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1. Method 6 

1.1. MD simulation 7 

The fully atomistic (FA) model of the chosen wild-type collagen sequence with triplets of 8 

GPP amino acids at both ends was generated using the Triple-Helical collagen Building 9 

Script (THeBuScr)1(http://structbio.biochem.dal.ca/jrainey/THeBuScr.html). THeBuScr 10 

predicted the three-dimensional structure of the triple-helical collagen molecule with the 11 

primary GXY sequence. The mutated collagens were generated by replacing Gly at the 12 

corresponding sites in the pro-ɑ 1(I) chain (chain A and C) with other residues using the 13 

QwikMD plugin2 in Visual Molecular Dynamics (VMD).3 These mutations are related to 14 

osteogenesis imperfecta (OI2 or OI3) based on UniProtKB - P02452 15 

(https://www.uniprot.org/uniprot/P02452).4 We constructed four mutated collagen models, 16 

including the 1022nd Gly to Val, the 1025th Gly to Arg, the 1049th Gly to Ser, and the double 17 

site mutation at both the 1022nd and 1025th Gly. Together with the wild-type collagen, all five 18 

collagen models were used as input structures for MD simulations in NAMD 2.13.5 In 19 

simulations, we used the latest CHARMM36m forcefield6 with updated parameters for many 20 

amino acids, particularly hydroxyproline and hydroxylysine which are common amino acids 21 

found in large numbers in collagen. The CHARMM potential function7 is: 22 

𝑈𝐶𝐻𝐴𝑅𝑀𝑀 = ∑ 𝐾𝑏(𝑏𝑖𝑗 − 𝑏0)
2

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝐾𝜃(𝜃𝑖𝑗𝑘 − 𝜃0)
2

𝑎𝑛𝑔𝑙𝑒𝑠

23 

+ ∑ 𝐾𝜑[1 + cos(𝑛𝜑𝑖𝑗𝑘𝑙 − 𝛿)]
2

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

+ ∑ 𝐾𝜙(𝜙𝑖𝑗𝑘𝑙 − 𝜙0)
2

𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟

24 

+ ∑ 𝐾𝑈𝐵(𝑈𝑖𝑘 − 𝑈0)2

𝑈𝑟𝑒𝑦−𝐵𝑟𝑎𝑑𝑙𝑒𝑦

25 
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𝑟𝑖𝑗
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where 𝐾𝑏, 𝐾𝜃, 𝐾𝜑, 𝐾𝜙, and 𝐾𝑈𝐵 are the bond, angle, dihedral angle, improper angle and 27 

Urey–Bradley force constants, respectively; 𝑏𝑖𝑗, 𝜃𝑖𝑗𝑘, 𝜑𝑖𝑗𝑘𝑙, 𝜙𝑖𝑗𝑘𝑙, and 𝑈𝑖𝑘 are the bond 28 

length, bond angle, dihedral angle, improper torsion angle, and Urey–Bradley 1,3-distance 29 

respectively; 𝑏0, 𝜃0, 𝜑0, 𝜙0, and 𝑈0 are the equilibrium terms for such variables; 𝑛 is the 30 

periodicity and 𝛿 the phase of a torsion; 𝜀𝑖𝑗 is the well depth of the Lennard-Jones potential; 31 

𝜎𝑖𝑗 is the distance at the LJ minimum; 𝑞 is the partial atomic charge; 𝐷 is the effective 32 

dielectric constant; and 𝑟𝑖𝑗 is the distance between any atoms 𝑖 and 𝑗. 33 

Each collagen structure was explicitly solvated in a TIP3P8 water box and neutralized by Na+ 34 

or Cl- ions. These systems were energy minimized with the conjugate gradient algorithm. 35 

NPT simulations of 1 ns were performed with harmonic constraints to the ɑ-carbon atoms, 36 

followed by 100 ns NPT MD production runs without any constraints. Langevin dynamics9 37 

and Nosé-Hoover Langevin piston10 were used for temperature and pressure control at 310 K 38 

and 1.013 bar, respectively. Rigid bonds were used with the SHAKE algorithm11, allowing a 39 

timestep of 2 fs. The Particle-mesh Ewald (PME) method was used to calculate long-range 40 

electrostatic interactions.12 The potential energy showed that the mutated structure 41 

equilibrated in the first 60 ns simulations (Fig. S1), and thus the last 40 ns simulation with 42 

2,000 conformational ensembles were used for structural and dynamic analysis. 43 

1.2. Stiffness calculations 44 

Axial Stiffness 45 

The axial stiffness can be calculated based on the formula:13,14 46 

1

2
𝑘𝑏𝑇 =

1

2
𝑘𝐿〈(∆𝐿)2〉 47 

Where 𝑇 is the temperature, 𝑘𝑏 is the Boltzmann constant, 𝐿 is the length of the collagen and 48 

𝑘𝐿 is the axial stiffness. ∆𝐿 is the difference between instantaneous length and average length, 49 

and (∆𝐿)2 is the mean square of  ∆𝐿 or equilibrium fluctuations, calculated by the dynamic 50 

trajectories of equilibrium MD simulations. Note that the axial stiffness is sensitive to the 51 

length, which affects the equilibrium fluctuations of collagen. Since collagen is a triple-52 

helical structure containing repeat GXY units, the total collagen length can be calculated by 53 

adding all single GXY units together, as shown in Fig. S3a. Here, we defined the length of a 54 

single GXY unit as the length between the centroid of three ɑ-carbon atoms of Gly in the 55 

current and the next GXY unit. The length of the last GXY unit considered the length 56 

between the centroid of three ɑ-carbon atoms of Gly in this GXY unit and the centroid of 57 



 

three OT2 atoms of Y in this GXY unit. Taking the wild-type collagen as an example, Fig. 58 

S4a shows the fluctuation of its length based on the last 40 ns simulation with 2,000 59 

conformational ensembles or frames, which is related to the axial stiffness according to the 60 

formula above. 61 

Bending Stiffness 62 

The bending stiffness can be calculated based on the formula: 63 

2 ×
1

2
𝑘𝑏𝑇 =

1

2
𝑘𝛿〈(∆𝛿)2〉 64 

Where 𝛿 is the end deflection of the collagen and 𝑘𝛿 is the bending stiffness. The factor 2 in 65 

the left is due to the end deflection fluctuations are in two dimensions. In order to calculate 66 

the fluctuations of end deflection based on the natural fluctuations in equilibrium MD 67 

simulations, we aligned the first GXY unit of the 2,000 conformational ensembles and 68 

projected the coordinates of the centroid of three OT2 atoms of Y in the last GXY unit on to 69 

x-y plane, as shown in Fig. S3b with result of the wild-type collagen in Fig. S4b. By 70 

calculating the average endpoint coordinate of 2,000 frames, we can calculate the (∆𝛿)2 term 71 

based on the mean square of the distance between the instantaneous endpoint coordinate and 72 

the average endpoint coordinate.  73 

Torsional Stiffness 74 

The torsional stiffness can be calculated based on the formula: 75 

1

2
𝑘𝑏𝑇 =

1

2
𝑘𝜃〈(∆𝜃)2〉 76 

Where 𝜃 is the twist angle of a single chain around the central axis and 𝑘𝜃 is the torsional 77 

stiffness. Still, we calculated the total twist angle by adding the twist angle of all single GXY 78 

units together. As shown in Fig. S3c, the twist angle in a single GXY unit was defined as the 79 

included angle between two vectors, starting from the centroid of three ɑ-carbon atoms in the 80 

current and the next GXY unit, with the direction being along the ɑ-carbon atom in Gly of 81 

Chain C of the current and the next GXY unit, respectively. Fig. S4c shows the fluctuations 82 

of the twist angle for the wild-type collagen. 83 

1.3. Moving block bootstrap 84 

Moving block bootstrap15 was used for data analysis to avoid bias in conformational 85 

ensembles in stiffness calculations. Since the fluctuations are time-dependent, moving block 86 



 

bootstrap is suitable for data analysis in this work by creating a sampling window to perform 87 

a bootstrap analysis on a time series. The functions of the moving block bootstrap we used 88 

are in the tsmoothie library (https://github.com/cerlymarco/tsmoothie) in Python. The steps 89 

are as follow and shown in Fig. S5: Assume that there are 𝑛 data. First, we chose two hyper-90 

parameters, window length 𝑤 and block length 𝑏. Then, we randomly selected 𝑛 𝑏⁄  blocks to 91 

recreate a new data set with 𝑛 data. We calculated the stiffness based on the new data set. 92 

Next, repeat selection process 𝑁 times, and calculated 𝑁 times stiffness. Finally, we obtained 93 

the average stiffness with standard deviation based on 𝑁 stiffness. In this work, the data set 94 

contained 2,000 data for 2,000 frames, and we selected 𝑤 to be 10, 𝑏 to be 500, and 𝑁 to be 95 

2,000. Besides, we also tried several different hyper-paramteters with the error being no more 96 

than 5%. The stiffnesses of the collagens are in Table S1.  97 

1.4. Elastic modulus calculations 98 

Since the wild-type collagen triple helix maintains a stable structure resembling that of a 99 

prismatic rod with a circular cross-section (Fig. S6a), the Euler-Bernoulli beam theorem can 100 

be applied to solve for rigidities or elastic moduli. Also, stiffness is sensitive to the structure's 101 

length and hard to compare with previous reported data. Thus, the obtained Young's moduli 102 

in this work can also be compared to previous studies to validate the rationality of the 103 

stiffness calculation methods. The radius of the collagen triple helix is defined as the average 104 

distance of the farthest non-hydrogen atom on each residue in the cross-section to the central 105 

axis (Fig. S6b). Note that the mutated collagens unwound in the mutation sites (Fig. S6c), 106 

which destroyed the orderly structures that allow elastic modulus calculations. 107 

Young's modulus 108 

According to Hooke's law, the stress is proportional to the strain: 109 

𝐹

𝐴
= 𝐸

∆𝐿

𝐿
 110 

where 𝐸 is Young's modulus, 𝐹 is the force along to the rod axis, 𝐴 is the area of cross-111 

section, 𝐿 is the rod length, and ∆𝐿 is the change in length. The stiffness 𝑘𝐿 can also be 112 

written as the ratio of force to displacement: 113 

𝑘𝐿 =
𝐹

∆𝐿
 114 

Therefore, Young's modulus can be calculated by: 115 

https://github.com/cerlymarco/tsmoothie


 

𝐸 =
𝐿

𝐴
𝑘𝐿 116 

Bending rigidity 117 

The end deflection can be derived from the bending of a cantilevered rod: 118 

∆𝛿 =
𝐹𝐿3

3𝐸𝐼
 119 

Where 𝐼 is the cross-sectional moment of inertia. Moreover, the bending stiffness satisfy: 120 

𝑘𝛿 =
𝐹

∆𝛿
 121 

Therefore, bending rigidity can be calculated by: 122 

𝐸𝐼 =
𝑘𝛿𝐿3

3
 123 

Note that we can also calculate Young's modulus based on bending rigidity. In this work, we 124 

used those two methods to calculate Young's modulus to verify self-consistency. 125 

Torsional rigidity and shear modulus 126 

The torsional stiffness is defined as: 127 

𝑘𝜃 =
𝐺𝐽

𝐿
 128 

where 𝐺 is in-plane shear modulus,  𝐽 is the polar moment of inertia, and 𝐺𝐽 is torsional 129 

rigidity. 130 

All the results of the wild-type collagen are shown in Table S2. 131 

 132 

1.5. MSM Construction and Data Analysis 133 

The Markov State Model (MSM) is a stochastic process model used to study molecular 134 

dynamics. Based on the Markov chain, MSM is used to construct a transition matrix and 135 

obtain the stationary distribution. In this work, MSM was implemented by PyEMMA.16 136 

Rather than requiring a single long trajectory, MSM integrates some short, independent 137 

trajectories and extracts dynamics information from them.17 Thus, for each mutation, we 138 

performed 4×100 ns simulations starting at unique initial configurations. The different initial 139 

configurations were obtained via 50 ps heating under 400 K followed by 50 ps annealing 140 



 

under 310 K. Frames were saved every 0.01 ns. The other simulation set-up was the same as 141 

part 1.1. Also, we conducted the same calculation process for those 4 repeated simulations for 142 

each case to calculate the stiffnesses, and the results are consistent with Section S1.2 with an 143 

error of less than 3%. 144 

In terms of the construction of MSM, all trajectories were parameterized by the backbone 145 

dihedral angles, namely φ and ψ, because they uniquely define the conformation of a 146 

polypeptide backbone and are key in the stabilization of the triple-helical structure.18 Time-147 

lagged independent component analysis19 and the k-means method were used to reduce the 148 

feature dimensions and to cluster the samples into microstates. Based on the convergence of 149 

VAMP-2 scores,20 we identified 30 microstates for the wild-type and the 1049th site mutation 150 

collagen and 50 microstates for the others. Then, we employed MSM to verify the 151 

consistency of the 40 ns ensembles used to compute the stiffness and the 400 ns simulations 152 

fed into MSM. As indicated by Fig. S8, the majority of the samples in the 40 ns trajectories 153 

lay in the basins formed by the MSM data, which proved the consistency between the two 154 

data sources. To guarantee the Markovianity, the MSM of double-site mutation collagen used 155 

a lagged time of 1 ns, and the single-site mutation collagens in 1022nd site or 1025th used a 156 

lagged time of 2 ns, and the model of wild-type collagen and the 1049th site mutation 157 

collagen used a larger lagged time of 8 ns, the values of which were comparable with the 158 

previous work.21 The transition probability network was given by Bayesian estimation. 159 

According to Bayes' theorem, the posterior probability has the following property:  160 

𝑃(𝑋|𝐶) ∝  𝑃(𝑋)𝑃(𝐶|𝑋), 161 

where 𝐶 = (𝑐𝑖𝑗) is the observed effective count matrix.22 Instead of focusing on the transition 162 

probability matrix 𝑃 = (𝑝𝑖𝑗), the Bayesian reversible MSM works on a modified matrix 𝑋 =163 

(𝑥𝑖𝑗), which is correlated to 𝑃 via the stationary distribution 𝜋 as follows: 164 

𝑥𝑖𝑗 = 𝜋𝑖𝑝𝑖𝑗 , 165 

 so that matrix 𝑋 obeys detailed balance.22 The prior probability has a form of: 166 

𝑃(𝑋) ∝ ∏ 𝑥
𝑖𝑗

𝑏𝑖𝑗

𝑖≥𝑗

, 167 

where 𝑏𝑖𝑗 is the prior count.22 Therefore, the posterior can be expressed as:22 168 

𝑃(𝑋|𝐶) ∝ ∏ 𝑥
𝑖𝑗

𝑏𝑖𝑗

𝑖≥𝑗

∏ (
𝑥𝑖𝑗

∑ 𝑥𝑖𝑘𝑘
)

𝑐𝑖𝑗

𝑖,𝑗

. 169 



 

After the construction of MSM, as denoted by the red dots in Fig. S8, we drew the first seven 170 

highest-probability microstates from the stationary distribution for the analysis of β structures 171 

and hydrogen bonds. Then, 100 frames for each microstate were randomly extracted to count 172 

the extensiveness of the β structures and hydrogen bonds so that we can calculate the mean 173 

and the standard deviation among the seven microstates, as shown in Fig. 2b and c. The 174 

significant differences provided in Fig. 2b were obtained by the two independent samples t-175 

test. The test statistics is written as: 176 

𝑡 =
�̅� − �̅�

√𝑠𝑥
2

𝑛 +
𝑠𝑦

2

𝑚

, 177 

where the numerator is the difference between the sample means. The symbols 𝑠𝑥 (𝑠𝑦) and 178 

𝑛 (𝑚) are the standard deviation and the corresponding sample size, respectively. Of note is 179 

that the variances were not homogeneous except in the case of 1022nd site mutation. Thus, the 180 

DOF of the 1022nd site mutation data was 𝑛 + 𝑚 − 2, while the DOF of the others were 181 

approximated by Welch–Satterthwaite equation: 182 

𝑣 =

(
𝑠𝑥

2

𝑛 +
𝑠𝑦

2

𝑚)

2

(
𝑠𝑥

2

𝑛2(𝑛 − 1)
+

𝑠𝑦
2

𝑚2(𝑚 − 1)
)

. 183 

 184 

1.6. Normal mode analysis with the elastic network model 185 

Normal mode analysis (NMA) can describe the flexible states accessible to a protein around 186 

an equilibrium position, based on the physics of small oscillations.23,24 When protein is near 187 

the equilibrium state 𝑞0, the potential energy then can be expanded as a power series in 𝑞: 188 

𝑉(𝑞) = 𝑉(𝑞0) + ∑ (
𝜕𝑉

𝜕𝑞𝑖
)

0

(𝑞𝑖 − 𝑞𝑖
0)

𝑖

+
1

2
∑ (

𝜕2𝑉

𝜕𝑞𝑖𝜕𝑞𝑗
)

0

(𝑞𝑖 − 𝑞𝑖
0)(𝑞𝑗 − 𝑞𝑗

0)

𝑖,𝑗

+ ⋯ 189 

The first term is the potential energy at a minimum, which can be set to zero. The second 190 

term is identically zero at any local minimum of the potential. Thus, the potential energy can 191 

be written as: 192 

𝑉(𝑞) =
1

2
∑ (

𝜕2𝑉

𝜕𝑞𝑖𝜕𝑞𝑗
)

0

(𝑞𝑖 − 𝑞𝑖
0)(𝑞𝑗 − 𝑞𝑗

0)

𝑖,𝑗

=
1

2
∆𝑞𝑇𝐇∆𝑞 193 

https://en.wikipedia.org/wiki/Welch%E2%80%93Satterthwaite_equation


 

where 𝐇 is the Hessian matrix. The eigenvectors of the Hessian matrix are normal mode 194 

vectors and are defined as the normal modes of the molecule. The eigenvalues of the Hessian 195 

matrix give a squared frequency of vibration, 𝜆𝑘 = 𝜔𝑘
2. Since the energy is equally 196 

distributed among the modes, we can use 𝐴 =
1

√𝜆𝑘
 to reflect relative amplitude in the different 197 

modes, and lower-frequency modes exhibit larger oscillation amplitudes, dominant in the 198 

accessible vibrationswithin the molecule. 199 

Although NMA is less computationally expensive than MD simulation, proteins containing 𝑁 200 

atoms still need to solve a Hessian matrix of 3𝑁 × 3𝑁 in size. Therefore, the elastic network 201 

model (ENM) is widely used to simplify the protein as a network of masses coupled with 202 

harmonic potentials.23,24 In this work, we built the anisotropic network model (ANM) of ENM 203 

for all collagen models obtained by MSMs in ProDy 2.0,25 where every node corresponded to 204 

ɑ-carbon atoms and edges were modelled by springs.26 In this model, we only need to consider 205 

the second partial derivative of the potential function or the Hessian matrix that is the potential 206 

for each pair ɑ-carbons26 and then solve for vibrational direction and the relative amplitude in 207 

the different modes based on  208 

𝐇 = 𝑈Λ𝑈𝑇 209 

The column of the matrix U is an eigenvector that describes the vibrational direction,  and the 210 

eigenvalues of the Hessian matrix is the diagonal of Λ  that give a squared frequency of 211 

vibration, 𝜆𝑘 = 𝜔𝑘
2 . We can then use 𝐴 =

1

√𝜆𝑘
 to reflect relative amplitude in the different 212 

modes. The vibrational direction and amplitude for each ɑ-carbons can be obtained based on 213 

the superposition principle for each pair of ɑ-carbons. The representative dynamics were 214 

obtained as a linear combination of the first 20 lowest frequency modes, scaled by mode 215 

amplitude. The cutoff distance of interactions was 15 Å, and the spring constant was 1. Higher 216 

frequency modes were neglected with minimal effects on dynamics. 217 

1.7 Molecular dynamics data analysis tools 218 

The RMSFs of all collagen models were calculated based on the 2,000 conformation 219 

ensembles via MDAnalysis tools.27 The secondary structures were determined using the 220 

STRIDE algorithm28 in VMD. The criteria of hydrogen bonds were set to be within 0.35 nm 221 

between a hydrogen atom and a hydrogen bond acceptor, and less than 35° of the bonding 222 

angle. All molecules were visualized using VMD and in-house TCL scripts. 223 

  224 
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 275 

Fig. S1. The potential energy vs simulation time for collagen models. The last 40 ns were 276 

used for analysis. 277 
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 279 

Fig. S2. The sequence of the wild-type collagen with OI-related Gly substitution mutation 280 

sites (red). 281 

 282 
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 284 

Fig. S3. Scheme of calculating instantaneous collagen a) length, b) end deflection, and c) 285 

twist angle. 286 
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 288 

Fig. S4. Fluctuations of the a) length, b) endpoint coordinates and c) twist angle for the wild-289 

type collagen. 290 

 291 

 292 

 293 
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 295 

Fig. S5. Scheme of moving block bootstrap method to avoid bias in conformational 296 

ensembles in stiffness calculations. 297 

 298 

 299 

 300 
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 302 

Fig. S6. a) The wild-type collagen maintained a stable structure after MD simulations. b) The 303 

equivalent radius of the wild-type collagen triple helix, considered as a circular cross-section. 304 

c)  The mutated collagens unwound and led to a larger radius of backbone in the mutation 305 

sites. 306 
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 308 

Fig. S7. Root-mean-square fluctuation (RMSF) of ɑ-carbon in collagen models. 309 

 310 
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 312 

Fig. S8. Verification of the consistency between the MSM data and the 40 ns ensembles. The 313 

ensembles were plotted as red dots. The x-axis and y-axis correspond to the first and the 314 

second independent components obtained from TICA, respectively. 315 

 316 

 317 

  318 



 

 319 

Fig. S9. Stationary probabilities of all microstates. The selected states were marked as red 320 

dots. 321 

 322 
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 324 

Fig. S10. The frequency of occurrence, based on 2,000 conformational ensembles, of Gly H-325 

bonds in the mutated GXY unit and the GXY units before and after the mutated GXY unit, 326 

together with the increased H-bonds due to mutations. a) Wild-type collagen; b) 1022nd G to 327 

V; c) 1025th G to R; d) 1049th G to S; e) 1022nd G to V & 1025th G to R. 328 
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 330 

Fig. S11. Schematic diagram of increased H-bonds due to the mutations. Carbon is cyan, 331 

oxygen is red, nitrogen is blue, and hydrogen is white. a) Wild-type collagen; b) 1022nd G to 332 

V; c) 1025th G to R; d) 1049th G to S; e) 1022nd G to V & 1025th G to R. 333 
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Table S1. Stiffness of the wild-type collagen and several OI-related mutated collagens. 335 

Cases Length Å Axial stiffness pN/nm Bending stiffness pN/nm Torsional stiffness pN·nm 

Wild-type collagen 173.418 504.098 ± 12.726 0.528 ± 0.015 7.812 ± 0.084 

1022nd Gly to Val 

174.163 

(0.430%) 

625.089 ± 33.042 

(24.001%) 

0.538 ± 0.018 

(1.894%) 

9.356 ± 0.333 

(19.76%) 

1025th Gly to Arg 

173.266 

(-0.876%) 

399.710 ± 7.152 

(-20.708%) 

0.388 ± 0.009 

(-26.515%) 

5.774 ± 0.135 

(-26.089%) 

1049th Gly to Ser 

174.173 

(0.435%) 

473.541 ± 20.619 

(-6.062%) 

0.565 ± 0.012 

(7.008%) 

6.635 ± 0.078 

(-15.067%) 

1022nd and 1025th 

174.019 

(0.347%) 

535.427 ± 18.195 

(6.215%) 

0.446 ± 0.009 

(-15.530%) 

9.398 ± 0.297 

(20.302%) 
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Table S2. Rigidity and elastic modulus of the wild-type collagen. 337 

Cases 
Radius        

Å 

Young's Modulus I 

Gpa 

Bending rigidity EI 

pN·nm2 

Young's Modulus II 

Gpa 

Torsional rigidity 

pN·nm2 

Shear modulus 

Mpa 

Wild-type collagen 6.437 6.716 ± 0.171 917.647 ± 25.875 6.805 ± 0.192 135.471 ± 1.476 502.318 ± 5.481 

 338 


