoromethyl)benzene (**3ha**)

Eluent: EtOAc/petroleum ether 1/200 (v/v), colorless oil, yield 48.1 mg (84%). ¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, *J* = 8.2 Hz, 2H), 7.51–7.41 (m, 4H), 7.36–7.27 (m, 3H), 6.75 (d, *J* = 15.8 Hz, 1H), 6.35 (dt, *J* = 15.7, 5.5 Hz, 1H), 3.39 (dd, *J* = 5.6, 1.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 140.70, 131.79, 130.37, 129.32 (q, *J* = 32.5 Hz), 128.44, 128.12, 127.22, 126.58, 125.65 (q, *J* = 3.8 Hz), 124.37 (q, *J* = 271.4 Hz), 123.60, 86.18, 83.44, 23.19. ¹⁹F NMR (376 MHz, CDCl₃): δ –62.44. HRMS (ESI): m/z 287.1060 [M+H]⁺, calcd. for C₁₈H₁₄F₃ 287.1048.

(*E*)-trimethyl(5-(4-(trifluoromethyl)phenyl)pent-4-en-1-yn-1-yl)silane (**3hb**)

Eluent: EtOAc/petroleum ether 1/120 (v/v), yellow oil, yield 51.7 mg (92%). ¹H NMR (400 MHz, CDCl₃): δ 7.55 (d, *J* = 8.2 Hz, 2H), 7.45 (d, *J* = 8.2 Hz, 2H), 6.68 (d, *J* = 15.8Hz, 1H), 6.26 (dt, *J* = 15.7, 5.6 Hz, 1H), 3.21 (dd, *J* = 5.6, 1.9 Hz, 2H), 0.20 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 140.66, 130.37,129.29 (q, *J* = 32.4 Hz), 126.94, 126.56, 125.62 (q, *J* = 3.8 Hz), 124.36 (q, *J* = 271.8 Hz), 103.00, 87.81, 23.64, 0.22. ¹⁹F NMR (471 MHz, CDCl₃): δ -62.43. HRMS (ESI): m/z 305.0945 [M+Na]⁺, calcd. for C₁₅H₁₇F₃NaSi 305.0949.

ethyl (E)-4-(5-(trimethylsilyl)pent-1-en-4-yn-1-yl)benzoate (3i)

EtO₂C SiMe₃

Eluent: EtOAc/petroleum ether 1/10 (v/v), light yellow oil, yield 40.3 mg (70%). ¹H NMR (500 MHz, CDCl₃): δ 7.98 (d, *J* = 8.4 Hz, 2H), 7.41 (d, *J* = 8.4 Hz, 2H), 6.68 (d, *J* = 15.7 Hz, 1H), 6.29 (dt, *J* = 15.7, 5.6 Hz, 1H), 4.36 (q, *J* = 7.1 Hz, 2H), 3.21 (dd, *J* = 5.6, 1.9 Hz, 2H), 1.39 (t, *J* = 7.1 Hz, 3H), 0.20 (s, 9H). ¹³C NMR (126 MHz, CDCl₃): δ 166.57, 141.55, 130.80, 129.99, 129.26, 126.84, 126.23, 103.07, 87.71, 61.03, 23.68, 14.48, 0.22. HRMS (ESI): m/z 309.1300 [M+Na]⁺, calcd. for C₁₇H₂₂NaO₂Si 309.1287.

(E)-N,N-diethyl-4-(5-(trimethylsilyl)pent-1-en-4-yn-1-yl)benzamide (3j)

Eluent: EtOAc/petroleum ether 1/3 (v/v), light yellow oil, yield 40.3 mg (64%). ¹H NMR (500 MHz, CDCl₃): δ 7.38 (d, *J* = 8.1 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 6.64 (d, *J* = 15.8 Hz, 1H), 6.21 (dt, *J* = 15.8, 5.6 Hz, 1H), 3.54 (b, 2H), 3.26 (b, 2H), 3.19 (dd, *J* = 5.7, 1.9 Hz, 2H), 1.24 (b, 3H), 1.11 (b, 3H), 0.20 (s, 9H). ¹³C NMR (126 MHz, CDCl₃): δ 171.20, 138.02, 136.13, 130.85, 126.79, 126.30, 125.26, 103.36, 87.44, 43.38, 39.37, 23.58, 14.35, 13.02, 0.21. HRMS (ESI): m/z 314.1937 [M+H]⁺, calcd. for C₁₉H₂₈NOSi 314.1940.

(*E*)-trimethyl(5-(4-((trimethylsilyl)ethynyl)phenyl)pent-4-en-1-yn-1-yl)silane (**3k**)

Eluent: EtOAc/petroleum ether 1/120 (v/v), light yellow oil, yield 45.9 mg (74%). ¹H NMR (500 MHz, CDCl₃): δ 7.40 (d, *J* = 8.3 Hz, 2H), 7.28 (d, *J* = 8.3 Hz, 2H), 6.60 (d, *J* = 15.7 Hz, 1H), 6.17 (dt, *J* = 15.7, 5.6 Hz, 1H), 3.18 (dd, *J* = 5.7, 1.8 Hz, 2H), 0.25 (s, 9H), 0.19 (s, 9H). ¹³C NMR (126 MHz, CDCl₃): δ 137.31, 132.29, 130.97, 126.19, 125.23, 121.96, 105.27, 103.36, 94.79, 87.48, 23.63, 0.24, 0.13. HRMS (ESI): m/z 311.1664 [M+H]⁺, calcd. for C₁₉H₂₇Si₂ 311.1651.

(*E*)-trimethyl(5-(2-((trimethylsilyl)ethynyl)phenyl)pent-4-en-1-yn-1-yl)silane (**3**I)

Eluent: EtOAc/petroleum ether 1/200 (v/v), light yellow oil, yield 56.4mg (91%) ¹H NMR (500 MHz, CDCl₃): δ 7.47 (d, *J* = 7.5 Hz, 1H), 7.44 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.26 (dt, *J* = 7.8, 1.0 Hz, 1H), 7.15 (dt, *J* = 7.8, 1.0 Hz, 1H), 7.02 (d, *J* = 15.7 Hz, 1H), 6.25 (dt, *J* = 15.7, 6.1 Hz, 1H), 3.22 (dd, *J* = 6.1, 1.8 Hz, 2H), 0.27 (s, 9H), 0.18 (s, 9H). ¹³C NMR (126 MHz, CDCl₃): δ 139.01, 133.11, 129.85, 128.76, 127.03, 126.52, 125.38, 121.42, 103.81, 103.71, 99.18, 86.61, 24.04, 0.28, 0.20. HRMS (ESI): m/z 333.1454 [M+Na]⁺, calcd. for C₁₉H₂₆NaSi₂ 333.1471.

(*E*)-2-(5-phenylpent-1-en-4-yn-1-yl)-1,1'-biphenyl (**3ma**)

Eluent: EtOAc/petroleum ether 1/200 (v/v), light yellow oil, yield 52.3 mg (89%). ¹H NMR (400 MHz, CDCl₃): δ 7.65–7.59 (m, 1H), 7.43–7.21 (m, 13H), 6.77 (dt, *J* = 15.7, 1.9 Hz, 1H), 6.20 (dt, *J* = 15.7, 5.5 Hz, 1H), 3.28 (dd, *J* = 5.5, 1.9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 141.09, 140.89, 135.10, 131.71, 130.37, 130.33, 129.97, 128.25, 128.19, 127.83, 127.59, 127.39, 127.05, 125.94, 124.82, 123.68, 86.81, 83.14, 23.24. HRMS (ESI): m/z 317.1284 [M+Na]⁺, calcd. for C₂₃H₁₈Na 317.1306.

(*E*)-(5-([1,1'-biphenyl]-2-yl)pent-4-en-1-yn-1-yl)trimethylsilane (**3mb**)

Eluent: EtOAc/petroleum ether 1/200 (v/v), light yellow oil, yield 57.8 mg (99%). ¹H NMR (400 MHz, CDCl₃): δ 7.69–7.62 (m, 1H), 7.53–7.45 (m, 2H), 7.45–7.32 (m, 6H), 6.76 (dt, *J* = 15.7, 1.9 Hz, 1H), 6.17 (dt, *J* = 15.7, 5.4 Hz, 1H), 3.18 (dd, *J* = 5.5, 1.9 Hz, 2H), 0.15 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 141.03, 140.82, 135.19, 130.36, 130.32, 129.91, 128.16, 127.54, 127.36, 127.10, 126.04, 124.64, 103.53, 87.29, 23.66, 0.14. HRMS (ESI): m/z 313.1392 [M+Na]⁺, calcd. for C₂₀H₂₂NaSi 313.1388.

(E)-1-(5-phenylpent-1-en-4-yn-1-yl)naphthalene $(3na)^6$

Eluent: EtOAc/petroleum ether 1/200 (v/v), light yellow oil, yield 41.4 mg (77%). ¹H NMR (400 MHz, CDCl₃): δ 8.19–8.10 (m, 1H), 7.88–7.82 (m, 1H), 7.77 (d, J = 8.2 Hz, 1H), 7.59 (d, J = 7.2 Hz, 1H), 7.55–7.40 (m, 6H), 7.35–7.27 (m, 3H), 6.27 (dt, J = 15.4, 5.5 Hz, 1H), 3.48 (dd, J = 5.4, 1.9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 135.11, 133.72, 131.79, 131.29, 128.91, 128.61, 128.43, 128.00, 127.88, 127.54, 126.13, 125.88, 125.77, 124.05, 124.02, 123.80, 86.89, 83.29, 23.56.

(*E*)-trimethyl(5-(naphthalen-1-yl)pent-4-en-1-yn-1-yl)silane (**3nb**)

Eluent: EtOAc/petroleum ether 1/200 (v/v), light yellow oil, yield 52.5 mg (99%). ¹H NMR (400 MHz, CDCl₃): δ 8.15–8.09 (m, 1H), 7.86–7.81 (m, 1H), 7.75 (d, J = 8.1 Hz, 1H), 7.55 (d, J = 7.0 Hz, 1H), 7.53–7.39 (m, 4H), 6.17 (dt, J = 15.5, 5.4 Hz, 1H), 3.28 (dd, J = 5.4, 2.0 Hz, 2H), 0.23 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 135.02, 133.74, 131.32, 128.88, 128.62, 127.85, 127.11, 126.09, 125.86, 125.76, 123.97, 123.90, 103.80, 87.70, 23.97, 0.28. HRMS (ESI):m/z 287.1227[M+Na]⁺, calcd. for C₁₈H₂₀NaSi 287.1232.

(*E*)-(5-(benzo[b]thiophen-3-yl)pent-4-en-1-yn-1-yl)trimethylsilane (**30**)

Eluent: EtOAc/petroleum ether 1/100 (v/v), light yellow oil, yield 32.8 mg (61%). ¹H NMR (400 MHz, CDCl₃): δ 7.92–7.83 (m, 2H), 7.46–7.32 (m, 3H), 6.94 (d, *J* = 15.7 Hz, 1H), 6.24 (dt, *J* = 15.7, 5.5 Hz, 1H), 3.24 (dd, *J* = 5.5, 1.9 Hz, 2H), 0.22 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 140.53, 137.89, 133.87, 125.89, 124.55, 124.35, 123.86, 123.01, 122.02, 121.64, 103.54, 87.65, 23.86, 0.27. HRMS (ESI): m/z 271.0966 [M+H]⁺, calcd. for C₁₆H₁₉SSi 271.0977.

(*E*)-trimethyl(5-(thiophen-2-yl)pent-4-en-1-yn-1-yl)silane (**3p**)

Eluent: EtOAc/petroleum ether 1/100 (v/v), light yellow oil, yield 40.1mg (91%). ¹H NMR (500 MHz, CDCl₃): δ 7.13 (d, *J* = 5.0 Hz, 1H), 6.98–6.91 (m, 2H), 6.76 (d, *J* = 15.5 Hz, 1H), 6.00 (dt, *J* = 15.6, 5.6 Hz, 1H), 3.15 (dd, *J* = 5.6, 1.9 Hz, 2H), 0.19 (s, 9H). ¹³C NMR (126 MHz, CDCl₃): δ 142.20, 127.40, 125.31, 124.74, 123.98, 123.77, 103.29, 87.46, 23.35, 0.23. HRMS (ESI): m/z 221.0839 [M+H]⁺, calcd. for C₁₂H₁₇SSi 221.0820.

(*E*)-(5-(furan-2-yl)pent-4-en-1-yn-1-yl)trimethylsilane (**3q**)

Eluent: EtOAc/petroleum ether 1/100 (v/v), light yellow oil, yield 20.8 mg (51%). ¹H NMR

(500 MHz, CDCl₃): δ 7.33 (d, J = 1.8 Hz, 1H), 6.47 (dt, J = 15.7, 1.9 Hz, 1H), 6.36 (dd, J = 3.3, 1.8 Hz, 1H), 6.21 (d, J = 3.3 Hz, 1H), 6.11 (dt, J = 15.7, 5.6 Hz, 1H), 3.16 (dd, J = 5.6, 1.9 Hz, 2H), 0.19 (s, 9H). ¹³C NMR (126 MHz, CDCl₃): δ 152.78, 141.84, 122.83, 120.04, 111.31, 107.34, 103.29, 87.50, 23.29, 0.23. HRMS (ESI): m/z 205.1066 [M+H]⁺,calcd. for C₁₂H₁₇OSi 205.1049.

(*E*)-trimethyl(3-methyl-5-phenylpent-4-en-1-yn-1-yl)silane $(3r)^7$

Eluent: EtOAc/petroleum ether 1/200 (v/v), light yellow oil, yield 44.9 mg (98%). ¹H NMR (400 MHz, CDCl₃): δ 7.40–7.34 (m, 2H), 7.30 (t, *J* = 7.6 Hz,2H), 7.21 (tt, *J* = 7.2, 2.2 Hz,1H), 6.61 (dd, *J* = 15.7, 1.6 Hz, 1H), 6.14 (dd, *J* = 15.7, 6.1 Hz, 1H), 3.39–3.30 (m, 1H), 1.35 (d, *J* = 7.1 Hz, 3H), 0.19 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 137.29, 131.03, 129.69, 128.65, 127.44, 126.48, 108.77, 86.62, 30.07, 21.82, 0.35.

(*E*)-pent-1-en-4-yne-1,3,5-triyltribenzene $(3sa)^8$

Eluent: EtOAc/petroleum ether 1/200 (v/v), light yellow oil, yield 54.6 mg (93%). ¹H NMR (400 MHz, CDCl₃): δ 7.53–7.45 (m, 4H), 7.43–7.35 (m, 4H), 7.34–7.25 (m, 6H), 7.22 (tt, *J* = 7.2, 2.1 Hz, 1H), 6.78 (dd, *J* = 15.6, 1.4 Hz, 1H), 6.35 (dd, *J* = 15.6, 6.5 Hz, 1H), 4.76 (d, *J* = 6.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 140.45, 136.98, 131.86, 130.60, 129.77, 128.86, 128.68, 128.40, 128.17, 127.90, 127.68, 127.25, 126.67, 123.59, 88.96, 85.55, 41.37.

(E)-(3,5-diphenylpent-4-en-1-yn-1-yl)trimethylsilane $(3sb)^8$

Eluent: EtOAc/petroleum ether 1/200 (v/v), light yellow oil, yield 52.4 mg (90%). ¹H NMR (400 MHz, CDCl₃): δ 7.44–7.39 (m, 2H), 7.39–7.17 (m, 8H), 6.69 (dd, *J* = 15.6, 1.5 Hz, 1H), 6.23 (dd, *J* = 15.6, 6.6 Hz, 1H), 4.55 (dd, *J* = 6.6, 1.5 Hz, 1H), 0.22 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 140.09, 136.97, 130.54, 129.67, 128.78, 128.65, 127.83, 127.65, 127.16,

126.65, 105.44, 89.86, 41.73, 0.28.

(E)-1-methyl-4-(5-phenylpent-1-en-4-yn-1-yl)benzene (**3ta**)⁵

Eluent: EtOAc/petroleum ether 1/200 (v/v), light yellow oil, yield 36.2 mg (78%). ¹H NMR (400 MHz, CDCl₃): δ 7.50–7.40 (m, 2H), 7.35–7.23 (m, 5H), 7.11 (d, *J* = 7.8 Hz, 2H), 6.67 (d, *J* = 15.7 1H), 6.18 (dt, *J* = 15.7, 5.6 Hz, 1H), 3.34 (dd, *J* = 5.7, 1.8 Hz, 2H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 137.23, 134.44, 131.76, 131.38, 129.36, 128.37, 127.92, 126.30, 123.82, 123.30, 87.06, 82.90, 23.12, 21.31.

(*E*)-trimethyl(5-(*p*-tolyl)pent-4-en-1-yn-1-yl)silane (**3tb**)

Eluent: EtOAc/petroleum ether 1/200 (v/v), colorless oil, yield 44.8 mg (98%). ¹H NMR (400 MHz, CDCl₃): δ 7.25 (d, *J* = 8.1 Hz, 2H), 7.11 (d, *J* = 7.9 Hz, 2H), 6.59 (d, *J* = 15.7 Hz, 1H), 6.09 (dt, *J* = 15.7, 5.7 Hz, 1H), 3.16 (dd, *J* = 5.7, 1.8 Hz, 2H), 2.32 (s, 3H), 0.19 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 137.22, 134.44, 131.41, 129.34, 126.29, 123.05, 103.96, 87.07, 23.58, 21.31, 0.26. HRMS (ESI):m/z 229.1419[M+H]⁺, calcd. for C₁₅H₂₁Si 229.1412.

(*E*)-N,N-dimethyl-4-(5-(trimethylsilyl)pent-1-en-4-yn-1-yl)aniline (**3u**)

Eluent: EtOAc/petroleum ether 1/60 (v/v), light yellow oil, yield 48.9 mg (95%). ¹H NMR (500 MHz, CDCl₃): δ 7.25 (d, *J* = 8.8 Hz, 2H), 6.67 (d, *J* = 8.8 Hz, 2H), 6.52 (d, *J* = 15.7 Hz, 1H), 5.94 (dt, *J* = 15.7, 5.8 Hz, 1H), 3.14 (dd, *J* = 5.8, 1.8 Hz, 2H), 2.95 (s, 6H), 0.19 (s, 9H). ¹³C NMR (126 MHz, CDCl₃): δ 150.05, 131.32, 127.27, 125.80, 119.71, 112.57, 104.57, 86.62, 40.70, 23.60, 0.28. HRMS (ESI): m/z 258.1676 [M+H]⁺, calcd. for C₁₆H₂₄NSi 258.1678.

(*E*)-dec-4-en-1-ynyltrimethylsilane (3v1) and trimethyl(3-vinyloct-1-ynyl)silane (3v2)⁹

Eluent: petroleum ether, colorless oil, yield 26.9 mg (a mixture of **3v1** and **3v2**, 65% overall yield). ¹H NMR (500 MHz, CDCl₃): δ 5.79–5.71 (m, 0.9H), 5.71–5.63 (m, 1H), 5.42–5.34 (m, 1H), 5.28 (dt, *J* = 17.0, 1.6 Hz, 0.9H), 5.07 (dt, *J* = 10.1, 1.5 Hz, 0.9H), 3.10–3.03 (m, 0.9H), 2.96–2.92 (m, 2H), 2.05–1.98 (m, 2H), 1.54–1.21 (m, 14H), 0.93–0.84 (m, 6H), 0.162 (s, 9H), 0.16 (s, 8H). ¹³C NMR (126 MHz, CDCl₃): δ 138.08, 132.67, 123.59, 115.07, 107.73, 104.94, 87.46, 86.20, 36.58, 35.34, 32.39, 31.64, 31.55, 29.08, 26.65, 23.24, 22.68, 22.66, 14.21, 14.16, 0.34, 0.28.

(E)-1-methyl-4-(5-phenylpent-4-en-1-yn-1-yl)benzene (**3ac**)³

Eluent: EtOAc/petroleum ether 1/200 (v/v), light yellow oil, yield 45.9 mg (99%). ¹H NMR (400 MHz, CDCl₃): δ 7.42–7.26 (m, 6H), 7.25–7.18 (m, 1H), 7.10 (d, *J* = 7.8 Hz,2H), 6.70 (dt, *J* = 15.7, 1.9 Hz, 1H), 6.24 (dt, *J* = 15.7, 5.6 Hz, 1H), 3.35 (dd, *J* = 5.7, 1.9 Hz, 2H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 137.97, 137.26, 131.63, 131.46, 129.14, 128.65, 127.44, 126.40, 124.54, 120.68, 86.05, 83.05, 23.17, 21.56.

(E)-1-methoxy-4-(5-phenylpent-4-en-1-yn-1-yl)benzene (**3ad**)³

Eluent: EtOAc/petroleum ether 1/60 (v/v), light yellow oil, yield 44.6 mg (90%). ¹H NMR (400 MHz, CDCl₃): δ 7.42–7.35 (m, 4H), 7.30 (t, *J* = 7.6 Hz, 2H), 7.22 (tt, *J* = 7.2, 2.4 Hz, 1H), 6.83 (d, *J* = 8.8 Hz, 2H), 6.70 (dt, *J* = 15.7, 1.9 Hz, 1H), 6.24 (dt, *J* = 15.7, 5.6 Hz, 1H), 3.79 (s, 3H), 3.34 (dd, *J* = 5.7, 1.9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 159.36, 137.27, 133.11, 131.41, 128.65, 127.43, 126.40, 124.65, 115.90, 113.99, 85.25, 82.75, 55.38, 23.17.

(E)-1-fluoro-4-(5-phenylpent-4-en-1-yn-1-yl)benzene (**3ae**)¹⁰

Eluent: EtOAc/petroleum ether 1/200 (v/v), light yellow oil, yield 37.6 mg (80%). ¹H NMR (400 MHz, CDCl₃): δ 7.47–7.35 (m, 4H), 7.31 (t, *J* = 7.5 Hz, 2H), 7.27–7.19 (m, 1H), 6.99 (t, *J* = 8.8 Hz,2H), 6.69 (dt, *J* = 15.6, 1.9 Hz, 1H), 6.24 (dt, *J* = 15.8, 5.7 Hz, 1H), 3.34 (dd, *J* = 5.7, 1.9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 162.37 (d, *J* = 248.4 Hz), 137.17, 133.57 (d, *J* = 8.3 Hz), 131.63, 128.69, 127.54, 126.41, 124.26, 119.84 (d, *J* = 3.4 Hz), 115.61 (d, *J* = 21.9 Hz), 86.55 (d, *J* = 1.5 Hz), 81.90, 23.09. ¹⁹F NMR (471 MHz, CDCl₃): δ –111.78.

(*E*)-non-1-en-4-yn-1-ylbenzene $(3af)^8$

Eluent: EtOAc/petroleum ether 1/200 (v/v), colorless oil, yield 30.9 mg (78%). ¹H NMR (500 MHz, CDCl₃): δ 7.39–7.34 (m, 2H), 7.33–7.27 (m, 2H), 7.24–7.19 (m, 1H), 6.64 (dt, *J* = 15.7, 1.9 Hz, 1H), 6.18 (dt, *J* = 15.7, 5.6 Hz, 1H), 3.14–3.08 (m, 2H), 2.27–2.19 (m, 2H), 1.56–1.48 (m, 2H), 1.48–1.39 (m, 2H), 0.93 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 137.39, 130.92, 128.63, 127.31, 126.35, 125.43, 83.12, 76.77, 31.26, 22.55, 22.12, 18.66, 13.80.

(E)-(5-cyclopropylpent-1-en-4-yn-1-yl)benzene (**3ag**)¹⁰

Eluent: EtOAc/petroleum ether 1/200 (v/v), light yellow oil, yield 34.6 mg (95%). ¹H NMR (500 MHz, CDCl₃): δ 7.38–7.33 (m, 2H), 7.32–7.26 (m, 2H), 7.23–7.18 (m, 1H), 6.60 (d, J = 15.6 Hz, 1H), 6.15 (dt, J = 15.7, 5.7 Hz, 1H), 3.07 (dt, J = 5.7, 1.9 Hz, 2H), 1.32–1.22 (m, 1H), 0.78–0.71 (m, 2H), 0.70–0.64 (m, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 137.33, 130.98, 128.61, 127.32, 126.34, 125.28, 85.93, 72.31, 22.54, 8.18, –0.27.

6. Gram scale reaction

NiCl₂(dppe) (0.264 g, 10 mol %), (*E*)-3-(4-(trifluoromethyl)phenyl)prop-2-en-1-ol (1.01 g, 5 mmol) and THF (3 mL) were charged to a Schlenk tube. To the stirred mixture was added MeZnCl (8.34 mL, 0.72 M solution in THF, 6 mmol) at room temperature. After the mixture was stirred for 5 min, a solution of alkynylzinc reagent (16.3 mL, 0.46 M solution in THF, 7.5 mmol) was added, and the solution was stirred for an additional 5 min. Solvent was removed in vacuo and then toluene (50 mL) was added. and the reaction mixture was heated at 100 °C (oil bath) for 17 h, allowed to cool to rt. A 20% aqueous solution of NH₄Cl (60 mL) was added. The mixture was extracted with ethyl acetate (3×60 mL). The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: petroleum ether/EtOAc = 120:1) to afford the desired coupling product (1.23 g, 87%).

7. Transformation of 1,4-enynes

1,4-enyne **3hb** (28.2 mg, 0.1 mmol) was dissolved in anhydrous THF (1 mL) under N₂ atmosphere in a Schlenk tube. Then, H₂O (18 mg, 1 mmol), DBU (15.2 mg, 0.1 mmol), and TBAF (0.3 mL, 1 M solution in THF, 0.3 mmol) were added into the solution. The mixture was stirred at 40 °C for 24 h. The reaction mixture was poured into water and extracted with dichloromethane. The combined organic layers were dried over MgSO₄, and concentrated under reduced pressure to give a crude product. The crude product was purified by column chromatography (eluent: petroleum ether) to give **4**¹² (15.1 mg, 72%) as a white solid. ¹H NMR (500 MHz, CDCl₃): δ 7.56 (d, *J* = 7.9 Hz, 2H), 7.44 (d, *J* = 7.9 Hz, 2H), 6.87 (d, *J* = 16.2 Hz, 1H), 6.22 (d, *J* = 16.1 Hz, 1H), 2.03 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 140.06, 138.57, 130.03 (q, *J* = 32.7 Hz), 126.29, 125.76 (q, *J* = 3.8 Hz), 124.23 (q, *J* = 272.5 Hz), 111.78, 90.22, 78.64, 4.70. ¹⁹F NMR (471 MHz, CDCl₃): δ -62.62.

The reaction did not yield a naphthalene derivative under the present conditions. In the absence of H_2O and DBU the reaction gave 4 in very low yield. In the absence of DBU the reaction gave 4 in good yield along with a small amount of unidentified side products.

(2) Transformation of **3hb** to ethyl (*E*)-4-(5-(4-(trifluoromethyl)phenyl)pent-4-en-1-yn-1-yl) benzoate (**5**)¹³

Pd(PPh₃)₄ (11.6 mg, 5 mol %), CuCl (19.8 mg, 0.2 mmol), dry DMF (1 mL), **3hb** (112.8 mg, 0.4 mmol) and ethyl 4-iodobenzoate (55.2 mg, 0.2 mmol) were successively added to a Schlenk tube at room temperature. The mixture was heated at 80 °C (oil bath) for 6 h with stirring. After cooled to room temperature, the mixture was quenched with 1 M HCl and extracted with diethyl ether. The combined organic layers were washed with brine and dried over anhydrous MgSO₄. Filtration and concentration with a rotary evaporator gave a viscous oil which was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 50:1) to give **5** (58.6 mg, 82%) as a yellow solid. ¹H NMR (500 MHz, CDCl₃): δ 7.99 (d, *J* = 7.6 Hz, 2H), 7.65–7.38 (m, 6H), 6.74 (d, *J* = 15.7 Hz, 1H), 6.42-6.27 (m, 1H), 4.38 (q, *J* = 6.8 Hz, 2H), 3.41 (d, *J* = 4.2 Hz, 2H), 1.40 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 166.24, 140.54, 131.67, 130.63, 129.82, 129.58, 129.30, 128.21, 126.69, 126.59, 125.67 (q, *J* = 3.7 Hz), 124.33 (q, *J* = 272.3 Hz), 89.45, 82.82, 61.26, 23.26, 14.45. ¹⁹F NMR (471 MHz, CDCl₃): δ –62.47. HRMS (ESI): m/z 359.1256 [M+H]⁺, calcd. for C₂₁H₁₈F₃O₂ 359.1259.

8. Mechanistic studies

(a) NiCl₂(dppe) (10.6 mg, 10 mol %) and cinnamyl alcohol (0.5 mL, 0.4 M solution in THF, 0.2 mmol) were charged to a Schlenk tube under nitrogen. To the stirred mixture was added MeZnCl (0.42 mL, 0.57 M solution in THF, 0.24 mmol) at room temperature. After the mixture was stirred for 5 min, a solution of Me₃SiC=CZnCl (0.65 mL, 0.46 M solution in THF, 0.3 mmol) was added. The resulying solution was stirred for an additional 5 min. Solvent was removed in vacuo and toluene (2 mL) and Ph₂C=CH₂ (36 mg, 0.2 mmol) was successively added. The reaction mixture was heated at 100 \mathbb{C} (oil bath) for 24 h and then cooled to room temperature. The reaction mixture was passed through a short pad of celite (eluting with ethyl acetate) and then concentrated under reduced pressure. The yield (99%) was determined by NMR spectral analysis using 1,1,2,2-tetrachloroethane as an internal standard.

(2) Ni(COD)₂ (5.5 mg, 10 mol %), dppe (8 mg, 10 mol %) and cinnamyl alcohol (0.5 mL, 0.4 M solution in THF, 0.2 mmol) were charged to a Schlenk tube under nitrogen. To the stirred mixture was added MeZnCl (0.42 mL, 0.57 M solution in THF, 0.24 mmol) at room temperature. After the mixture was stirred for 5 min, a solution of Me₃SiC=CZnCl (0.65 mL, 0.46 M solution in THF, 0.3 mmol) was added. The resulting mixture was stirred for an additional 5 min. Solvent was removed in vacuo and toluene (2 mL) was added. The reaction mixture was heated at 100 °C (oil bath) for 24 h and then cooled to room temperature. The resulting mixture was passed through a short pad of celite (eluting with ethyl acetate) and then concentrated under reduced pressure. The yield (99%) was determined by NMR spectral analysis using 1,1,2,2-tetrachloroethane as an internal standard.

(3) NiCl₂(dppe) (10.6 mg, 10 mol %) and cinnamyl alcohol (0.5 mL, 0.4 M in THF, 0.2 mmol) were charged to a Schlenk tube under nitrogen. To the stirred mixture was added MeZnCl (0.42 mL, 0.57 M solution in THF, 0.24 mmol) at room temperature. After the mixture was stirred for 5 min, a solution of Me₃SiC=CZnCl (0.44 mL, 0.46 M solution in THF, 0.2 mmol) was added. The resulting solution was stirred for an additional 5 min. Solvent was removed in vacuo and then toluene (2 mL) was added. The reaction mixture was heated at 100 °C (oil bath) for 24 h and then cooled to room temperature. The mixture was passed through a short pad of celite (eluting with ethyl acetate) and then concentrated under reduced pressure. The yield (40%) was determined by NMR spectral analysis using 1,1,2,2-tetrachloroethane as an internal standard.

(4) NiCl₂(dppe) (10.6 mg, 10 mol %) and cinnamyl alcohol (0.5 mL, 0.4 M in THF, 0.2 mmol) were charged to a Schlenk tube under nitrogen. To the stirred mixture was added MeZnCl (0.42 mL, 0.57 M solution in THF, 0.24 mmol) at room temperature. After the mixture was stirred for 5 min, a solution of Me₃SiC=CZnCl (0.44 mL, 0.46 M solution in THF, 0.2 mmol) was added. The resulting solution was stirred for an additional 5 min. Solvent was removed in vacuo and then toluene (2 mL) and Me₃SiC=CH (9.8 mg, 0.1 mmol) was successively added. The reaction mixture was heated at 100 \mathbb{C} (oil bath) for 24 h and then cooled to room temperature. The mixture was passed through a short pad of celite (eluting with ethyl acetate) and concentrated under reduced pressure. The yield (91%) was determined by NMR spectral analysis using 1,1,2,2-tetrachloroethane as an internal standard.

(5) NiCl₂(dppe) (10.6 mg, 10 mol %) and cinnamyl alcohol (0.5 mL, 0.4 M in THF, 0.2 mmol) were charged to a Schlenk tube under nitrogen. To the stirred mixture was added MeZnCl (0.95 mL, 0.57 M solution in THF, 0.54 mmol) at room temperature. After the mixture was stirred for 5 min, solvent was removed in vacuo and then toluene (2 mL) and ethynyltrimethylsilane (29.5 mg, 0.3 mmol) were added. The reaction mixture was heated at 100 \mathbb{C} (oil bath) for 24 h with stirring and then cooled to room temperature. The resulting mixture was passed through a short pad of celite with ethyl acetate and concentrated under reduced pressure. The residue was determined using ¹H NMR spectrum. No expected product was observed.

9. References

- 1 A. Krasovskiy and P. Knochel, *Synthesis*, 2006, 5, 0890.
- 2 B. Yang and Z.-X. Wang, Org. Lett., 2019, 21, 7965.
- 3 Y.-X. Li, Q.-Q. Xuan, L. Liu, D. Wang, Y.-J. Chen and C.-J. Li, J. Am. Chem. Soc., 2013, 135, 12536.
- 4 D.-K. Rayabarapu and J.-A. Tunge, J. Am. Chem. Soc., 2005, 127, 13510.
- 5 X.-L. Zhou, L. Ren and P.-S. Wang, J. Org. Chem., 2017, 82, 9794.
- 6 Y. Horino, M. Ishibashi, K. Nakasai and T. Korenaga, *Tetrahedron*, 2020, 76, 131493.
- 7 Q. Wang and Y. Kobayashi, *Tetrahedron Lett.*, 2010, **51**, 5592.
- 8 Z.-L.Yang, R.-K. Kumar, P.-Q. Liao, Z.-H. Liu, X.-Q. Li and X.-H. Bi, *Chem. Commun.*, 2016, **52**, 5936.
- 9 (a) R. Yalla and S. Raghavan, Org. Biomol. Chem., 2019, 17, 4572; (b) R. S. Brinkmeyer and T. L. Macdonald, J. Chem. Soc., Chem. Commun., 1978, 876.

- 10 P.-Z. Xie, Z.-L. Sun, S.-S. Li, L. Zhang, X.-Y. Cai, W.-S. Fu, X.-B. Yang, Y.-N. Liu, X.-Y. Wo and T.-P. Loh, *Org. Lett.*, 2020, **22**, 1599.
- 11 Y. Li, L. Liu, D. Kong, D. Wang, W. Feng, T. Yue and C. Li, *J. Org. Chem.*, 2015, **80**, 6283.
- 12 Y.-Z. Zhang, B. Li and S.-Y. Liu, Angew. Chem. Int. Ed., 2020, 59, 15928.
- 13 Y. Nishihara, E. Inoue, D. Ogawa, Y. Okada, S. Noyori and K. Takagi, *Tetrahedron Lett.*, 2009, **50**, 4643.

10. Copies of NMR spectra of the reaction products

(1) (E)-pent-1-en-4-yne-1,5-diyldibenzene (**3aa**)

337 336 336 (2) (E)-trimethyl(5-phenylpent-4-en-1-yn-1-yl)silane (**3ab**)

(3) (E)-1-methoxy-4-(5-phenylpent-1-en-4-yn-1-yl) benzene (3ba)

(4) (*E*)-(5-(4-methoxyphenyl)pent-4-en-1-yn-1-yl)trimethylsilane (**3bb**)

(5) (*E*)-methyl(4-(5-phenylpent-1-en-4-yn-1-yl)phenyl)sulfane (**3ca**)

(6) (*E*)-trimethyl(5-(4-(methylthio)phenyl)pent-4-en-1-yn-1-yl)silane (**3cb**)

(7) (E)-1-methoxy-3-(5-phenylpent-1-en-4-yn-1-yl)benzene (3d)

(8) (E)-1-phenoxy-3-(5-phenylpent-1-en-4-yn-1-yl)benzene (**3ea**)

7,755 7,7557 7,7557 7,7557 7,7557 7,75577 7,75577 7,75577 7,755777 7,755

(9) (E)-trimethyl(5-(3-phenoxyphenyl)pent-4-en-1-yn-1-yl)silane (**3eb**)

(10) (E)-1-fluoro-4-(5-phenylpent-1-en-4-yn-1-yl)benzene (**3fa**)

¹⁹F NMR (471 MHz, CDCb)

-112.4 -112.6 -112.8 -113.0 -113.4 -113.8 -113.8 -114.0 -114.2 -114.4 -114.8 -115.0 -115.2 -115.4 -115.8 -115.8 -116.0 -115.2 -116.4 -116.6 -116.8 -117.0 -117.2 -117 fl(ppm)

(11) (E)-(5-(4-fluorophenyl)pent-4-en-1-yn-1-yl)trimethylsilane (**3fb**)

-105 -106 -107 -108 -109 -110 -111 -112 -113 -114 -115 -116 -117 -118 -119 -120 -121 -122 -123 -124 -125 ff(topm)

(12) (E)-1-chloro-4-(5-phenylpent-1-en-4-yn-1-yl)benzene (3ga)

(13) (E)-(5-(4-chlorophenyl)pent-4-en-1-yn-1-yl)trimethylsilane (**3gb**)

(14) (E)-1-(5-phenylpent-1-en-4-yn-1-yl)-4-(trifluoromethyl)benzene (**3ha**)

¹⁹F NMR (471 MHz, CDCl₃)

-59.0 -59.2 -59.4 -59.8 -59.0 -60.2 -60.4 -60.6 -60.8 -61.0 -61.2 -61.4 -61.6 -61.8 -62.0 -62.2 -62.4 -62.6 -62.8 -63.0 -63.2 -65.4 -63.8 -64.0 -64.2 -64.4 -64.6 -64.8 -65.0 -65.2 -65.4 -65.6 -61.8 -61.0 -61.2 -61.4 -64.6 -64.8 -65.0 -65.2 -65.4 -65.6 -61.8 -61.0 -61.2 -61.4 -64.6 -64.8 -65.0 -65.2 -65.4 -65.6 -61.8 -61.0 -61.2 -61.4 -64.6 -64.8 -65.0 -65.2 -65.4 -65.6 -61.8 -61.0 -61.2 -61.4 -64.6 -64.8 -65.0 -65.2 -65.4 -65.6 -61.8 -61.0 -61.2 -61.4 -64.6 -61.8 -61.0 -61.2 -61.4 -61.6 -61.8 -62.0 -61.2 -61.4 -61.6 -61.8 -61.4 -61.6 -61.8 -61.4 -61.6 -61.8 -61.4 -61.6 -61.8 -61.4 -61.6 -61.8 -61.4

(16) ethyl (E)-4-(5-(trimethylsilyl)pent-1-en-4-yn-1-yl)benzoate (**3i**)

(19) (E)-trimethyl(5-(2-((trimethylsilyl)ethynyl)phenyl)pent-4-en-1-yn-1-yl)silane (**3**l)

(20) (*E*)-2-(5-phenylpent-1-en-4-yn-1-yl)-1,1'-biphenyl (**3ma**)

(21) (E)-(5-([1,1'-biphenyl]-2-yl)pent-4-en-1-yn-1-yl)trimethylsilane (3mb)

(22) (E)-1-(5-phenylpent-1-en-4-yn-1-yl)naphthalene (**3na**)

(23) (*E*)-trimethyl(5-(naphthalen-1-yl)pent-4-en-1-yn-1-yl)silane (**3nb**)

(24) (E)-(5-(benzo[b]thiophen-3-yl)pent-4-en-1-yn-1-yl)trimethylsilane (**30**)

S52

(28) (E)-pent-1-en-4-yne-1,3,5-triyltribenzene (**3sa**)

(29) (E)-(3,5-diphenylpent-4-en-1-yn-1-yl)trimethylsilane (3sb)

S56

(32) (E)-N,N-dimethyl-4-(5-(trimethylsilyl)pent-1-en-4-yn-1-yl)aniline (**3u**)

(33) mixture of (*E*)-dec-4-en-1-ynyltrimethylsilane (**3v1**) and trimethyl(3-vinyloct-1-ynyl) silane (**3v2**)

S59

(35) (E)-1-methoxy-4-(5-phenylpent-4-en-1-yn-1-yl)benzene (3ad)

(36) (E)-1-fluoro-4-(5-phenylpent-4-en-1-yn-1-yl)benzene (**3ae**)

- 109.6 -109.8 -110.0 -110.2 -110.4 -110.6 -110.8 -111.0 -111.2 -111.4 -111.6 -111.8 -112.0 -112.2 -112.4 -112.6 -112.8 -113.0 -113.2 -113.4 -113.6 -113.8 ff (ppm)

(37) (E)-non-1-en-4-yn-1-ylbenzene (**3af**)

f1 (ppm)

S67

- 48 - 49 - 50 - 51 - 52 - 53 - 54 - 55 - 56 - 57 - 58 - 59 - 60 - 61 - 62 - 63 - 64 - 65 - 66 - 67 - 68 - 69 - 70 - 71 - 72 - 73 - 74 - 75 - 71 f1 (ppm)