Electronic Supplementary Information

Asymmetric Hydrogenation of 1,4-Diketones: Facile Synthesis of Enantiopure 1,4-Diarylbutane-1,4-diols
Jingyuan Song, ${ }^{\text {ac }}$ Pan-Lin Shao, *bc Jiang Wang, ${ }^{\text {c }}$ Fanping Huang ${ }^{c}$ and Xumu Zhang* ${ }^{\text {cd }}$ shaopl@sustech.edu.cn., zhangxm@sustech.edu.cn.
${ }^{a}$ School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China.
${ }^{b}$ College of Innovation and Entrepreneurship, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China.
${ }^{\text {c }}$ Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China.
${ }^{d}$ Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong, 518118, China.

Content

\qquad. General Information .2
2. General procedure for synthesis of 1,4-diketones 3
3. General procedure for asymmetric hydrogenation of 1,4-diketones 9
4. General procedure for asymmetric hydrogenation of benzil. 26
5. General procedure for synthesis of 1,5-diketones 28
6. General procedure for asymmetric hydrogenation of 1,5-diketones 29
7. Mechanistic investigation 32
8. Synthesis of $(2 R, 5 R)$-1-benzyl-2,5-diphenylpyrrolidine 34
9. NMR Spectra 36

1. General Information

Unless otherwise mentioned, all experiments and manipulations which are sensitive to moisture or air were carried out under an atmosphere of argon in a glovebox or using standard Schlenk techniques. Solvents were dried with standard procedures and degassed with N_{2}. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 200-300 mesh). NMR spectra were recorded on a Bruker DPX 400 spectrometer at 400 MHz for ${ }^{1} \mathrm{H}$ NMR, 101 MHz for ${ }^{13} \mathrm{C}$ NMR in CDCl_{3} with tetramethylsilane (TMS) as internal standard. Date are reported as: multiplicity(s = singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet) and chemical shifts are reported in ppm and coupling constants are given in Hz . Chemical shifts were reported relative to TMS (0.00 ppm) or $\mathrm{CHCl}_{3}(7.26 \mathrm{ppm})$ for ${ }^{1} \mathrm{H}$ NMR and relative to CDCl_{3} (77.0 ppm) for ${ }^{13} \mathrm{C}$ NMR. Optical rotations $[\alpha]_{\mathrm{D}}$ were determined using a PERKIN ELMER polarimeter 343 instrument. HPLC analyses were performed using Daicel chiral column on an Agilent 1260 Series HPLC instrument.

2. General procedure for synthesis of $\mathbf{1 , 4}$-diketones

$\mathbf{5 a}, \mathbf{5 r}, \mathbf{5 s}$ were commercially available and used without further purification unless otherwise stated. Other substrates were prepared as described in literature. ${ }^{[1]}$ DBU (0.4 equiv) was added to the stirred solution of benzaldehyde (1.5 equiv) and thiazolium salt (0.2 equiv) in THF. The resulting reaction mixture was stirred in room temperature for 10-15 minutes. After that 3-benzoylacrylic acid (1.0 equiv) was added at $60^{\circ} \mathrm{C}$ for overnight and monitored by TLC. After completion of the reaction, reaction system was cooled to room temperature and washed with saturated solution of sodium bicarbonate and extracted with ethyl acetate, organic layer was dried over sodium sulphate and concentrated under reduced pressure. The obtained residue was purified by flash chromatography on silica gel.

1-(2-fluorophenyl)-4-phenylbutane-1,4-dione (5b)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.91(\mathrm{td}, J=7.6,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.61-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{td}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=11.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.46$ (d, $J=1.9 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.52, 197.03, 196.99, 163.43, $160.89,136.79,134.66,134.57,133.14,130.73,130.70,128.61,128.14,125.42$, 125.01, 124.47, 124.43, 116.84, 116.61, 37.46, 37.38, 32.60, 32.58 .
[1] A. R. S. Verma, M. Mishra, C. B. Pandey, S. Kumar and B. Tiwari. J. Org. Chem., 2020, 85, 8166-8175.

1-(2-bromophenyl)-4-phenylbutane-1,4-dione (5c)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04(\mathrm{dd}, J=8.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{dd}, J=18.3,7.6$ $\mathrm{Hz}, 3 \mathrm{H}), 7.49(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{td}, J=7.7,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.50(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.69,198.25,141.57,136.59,133.65,133.27,131.63,128.93,128.65,128.12$, 127.52, 118.60, 36.56, 33.00.

1-(4-chlorophenyl)-4-(2-fluorophenyl)butane-1,4-dione (5d)

${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{td}, J=7.6,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.57-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.12(\mathrm{~m}, 2 \mathrm{H}), 3.49-3.38(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.34,163.46,139.57,135.14,134.75,134.66,130.72$, $130.69,129.56,128.93,125.40,124.49,124.46,116.86,116.62,37.44,37.36,32.53$, 32.51.

1-(2-bromophenyl)-4-(4-chlorophenyl)butane-1,4-dione (5e)

5e
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.69-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{dd}$, $J=23.0,7.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.31(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.32(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.52$, 197.07, 141.41, 139.72, 134.92, 133.69, 131.70, 129.54, 128.98, 128.90, 127.52, 118.63, 36.49, 32.92.

1-(3-fluorophenyl)-4-phenylbutane-1,4-dione (5f)

$5 f$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71$ (dd, $J=9.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.24(\mathrm{~m}$, $1 \mathrm{H}), 3.45$ (dd, $J=12.1,5.6 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.44, 197.50, 197.48, 164.12, 161.66, 138.91, 138.85, 136.67, 133.26, 130.35, 130.27, 128.65, 128.14, 123.94, 123.91, 120.28, 120.07, 114.99, 114.77, 32.71, 32.54.

1-(4-chlorophenyl)-4-(3-fluorophenyl)butane-1,4-dione (5g)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{dt}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.70 (dd, $J=9.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.46 (d, $J=8.6 \mathrm{~Hz}, 3 \mathrm{H}$), 7.30 (ddd, $J=8.3,2.7,0.9 \mathrm{~Hz}$, 1H), 3.43 (s, 4H). ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.33, 197.26, 164.13, 161.66, $139.72,138.79,138.73,135.00,130.38$, 130.30, 129.56, 128.98, 123.92, 123.89, 120.38, 120.16, 115.00, 114.78, 32.67, 32.47.

1-phenyl-4-(p-tolyl)butane-1,4-dione (5h)

5h
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{~s}, 4 \mathrm{H}), 2.42(\mathrm{~s}$, 3H). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.84, 198.35, 143.96, 136.83, 134.32, 133.15, 129.30, 128.61, 128.26, 128.15, 32.64, 32.50, 21.68.

1-(4-fluorophenyl)-4-phenylbutane-1,4-dione (5i)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11-8.00(\mathrm{~m}, 4 \mathrm{H}), 7.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-$ $7.44(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{ddd}, J=10.0,4.4,0.9 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) δ 198.61, 197.13, 167.09, 164.56, 136.71, 133.23, 130.82, 130.73, $128.64,128.14,115.82,115.60,32.59,32.46$.

1-(4-chlorophenyl)-4-phenylbutane-1,4-dione (5j)

5j
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01(\mathrm{dd}, J=20.7,7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.59(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.48(\mathrm{dd}, J=14.2,8.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.50-3.40(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.52, 197.52, 139.61, 136.68, 135.13, 133.25, 129.56, 128.94, 128.64, 128.13, 32.56, 32.52.

1,4-di-p-tolylbutane-1,4-dione (5k)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.42$ (s, 4H), 2.41 (s, 6H). ${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl $_{3}$) δ 198.45, 143.90, 134.37, 129.28, 128.26, 32.54, 21.67.

1-(4-chlorophenyl)-4-(p-tolyl)butane-1,4-dione (5l)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{dd}, J=19.9,8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.45(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.27(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.47-3.38(\mathrm{~m}, 4 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 198.15,197.65,144.05,139.57,135.18,134.22,129.57,129.32,128.93,128.25$, 32.56, 32.46, 21.68.

1-(4-chlorophenyl)-4-(4-fluorophenyl)butane-1,4-dione (5m)

5m
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{dd}, J=8.9,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.46(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 197.43,196.94,172.11,167.13,164.60,139.68,135.04,133.15,130.82$, 130.73, 129.56, 128.97, 115.86, 115.64, 32.51, 32.43.

1,4-bis(4-chlorophenyl)butane-1,4-dione (5n)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00-7.95(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 4 \mathrm{H}), 3.42(\mathrm{~s}, 4 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.34,139.71,135.01,129.56,128.98,32.49$.

1-(2,5-difluorophenyl)-4-phenylbutane-1,4-dione (50)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.64-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.48$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.11(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.29, 136.67, 133.22, 128.63, 128.13, 121.47, 121.37, 121.22, 121.13, 118.32, $118.13,118.05,116.71,116.50,37.32,37.24,32.58,32.56$.

1-(5-fluoro-2-methylphenyl)-4-phenylbutane-1,4-dione (5p)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ - 7.44 (m, 3H), 7.22 (dd, $J=8.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{td}, J=8.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-$ 3.43 (m, 2H), $3.34-3.27(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.63$, 201.60, 198.39, 161.84, 159.41, 139.14, 139.08, 136.65, 133.53, 133.49, 133.30, 133.24, 133.22, 128.64, 128.11, 118.20, 117.99, 115.37, 115.15, 35.27, 32.83, 20.39.

1-(4-chlorophenyl)-4-(2,5-difluorophenyl)butane-1,4-dione (5q)

5 a
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{ddd}, J=8.6,5.4,3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.11(\mathrm{~m}, 2 \mathrm{H}), 3.42(\mathrm{dd}, J=5.2,3.4 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) δ 197.11, 195.60, 195.56, 139.67, 135.01, 129.54, 128.96, $121.58,121.48,121.33,121.24,118.43,118.35,118.16,118.08,116.72,116.69$, 116.47, 116.44, 37.29, 37.21, 32.50, 32.48.

1-(furan-2-yl)-4-phenylbutane-1,4-dione (5t)

$5 t$
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.69-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{dd}, J=3.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{t}, J=$ $6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l} 3\right) \delta 198.39,187.89$, $152.56,146.39,136.64,133.21,128.62,128.12,117.15,112.25,32.28,32.25$.

3. General procedure for asymmetric hydrogenation of $\mathbf{1 , 4}$-diketones

To a 4.0 mL vial was added the catalyst precursor $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}\left(6.72 \mathrm{mg}, 1.0 \times 10^{-2}\right.$ mmol), ligand ($R_{\mathrm{C}}, R_{\mathrm{C}}, S_{\mathrm{FC}}$) $-f$-amphox ($12.2 \mathrm{mg}, 2.2 \times 10^{-2} \mathrm{mmol}$) and anhydrous toluene $(2.0 \mathrm{~mL})$ in the argon-filled glovebox. The mixture was stirred for 2 h at $25^{\circ} \mathrm{C}$ giving orange red solution. And then 0.1 mmol of 1,4-diketones, $\mathrm{KOH}(0.56 \mathrm{mg}, 0.01 \mathrm{mmol})$ were added into a 5 mL hydrogenation vessel. 1.0 mL anhydrous MTBE was added as solvent and a solution of $\mathrm{Ir} /\left(R_{\mathrm{C}}, R_{\mathrm{C}}, S_{\mathrm{FC}}\right)-f$-amphox in anhydrous toluene $(10 \mu \mathrm{~L})$ was added via an injection port. Then the vessel was placed in an autoclave, closed it and moved it out from golvebox. The autoclave quickly purged with hydrogen gas for three times, then pressurized to $40 \mathrm{~atm} \mathrm{H}_{2}$. The reaction solution was stirred at room temperature ($25^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}$) until for 12 h , then released pressure carefully. The solution of reaction mixture was purified by flash chromatography on silica gel with ethyl acetate and the solvent was removed under reduced pressure. The ee value was determined by chiral HPLC analysis of the hydrogenation product chiral diol directly. The absolute configurations of 1,4-diols were assigned by analogy.

(1S,4S)-1,4-diphenylbutane-1,4-diol (6a)

6a
99% yield, $>100: 1 \mathrm{dr},>99.9 \%$ ee. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.23(\mathrm{~m}, 10 \mathrm{H})$, $4.85-4.52(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{~s}, 2 \mathrm{H}), 1.98-1.76(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 144.64, 128.47, 127.53, 125.84, 74.61, 35.92.

Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-62.0\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC on Chiral OJ-H column, $210 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n -hexane: $\mathrm{i}-\mathrm{PrOH}=90: 10$; flow $1.0 \mathrm{~mL} / \mathrm{min}$; $\mathrm{t}_{\mathrm{R}}($ major $)=33.68 \mathrm{~min}$.

(1S,4S)-1-(2-fluorophenyl)-4-phenylbutane-1,4-diol (6b)

99% yield, $33: 1 \mathrm{dr},>99.9 \%$ ee. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{td}, J=7.5,1.9 \mathrm{~Hz}$, 1H), 7.33 (d, $J=3.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.28-7.19$ (m, 2H), 7.13 (t, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.95$ $(\mathrm{m}, 1 \mathrm{H}), 5.02(\mathrm{dd}, J=7.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{dd}, J=7.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~s}, 2 \mathrm{H})$, 1.97 - $1.82(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.89,158.45,144.52,131.67$, $131.53,128.79,128.71,128.50,127.58,127.27,127.22,125.82,124.29,124.25$, $115.35,115.14,74.61,68.33,68.31,35.73,34.85$.

Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-25.1\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC on Chiral AD-3 column, $210 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n -hexane: $\mathrm{i}-\mathrm{PrOH}=$ 90:10; flow $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}($ major $)=17.04 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=19.75 \mathrm{~min}, 20.92 \mathrm{~min}$.

Signal 1: DAD1 C, Sig=210,4 Ref=360,100							Signal 1: DAD1 C, Sig=210,4 $\mathrm{Ref}=360,100$						
Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%	Peak \#	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	17.028	BB	0.4758	6887.20654	207.22250	26.4658	1	17.040		0.5113	3.49621 e 4	991.82367	97.0627
2	19.673	BV	0.5220	5864.97705	162.92426	22.5376		19.746	BB	0.3912	344.38980	12.20428	0.9561
3	20.826	VB	0.5807	6415.82471	157.01456	24.6544	3	20.916		0.4774	713.63147	20.33602	1.9812
4	22.970	BB	0.6231	6855.07031	155.87086	26.3423							

(1S,4S)-1-(2-bromophenyl)-4-phenylbutane-1,4-diol (6c)

99% yield, $>100: 1 \mathrm{dr},>99.9 \%$ ee. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56$ (dd, $J=7.8,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.11(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.08(\mathrm{dd}, J=8.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{dd}, J=8.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 2 \mathrm{H}), 2.02-$ $1.77(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.53,143.60,132.64,128.75,128.51$, 127.72, 127.61, 127.29, 125.84, 121.90, 74.71, 73.13, 35.94, 34.58.

Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-39.5\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC on Chiral AD-3 column, $210 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n -hexane: $\mathrm{i}-\mathrm{PrOH}=$ 90:10; flow $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}($ major $)=15.54 \mathrm{~min}$.

Signal 1: DAD1 C, Sig=210,4 Ref $=360,100$	
Peak RetTime Type Width Area Height Area $\#$ $[\mathrm{~min}]$ $[\mathrm{min}]$ $[\mathrm{mAU*}]$ $[\mathrm{mAU}]$ $\%$	Signal 1: DAD1 C, Sig=210,4 $\operatorname{Ref}=360,100$ Peak RetTime Type Width Area Height Area
$\begin{array}{lllllllllll}1 & 15.579 & \text { BB } & 0.3353 & 9307.54590 & 413.14755 & 24.7454\end{array}$	[min] [mAU*s] [mAU]
2 17.767 BV $\begin{array}{llllll} \\ 3\end{array}$	$1 \begin{array}{llllllllllll} \\ 1 & 15.535 & \text { BB } & 0.3300 & 2350.27490 & 101.36878 & 100.0000\end{array}$
$3 \quad 18.285 \mathrm{VB} \quad 0.38719951 .56055 \quad 369.65997 \quad 26.4576$	
$4 \quad 20.545$ BB $0.48731 .09125 \mathrm{e} 4 \quad 318.07721 \quad 29.0125$	

99% yield, $>100: 1 \mathrm{dr}, 99.8 \%$ ee. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{td}, J=7.6,1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.33-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.14(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.97(\mathrm{~m}, 1 \mathrm{H}), 5.02$ $(\mathrm{dd}, J=7.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.75-4.61(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 2 \mathrm{H}), 1.95-1.79(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.29,160.83,158.40,143.03,133.12,131.50,131.37$, 128.91, 128.83, 128.58, 127.19, 124.32, 124.29, 115.40, 115.18, 73.83, 68.29, 68.26, 35.84, 34.63.

Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-37.8\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC on Chiral OJ-H column, $210 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n -hexane: $\mathrm{i}-\mathrm{PrOH}=85: 15$;
flow $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}($ major $)=15.16 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=14.05 \mathrm{~min}, 16.71 \mathrm{~min}$.

(1S,4S)-1-(2-bromophenyl)-4-(4-chlorophenyl)butane-1,4-diol (6e)

99% yield, $>100: 1 \mathrm{dr},>99.9 \%$ ee. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53$ (ddd, $J=15.7$, $7.9,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{q}, J=8.6 \mathrm{~Hz}, 5 \mathrm{H}), 7.13(\mathrm{td}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dd}, J=$
8.7, $2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.68 (dd, $J=7.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 2 \mathrm{H}), 1.96-1.71(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.42,143.01,133.10,132.66,128.83,128.57,127.74$, 127.21, 127.18, 121.82, 73.90, 73.08, 36.14, 34.45.

Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-55.1\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC on Chiral AD-3 column, $210 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n -hexane: $\mathrm{i}-\mathrm{PrOH}=$ 90:10; flow $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}($ major $)=15.62 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=16.67 \mathrm{~min}$.

(1S,4S)-1-(3-fluorophenyl)-4-phenylbutane-1,4-diol (6f)

99% yield, $>100: 1 \mathrm{dr},>99.9 \%$ ee. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32(\mathrm{~d}, J=18.3 \mathrm{~Hz}$, $4 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.90(\mathrm{~m}, 1 \mathrm{H}), 4.70-4.65(\mathrm{~m}$, 2H), $3.25(\mathrm{~s}, 1 \mathrm{H}), 2.92(\mathrm{~s}, 1 \mathrm{H}), 1.92-1.78(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $163.77,162.14,147.45,147.41,144.47,129.93,129.87,128.52,127.63,125.79$, $121.40,121.38,114.29,114.15,112.80,112.66,74.59,73.88,73.86,36.00,35.70$.

Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-27.6\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC on Chiral AD-3 column, $210 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n -hexane: $\mathrm{i}-\mathrm{PrOH}=$ 90:10; flow $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}($ major $)=9.39 \mathrm{~min}$.

(1S,4S)-1-(4-chlorophenyl)-4-(3-fluorophenyl)butane-1,4-diol (6g)

6 g
99% yield, $>100: 1 \mathrm{dr},>99.9 \%$ ee. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.26(\mathrm{~m}, 3 \mathrm{H})$, $7.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{td}, J=9.0,8.4,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.63 (s, 2H), 3.33 (d, $J=12.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.87 - 1.77 (m, 4H). ${ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 164.18,161.73,147.28,147.21,142.97,133.16,130.01,129.93,128.60$, 127.16, 121.34, 121.32, 114.44, 114.23, 112.78, 112.56, 73.85, 73.82, 35.85.

Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-33.2\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC on Chiral AD-3 column, $210 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n -hexane: $\mathrm{i}-\mathrm{PrOH}=$ 90:10; flow $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}$ (major) $=15.07 \mathrm{~min}$.

(1S,4S)-1-phenyl-4-(p-tolyl)butane-1,4-diol (6h)

6h
99% yield, $19: 1 \mathrm{dr},>99.9 \%$ ee. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.24(\mathrm{~m}, 5 \mathrm{H})$, $7.21(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.66(\mathrm{ddd}, J=11.7,7.7,4.3 \mathrm{~Hz}, 2 \mathrm{H})$, 2.87 (d, $J=43.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.34 ($\mathrm{s}, 3 \mathrm{H}$), $1.93-1.75$ (m, 4H). ${ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 144.71,141.68,137.18,129.14,128.44,127.47,125.86,125.80,74.60,74.47$, 36.00, 35.85, 21.12.

Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-35.1\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC on Chiral IC column, $210 \mathrm{~nm}, 25^{\circ} \mathrm{C}$, n -hexane: $\mathrm{i}-\mathrm{PrOH}=88: 12$;
flow $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}($ major $)=14.40 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=13.83 \mathrm{~min}, 15.62 \mathrm{~min}$.

(1S,4S)-1-(4-fluorophenyl)-4-phenylbutane-1,4-diol (6i)

$6 i$
99% yield, $>100: 1 \mathrm{dr}, 98.5 \%$ ee. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.26(\mathrm{~m}, 7 \mathrm{H})$, $7.01(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.75-4.65(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{~s}, 2 \mathrm{H}), 1.95-1.75(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.35,160.92,144.53,140.41,140.38,128.53,127.64$, $127.49,127.41,125.79,115.35,115.14,74.65,73.96,36.06,35.78$.

Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-37.4\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC on Chiral IF column, $210 \mathrm{~nm}, 25^{\circ} \mathrm{C}$, n -hexane: i - $\mathrm{PrOH}=88: 12$; flow $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}($ major $)=9.31 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=10.56 \mathrm{~min}, 11.47 \mathrm{~min}, 12.40 \mathrm{~min}$.

(1S,4S)-1-(4-chlorophenyl)-4-phenylbutane-1,4-diol ($\mathbf{6 j}$)

99% yield, $>100: 1 \mathrm{dr}, 99.6 \%$ ee. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(\mathrm{~d}, J=1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 5 \mathrm{H}), 4.62(\mathrm{td}, J=7.6,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{~s}$, 2H), 1.86 - $1.70(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 144.46, 143.14, 133.09, 128.57, 128.54, 127.67, 127.22, 125.77, 74.64, 73.88, 36.02, 35.69.

Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-22.8\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC on Chiral AD-3 column, $220 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n -hexane: $\mathrm{i}-\mathrm{PrOH}=$ 90:10; flow $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}($ major $)=15.98 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=19.00 \mathrm{~min}, 19.36 \mathrm{~min}$, 21.10 min .

	DAD1B. Sig- 220,4 Ref $=360,100$ (S.	AC1-ARE 2020-11-17				(1501	DAD1 B, Sig-220,4 Ref-360,100 (S,	ACHAHR 2020-11-17 \square 10			
Signal 1: DAD1 B, Sig=220,4 Ref=360,100						Signal 1: DAD1 B, Sig=220,4 Ref $=360,100$					
Peak \#	$\begin{aligned} & \text { RetTime Type } \\ & {[\mathrm{min}]} \end{aligned}$	$\begin{aligned} & \text { Width } \\ & {[\text { min }]} \end{aligned}$	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$	$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime Type [min]	$\begin{aligned} & \text { Width } \\ & {[\text { min }]} \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1234	16.041 BB	0.33841 .09353 e 4		482.5119927 .1868				0.32155 .25661 e 4		2201.95215	99.6593
	19.026 BV	0.29626728 .52588		345.55270	16.7281			0.1840	48.54292	3.12830	0.0920
	19.380 VV	0.41971 .14233 e 4		394.65350	28.4001			0.2231	94.09824	4.98872	0.1784
	20.869 VB	0.44401 .11357 e 4		369.09760	27.6850			0.2817	37.05931	1.55134	0.0703

(1S,4S)-1,4-di-p-tolylbutane-1,4-diol (6k)

99% yield, 76:1 dr, >99.9\% ee. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H})$, $7.28(\mathrm{~s}, 4 \mathrm{H}), 3.42(\mathrm{~s}, 4 \mathrm{H}), 2.41(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.45, 143.90, 134.37, 129.28, 128.26, 32.54, 21.67.

Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-49.6\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC on Chiral AD-3 column, $220 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n -hexane: $\mathrm{i}-\mathrm{PrOH}=$ 90:10; flow $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}($ major $)=18.22 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=23.42 \mathrm{~min}$.

Signal 1: DAD1 A, Sig=220,4 $\operatorname{Ref}=360,100$					Signal 1: DAD1 A, Sig=220,4 Ref=360,100						
$\begin{aligned} & \text { Peak RetTime Type } \\ & \# \quad[\mathrm{~min}] \end{aligned}$	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%	Peak \#	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1818.249 BB	0.4777	3228.04712	97.13160	26.3898	1	18.220	BB	0.4844	1.51410 e 4	450.19681	98.7098
2 22.323 BV	0.5166	2769.92554	79.87865	22.6446		23.416		0.5606	197.89963	4.70646	1.2902
$3 \quad 23.403 \mathrm{VB}$	0.6388	6234.21875	139.10869	50.9657							

(1S,4S)-1-(4-chlorophenyl)-4-(p-tolyl)butane-1,4-diol (61)

99% yield, $>100: 1 \mathrm{dr}, 99.6 \%$ ee. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, 2H), $7.28-7.19$ (m, 4H), 7.16 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), 4.66 (dt, $J=7.7,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.23$ (s, 1H), $2.80(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.76(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 143.21, 141.50, 137.33, 133.00, 129.19, 128.52, 127.23, 125.73, 74.47, 73.85, 36.14, 35.69, 21.12.

Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-49.5\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC on Chiral AD-3 column, $210 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n -hexane: $\mathrm{i}-\mathrm{PrOH}=$ 90:10; flow $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}($ major $)=16.31 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=18.96 \mathrm{~min}, 19.42 \mathrm{~min}$.

Signal 1: DAD1 C, Sig=210,4 Ref=360,100	Signal 1: DAD1 C, Sig=210,4 $\operatorname{Ref}=360,100$
Peak RetTime Type Width Area Height Area $\#$ $[\mathrm{~min}]$ $[\mathrm{min}]$ $[\mathrm{mAU} \mathrm{s}]$ $[\mathrm{mAU}]$ $\%$	Peak RetTime Type Width Area Height Area $\#$ $[\mathrm{~min}]$ $[\mathrm{min}]$ $\left[\mathrm{mAU}^{*} \mathrm{~s}\right]$ $[\mathrm{mAU}]$ $\%$
$\begin{array}{lllllllll}1 & 16.248 & \text { BB } & 0.3921 & 7578.68262 & 272.38766 & 27.2225\end{array}$	$\begin{array}{llllllllll}1 & 16.314\end{array}$
218.876 VV R 20.29295177 .21289 248.19695 18.5964	18.958 MM $\begin{array}{lllll}\text { 1 }\end{array}$
$\begin{array}{llllllllllll}3 & 19.376 & \text { VV R } & 0.4783 & 1.50839 \mathrm{e} 4 & 431.55484 & 54.1811\end{array}$	$\begin{array}{llllllll}3 & 19.423\end{array}$ MM $0.3135 \quad 75.00529$ 3.98809 $\quad 0.2609$

(1S,4S)-1-(4-chlorophenyl)-4-(4-fluorophenyl)butane-1,4-diol (6m)

6 m
99% yield, >100:1 dr, 97.4% ee. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $3 \mathrm{H}), 7.23(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.00(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{dd}, J=7.4,3.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.01(\mathrm{~d}, J=40.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.93-1.72(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.39$, $160.95,143.03,140.25,140.21,133.16,128.60,127.43,127.35,127.17,115.41$, 115.19, 73.93, 73.87, 35.96, 35.93.

Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-42.1\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC on Chiral IF column, $210 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n -hexane: $\mathrm{i}-\mathrm{PrOH}=88: 12$;
flow $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}($ major $)=8.87 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=9.47 \mathrm{~min}, 10.39 \mathrm{~min}$.

(1S,4S)-1,4-bis(4-chlorophenyl)butane-1,4-diol (6n)

6n
99% yield, >100:1 dr, >99.9\% ee. ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $4 \mathrm{H}), 7.23(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 4.65(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{~s}, 2 \mathrm{H}), 1.88-1.73$ (m, 4H). ${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.93,132.16,127.58,126.12,72.82,34.83$.

Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-37.8\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC on Chiral AD-3 column, $220 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n -hexane: $\mathrm{i}-\mathrm{PrOH}=$ $90: 10 ;$ flow $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}($ major $)=17.37 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=20.09 \mathrm{~min}$.

(1S,4S)-1-(2,5-difluorophenyl)-4-phenylbutane-1,4-diol (6o)

99% yield, $>100: 1 \mathrm{dr},>99.9 \%$ ee. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, 4H), $7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.83(\mathrm{~m}, 2 \mathrm{H}), 4.97(\mathrm{t}, J=5.7 \mathrm{~Hz}$, 1H), 4.69 (dd, $J=7.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~s}, 2 \mathrm{H}), 1.96-1.80(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.18,160.16,157.77,157.75,156.53,154.16,154.14,144.32,133.76$, 133.69, 133.60, 133.53, 128.54, 127.69, 125.78, 116.38, 116.30, 116.14, 116.05, 115.03, 114.95, 114.79, 114.70, 113.96, 113.91, 113.71, 113.66, 74.63, 67.89, 35.60, 34.91.

Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-40.7\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC on Chiral OD-3 column, $210 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n-hexane: $\mathrm{i}-\mathrm{PrOH}=$ 90:10; flow $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}($ major $)=16.25 \mathrm{~min}$.

(1S,4S)-1-(5-fluoro-2-methylphenyl)-4-phenylbutane-1,4-diol (6p)

99% yield, $25: 1 \mathrm{dr},>99.9 \%$ ee. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H})$, 7.28 (d, $J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=10.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=8.4,5.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.83 (td, $J=8.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{dd}, J=8.2,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.04(\mathrm{~s}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{q}, J=7.0,6.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.89,160.47,145.09,145.03,144.50,131.60,131.52,129.51$, $129.48,128.53,127.63,125.79,113.77,113.57,112.22,112.00,74.66,70.60,70.59$, 36.01, 34.80, 18.24.

Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-60.4\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC on Chiral IF column, $210 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n -hexane: $\mathrm{i}-\mathrm{PrOH}=88: 12$;
flow $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}($ major $)=8.85 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=9.61 \mathrm{~min}, 10.94 \mathrm{~min}$.

(1S,4S)-1-(4-chlorophenyl)-4-(2,5-difluorophenyl)butane-1,4-diol (6q)

$6 q$
99% yield, $82: 1 \mathrm{dr},>99.9 \%$ ee. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.24(\mathrm{~m}, 5 \mathrm{H})$, 7.20 (ddd, $J=8.9,5.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.88(\mathrm{~m}, 2 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 3.46$ $(\mathrm{d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~s}, 1 \mathrm{H}), 1.95-1.81(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $160.18,160.15,157.77,157.75,156.48,154.11,154.09,142.83$, 133.58, 133.51, 133.42, 133.35, 133.27, 128.64, 127.14, 116.46, 116.37, 116.21, 116.12, 115.16, $115.08,114.92,114.83,113.87,113.82,113.62,113.58,73.87,67.83,35.67,34.67$.

Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-43.3\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC on Chiral IA column, $210 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n -hexane: $\mathrm{i}-\mathrm{PrOH}=88: 12$;
flow $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}($ major $)=10.45 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=13.01 \mathrm{~min}$.

(1S,4S)-1,4-di(thiophen-2-yl)butane-1,4-diol (6r)

$6 r$
99% yield, $>100: 1 \mathrm{dr},>99.9 \%$ ee. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , DMSO-d6) $\delta 6.48$ (d, $J=5.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.11-5.98(\mathrm{~m}, 4 \mathrm{H}), 4.67(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{q}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.98-$ 0.72 (m, 4H). ${ }^{13} \mathbf{C}$ NMR (101 MHz, DMSO-d6) $\delta 156.03,131.63,129.11,127.96,73.41$, 40.93.

Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=-18.1\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC on Chiral AD-H column, $220 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n-hexane: $\mathrm{i}-\mathrm{PrOH}=$ 90:10; flow $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}($ major $)=22.33 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=24.23 \mathrm{~min}$.

Signal 1: DAD1 B, Sig=220,4 Ref=off	Signal 1: DAD1 B, Sig=220,4 Ref=off
Peak RetTime Type Width Area Height Area $\#$ $[\mathrm{~min}]$ $[\mathrm{min}]$ $[\mathrm{mAU} \mathrm{s}]$ $[\mathrm{mAU}]$ $\%$	Peak RetTime Type Width Area Height Area $\#$ $[\mathrm{~min}]$ $[\mathrm{min}]$ $\left[\mathrm{mAU}^{*} \mathrm{~s}\right]$ $[\mathrm{mAU}]$ $\%$
$1 \begin{array}{llllllllllll}1 & 22.372 & \text { BB } & 0.4840 & 3903.26465 & 124.42773 & 25.6466\end{array}$	$1 \quad 22.327 \mathrm{BB} \quad 0.49311 .58994 \mathrm{e} 40502.52542$
2 24.305 BV $0.51567300 .44482 \quad 220.86026$ 47.9679	$\begin{array}{llllllll}2 & 24.232 & \text { BB } & 0.3457 & 67.72499 & 2.38231 & 0.4242\end{array}$
$3 \quad 35.406$ VB $\begin{array}{llllll} \\ 3\end{array}$	

(1S,4R)-1-phenylpentane-1,4-dio (6s)

6s
99% yield, $7: 4 \mathrm{dr},>99.9 \%$ ee. ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.20(\mathrm{~m}, 5 \mathrm{H}), 4.71$ - 4.58 (m, 1H), 3.78 (dq, $J=24.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.39(\mathrm{~m}$, 2H), 1.19 - 1.09 (m, 3H). ${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.93$, 144.75, 128.39, $127.39,127.35,125.86,125.83,74.66,74.13,68.22,67.73,36.19,36.00,35.06,34.94$, 23.62, 23.32.

Optical Rotation: The enantiomeric excess was determined by HPLC on Chiral AD-3 column, $210 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n-hexane: $\mathrm{i}-\mathrm{PrOH}=90: 10$; flow $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}($ major $)=9.60$ $\min , \mathrm{t}_{\mathrm{R}}($ minor $)=10.82 \mathrm{~min}$.

(1S,4S)-1-(furan-2-yl)-4-phenylbutane-1,4-diol (6t)

$6 t$
99% yield, $75: 1 \mathrm{dr},>99.9 \%$ ee. ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.34(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 5 \mathrm{H}$), 7.27 (q, J = 4.3 Hz, 1H), $6.34-6.29(\mathrm{~m}, 1 \mathrm{H}), 6.21(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{dt}, \mathrm{J}=8.0$, $5.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{~d}, \mathrm{~J}=113.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.01-1.91(\mathrm{~m}, 3 \mathrm{H}), 1.87-1.80(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl3) δ 156.61, 144.49, 141.91, 128.52, 127.63, 125.82, 110.16, 105.80, 74.45, 67.87, 35.41, 32.25.

Optical Rotation: The enantiomeric excess was determined by HPLC on Chiral AS-3 column, $220 \mathrm{~nm}, 25^{\circ} \mathrm{C}$, n-hexane: $\mathrm{i}-\mathrm{PrOH}=90: 10$; flow $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}($ major $)=12.91$ $\min , \mathrm{t}_{\mathrm{R}}($ minor $)=14.69 \mathrm{~min}$.

4. General procedure for asymmetric hydrogenation of benzil (7)

To a 4.0 mL vial was added the catalyst precursor $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}\left(6.72 \mathrm{mg}, 1.0 \times 10^{-2}\right.$ mmol), ligand ($R_{\mathrm{C}}, R_{\mathrm{C}}, S_{\mathrm{FC}}$) $-f$-amphox ($12.2 \mathrm{mg}, 2.2 \times 10^{-2} \mathrm{mmol}$) and anhydrous THF $(2.0 \mathrm{~mL})$ in the argon-filled glovebox. The mixture was stirred for 2.0 h at $25^{\circ} \mathrm{C}$ giving orange red solution. And then benzil $7(0.1 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(1.63 \mathrm{mg}, 0.005 \mathrm{mmol})$, and anhydrous THF (1.0 mL) were added into a 5 mL hydrogenation vessel, and a solution of $\operatorname{Ir} /\left(R_{\mathrm{C}}, R_{\mathrm{C}}, S_{\mathrm{FC}}\right)-f$-amphox in anhydrous THF $(10 \mu \mathrm{~L})$ was added via an injection port. Then the vessel was placed in an autoclave, closed it and moved it out from golvebox. The autoclave quickly purged with hydrogen gas for three times, then pressurized to 40 $\operatorname{atm} \mathrm{H}_{2}$. The reaction solution was stirred at room temperature $\left(25^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}\right)$ until for 24 h , then released pressure carefully. The product was purified by flash chromatography on silica gel with ethyl acetate.
(1R,2R)-1,2-diphenylethane-1,2-diol (8a)

8a
99% yield, $7: 3 \mathrm{dr},>99.9 \%$ ee. ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$, $7.22(\mathrm{t}, J=6.1 \mathrm{~Hz}, 5 \mathrm{H}), 7.10(\mathrm{~s}, 2 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 3.10(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{~s}$, $1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.77,128.21,128.13,128.08,127.93,127.13$, 127.02, 79.02, 78.06.

Optical Rotation: The enantiomeric excess was determined by HPLC on Chiral OJ-H column, $210 \mathrm{~nm}, 25^{\circ} \mathrm{C}$, n-hexane: i-PrOH $=90: 10$; flow $0.5 \mathrm{~mL} / \mathrm{min}$; t_{R} (major) $=31.73$ min . The absolute configuration was assigned by comparing with literature data. ${ }^{[2]}$
[2] T. Touge, T. Hakamata, H. Nara, T. Kobayashi, N. Sayo, T. Saito, Y. Kayaki, and T. Ikariya, J. Am. Chem. Soc., 2011, 133 (38), 14960-14963.

Signal 1: DAD1 C, Sig $=210,4$ Ref $=360,100$	Signal 1: DAD1 C, Sig=210,4 Ref=360,100				
Peak RetTime Type Width Area Height Area $\#$ $[\mathrm{~min}]$ $[\mathrm{min}]$ $[\mathrm{mAU} \mathrm{s}]$ $[\mathrm{mAU}]$ $\%$	Peak RetTime Type Width Area Height Area $\#$ $[\mathrm{~min}]$ $[\mathrm{min}]$ [mAU*s] [mAU] $\%$				
$1 \begin{array}{lllllllll}1 & 28.164 ~ M M ~ & 1.4919 & 7845.67871 & 87.64993 & 50.3157\end{array}$	----\|-------	----	--------	-----------	----------------------1
$\begin{array}{lllllll}2 & 31.879\end{array}$	131.729 VB R $0.60451 .16715 \mathrm{e} 4 \quad 277.58972100 .0000$				

5. General procedure for synthesis of $\mathbf{1 , 5}$-diketones (9)

Aluminum chloride ($1.33 \mathrm{~g}, 10 \mathrm{mmol}$) was added to the solution of glutaryl chloride $(845 \mathrm{mg})$ in benzene $(10 \mathrm{~mL})$ at room temperature. The solution was stirred for 4 h at $25^{\circ} \mathrm{C}$. After completion of the reaction, add saturated ammonium chloride solution to the solution. Extracted with ethyl acetate, organic layer was dried over sodium sulphate and concentrated under reduced pressure. The obtained residue was purified by flash chromatography on silica gel.

1,5-di-p-tolylpentane-1,5-dione (9b)

65% yield. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, 4H), 3.08 (t, J = 7.0 Hz, 4H), $2.40(\mathrm{~s}, 6 \mathrm{H}), 2.18(\mathrm{p}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.61,143.82,134.43,129.28,128.22,37.57,21.64,18.95$.

1,5-bis(4-isopropylphenyl)pentane-1,5-dione (9c)

9c
49% yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92$ (dd, $\mathrm{J}=8.4,1.9 \mathrm{~Hz}, 4 \mathrm{H}$), $7.34-7.28$ $(\mathrm{m}, 4 \mathrm{H}), 3.08(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.96(\mathrm{p}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{p}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.26$ $(\mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.63,154.55,134.78,128.36$, 126.68, 37.59, 34.26, 23.69, 19.00.

6. General procedure for asymmetric hydrogenation of 1,5-diketones

To a 4.0 mL vial was added the catalyst precursor $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}\left(6.72 \mathrm{mg}, 1.0 \times 10^{-2}\right.$ $\mathrm{mmol})$, ligand $\left(R_{\mathrm{C}}, R_{\mathrm{C}}, S_{\mathrm{FC}}\right)$ - f-amphox $\left(12.2 \mathrm{mg}, 2.2 \times 10^{-2} \mathrm{mmol}\right)$ and anhydrous IPA (2.0 mL) in the argon-filled glovebox. The mixture was stirred for 2.0 h at $25^{\circ} \mathrm{C}$ giving orange red solution. And then 1,5-diketone $9(0.1 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(3.25 \mathrm{mg}, 0.01 \mathrm{mmol}$) were added into a 5 mL hydrogenation vessel. 1.0 mL anhydrous IPA was added as solvent and a solution of $\operatorname{Ir} /\left(R_{\mathrm{C}}, R_{\mathrm{C}}, S_{\mathrm{FC}}\right)-f$-amphox in anhydrous IPA $(10 \mu \mathrm{~L})$ was added via an injection port. Then the vessel was placed in an autoclave, closed it and moved it out from golvebox. The autoclave quickly purged with hydrogen gas for three times, then pressurized to $40 \mathrm{~atm} \mathrm{H}_{2}$. The reaction solution was stirred at room temperature $\left(25{ }^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}\right)$ until for 12 h , then released pressure carefully. The solution of reaction mixture was purified by flash chromatography on silica gel with ethyl acetate and the solvent was removed under reduced pressure. The ee value was determined by chiral HPLC analysis of the hydrogenation product chiral diol directly. The absolute configurations of 1,5-diol were assigned by analogy.

(1S,5S)-1,5-diphenylpentane-1,5-diol (10a)

99% yield, >100:1 dr, >99.9\% ee. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.29(\mathrm{~m}, 8 \mathrm{H})$, $7.29-7.25$ (m, 2H), 4.66 (ddd, $J=8.2,5.3,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.01(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.88$ - $1.79(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{p}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 144.78,128.49,127.57,125.84,74.46,38.82,22.29$.

Optical Rotation: The enantiomeric excess was determined by HPLC on Chiral OJ-H column, $210 \mathrm{~nm}, 25^{\circ} \mathrm{C}$, n-hexane: $\mathrm{i}-\mathrm{PrOH}=90: 10$; flow $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}($ major $)=32.37$ min.

(1S,5S)-1,5- di-p-tolylpentane-1,5-diol (10b)

99% yield, $92: 1 \mathrm{dr},>99.9 \%$ ee. ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 4 \mathrm{H})$, $7.14(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 4.63-4.57(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H}), 2.13(\mathrm{~s}, 2 \mathrm{H}), 1.81(\mathrm{dq}, \mathrm{J}=$ $15.3,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{td}, \mathrm{J}=13.5,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{p}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (151 MHz, CDCl_{3}) $\delta 141.89,137.17,129.14,125.82,74.23,38.78,22.38,21.13$.

Optical Rotation: The enantiomeric excess was determined by HPLC on Chiral AD-3 column, $220 \mathrm{~nm}, 25^{\circ} \mathrm{C}$, n-hexane: i-PrOH $=90: 10$; flow $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}($ major $)=40.14$ $\mathrm{min}, \mathrm{t}_{\mathrm{R}}($ minor $)=26.76 \mathrm{~min}$.

Signal 1: DAD1 C, Sig $=220,4$ Ref $=360,100$					Signal 1: DAD1 C, Sig=220,4 Ref $=360,100$						
```Peak RetTime Type # [min]```	Width   [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%	$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
122.728 BB	0.7805	1.37752 e 4	253.30539	23.3546							
$2 \quad 27.792 \mathrm{BB}$	0.9635	3.17318 e 4	471.27997	53.7984	1	26.756		0.8332	318.14532	4.59847	1.0747
$3 \quad 40.555 \mathrm{BB}$	1.3874	1.34757 e 4	140.20245	22.8469		40.138		1.3651	2.92854 e 4	308.60568	98.9253

## (1S,5S)-1,5-bis(4-isopropylphenyl)pentane-1,5-diol (10c)


$99 \%$ yield, $>100: 1 \mathrm{dr},>99.9 \%$ ee. ${ }^{1} \mathbf{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl} 3$ ) $\delta 7.24(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}$, 4H), 7.19 (d, J = 8.3 Hz, 4H), $4.62(\mathrm{dd}, \mathrm{J}=8.0,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{p}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $2.13(\mathrm{~s}, 2 \mathrm{H}), 1.83(\mathrm{dq}, \mathrm{J}=15.1,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.71(\mathrm{td}, \mathrm{J}=13.4,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.49(\mathrm{p}, \mathrm{J}$ $=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.15,141.20$, 125.46, 124.82, 73.23, 37.67, 32.77, 22.98, 21.42.

Optical Rotation: The enantiomeric excess was determined by HPLC on Chiral OD-3 column, $220 \mathrm{~nm}, 25^{\circ} \mathrm{C}$, n -hexane: $\mathrm{i}-\mathrm{PrOH}=90: 10$; flow $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}($ major $)=11.82$ min.


## 7. Mechanistic investigation



To a 4.0 mL vial was added the catalyst precursor $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}\left(6.72 \mathrm{mg}, 1.0 \times 10^{-2}\right.$ $\mathrm{mmol})$, ligand ( $R_{\mathrm{C}}, R_{\mathrm{C}}, S_{\mathrm{FC}}$ ) $-f$-amphox ( $12.2 \mathrm{mg}, 2.2 \times 10^{-2} \mathrm{mmol}$ ) and anhydrous toluene $(2.0 \mathrm{~mL})$ in the argon-filled glovebox. The mixture was stirred for 2 h at $25^{\circ} \mathrm{C}$ giving orange red solution. And then 0.1 mmol of 1,4 -diphenylbutane-1,4-dione (5a), KOH $(0.56 \mathrm{mg}, 0.01 \mathrm{mmol})$ were added into a 5 mL hydrogenation vessel. 1.0 mL anhydrous MTBE was added as solvent and a solution of $\operatorname{Ir} /\left(R_{\mathrm{C}}, R_{\mathrm{C}}, S_{\mathrm{FC}}\right)-f$-amphox in anhydrous toluene $(10 \mu \mathrm{~L})$ was added via an injection port. Then the vessel was placed in an autoclave, closed it and moved it out from golvebox. The autoclave quickly purged with hydrogen gas for three times, then pressurized to $40 \mathrm{~atm} \mathrm{H}_{2}$. The reaction solution was stirred at room temperature for 30 min , then released pressure carefully.

The reaction mixture was purified by flash chromatography on silica gel with ethyl acetate. The mono-reduced product ( $S$ )-4-hydroxy-1,4-diphenylbutan-1-one (5a') could be obtained in $6.7 \%$ yield with $99 \%$ ee, and only a trace amount of $\mathbf{6 a}$ was detected.
( $S$ )-4-hydroxy-1,4-diphenylbutan-1-one (5a')

$6.7 \%$ yield, $99 \%$ ee. ${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.94(\mathrm{dd}, J=8.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.58$
$-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 4.83$
(dd, $J=7.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 1 \mathrm{H}), 2.26-2.16(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 200.59,144.37,136.85,133.16,128.61,128.54,128.12$, 127.61, 125.78, 73.63, 34.79, 33.08.

Optical Rotation: $[\alpha]_{\mathrm{D}}{ }^{22}=-23.8\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC on Chiral OJ-H column, $240 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n -hexane: i- $\mathrm{PrOH}=90: 10$;
flow $1.0 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}$ (major) $=16.89 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=19.28 \mathrm{~min}$. The absolute configuration of 1,4-diphenylbutane-1,4-diol 5a' was assigned to be $(S)$ by comparing the optical rotation with literature data. ${ }^{[3]}$


The isolation of the intermediate revealed the nature of this stepwise transformation from 1,4-diketones to 1,4-diols.

[3] Y. Xia, L. Lin, F. Chang, X. Fu, X. Liu and X. Feng, Angew. Chem. Int. Ed. 2015, $54,13748-13752$.

## 8. Synthesis of ( $\mathbf{2 R}, 5 R$ )-1-benzyl-2,5-diphenylpyrrolidine ( $6 a^{\prime}$ )


( $2 R, 5 R$ )-1-benzyl-2,5-diphenylpyrrolidine ( $\mathbf{6 a '}^{\prime}$ ) was prepared as described in literature. ${ }^{[4]}$ To the solution of methanesulfonyl chloride $(0.2 \mathrm{~mL}, 2.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ was added a solution of $(1 S, 4 S)$-1,4-diphenylbutane-1,4-diol ( $6 \mathbf{a}, 242$ $\mathrm{mg}, 1.0 \mathrm{mmol},>99 \%$ ee $)$ and $\mathrm{Et}_{3} \mathrm{~N}(0.42 \mathrm{~mL}, 3.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The reaction mixture was stirred for 2 h at $-20^{\circ} \mathrm{C}$, then quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ and extracted with DCM. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to approximately 5 mL under reduced pressure, and immediately used for the next reaction without further purification.

Benzylamine ( $2 \mathrm{~mL}, 20 \mathrm{mmol}$ ) was added at $0{ }^{\circ} \mathrm{C}$ to the solution obtained in the previous step and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 12 h . Then, the mixture was extracted with DCM. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. The obtained residue was purified by flash chromatography on silica gel.

Using the similar procedure, the corresponding racemic sample could be obtained. Unfortunately, after repeated purification, rac-6a' still could not be completely separated from meso-6a'
[4] M. Periasamy, M. Seenivasaperumal and V. D. Rao, Synthesis, 2003, 16, 2507-2510.

## (2R,5R)-1-benzyl-2,5-diphenylpyrrolidine (6a')


$69 \%$ yield, 6:1 dr, $95 \%$ ee. ${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.35-7.26(\mathrm{~m}, 9 \mathrm{H}), 7.25-$ $7.16(\mathrm{~m}, 4 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{~d}, \mathrm{~J}=14.1 \mathrm{~Hz}$, 1H), 3.08 (d, J = $14.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.63-2.48$ (m, 2H), $2.04-1.91$ (m, 2H). ${ }^{13}$ C NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 142.86,139.06,127.26,127.13,127.05,126.84,125.84,125.28$, 64.16, 49.91, 32.20.

Optical Rotation: The enantiomeric excess was determined by HPLC on Chiral ODH column, $254 \mathrm{~nm}, 25^{\circ} \mathrm{C}$, n-hexane: $\mathrm{i}-\mathrm{PrOH}=98: 2$; flow $0.8 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}$ (major) $=$
$5.00 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}(\mathrm{minor})=4.63 \mathrm{~min}$.

Signal 1: DAD1 A, Sig $=254,4$ Ref $=360,100$	Signal 1: DAD1 A, Sig=254,4 $\operatorname{Ref}=360,100$
Peak RetTime Type Width Area Height Area   $\# \quad[\mathrm{~min}]$ $[\mathrm{min}]$ $[\mathrm{mAU} \mathrm{s}]$ $[\mathrm{mAU}]$ $\%$	Peak RetTime Type Width Area Height Area   $\# \quad[\mathrm{~min}]$ $[\mathrm{min}]$ $[\mathrm{mAU} \mathrm{s}]$ $[\mathrm{mAU}]$ $\%$
$1 \quad 4.584 \mathrm{BV} \quad 0.0933 \quad 958.09088$ 152.41002 $\quad 73.3328$	$1 \begin{array}{lllllll}1 & 4.627 & \mathrm{BB} & 0.1391 & 9.11846 & 1.01214 & 2.5306\end{array}$
$24.996 \mathrm{VB} \quad 0.1142 \quad 348.40582 \quad 44.07001 \quad 26.6672$	$2 \quad 5.002 \mathrm{BB} \quad 0.0998 \quad 351.20908$ 54.07738 $\quad 97.4694$

9．NMR Spectra



SJY－2F－4in． 91 gid
$\stackrel{\text { © }}{\stackrel{\circ}{\circ} \stackrel{\circ}{\circ}}$

©io oio


लへল゙ল゙心



No m or Ne
$\underbrace{m j m}$



SJY－2F，4CI．1．fid ल
O
0




SJY－2F，4CI要．


$\ddagger \underset{\sim}{\circ} \mathrm{C}$


ल⿵人ल叩ल


[^0]

SJY-A181-2Br-4CI.10.fid

0.fid | 응 |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 |




$\stackrel{\rightharpoonup}{\mathrm{T}}$
$\stackrel{+}{\circ}$
$\stackrel{+}{1}$


SJY-A181-2Br-4CI.11.fid

N	
ก ¢	$\dot{\sim}$
N-	


g N
¢
in
ले



SJY-3F-4H.10.fid

##  






##  <br> 5 g

$\underbrace{\text { SJY-3F,4Cl.10.fid }}$



SJY-3F,4CI.11.fid


$\begin{array}{ll}\text { M } & \frac{m}{0} \\ 0 \\ 0 & 0 \\ 0 & 0\end{array}$



SJY-4Me.10.fid


$\underset{\sim}{\stackrel{\sim}{\sim}} \underset{\sim}{\sim}$







$\stackrel{\circ}{\circ}$


SJY-4F-4H.11.fid
$\stackrel{m}{\sim}$
$\stackrel{\infty}{\sigma}$
$\stackrel{\circ}{\sigma}$







SJY-A171.13.fid

## กั




SJY-4Me, 4Me. 1. fid



SJY-4Me, 4Mc. 2.fid

$\stackrel{0}{2}$
$\infty$
$\infty$
$\stackrel{\infty}{\square}$

$\stackrel{\circ}{\stackrel{\circ}{\dot{j}}} \stackrel{\stackrel{\infty}{\sim}}{\stackrel{\infty}{\sim} \stackrel{\sim}{\infty}}$




[^1]

SJY－4Me，4CI．1．fid


SJY－4Me，4e1L！．fid
$\stackrel{\infty}{\stackrel{\infty}{\circ} \stackrel{\circ}{\sigma}}$
 － －r－r－No
$\stackrel{n}{\infty}$ ๓ñ へべ



[^2]

SJY－4F，4Cl．10．fid
$\underbrace{\infty}$

111


SJY－4F，4CI．11．fid

ザす	$\ulcorner\stackrel{9}{\circ}$	
内®	Nべ¢	
V	$1) 1$	$\bigcirc$







[^3]

SJY－2．5－F，F．1．

$\stackrel{\circ}{\square}$
｜$\| 1$


SJY－2．5－F，F．2．fid




$\begin{aligned} 0 \\ 0 \end{aligned}$

$\underset{\sim}{N} \underset{\sim}{N}$
ल⿵冂人䒑叩
$\circ$
0
0
$i$


[^4]

SJY-2Me,5F.10.fid


※゙N N N



[^5]

SJY-2,5F,4CI.1.fid
응
0


 $\underbrace{n}$


SJY-2,5F, 4ele
$\stackrel{\circ}{\circ} \stackrel{\circ}{\circ}$





suY238.1.fid





๗゙ m m



$\stackrel{\text { 憋 }}{\infty} \stackrel{\infty}{\infty} \stackrel{\infty}{\infty}$

으응
N
NiN



SJY-modal-2.10.fid
m
0
0
0



$\stackrel{\sim}{1} \stackrel{-}{-} \stackrel{\infty}{-} \stackrel{\infty}{-} \stackrel{\infty}{\Gamma}$


SJY-modal-2.11.fid

$\stackrel{N}{\infty}$
N


[^6]


SJY－B017－2F－AH．2．fid

－¢		$\bar{m}$
$\stackrel{\circ}{\circ} \stackrel{\infty}{\square}$		へべがか
$1 /$		



[^7]




SJY-2F,4CI-AH.2.fid


品 No






[^8]
(10.fid


$6 \mathbf{g}$
SJY－3F，4Cl－AH．10．fid
O.
呺



SJY－B004－9．2．fid
$\begin{array}{ll}\frac{M}{U} & \frac{m}{U} \\ 0 & 0\end{array}$
合合合

$\stackrel{\leftrightarrow}{\infty}$


[^9]

SJY－B017－4Me－AH．1．
ヘベNべが


$\xrightarrow{+\infty}$


$\iint$





SJY-4F,4H-AH. 11 .fid


$\stackrel{\circ}{\circ}$





6j



SJY-4Me-AH.10.fid


SJY-4Me-AH. 11. fid
:




SJY-4Me-4CI-AH.10.fid



SJY-2Me,4CI-AH.2.fid




[^10]

6m
SJY-4F-4CI-AH. 10 .fid


SJY-4F-4CI-AH. 11 .fid



[^11]

SJY-4CI-AH-002.10.fid $\underbrace{\text { OM }}_{\|}$



#### Abstract

SJY-4CI-AH-002.11.fid 


$\begin{array}{llllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & & \end{array}$


SJY-B017-3.2.fid

$\circ$
0
0



[^12]



© ©i © M O N N：O O へべがさ

$\stackrel{\sim}{\infty}$


[^13]


SJY-2,5Fe,4CI-AH.2.fid $\quad \underset{\sim}{\infty}$


觛



6 r

SJY-saifen-AH.10.fid



$\stackrel{m}{0}$	
$\bigcirc$	- ${ }^{-1}$
$\stackrel{-}{\sim}$	$\stackrel{\text { M }}{\sim}$
	\1




6s

SJY－B004－4．10．fid




SJY－B004－4．11．fid


のロロホ～N



[^14]

SJY-260-1.10.fid
人

 $\int 11$






SJY-260-1.11.fid



[^15]

SJY-215.10.fid


SJY-215.11.fid

$$
\begin{aligned}
& \begin{array}{l}
\text { 으으응 } \\
0 \\
0 \\
0 \\
0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \underbrace{\text { N人N }}
\end{aligned}
$$



[^16]
SJY-243.2すुすd
$\dot{\circ} \mathrm{g}$

$\stackrel{\text { Non }}{\substack{\text { No }}}$



[^17]

SJY-256.1.fid



$$
\mid 1
$$




[^18]



SJY-251-1-1.5-diol-p-Me.10.fid

$$
\underbrace{\circ}
$$




SJY-251-1-1.5-diol-p-Me.11.fid

	$\stackrel{\sim}{\square}$	へめ\% \%	$\stackrel{\infty}{\infty}$	
	Nิ		$\infty$	
\|		11	$\xrightarrow{+}$	I








SJY-(S)-danchun.11.fid
0
0
0
0
1
1
1
N
$\underset{\sim}{\sim} \stackrel{\infty}{\sim} \stackrel{m}{\sim} \stackrel{\infty}{\sim} \stackrel{\infty}{\sim} \stackrel{\sim}{\sim} \stackrel{n}{\sim}$

m
0
0
0

$\underbrace{-r^{-N+N}}$
$\stackrel{\circ}{\circ}$
ヴ


[^19]

SY-YS-1109-400M.1.fid
SY-YS-1109-400M.2.fid






[^0]:    

[^1]:    

[^2]:    | 210 | 1 |  |  |  |  |  |  |  |  |  |  |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
    | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 1 |

[^3]:    

[^4]:    

[^5]:    

[^6]:    

[^7]:    

[^8]:    

[^9]:    

[^10]:    

[^11]:    

[^12]:    

[^13]:    

[^14]:    

[^15]:    

[^16]:    

[^17]:    

[^18]:    

[^19]:    

