Supporting Information

# Gold Catalyzed Efficient Preparation of Dihydrobenzofuran from 1,

# 3-Enyne & Phenol

Yu-Jiang Wang, Yuan Zhang, Qiang Zou, Jia-Ying Liang, Zili Chen\*

Department of Chemistry, Renmin University of China, Beijing 100872, China.

Email: <u>zilichen@ruc.edu.cn</u>

# **Contents:**

| I.   | General condition                                      | <b>S2</b>  |
|------|--------------------------------------------------------|------------|
| II.  | X-ray chromatograph for compound 4j                    | S2         |
| III. | General procedures for the synthesis 1, 3 – enynes     | <b>S</b> 5 |
| IV.  | General procedures for the synthesis dihydrobenzofuran | <b>S</b> 5 |
| V.   | Characterization data for all new compounds            | <b>S6</b>  |
| VI.  | Copies of NMR spectra for all new compounds            | S19        |
| VII  | . References                                           | <b>S57</b> |

### I. General condition

All reactions were run under an inert atmosphere (Ar) with flame-dried glassware using standard techniques for manipulating air-sensitive compounds. All solvents were dried and purified before use by standard procedures. Commercial reagents were used as supplied or purified by standard techniques where necessary. Column chromatography was performed using 200-300 mesh silica with the proper solvent system according to TLC analysis and UV light to visualize the reaction components. Unless otherwise noted, nuclear magnetic resonance spectra were recorded on 400 MHz spectrometer. NMR data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, dd = doublet-doublet, t = triplet, m = multiplet and bs = broad singlet), coupling constant in Hz and integration. Chemical shifts of <sup>1</sup>H NMR spectra were recorded in parts per million (ppm) on the  $\delta$  scale from an internal standard of residual chloroform (7.26 ppm). Chemical shifts for <sup>13</sup>C NMR spectra were recorded in parts per million from tetramethylsilane using the central peak of CDCl3 (77.16 ppm) as the internal standard. HR-MS data were obtained using ESI ionization with 100,000 (FWHM) maximum resolution. The melting point data were measured with micro-melting-point apparatus.

### II. X-ray chromatograph for compound 4j

Method for X-ray Crystallographic Studies: Data collections for them were performed on a'Bruker APEX-II CCD' diffractometer, using graphite-monochromated Cu K $\alpha$  radiation ( $\lambda = 1.54178$  Å). Using Olex21, the structures were solved with the ShelXT2 structure solution program using Intrinsic Phasing and refined with the ShelXL3 refinement package using Least Squares minimization. Refinement was performed on F2 anisotropically for all the non-hydrogen atoms by the full-matrix least squares method. The hydrogen atoms were placed at the calculated positions and were included in the structure calculation without further refinement of the parameters. Crystal data, data collection and processing parameters for compounds were summarized.

Accession Codes CCDC 2106929 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via <u>www.ccdc.cam.ac.uk/</u>data\_request/cif, or by emailing <u>data\_request@ccdc.cam.ac.uk</u>, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033. 4j's crystal was obtained by slow diffusion of n-pentane into a dilute dichloromethane solution of 4j at r.t.



Figure S1. ORTEP picture of compound 4j with the displacement ellipsoid drawn at 50% probability.

{CCDC: 2106929}

| cu_0312_3_0m                                                                      |
|-----------------------------------------------------------------------------------|
| $C_{17}H_{16}O_2$                                                                 |
| 252.30                                                                            |
| 150.0                                                                             |
| orthorhombic                                                                      |
| Pna2 <sub>1</sub>                                                                 |
| 13.9976(6)                                                                        |
| 32.7715(15)                                                                       |
| 5.6389(2)                                                                         |
| 90                                                                                |
| 90                                                                                |
| 90                                                                                |
| 2586.69(19)                                                                       |
| 8                                                                                 |
| 1.296                                                                             |
| 0.664                                                                             |
| 1072.0                                                                            |
| $CuK\alpha$ ( $\lambda = 1.54178$ )                                               |
| 5.394 to 149.518                                                                  |
| $\text{-}12 \leq h \leq 17,  \text{-}41 \leq k \leq 23,  \text{-}6 \leq l \leq 7$ |
| 11389                                                                             |
| 4345 [ $R_{int} = 0.0269, R_{sigma} = 0.0265$ ]                                   |
| 4345/1/345                                                                        |
| 1.078                                                                             |
| $R_1 = 0.0563, wR_2 = 0.1392$                                                     |
| $R_1 = 0.0589, wR_2 = 0.1428$                                                     |
| 0.21/-0.23                                                                        |
| 0.08(11)                                                                          |
|                                                                                   |

Table S1. Crystal data and structure refinement for cu\_0312\_3\_0m.

### III. General procedures for the synthesis 1, 3 - enynes

Enyne substrates  $1a-1k^{1}$  were prepared by Sonogashira coupling from their corresponding terminal alkynes with vinyl bromide by a slightly modified method. General Method for the synthesis 1, 3 - enynes is exemplified by the synthesis of 1a.

General method for the preparation of 4-phenyl-1,3-butenyne (1a): Under Ar atmosphere, to an oven-dried 250 mL round-bottom flask equipped with a magnetic stirring bar was added Pd(PPh<sub>3</sub>)<sub>4</sub> (462 mg, 0.400 mmol, 2.00 mol%) and CuI (381 mg, 2.00 mmol, 10.0 mol%). Vinyl bromide (1.0 M in THF, 50.0 mL, 2.50 equiv) was added followed by freshly distilled and degassed Et<sub>2</sub>NH (10.4 mL, 100 mmol, 5.00 equiv). The mixture was allowed to stir at ambient temperature for ca. 5 min and subsequently phenylacetylene (2.20 mL, 20.0 mmol, 1.00 equiv) was added as a solution in THF (10 mL) dropwise over one hour. The mixture was then allowed to stir at ambient temperature overnight (15-20 h). The reaction contents were then filtered through a pad of celite, eluting with Et<sub>2</sub>O ( $3 \times 20$  mL). The solution was then concentrated in vacuo. **1a** was obtained by flash silica gel chromatography (99: 1 hexanes: Et<sub>2</sub>O) to afford a colorless oil (2.43 g, 18.9 mmol, 94.6%). Spectral data match those previously reported.<sup>1</sup>

#### IV. General procedures for the synthesis of dihydrobenzofuran 4a:

To a suspension of 5 mol % of 'BuXPhosAuCl/AgNTf<sub>2</sub> in DCE (0.5 mL), was added a mixture solution of 1,3-enyne **1a** (32.1 mg, 0.25 mmol, 1.0 equiv) and phenol **2a** (35.3 mg, 0.375 mmol, 1.5 equiv) in DCE (1mL) at rt. Then, a solution of 2,6-dichloropyridine-*N*-oxide **3a** (61.5 mg, 0.375 mmol, 1.5 equiv) in DCE (1mL) was added via syringe pump in 12 hours. 24 hours later, the reaction mixture was filtered over celite and washed with DCM ( $2 \times 10$  mL). Concentration of the filtrate, followed by purification via flash chromatography (petroleum/EtOAc = 50/1 as the eluent) afforded dihydrobenzofuran **4a** as a white solid. (43.1 mg, 73% yield).

Table S2. Unsuccessful substrates tested in gold catalyzed cyclocoupling of 1,3-enynes with phenols.



### V. Characterization Data for all new compounds



2-(2,3-dihydrobenzofuran-2-yl)-1-phenylethan-1-one (**4a**)<sup>2</sup>. Obtained as a white solid in 73% yield (43.1 mg); mp 105.8 – 106.7 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.98 (d, *J* = 8.1 Hz, 2H), 7.61 – 7.57 (m, 1H), 7.51 – 7.45 (m, 2H), 7.18 (d, *J* = 7.3 Hz, 1H), 7.12 (t, *J* = 7.7 Hz, 1H), 6.86 (t, *J* = 7.4 Hz, 1H), 6.78 (d, *J* = 8.0 Hz, 1H), 5.42 – 5.36 (m, 1H), 3.67 (dd, *J* = 17.1, 5.9 Hz, 1H), 3.55 (dd, *J* = 15.8, 9.1 Hz, 1H), 3.29 (dd, *J* = 17.1, 7.0 Hz, 1H), 2.95 (dd, *J* = 15.8, 7.0 Hz, 1H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  197.6, 159.2, 136.8, 133.5, 128.8, 128.3, 128.2, 126.5, 125.2, 120.6, 109.6, 79.1, 44.8, 36.0; HR-MS (ESI) m/z calcd for C<sub>16</sub>H<sub>15</sub>O<sub>2</sub> [M + H] +: 239.1067, found: 239.1065.



2-(7-methyl-2,3-dihydrobenzofuran-2-yl)-1-phenylethan-1-one (**4b**). Obtained as a white solid in 55% yield (34.3 mg); mp 75.2 – 76.2 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.98 (d, *J* = 8.5 Hz, 2H), 7.61 – 7.57 (m, 1H), 7.50 – 7.46 (m, 2H), 7.02 (d, *J* = 7.3 Hz, 1H), 6.94 (d, *J* = 7.5 Hz, 1H), 6.80 – 6.74 (m, 1H), 5.38 – 5.33 (m, 1H), 3.68 (dd, *J* = 16.8, 5.6 Hz, 1H), 3.55 (dd, *J* = 15.7, 9.0 Hz, 1H), 3.27 (dd, *J* = 16.8, 7.6 Hz, 1H), 2.94 (dd, *J* = 15.7, 6.9 Hz, 1H), 2.17 (s, 3H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  197.8, 157.6, 137.0, 133.5, 129.4, 128.8, 128.3, 125.8, 122.5, 120.5, 119.8, 78.9, 45.0, 36.3, 15.3; HR-MS (ESI) m/z calcd for C<sub>17</sub>H<sub>17</sub>O<sub>2</sub> [M + H] +: 253.1223, found: 253.1222.



2-(6,7-dimethyl-2,3-dihydrobenzofuran-2-yl)-1-phenylethan-1-one (**4c**). Obtained as a white solid in 61% yield (40.3 mg); mp 85.5 – 88.5 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.98 (d, *J* = 7.2 Hz, 2H), 7.61 – 7.56 (m, 1H), 7.51 – 7.45 (m, 2H), 6.91 (d, *J* = 7.4 Hz, 1H), 6.68 (d, *J* = 7.4 Hz, 1H), 5.37 – 5.32 (m, 1H), 3.67 (dd, *J* = 16.7, 5.7 Hz, 1H), 3.53 (dd, *J* = 15.6, 9.0 Hz, 1H), 3.26 (dd, *J* = 16.7, 7.5 Hz, 1H), 2.92 (dd, *J* = 15.6, 6.8 Hz, 1H), 2.23 (s, 3H), 2.09 (s, 3H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  197.9, 157.8, 137.0, 136.8, 133.4, 128.7, 128.3, 123.2, 121.9, 121.7, 118.5, 79.1, 45.0, 36.4, 19.5, 11.8; HR-MS (ESI) m/z calcd for C<sub>18</sub>H<sub>19</sub>O<sub>2</sub> [M + H] +: 267.1380, found: 267.1380.



1-phenyl-2-(3,6,7,8-tetrahydro-2H-indeno[4,5-b]-furan-2-yl) ethan-1-one (**4d**). Obtained as a white solid in 53% yield (36.6 mg); mp 72.3 – 74.0 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.98 (d, *J* = 8.1 Hz, 2H), 7.65 – 7.55 (m, 1H), 7.53 –7.43 (m, 2H), 6.98 (d, *J* = 7.4 Hz, 1H), 6.76 (d, *J* = 7.4 Hz, 1H), 5.45 – 5.32 (m, 1H), 3.68 (dd, *J* = 16.9, 5.5 Hz, 1H), 3.53 (dd, *J* = 15.5, 9.0 Hz, 1H), 3.29 (dd, *J* = 16.9, 7.7 Hz, 1H), 2.98 – 2.90 (m, 1H), 2.90 – 2.85 (m, 2H), 2.85 – 2.74 (m, 2H), 2.14 – 2.03 (m, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  197.8, 155.3, 146.0, 137.0, 133.4, 128.7, 128.3, 125.0, 124.0, 122.9, 116.4, 79.6, 45.0, 36.0, 33.0, 29.0, 25.7; HR-MS (ESI) m/z calcd for C<sub>19</sub>H<sub>19</sub>O<sub>2</sub> [M + H] +: 279.1380, found: 279.1379.



2-(2,3,6,7,8,9-hexahydronaphtho[1,2-b]-furan-2-yl)-1-phenylethan-1-one (**4e**). Obtained as a white solid in 63% yield (46.0 mg); mp 84.5 – 86.5 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.98 (d, *J* = 8.0 Hz, 2H), 7.63 – 7.54 (m, 1H), 7.52 – 7.44 (m, 2H), 6.93 (d, *J* = 7.5 Hz, 1H), 6.61 (d, *J* = 7.5 Hz, 1H), 5.41 – 5.30 (m, 1H), 3.66 (dd, *J* = 16.7, 5.6 Hz, 1H), 3.51 (dd, *J* = 15.6, 9.0 Hz, 1H), 3.26 (dd, *J* = 16.7, 7.6 Hz, 1H), 2.90 (dd, *J* = 15.6, 6.6 Hz, 1H), 2.73 (s, 2H), 2.67 – 2.49 (m, 2H), 1.83 – 1.70 (m, 4H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  197.9, 157.2, 137.4, 137.1, 133.4, 128.7, 128.3, 122.4, 121.7, 121.2, 119.8, 79.3, 45.1, 36.1, 29.4, 23.2, 23.1, 22.7; HR-MS (ESI) m/z calcd for C<sub>20</sub>H<sub>21</sub>O<sub>2</sub> [M + H] +: 293.1536,

found: 293.1535.



2-(2,3-dihydronaphtho[1,2-b]-furan-2-yl)-1-phenylethan-1-one (**4f**). Obtained as a white solid in 64% yield (45.9 mg); mp 78.3 – 81.0 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.98 (d, *J* = 7.2 Hz, 2H), 7.93 – 7.86 (m, 1H), 7.83 – 7.77 (m, 1H), 7.60 – 7.54 (m, 1H), 7.49 – 7.43 (m, 2H), 7.43 – 7.35 (m, 3H), 7.34 – 7.29 (m, 1H), 5.63 – 5.54 (m, 1H), 3.82 – 3.68 (m, 2H), 3.34 (dd, *J* = 16.9, 7.5 Hz, 1H), 3.10 (dd, *J* = 15.6, 6.7 Hz, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  197.8, 154.5, 137.0, 134.1, 133.5 128.8, 128.3, 127.9, 125.7, 125.4, 123.0, 121.5, 120.7, 120.4, 119.5, 80.0, 45.1, 36.9; HR-MS (ESI) m/z calcd for C<sub>20</sub>H<sub>17</sub>O<sub>2</sub> [M + H] +: 289.1223, found: 289.1215.



2-(1,2-dihydronaphtho[2,1-b] furan-2-yl)-1-phenylethan-1-one (**4g**). Obtained as a white solid in 77% yield (55.0 mg); mp 107.4 – 109.4 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.97 (d, *J* = 7.3 Hz, 2H), 7.79 (d, *J* = 8.2 Hz, 1H), 7.67 (d, *J* = 8.7 Hz, 1H), 7.59 – 7.54 (m, 2H), 7.49 – 7.43 (m, 3H), 7.32 – 7.28 (m, 1H), 7.09 (d, *J* = 8.7 Hz, 1H), 5.60 – 5.55 (m, 1H), 3.81 (dd, *J* = 15.5, 9.4 Hz, 1H), 3.72 (dd, *J* = 17.2, 6.0 Hz, 1H), 3.35 (dd, *J* = 17.2, 7.3 Hz, 1H), 3.19 (dd, *J* = 15.5, 6.9 Hz, 1H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  197.6, 156.7, 136.8, 133.5, 130.9, 129.3, 129.2, 128.8, 128.2, 126.8, 123.0, 122.8, 118.1, 112.2, 79.8, 45.1, 34.9; HR-MS (ESI) m/z calcd for C<sub>20</sub>H<sub>17</sub>O<sub>2</sub> [M + H] +: 289.1223, found: 289.1221.



2-(5,7-dimethyl-2,3-dihydrobenzofuran-2-yl)-1-phenylethan-1-one (**4h**). Obtained as a white solid in 65% yield (43.0 mg); mp 93.2 – 95.9 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.98 (d, *J* = 7.3 Hz, 2H), 7.61 – 7.56 (m, 1H), 7.51 – 7.44 (m, 2H), 6.83 (s, 1H), 6.76 (s, 1H), 5.35 – 5.30 (m, 1H), 3.67 (dd, *J* = 16.7, 5.6 Hz, 1H), 3.51 (dd, *J* = 15.7, 9.0 Hz, 1H), 3.26 (dd, *J* = 16.7, 7.7 Hz, 1H), 2.90 (dd, *J* = 15.7, 6.8 Hz, 1H), 2.25 (s, 3H), 2.14 (s, 3H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  197.9, 155.4, 137.0,

133.5, 129.9, 129.8, 128.7, 128.3, 125.8, 123.0, 119.3, 78.9, 45.0, 36.4, 20.8, 15.3; HR-MS (ESI) m/z calcd for C<sub>18</sub>H<sub>19</sub>O<sub>2</sub> [M + H] <sup>+</sup>: 267.1380, found: 267.1377.



1-phenyl-2-(4,5,6-trimethyl-2,3-dihydrobenzofuran-2-yl)-ethan-1-one (**4i**). Obtained as a white solid in 70% yield (49.0 mg); mp 85.5 – 87.1 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.99 (d, *J* = 7.1 Hz, 2H), 7.63 – 7.55 (m, 1H), 7.55 – 7.44 (m, 2H), 6.51 (s, 1H), 5.42 – 5.30 (m, 1H), 3.67 (dd, *J* = 17.1, 5.7 Hz, 1H), 3.49 (dd, *J* = 15.5, 9.0 Hz, 1H), 3.28 (dd, *J* = 17.1, 7.5 Hz, 1H), 2.86 (dd, *J* = 15.5, 6.7 Hz, 1H), 2.25 (s, 3H), 2.18 (s, 3H), 2.12 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  197.8, 156.4, 136.9, 136.3, 133.4, 133.1, 128.7, 128.2, 126.7, 123.2, 108.5, 78.9, 45.0, 35.7, 21.2, 16.9, 14.8; HR-MS (ESI) m/z calcd for C<sub>19</sub>H<sub>21</sub>O<sub>2</sub> [M + H] +: 281.1536, found: 281.1527.



2-(5-methyl-2,3-dihydrobenzofuran-2-yl)-1-phenylethan-1-one (**4j**)<sup>2</sup>. Obtained as a white solid in 78% yield (49.1 mg); mp 98.4 – 99.7 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.97 (d, *J* = 7.2 Hz, 2H), 7.61 – 7.56 (m, 1H), 7.51 – 7.45 (m, 2H), 7.00 (s, 1H), 6.92 (d, *J* = 8.1 Hz, 1H), 6.67 (d, *J* = 8.1 Hz, 1H), 5.40 – 5.32 (m, 1H), 3.65 (dd, *J* = 17.1, 5.9 Hz, 1H), 3.51 (dd, *J* = 15.8, 9.0 Hz, 1H), 3.27 (dd, *J* = 17.1, 7.2 Hz, 1H), 2.91 (dd, *J* = 15.8, 6.9 Hz, 1H), 2.28 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  197.5, 157.0, 136.8, 133.4, 129.8, 128.6, 128.3, 128.1, 126.4, 125.6, 109.0, 79.0, 44.7, 35.9, 20.7; HR-MS (ESI) m/z calcd for C<sub>17</sub>H<sub>17</sub>O<sub>2</sub> [M + H] +: 253.1223, found: 253.1221.



2-(5-(*tert*-butyl)-2,3-dihydrobenzofuran-2-yl)-1-phenylethan-1-one (**4k**)<sup>2</sup>. Obtained as a white solid in 81% yield (59.1 mg); mp 92.1 – 93.5 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.98 (d, *J* = 7.1 Hz, 2H), 7.63 – 7.55 (m, 1H), 7.52 – 7.43 (m, 2H), 7.23 (s, 1H), 7.15 (d, *J* = 8.4 Hz, 1H), 6.72 (d, *J* = 8.4 Hz, 1H), 5.42 – 5.35 (m, 1H), 3.67 (dd, *J* = 17.1, 5.9 Hz, 1H), 3.55 (dd, *J* = 15.7, 9.0 Hz, 1H), 3.29 (dd, *J* = 17.1, 7.2 Hz, 1H), 2.94 (dd, *J* = 15.7, 6.9 Hz, 1H), 1.31 (s, 9H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  197.6, 156.8, 143.6, 136.8, 133.4, 128.7, 128.1, 126.0, 124.8, 122.1, 108.7, 79.1, 44.8, 36.1, 34.3,

31.7; HR-MS (ESI) m/z calcd for C<sub>20</sub>H<sub>23</sub>O<sub>2</sub> [M + H] +: 295.1693, found: 295.1685.



2-(5-methoxy-2,3-dihydrobenzofuran-2-yl)-1-phenylethan-1-one (**4m**)<sup>2</sup>. Obtained as a white solid in 66% yield (43.9 mg); mp 92.5 – 93.7 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.97 (d, *J* = 8.3 Hz, 2H), 7.61 7.57 (m, 1H), 7.51 – 7.46 (m, 2H), 6.77 (s, 1H), 6.73 – 6.62 (m, 2H), 5.40 – 5.31 (m, 1H), 3.75 (s, 3H), 3.65 (dd, *J* = 17.1, 5.9 Hz, 1H), 3.52 (dd, *J* = 15.9, 8.9 Hz, 1H), 3.28 (dd, *J* = 17.1, 7.2 Hz, 1H), 2.92 (dd, *J* = 15.9, 7.0 Hz, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 197.5, 154.2, 153.2, 136.8, 133.4, 128.6, 128.1, 127.4, 113.0, 111.3, 109.4, 79.2, 56.0, 44.6, 36.3; HR-MS (ESI) m/z calcd for C<sub>17</sub>H<sub>17</sub>O<sub>3</sub> [M + H] <sup>+</sup>: 269.1172, found: 269.1164.



2-(5-ethoxy-2,3-dihydrobenzofuran-2-yl)-1-phenylethan-1-one (**4n**). Obtained as a white solid in 68% yield (47.5 mg); mp 95.1 – 99.0 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.97 (d, *J* = 7.2 Hz, 2H), 7.61 – 7.55 (m, 1H), 7.52 – 7.43 (m, 2H), 6.77 (s, 1H), 6.71 – 6.59 (m, 2H), 5.41 – 5.27 (m, 1H), 3.96 (q, *J* = 7.0 Hz, 2H), 3.65 (dd, *J* = 17.1, 5.9 Hz, 1H), 3.51 (dd, *J* = 15.9, 9.0 Hz, 1H), 3.27 (dd, *J* = 17.1, 7.2 Hz, 1H), 2.92 (dd, *J* = 15.9, 6.9 Hz, 1H), 1.38 (t, *J* = 7.0 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  197.6, 153.6, 153.3, 136.9, 133.6, 128.8, 128.2, 127.5, 114.0, 112.3, 109.5, 79.3, 64.5, 44.8, 36.5, 15.1; HR-MS (ESI) m/z calcd for C<sub>18</sub>H<sub>19</sub>O<sub>3</sub> [M + H] +: 283.1329, found: 283.1327.



2-(5-bromo-2,3-dihydrobenzofuran-2-yl)-1-phenylethan-1-one (**4o**)<sup>2</sup>. Obtained as a white solid in 55% yield (43.5 mg); mp 121.5 – 122.8 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.97 (d, *J* = 8.2 Hz, 2H), 7.61 – 7.57 (m, 1H), 7.51 – 7.44 (m, 2H), 7.28 (s, 1H), 7.21 (d, *J* = 8.4 Hz, 1H), 6.65 (d, *J* = 8.4 Hz, 1H), 5.44 – 5.35 (m, 1H), 3.65 (dd, *J* = 17.2, 5.9 Hz, 1H), 3.54 (dd, *J* = 16.1, 9.0 Hz, 1H), 3.28 (dd, *J* = 17.2, 7.2 Hz, 1H), 2.94 (dd, *J* = 16.1, 7.1 Hz, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  197.1, 158.3, 136.6, 133.5, 130.8, 129.0, 128.7, 128.1, 128.0, 112.2, 111.0, 79.7, 44.5, 35.7; HR-MS (ESI) m/z calcd for C<sub>16</sub>H<sub>14</sub>O<sub>2</sub>Br [M + H] +: 317.0172, found: 317.0168.



2-(5-iodo-2,3-dihydrobenzofuran-2-yl)-1-phenylethan-1-one (**4p**). Obtained as a white solid in 47% yield (42.5 mg); mp 115.9 – 118.1 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.96 (d, *J* = 7.2 Hz, 2H), 7.63 – 7.57 (m, 1H), 7.51 – 7.44 (m, 3H), 7.39 (d, *J* = 8.4 Hz, 1H), 6.56 (d, *J* = 8.4 Hz, 1H), 5.42 – 5.35 (m, 1H), 3.65 (dd, *J* = 17.2, 5.9 Hz, 1H), 3.53 (dd, *J* = 16.1, 9.1 Hz, 1H), 3.28 (dd, *J* = 17.2, 7.2 Hz, 1H), 2.93 (dd, *J* = 16.1, 7.0 Hz, 1H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  197.3, 159.2, 137.0, 136.7, 133.9, 133.7, 129.7, 128.8, 128.2, 112.0, 81.9, 79.7, 44.6, 35.6; HR-MS (ESI) m/z calcd for C<sub>16</sub>H<sub>14</sub>O<sub>2</sub>I [M + H] +: 365.0033, found: 365.0033.



2-(5-cyclopropyl-2,3-dihydrobenzofuran-2-yl)-1-phenylethan-1-one (**4q**). Obtained as a white solid in 76% yield (52.6 mg); mp 89.2 – 90.3 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.97 (d, *J* = 7.2 Hz, 2H), 7.62 – 7.55 (m, 1H), 7.51 – 7.43 (m, 2H), 6.91 (s, 1H), 6.86 (d, *J* = 8.2 Hz, 1H), 6.67 (d, *J* = 8.2 Hz, 1H), 5.42 – 5.31 (m, 1H), 3.65 (dd, *J* = 17.1, 5.9 Hz, 1H), 3.50 (dd, *J* = 15.8, 9.0 Hz, 1H), 3.26 (dd, *J* = 17.1, 7.2 Hz, 1H), 2.90 (dd, *J* = 15.8, 6.9 Hz, 1H), 1.90 – 1.79 (m, 1H), 0.92 – 0.84 (m, 2H), 0.64 – 0.56 (m, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 197.5, 157.1, 136.8, 136.0, 133.4, 128.6, 128.1, 126.5, 125.7, 122.5, 109.1, 79.1, 44.7, 35.9, 14.9, 8.4; HR-MS (ESI) m/z calcd for C<sub>19</sub>H<sub>19</sub>O<sub>2</sub> [M + H] +: 279.1380, found: 279.1378.



2-(5-cyclopentyl-2,3-dihydrobenzofuran-2-yl)-1-phenylethan-1-one (**4r**). Obtained as a white solid in 77% yield (58.8 mg); mp 84.0 – 85.3 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.98 (d, *J* = 7.2 Hz, 2H), 7.63 – 7.55 (m, 1H), 7.53 – 7.43 (m, 2H), 7.08 (s, 1H), 7.00 (d, *J* = 8.2 Hz, 1H), 6.70 (d, *J* = 8.2 Hz, 1H), 5.43 – 5.32 (m, 1H), 3.66 (dd, *J* = 17.1, 5.9 Hz, 1H), 3.53 (dd, *J* = 15.8, 9.0 Hz, 1H), 3.28 (dd, *J* = 17.1, 7.3 Hz, 1H), 3.01 – 2.87 (m, 2H), 2.12 – 1.98 (m, 2H), 1.86 – 1.74 (m, 2H), 1.73 – 1.64 (m, 2H), 1.61 – 1.47 (m, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 197.7, 157.3, 138.8, 136.9, 133.4,

128.7, 128.2, 126.7, 126.4, 123.7, 109.1, 79.2, 45.6, 44.9, 36.1, 35.0, 25.5; HR-MS (ESI) m/z calcd for C<sub>21</sub>H<sub>23</sub>O<sub>2</sub> [M + H] <sup>+</sup>: 307.1693, found: 307.1689.



2-(5-cyclohexyl-2,3-dihydrobenzofuran-2-yl)-1-phenylethan-1-one (**4s**). Obtained as a white solid in 73% yield (58.0 mg); mp 100.6 – 103.7 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.98 (d, *J* = 7.3 Hz, 2H), 7.62 – 7.55 (m, 1H), 7.51 – 7.43 (m, 2H), 7.04 (s, 1H), 6.96 (d, *J* = 8.2 Hz, 1H), 6.70 (d, *J* = 8.2 Hz, 1H), 5.42 – 5.31 (m, 1H), 3.66 (dd, *J* = 17.0, 5.9 Hz, 1H), 3.53 (dd, *J* = 15.8, 9.0 Hz, 1H), 3.28 (dd, *J* = 17.0, 7.3 Hz, 1H), 2.93 (dd, *J* = 15.8, 7.0 Hz, 1H), 2.46 – 2.41 (m, 1H), 1.90 – 1.80 (m, 4H), 1.74 (d, *J* = 12.4 Hz, 1H), 1.44 – 1.32 (m, 4H), 1.27 – 1.17 (m, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  197.7, 157.3, 140.7, 136.9, 133.5, 128.7, 128.2, 126.4, 123.4, 109.1, 79.2, 44.9, 44.2, 36.1, 35.0, 27.1, 26.3; HR-MS (ESI) m/z calcd for C<sub>22</sub>H<sub>25</sub>O<sub>2</sub> [M + H] +: 321.1849, found: 321.1846.



2-(2,3-dihydronaphtho[1,2-b]-furan-2-yl)-1-(p-tolyl)-ethan-1-one (**7b**). Obtained as a white solid in 65% yield (49.0 mg); mp 88.8 – 90.5 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.93 – 7.90 (m, 1H), 7.90 – 7.87 (m, 2H), 7.83 – 7.79 (m, 1H), 7.44 – 7.40 (m, 2H), 7.39 (d, *J* = 8.2 Hz, 1H), 7.33 (d, *J* = 8.2 Hz, 1H), 7.28 – 7.25 (m, 2H), 5.62 – 5.55 (m, 1H), 3.78 – 3.70 (m, 2H), 3.33 (dd, *J* = 16.8, 7.6 Hz, 1H), 3.11 (dd, *J* = 15.5, 6.7 Hz, 1H), 2.42 (s, 3H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  197.4, 154.5, 144.4, 134.5, 134.0, 129.4, 128.4, 127.9, 125.7, 125.3, 123.0, 121.5, 120.6, 120.3, 119.5, 80.1, 45.0, 36.9, 21.8; HR-MS (ESI) m/z calcd for C<sub>21</sub>H<sub>19</sub>O<sub>2</sub> [M + H] +: 303.1380, found: 303.1378.



1-(4-butylphenyl)-2-(2,3-dihydronaphtho[1,2-b]-furan-2-yl)-ethan-1-one (7c). Obtained as a white solid in 68% yield (58.5 mg); mp 75.7 – 77.2 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.92 – 7.87 (m, 3H), 7.81 – 7.77 (m, 1H), 7.42 – 7.39 (m, 2H), 7.37 (d, *J* = 8.2 Hz, 1H), 7.32 (d, *J* = 8.2 Hz, 1H), 7.28 – 7.24 (d, *J* = 8.9 Hz, 2H), 5.61 – 5.54 (m, 1H), 3.77 – 3.68 (m, 2H), 3.32 (dd, *J* = 16.8, 7.7 Hz, 1H), 3.10 (dd,

 $J = 15.5, 6.7 \text{ Hz}, 1\text{H}, 2.69 - 2.63 \text{ (m, 2H)}, 1.63 - 1.59 \text{ (m, 2H)}, 1.39 - 1.31 \text{ (m, 2H)}, 0.93 \text{ (t, } J = 7.4 \text{ Hz}, 3\text{H}); {}^{13}\text{C} \text{ NMR} (151 \text{ MHz}, \text{CDCl}_3) \delta 197.4, 154.5, 149.3, 134.7, 134.1, 128.8, 128.4, 127.9, 125.7, 125.3, 123.0, 121.5, 120.6, 120.3, 119.5, 80.1, 45.0, 36.9, 35.8, 33.3, 22.4, 14.0; \text{HR-MS} (ESI) m/z calcd for <math>C_{24}H_{25}O_2 [\text{M} + \text{H}] +: 345.1849$ , found: 345.1846.



1-(4-bromophenyl)-2-(2,3-dihydronaphtho[1,2-b]-furan-2-yl)-ethan-1-one (7d). Obtained as a white solid in 59% yield (54.0 mg); mp 90.1 – 92.3 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.89 – 7.85 (m, 1H), 7.83 (d, *J* = 8.6 Hz, 2H), 7.82 – 7.78 (m, 1H), 7.59 (d, *J* = 8.6 Hz, 2H), 7.43 – 7.40 (m, 2H), 7.39 (d, *J* = 8.2 Hz, 1H), 7.32 (d, *J* = 8.2 Hz, 1H), 5.59 – 5.53 (m, 1H), 3.75 – 3.68 (m, 2H), 3.29 (dd, *J* = 16.8, 7.1 Hz, 1H), 3.10 (dd, *J* = 15.5, 6.6 Hz, 1H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  196.8, 154.4, 135.7, 134.1, 132.1, 129.8, 128.7, 127.9, 125.8, 125.4, 123.0, 121.5, 120.6, 120.5, 119.3, 79.9, 45.0, 36.8; HR-MS (ESI) m/z calcd for C<sub>20</sub>H<sub>16</sub>O<sub>2</sub>Br [M + H] +: 367.0328, found: 367.0328.



2-(2,3-dihydronaphtho[1,2-b]-furan-2-yl)-1-(2-fluorophenyl)-ethan-1-one (7e). Obtained as a white solid in 63% yield (48.1 mg); mp 72.3 – 73.1 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.94 (td, J = 7.7, 1.8 Hz, 1H), 7.92 – 7.88 (m, 1H), 7.83 – 7.77 (m, 1H), 7.56 – 7.50 (m, 1H), 7.44 – 7.39 (m, 2H), 7.38 (d, J = 8.2 Hz, 1H), 7.32 (d, J = 8.2 Hz, 1H), 7.26 – 7.24 (m, 1H), 7.14 (dd, J = 11.2, 8.3 Hz, 1H), 5.63 – 5.55 (m, 1H), 3.79 – 3.68 (m, 2H), 3.42 (ddd, J = 17.8, 7.1, 3.1 Hz, 1H), 3.11 (dd, J = 15.4, 6.9 Hz, 1H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  195.8, 162.2 (d, J = 254.7 Hz), 154.6, 135.0 (d, J = 9.1 Hz), 134.0, 130.7 (d, J = 2.3 Hz), 127.9, 125.7, 125.3, 124.6 (d, J = 3.4 Hz), 123.0, 121.6, 120.6, 120.3, 119.4, 116.8 (d, J = 24.2 Hz), 79.5, 50.1, 36.8. <sup>19</sup>F NMR (565 MHz, CDCl<sub>3</sub>)  $\delta$  -109.1; HR-MS (ESI) m/z calcd for C<sub>20</sub>H<sub>16</sub>O<sub>2</sub>F [M + H] <sup>+</sup>: 307.1129, found: 307.1126.



2-(2,3-dihydronaphtho[1,2-b]-furan-2-yl)-1-(3-fluorophenyl)-ethan-1-one (7f). Obtained as a white solid in 65% yield (49.7 mg); mp 79.3 – 82.1 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.91 – 7.86 (m, 1H),

7.83 – 7.78 (m, 1H), 7.75 (d, J = 7.8 Hz, 1H), 7.70 – 7.66 (m, 1H), 7.46 – 7.40 (m, 3H), 7.39 (d, J = 8.3 Hz, 1H), 7.33 (d, J = 8.2 Hz, 1H), 7.30 – 7.26 (m, 1H), 5.61 – 5.54 (m, 1H), 3.77 – 3.70 (m, 2H), 3.33 (dd, J = 16.9, 7.2 Hz, 1H), 3.11 (dd, J = 15.5, 6.6 Hz, 1H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  196.6, 163.8 (d, J = 250.2 Hz), 154.4, 139.02 (d, J = 6.1 Hz), 134.1, 130.4 (d, J = 7.6 Hz), 127.9, 125.8, 125.4, 124.1 (d, J = 2.9 Hz), 123.0, 121.5, 120.6, 120.5, 119.3, 115.0 (d, J = 23.4 Hz), 79.8, 45.2, 36.8. <sup>19</sup>F NMR (565 MHz, CDCl<sub>3</sub>)  $\delta$  -111.6; HR-MS (ESI) m/z calcd for C<sub>20</sub>H<sub>16</sub>O<sub>2</sub>F [M + H] +: 307.1129, found: 307.1129.



1-([1,1'-biphenyl]-4-yl)-2-(2,3-dihydronaphtho[1,2-b]-furan-2-yl)-ethan-1-one (**7g**). Obtained as a white solid in 49% yield (44.6 mg); mp 121.1 – 123.1 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.06 (d, J = 8.4 Hz, 2H), 7.95 – 7.89 (m, 1H), 7.87 – 7.79 (m, 1H), 7.69 (d, J = 8.4 Hz, 2H), 7.63 (d, J = 7.2 Hz, 2H), 7.51 – 7.46 (m, 2H), 7.45 – 7.41 (m, 3H), 7.41 – 7.38 (m, 1H), 7.34 (d, J = 8.2 Hz, 1H), 5.65 – 5.58 (m, 1H), 3.80 (dd, J = 16.7, 5.8 Hz, 1H), 3.75 (dd, J = 15.5, 9.3 Hz, 1H), 3.38 (dd, J = 16.7, 7.5 Hz, 1H), 3.14 (dd, J = 15.5, 6.7 Hz, 1H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  197.4, 154.5, 146.2, 139.8, 135.6, 134.1, 129.1, 128.9, 128.4, 127.9, 127.4, 125.7, 125.4, 123.0, 121.5, 120.6, 120.4, 119.5, 80.1, 45.1, 36.9; HR-MS (ESI) m/z calcd for C<sub>26</sub>H<sub>21</sub>O<sub>2</sub> [M + H] +: 365.1536, found: 365.1536.



2-(2,3-dihydronaphtho[1,2-b]-furan-2-yl)-1-(naphthalen-2-yl)-ethan-1-one (**7h**). Obtained as a white solid in 53% yield (44.5 mg); mp 106.2 – 108.0 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.49 (s, 1H), 8.07 (dd, J = 8.6, 1.6 Hz, 1H), 7.97 – 7.89(m, 3H), 7.89 – 7.85 (m, 1H), 7.84 – 7.80 (m, 1H), 7.64 – 7.59 (m, 1H), 7.57 – 7.52 (m, 1H), 7.45 – 7.38 (m, 3H), 7.35 (d, J = 8.2 Hz, 1H), 5.70 – 5.61 (m, 1H), 3.91 (dd, J = 16.7, 5.8 Hz, 1H), 3.77 (dd, J = 15.5, 9.3 Hz, 1H), 3.47 (dd, J = 16.7, 7.4 Hz, 1H), 3.17 (dd, J = 15.5, 6.6 Hz, 1H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  197.8, 154.5, 135.8, 134.3, 134.1, 132.5, 130.3, 129.7, 128.7, 128.6, 127.9, 126.9, 125.7, 125.4, 123.8, 123.0, 121.5, 120.6, 120.4, 119.5, 80.2, 45.2, 36.9; HR-MS (ESI) m/z calcd for C<sub>24</sub>H<sub>19</sub>O<sub>2</sub> [M + H] +: 339.1380, found: 339.1377.



2-(2-methyl-2,3-dihydronaphtho[1,2-b]-furan-2-yl)-1-phenylethan-1-one (7i). Obtained as a colorless oil in 30% yield (22.5 mg, solid in refrigerator); <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.94 (d, *J* = 7.3 Hz, 2H), 7.84 – 7.73 (m, 2H), 7.52 (t, *J* = 7.4 Hz, 1H), 7.49 – 7.37 (m, 4H), 7.36 (d, *J* = 8.2 Hz, 1H), 7.30 (d, *J* = 8.2 Hz, 1H), 3.64 (d, *J* = 15.9 Hz, 1H), 3.49 (dd, *J* = 15.8, 4.2 Hz, 2H), 3.36 (d, *J* = 15.6 Hz, 1H), 1.72 (s, 3H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  197.9, 153.5, 137.5, 134.1, 133.3, 128.6, 128.4, 127.9, 125.6, 125.2, 123.2, 121.6, 120.7, 120.2, 119.9, 88.2, 48.8, 42.5, 26.9; HR-MS (ESI) m/z calcd for C<sub>21</sub>H<sub>19</sub>O<sub>2</sub> [M + H] +: 303.1380, found: 303.1370.



2-(3-methyl-2,3-dihydronaphtho[1,2-b]-furan-2-yl)-1-phenylethan-1-one (**7j**). Obtained as a colorless oil in 33% yield (24.9 mg, solid in refrigerator); <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.99 (d, *J* = 7.7 Hz, 2H), 7.92 – 7.86 (m, 1H), 7.83 – 7.78 (m, 1H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 7.7 Hz, 2H), 7.44 – 7.39 (m, 3H), 7.30 (d, *J* = 8.3 Hz, 1H), 5.18 – 5.12 (m, 1H), 3.70 (dd, *J* = 16.7, 6.4 Hz, 1H), 3.45 – 3.38 (m, 1H), 3.31 (dd, *J* = 16.7, 6.6 Hz, 1H), 1.48 (d, *J* = 6.9 Hz, 3H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  198.0, 153.9, 137.1, 134.2, 133.5, 130.1, 129.0, 128.8, 128.4, 127.9, 125.8, 125.4, 122.1, 121.7, 120.5, 87.3, 44.4, 43.9, 20.48; HR-MS (ESI) m/z calcd for C<sub>21</sub>H<sub>19</sub>O<sub>2</sub> [M + H] +: 303.1380, found: 303.1380.



1-(cyclohex-1-en-1-yl)-2-(2,3-dihydronaphtho[1,2-b]-furan-2-yl)-ethan-1-one (7k). Obtained as a colorless oil in 25% yield (18.0 mg, solid in refrigerator); <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.93 – 7.88(m, 1H), 7.81 – 7.78 (m, 1H), 7.42 – 7.39 (m, 2H), 7.37 (d, *J* = 8.2 Hz, 1H), 7.31 (d, *J* = 8.2 Hz, 1H), 6.95 – 6.91 (m, 1H), 5.47 – 5.41 (m, 1H), 3.64 (dd, *J* = 15.5, 9.2 Hz, 1H), 3.41 (dd, *J* = 16.3, 5.8 Hz, 1H), 3.06 – 2.99 (m, 2H), 2.28 – 2.19 (m, 4H), 1.68 – 1.60 (m, 4H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  198.7, 154.5, 141.5, 139.7, 134.0, 127.9, 125.7, 125.3, 123.1, 121.5, 120.6, 120.2, 119.6, 80.4, 43.6, 36.7, 26.3, 23.0, 21.9, 21.6; HR-MS (ESI) m/z calcd for C<sub>20</sub>H<sub>21</sub>O<sub>2</sub> [M + H] +: 293.1536, found: 293.1533.



(5b*S*,7a*S*,10a*S*,10b*R*)-7a-methyl-2-(2-oxo-2-phenylethyl)-1,2,5b,6,7,7a,9,10,10a,10b,11,12dodecahydro-8H-cyclopenta[7,8]-phenanthro[2,1-b]-furan-8-one (**9a**). Obtained as a white solid in 32% yield (33.0 mg); mp 151.0 – 153.1 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.03 – 7.92 (m, 2H), 7.64 – 7.56 (m, 1H), 7.53 – 7.44 (m, 2H), 7.09 (d, *J* = 8.4 Hz, 1H), 6.62 (d, *J* = 8.4 Hz, 1H), 5.44 – 5.32(m, 1H), 3.74 – 3.64 (m, 1H), 3.49 – 3.35 (m, 1H), 3.34 – 3.22 (m, 1H), 2.87 – 2.76 (m, 1H), 2.76 – 2.60 (m, 2H), 2.57 – 2.46 (m, 1H), 2.44 – 2.34 (m, 1H), 2.32 – 2.21 (m, 1H), 2.20 – 2.11 (m, 1H), 2.11 – 2.01 (m, 2H), 2.01 – 1.91 (m, 1H), 1.65 – 1.42 (m, 6H), 0.91 (s, 3H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 197.7, 156.9, 136.8, 133.7, 133.6, 132.1, 128.8, 128.2, 125.2, 125.0, 106.8, 79.4, 50.5, 48.0, 45.1, 44.2, 38.2, 36.0, 35.1, 31.7, 27.2, 26.3, 21.7, 13.9; HR-MS (ESI) m/z calcd for C<sub>28</sub>H<sub>31</sub>O<sub>3</sub> [M + H] +: 415.2268, found: 415.2269.



(3a*S*,3b*R*,10b*S*,12a*S*)-12a-methyl-8-(2-oxo-2-phenylethyl)-2,3,3a,3b,4,5,8,9,10b,11,12,12a-

dodecahydro-1H-cyclopenta[7,8]-phenanthro[2,3-b]-furan-1-one (**9b**). Obtained as a white solid in 32% yield (32.8 mg); mp 133.7 – 135.1 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.97 (d, *J* = 7.7 Hz, 2H), 7.62 – 7.55 (m, 1H), 7.52 – 7.43 (m, 2H), 7.13 (s, 1H), 6.53 (s, 1H), 5.42 – 5.31 (m, 1H), 3.68 – 3.61 (m, 1H), 3.54 – 3.47 (m, 1H), 3.31 – 3.22 (m, 1H), 2.95 – 2.89 (m, 1H), 2.90 – 2.82 (m, 2H), 2.56 – 2.45 (m, 1H), 2.43 – 2.34 (m, 1H), 2.29 – 2.20 (m, 1H), 2.19 – 2.10 (m, 1H), 2.09 – 2.04 (m, 1H), 2.03 – 1.98 (m, 1H), 1.97 – 1.91 (m, 1H), 1.71 – 1.59 (m, 2H), 1.58 – 1.52 (m, 1H), 1.51 – 1.44 (m, 2H), 1.44 – 1.35 (m, 1H), 0.91 (s, 3H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  197.7, 157.4, 136.8, 136.6, 133.5, 132.1, 128.8, 128.2, 124.2, 122.0, 109.5, 79.3, 50.5, 48.1, 44.9, 44.3, 38.6, 36.0, 31.7, 29.9, 26.7, 26.3, 21.7, 14.0; HR-MS (ESI) m/z calcd for C<sub>28</sub>H<sub>31</sub>O<sub>3</sub> [M + H] +: 415.2268, found: 415.2273.



2-(6-hydroxy-2,3-dihydrobenzofuran-2-yl)-1-phenylethan-1-one (**13a**). Obtained as a white solid in 54% yield (34.0 mg); mp 130.5 – 134.6 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.97 (d, *J* = 7.3 Hz, 2H), 7.62 – 7.56 (m, 1H), 7.51 – 7.45 (m, 2H), 6.99 (d, *J* = 7.8 Hz, 1H), 6.38 – 6.28 (m, 2H), 5.44 – 5.36 (m, 1H), 5.22 (s, 1H), 3.65 (dd, *J* = 17.1, 6.2 Hz, 1H), 3.45 (dd, *J* = 15.3, 9.0 Hz, 1H), 3.27 (dd, *J* = 17.1, 6.9 Hz, 1H), 2.85 (dd, *J* = 15.3, 6.8 Hz, 1H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  197.9, 160.4, 156.3, 136.7, 133.6, 128.8, 128.3, 125.3, 118.4, 107.4, 97.9, 80.1, 44.8, 35.2; HR-MS (ESI) m/z calcd for C<sub>16</sub>H<sub>15</sub>O<sub>3</sub> [M + H] +: 255.1016, found: 255.1014.



2-(4-hydroxy-2,3-dihydrobenzofuran-2-yl)-1-phenylethan-1-one (**13b**). Obtained as a white solid in 13% yield (8.0 mg); mp 158.3 – 161.0 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.97 (d, *J* = 7.3 Hz, 2H), 7.63 – 7.56 (m, 1H), 7.52 – 7.45 (m, 2H), 7.03 – 6.96 (m, 1H), 6.40 (d, *J* = 8.0 Hz, 1H), 6.33 (d, *J* = 8.1 Hz, 1H), 5.45 – 5.40 (m, 1H), 4.80 (s, 1H), 3.67 (dd, *J* = 17.1, 5.9 Hz, 1H), 3.51 (dd, *J* = 15.5, 9.1 Hz, 1H), 3.31 (dd, *J* = 17.1, 7.3 Hz, 1H), 2.89 (dd, *J* = 15.5, 6.7 Hz, 1H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  197.6, 161.0, 152.7, 136.8, 133.6, 129.4, 128.8, 128.3, 112.1, 107.9, 102.7, 79.6, 44.9, 33.0; HR-MS (ESI) m/z calcd for C<sub>16</sub>H<sub>15</sub>O<sub>3</sub> [M + H] +: 255.1016, found: 255.1017.



2,2'-(2,3,5,6-tetrahydrobenzo[1,2-b:5,4-b']-difuran-2,6-diyl)-bis(1-phenylethan-1-one) (14). Obtained as a white solid in 57% yield (56.4 mg); mp 134.0 – 136.1 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.97 (d, *J* = 8.2 Hz, 4H), 7.61 – 7.56 (m, 2H), 7.49 – 7.45 (m, 4H), 6.93 (s, 1H), 6.26 (s, 1H), 5.44 – 5.33 (m, 2H), 3.64 (dd, *J* = 17.0, 5.9 Hz, 2H), 3.44 (dd, *J* = 15.3, 9.0 Hz, 2H), 3.27 (dd, *J* = 17.0, 7.2 Hz, 2H), 2.84 (dd, *J* = 15.3, 6.9 Hz, 2H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  197.6, 159.5, 136.8, 133.5, 128.8, 128.2, 120.8, 118.0, 93.0, 80.2, 44.8, 35.5; HR-MS (ESI) m/z calcd for C<sub>26</sub>H<sub>23</sub>O<sub>4</sub> [M + H] +: 399.1591, found: 399.1591.



methyl (*E*)-4-(2-hydroxyphenyl)-but-2-enoate (**16a**)<sup>3</sup>. Obtained as a colorless oil in 48% yield (22.6 mg); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.17 (dt, *J* = 15.6, 6.5 Hz, 1H), 7.13 – 7.07 (m, 2H), 6.91 – 6.85 (m, 1H), 6.80 – 6.75 (m, 1H), 5.83 (dt, *J* = 15.6, 1.6 Hz, 1H), 5.38 (s, 1H), 3.72 (s, 3H), 3.53 (d, *J* = 6.5 Hz, 2H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  167.5, 153.7, 147.5, 130.7, 128.3, 124.2, 121.6, 121.1, 115.5, 51.7, 33.1; HR-MS (ESI) m/z calcd for C<sub>11</sub>H<sub>13</sub>O<sub>3</sub> [M + H] <sup>+</sup>: 193.0859, found: 193.0859.



methyl (*E*)-4-(4-hydroxyphenyl)-but-2-enoate (**16b**)<sup>4</sup>. Obtained as a colorless oil in 33% yield (15.7 mg); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.09 (dt, *J* = 15.6, 6.8 Hz, 1H), 7.03 (d, *J* = 8.5 Hz, 2H), 6.78 (d, *J* = 8.5 Hz, 2H), 5.80 (dt, *J* = 15.6, 1.6 Hz, 1H), 5.24 (s, 1H), 3.73 (s, 3H), 3.45 (d, *J* = 6.8 Hz, 2H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  167.3, 154.6, 148.4, 130.0, 129.7, 121.6, 115.6, 51.7, 37.7; HR-MS (ESI) m/z calcd for C<sub>11</sub>H<sub>13</sub>O<sub>3</sub> [M + H] <sup>+</sup>: 193.0859, found: 193.0857.



(*E*)-4-methoxy-1-phenylbut-2-en-1-one (17)<sup>5</sup>. Obtained as a colorless oil in 45% yield (19.8 mg); <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.97 (d, *J* = 7.3 Hz, 2H), 7.60 – 7.53 (m, 1H), 7.50 – 7.44 (m, 2H), 7.17 (dt, *J* = 15.5, 1.9 Hz, 1H), 7.05 (dt, *J* = 15.5, 4.0 Hz, 1H), 4.21 (dd, *J* = 4.0, 2.0 Hz, 2H), 3.45 (s, 3H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  190.4, 144.4, 137.7, 133.0, 128.8, 128.7, 124.8, 71.7, 58.9; HR-MS (ESI) m/z calcd for C<sub>11</sub>H<sub>13</sub>O<sub>2</sub> [M + H] +: 177.0910, found: 177.0910.

# VI. Copies of NMR spectra for all new compounds

Figure S2. <sup>1</sup>H NMR spectra for 4a (600MHz, CDCl<sub>3</sub>)





### Figure S4. <sup>1</sup>H NMR spectra for 4b (600MHz, CDCl<sub>3</sub>)



(1) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 200 (200)
(2) 20





Figure S8. <sup>1</sup>H NMR spectra for 4d (400MHz, CDCl<sub>3</sub>)















Figure S13. <sup>13</sup>C NMR spectra for 4f (101MHz, CDCl<sub>3</sub>)







Figure S15. <sup>13</sup>C NMR spectra for 4g (151MHz, CDCl<sub>3</sub>)



110 100 fl (ppm) 140 130 120 -10 



200 190

S26

 60 50

-10























S32

### Figure S30. <sup>1</sup>H NMR spectra for 4p (400MHz, CDCl<sub>3</sub>)







### Figure S32. <sup>1</sup>H NMR spectra for 4q (400MHz, CDCl<sub>3</sub>)



### Figure S34. <sup>1</sup>H NMR spectra for 4r (400MHz, CDCl<sub>3</sub>)





### Figure S36. <sup>1</sup>H NMR spectra for 4s (400MHz, CDCl<sub>3</sub>)



### Figure S38. <sup>1</sup>H NMR spectra for 7b (600MHz, CDCl<sub>3</sub>)



Figure S40. <sup>1</sup>H NMR spectra for 7c (600MHz, CDCl<sub>3</sub>)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)



7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 7.28 



0 120 110 100 fl (ppm) 20 10 -10 210 200 190 180 170 160 150 140 130 80 70 60 50 40 30 90

Figure S44. <sup>1</sup>H NMR spectra for 7e (600MHz, CDCl<sub>3</sub>)









10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)





S42





10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)







Figure S52. <sup>1</sup>H NMR spectra for 7h (600MHz, CDCl<sub>3</sub>)

Figure S54. <sup>1</sup>H NMR spectra for 7i (600MHz, CDCl<sub>3</sub>)









### Figure S58. <sup>1</sup>H NMR spectra for 7k (600MHz, CDCl<sub>3</sub>)



Figure S60. <sup>1</sup>H NMR spectra for 9a (400MHz, CDCl<sub>3</sub>)



110 100 fl (ppm) -10 

### Figure S62. <sup>1</sup>H NMR spectra for 9b (400MHz, CDCl<sub>3</sub>)







### Figure S66. <sup>1</sup>H NMR spectra for 13b (600MHz, CDCl<sub>3</sub>)







Figure S68. <sup>1</sup>H NMR spectra for 14 (600MHz, CDCl<sub>3</sub>)







S54









### VII. References

- (a) Kang, B.; Kim, D.; Do, Y.; Chang, S. Conjugated Enynes as a New Type of Substrates for Olefin Metathesis. Org. Lett. 2003, 5, 3041–3043. (b) Yang, S.-Q.; Wang, Y.-F.; Zhao, W.-C.; Lin, G.-Q.; He, Z.-T. Stereodivergent Synthesis of Tertiary Fluoride-Tethered Allenes via Copper and Palladium Dual Catalysis. J. Am. Chem. Soc. 2021, 143, 7285–7291. (c) Liao, Y.; Yin, X.; Wang, X.; Yu, W.; Fang, D.; Hu, L.; Wang, M.; Liao, J. Enantioselective Synthesis of Multisubstituted Allenes by Cooperative Cu/Pd-Catalyzed 1,4-Arylboration of 1,3-Enynes. Angew. Chem., Int. Ed. 2020, 59, 1176–1180. (d) Zhang, Y.; Yu, B.; Gao, B.; Zhang, T.; Huang, H. Triple-Bond Insertion Triggers Highly Regioselective 1,4-Aminomethylamination of 1,3-Enynes with Aminals Enabled by Pd-Catalyzed C-N Bond Activation. Org. Lett. 2019, 21, 535–539. (e) Adamson, N. J.; Jeddi, H.; Malcolmson, S. J. Preparation of Chiral Allenes through Pd-Catalyzed Intermolecular Hydroamination of Conjugated Enynes: Enantioselective Synthesis Enabled by Catalyst Design. J. Am. Chem. Soc. 2019, 141, 8574–8583. (f) Pünner, F.; Hilt, G. Regioselective Solvent-Dependent Benzannulation of Conjugated Enynes. Chem. Commun. 2012, 48, 3617–3619.
- Zhang, J.-W.; Cai, Q.; Gu, Q.; Shi, X.-X.; You, S.-L. Enantioselective Synthesis of Benzofurans and Benzoxazines Via an Olefin Cross-Metathesis–Intramolecular Oxo-Michael Reaction. *Chem. Commun.* 2013, 49, 7750–7752.
- Hintermann, L.; Ackerstaff, J.; Boeck, F. Inner Workings of a Cinchona Alkaloid Catalyzed Oxa-Michael Cyclization: Evidence for a Concerted Hydrogen-Bond-Network Mechanism. *Chem. – Eur. J.* 2013, 19, 2311–2321.
- Chiummiento, L.; Funicello, M.; Lupattelli, P.; Tramutola, F. Ligand-Free Suzuki Coupling of Arylboronic Acids with Methyl (E)-4-Bromobut-2-enoate: Synthesis of Unconventional Cores of HIV-1 Protease Inhibitors. Org. Lett. 2012, 14, 3928–3931.
- 5. Farina, V.; Krishnamurthy, V.; Scott, W. J. The Stille Reaction. Org. React. 1997, 50, 1-652.