Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2021

Supplementary Information for

Atomically ordered Rh₂P catalysts anchored within hollow mesoporous carbon for efficient hydrogen production

Xuwen Guo,^a Xin Chen,^b Yanping Huang,^c Xiaowen Min,^d Chuncai Kong,^{*5} Yawen Tang,^a and Ben Liu^{*d}

^aJiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China

^bME Instruments Inc., Huahan science and Technology Industrial Park, Shenzhen 518118, China

^cCenter of Engineering Experimental Teaching, School of Chemical Engineering, Sichuan University, Chengdu 610065, China

^dKey Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China

^eMinistry of Education Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter,

Shaanxi Province Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Physics,

Xi'an Jiaotong University, Xi'an 710049, China

Materials and Methods

Materials and Chemicals

Ammonium hexachlororhodate ((NH₄)₂RhCl₆), commercial Rh/C, *p*-nitrophenol, and deuterium water (D₂O) were obtained from Alfa Aesar. Tetrapropyl orthosilicate (TPOS), resorcinol, ammonia borane (AB), and formaldehyde were purchased from Shanghai Macklin Biochemical Co., Ltd. Ethanol, NH₃·H₂O (25%), sodium hypophosphite (NaH₂PO₂), sodium borohydride (NaBH₄), sodium hydroxide (NaOH), hydrofluoric (HF), and urea were obtained from Sinopharm Chemical Reagent Co. Ltd. All the reagents are of analytical reagent grade and used without further purification. Deionized H₂O with the resistivity of 18.25 mΩ was used in all experiments.

Synthesis of nitrogen-functionalized Hollow mesoporous carbon (HMC)

Nitrogen-functionalized hollow mesoporous carbon (HMC) was synthesized through a template-free route according to the reported method with a modification (*ACS Nano* **2016**, *10*, 4579). In a typical synthesis, 17.3 mL of TPOS was injected in the mixed solution containing 350 mL of ethanol, 30 mL of H₂O, and 15 mL of NH₃·H₂O (25%). After stirring for 15 min, 2 g of resorcinol, 200 mg of urea, and 2.8 mL of formaldehyde were added. After stirring for another 24 h, the powder was collected by centrifugation and further washed with water/ethanol for several times. The samples were then carbonized at 700 °C for 5 h under N₂ and washed with HF to remove silica. The HMCs were finally dried at 50 °C before use.

Synthesis of Rh@HMC and Rh₂P@HMC

In a typical synthesis of Rh@HMC, 0.30 g of as-made HMC was slowly dipped in 4.0 mL of 10.0 mM (NH₄)₂RhCl₆ and further stirred for 12 h. After that, the powder was washed several times with water/ethanol and dried at 50 °C overnight. Then, obtained powder was moved into a tube furnace and calcined at 700 °C for 5 h under a H₂/N₂ atmosphere (5:95). After be washed with HF to remove silica, Rh@HMC was accordingly obtained by drying at 50 °C for 12 h. By contrast, Rh₂P@HMC was synthesized by direct solid-phase phosphation of Rh@HMC with NaH₂PO₂. Typically, 0.30 g of Rh@HMC was physically mixed with 0.60 g of NaH₂PO₂ and further calcined in a tube furnace under 350 °C for 3 h under a H₂/N₂ atmosphere (5:95). After be washed with a H₂/N₂ atmosphere (5:95).

Electrocatalytic hydrogen evolution reaction (HER)

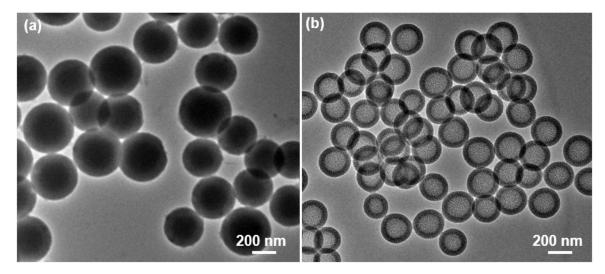
Electrocatalytic studies were carried out on a CHI 660E electrochemical analyser at 25 °C according to our previous works (*Inorg. Chem.* **2021**, *60*, 4380; *Appl. Catal. B Environ.* **2018**, *238*, 525). Typically, a nanocatalyst

S2

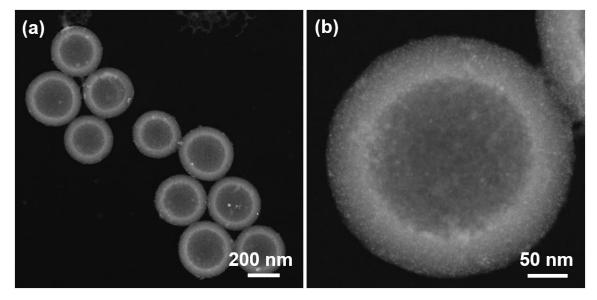
ink was prepared by adding 5.0 mg of nanocatalysts to 1.0 mL of ethanol/DI H₂O (8:2 by volume). After sonicating for > 30 min, 50 µL of Nafion solution was mixed and further sonicated for an additional 30 min. Then, 6.0 µL of the ink solution (~6.0 µg of the catalyst) was casted on GCE and dried at 40 °C before test. Linear sweep voltammetry (LSV) curves were obtained at 0.5 M H₂SO₄ with a scan rate of 5 mV s⁻¹, while cyclic voltammetry (CV) curves were collected at 0.5 M H₂SO₄ with a scan rate of 50 mV s⁻¹. All results were obtained by IR compensation and all reported potentials in this work were referenced to the reversible hydrogen electrode (RHE).

Catalytic dehydrogenation of AB

Catalytic dehydrogenation of AB was carried out at ambient conditions (298 K) according to our previous works (*J. Phys. Chem. Lett.* **2019**, *10*, 7374; *J. Phys. Chem. Lett.* **2021**, *12*, 696). Typically, 10.0 mg of catalyst was first dispersed in 3.0 mL of H_2O and further sonicated for 10 min. Then, dehydrogenation reaction of AB was started rapidly when injected 4.0 mL of 5.0 mg mL⁻¹ AB into above solution at 298 K. The volume of the generated H_2 was monitored by recording the displacement of water in the gas burette.


Tandem reaction coupled AB dehydrogenation and *p*-nitrophenol hydrogenation

Typically, 1.0 mL of 0.10 mM *p*-nitrophenol and 1.0 mL of 30 mM AB were successively mixed in a quartz cuvette. Then, 0.05 mL of 0.20 mg mL⁻¹ Rh₂P@HMC was injected above solution to start AB dehydrogenation and *p*nitrophenol hydrogenation reactions simultaneously. Hydrogenation kinetics was collected by *in situ* Ultravioletvisible (UV-vis) spectroscopy.


Characterizations

SEM images were collected using a JEOL JSM-7610F field emission scanning electron microscope. TEM and STEM studies were carried out using a field emission transmission electron microscope (JEM-F200, JEOL Ltd., Japan) with an accelerating voltage of 200 kV. PXRD patterns were recorded on powder samples using a D/max 2500 VL/PC diffractometer (Japan) equipped with graphite-monochromatized Cu Kα radiation in 2 ϑ ranging from 30° to 90°. XPS was performed on a scanning X-ray microprobe (Thermo ESCALAB 250Xi) that uses Al Kα radiation. ICP-MS was recorded on a NexION 350D. N₂ adsorption/desorption isotherms were measured at 77 K using an ASAP 2010 M+C analyzer.

S3

Fig. S1 (a) TEM image of as-made nitrogen-functional HMC, indicating it composed of a silica core surrounded by a carbon shell. (b) TEM image of nitrogen-functional HMC, suggesting highly uniform and homogeneously dispersed nanostructure.

Fig. S2 (a) Low-magnification and (b) high-magnification STEM images of Rh@HMC, confirming uniform Rh nanoclusters dispersed within mesoporous channels of HMCs.

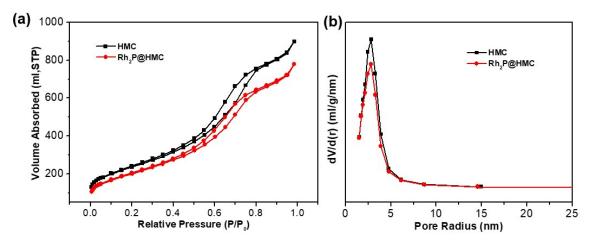
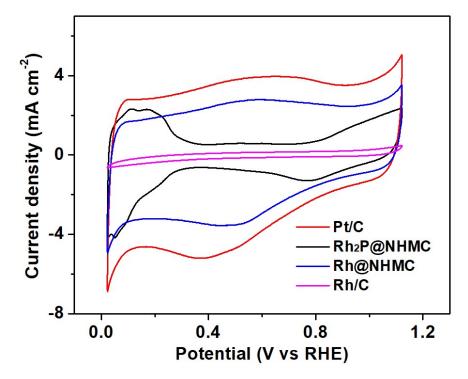



Fig. S3 (a) N_2 adsorption/desorption isotherms and (b) corresponding pore size distributions of HMC and Rh_2PHMC .

Fig. S4 CV curves of Rh₂P@HMC, Rh@HMC, commercial Rh/C and Pt/C, indicating they are electrocatalytically active for HER.

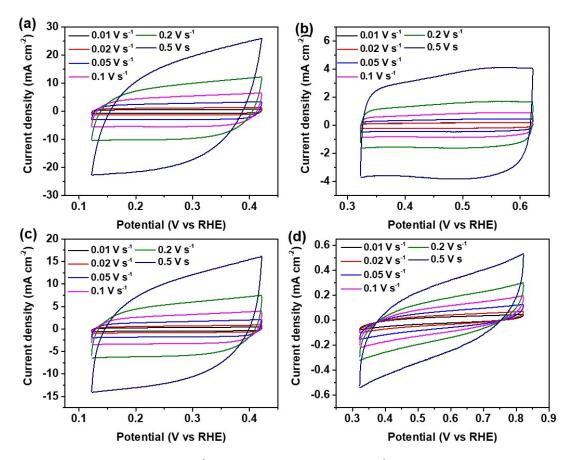
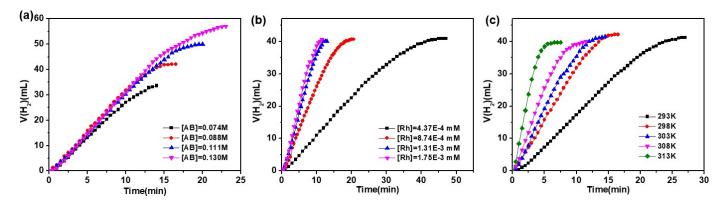



Fig. S5 CV curves of (a) Rh₂P@HMC, (b) Pt/C, (c) Rh@HMC, and (d) Rh/C with different scan rates.

Fig. S6 AB dehydrogenation dependance over Rh/C by (b) AB concentrations, (c) Rh concentrations, and (d) test temperatures.

Table S1. Comparisons of catalytic activities of previously reported nanocatalysts and Rh₂P@HMC in room-temperature AB dehydrogenation.

No.	Catalyst	Temperature (°C)	TOF (mol _{H2} mol ⁻¹ min ⁻¹)	References
1	RuP@NHMC	25	939 1663 (0.4 M NaOH)	This work
2	Rh@ZSM-5-H	25	432	Angew. Chem. Int. Ed. 2019 , 58, 18570
3	Rh/WO _{3-x}	25	535.7	Nanoscale Adv. 2019 , 1, 3941
4	Rh/ATP-C	25	566	Nanoscale Adv. 2020 , 2, 1685
5	Ru/CB	25	429.5	Int. J. Hydrogen Energy 2012 , 37, 17921
6	Ru/graphene	25	325	Int. J. Hydrogen Energy 2015 , 40, 6180
7	Ru/CeO ₂	25	361	Dalton Trans. 2016 , 45, 10969
8	Ru NPs@PCC	25	215	Chem 2018 , 4, 555
9	RuNi/p-g-C₃N₄	30	840.3	ACS Sustainable Chem. Eng. 2020 , 8, 8458
10	Pt25@TiO ₂	25	311	Angew. Chem. Int. Ed. 2016, 55, 12257
11	Ni ₂ Pt@ZIF-8	rt	600	J. Am. Chem. Soc. 2018, 140, 10034
12	Pt ₁ Co ₁ (Dendrimer)	20	606	ACS Catal. 2019 , <i>9</i> , 1110
13	PdCu/NAs215	25	72.9	Int. J. Hydrogen Energy 2019 , 44, 30226