# **Electronic Supplementary Information**

# Asymmetric Hydrogenation of 1,4-Diketones: Facile Synthesis of

# **Enantiopure 1,4-Diarylbutane-1,4-diols**

Jingyuan Song,<sup>ac</sup> Pan-Lin Shao,<sup>\*bc</sup> Jiang Wang,<sup>c</sup> Fanping Huang<sup>c</sup> and Xumu Zhang<sup>\*cd</sup>

shaopl@sustech.edu.cn., zhangxm@sustech.edu.cn.

<sup>a</sup> School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China.

<sup>b</sup> College of Innovation and Entrepreneurship, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China.

<sup>c</sup> Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China.

<sup>d</sup>Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong, 518118, China.

# Content

| 1. | General Information                                                     | 2  |
|----|-------------------------------------------------------------------------|----|
| 2. | General procedure for synthesis of 1,4-diketones                        | 3  |
| 3. | General procedure for asymmetric hydrogenation of 1,4-diketones         | 9  |
| 4. | General procedure for asymmetric hydrogenation of benzil                | 26 |
| 5. | General procedure for synthesis of 1,5-diketones                        | 28 |
| 6. | General procedure for asymmetric hydrogenation of 1,5-diketones         | 29 |
| 7. | Mechanistic investigation                                               | 32 |
| 8. | Synthesis of (2 <i>R</i> ,5 <i>R</i> )-1-benzyl-2,5-diphenylpyrrolidine | 34 |
| 9. | NMR Spectra                                                             | 36 |

# **1.** General Information

Unless otherwise mentioned, all experiments and manipulations which are sensitive to moisture or air were carried out under an atmosphere of argon in a glovebox or using standard Schlenk techniques. Solvents were dried with standard procedures and degassed with N<sub>2</sub>. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 200-300 mesh). NMR spectra were recorded on a Bruker DPX 400 spectrometer at 400 MHz for <sup>1</sup>H NMR, 101 MHz for <sup>13</sup>C NMR in CDCl<sub>3</sub> with tetramethylsilane (TMS) as internal standard. Date are reported as: multiplicity(s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet) and chemical shifts are reported in ppm and coupling constants are given in Hz. Chemical shifts were reported relative to TMS (0.00 ppm) or CHCl<sub>3</sub> (7.26 ppm) for <sup>1</sup>H NMR and relative to CDCl<sub>3</sub> (77.0 ppm) for <sup>13</sup>C NMR. Optical rotations [ $\alpha$ ]<sub>D</sub> were determined using a PERKIN ELMER polarimeter 343 instrument. HPLC analyses were performed using Daicel chiral column on an Agilent 1260 Series HPLC instrument.

## 2. General procedure for synthesis of 1,4-diketones



**5a**, **5r**, **5s** were commercially available and used without further purification unless otherwise stated. Other substrates were prepared as described in literature.<sup>[1]</sup> DBU (0.4 equiv) was added to the stirred solution of benzaldehyde (1.5 equiv) and thiazolium salt (0.2 equiv) in THF. The resulting reaction mixture was stirred in room temperature for 10-15 minutes. After that 3-benzoylacrylic acid (1.0 equiv) was added at 60 °C for overnight and monitored by TLC. After completion of the reaction, reaction system was cooled to room temperature and washed with saturated solution of sodium bicarbonate and extracted with ethyl acetate, organic layer was dried over sodium sulphate and concentrated under reduced pressure. The obtained residue was purified by flash chromatography on silica gel.

#### 1-(2-fluorophenyl)-4-phenylbutane-1,4-dione (5b)



<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 8.03 (d, J = 7.0 Hz, 2H), 7.91 (td, J = 7.6, 1.9 Hz, 1H), 7.61 – 7.44 (m, 4H), 7.24 (td, J = 7.7, 1.3 Hz, 1H), 7.16 (dd, J = 11.3, 8.3 Hz, 1H), 3.46 (d, J = 1.9 Hz, 4H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 198.52, 197.03, 196.99, 163.43, 160.89, 136.79, 134.66, 134.57, 133.14, 130.73, 130.70, 128.61, 128.14, 125.42, 125.01, 124.47, 124.43, 116.84, 116.61, 37.46, 37.38, 32.60, 32.58.

<sup>[1]</sup> A. R. S. Verma, M. Mishra, C. B. Pandey, S. Kumar and B. Tiwari. J. Org. Chem., 2020, 85, 8166–8175.

1-(2-bromophenyl)-4-phenylbutane-1,4-dione (5c)



<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 8.04 (dd, J = 8.4, 1.4 Hz, 2H), 7.61 (dd, J = 18.3, 7.6 Hz, 3H), 7.49 (t, J = 7.6 Hz, 2H), 7.42 (td, J = 7.5, 1.2 Hz, 1H), 7.31 (td, J = 7.7, 1.7 Hz, 1H), 3.50 (t, J = 6.4 Hz, 2H), 3.37 (t, J = 6.0 Hz, 2H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 202.69, 198.25, 141.57, 136.59, 133.65, 133.27, 131.63, 128.93, 128.65, 128.12, 127.52, 118.60, 36.56, 33.00.

#### 1-(4-chlorophenyl)-4-(2-fluorophenyl)butane-1,4-dione (5d)



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.97 (d, J = 8.6 Hz, 2H), 7.90 (td, J = 7.6, 1.9 Hz, 1H), 7.57 – 7.50 (m, 1H), 7.46 (d, J = 8.6 Hz, 2H), 7.25 – 7.12 (m, 2H), 3.49 – 3.38 (m, 4H).
<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 197.34, 163.46, 139.57, 135.14, 134.75, 134.66, 130.72, 130.69, 129.56, 128.93, 125.40, 124.49, 124.46, 116.86, 116.62, 37.44, 37.36, 32.53, 32.51.

#### 1-(2-bromophenyl)-4-(4-chlorophenyl)butane-1,4-dione (5e)



<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.96 (d, J = 8.5 Hz, 2H), 7.69 – 7.54 (m, 2H), 7.43 (dd, J = 23.0, 7.9 Hz, 3H), 7.31 (td, J = 7.7, 1.8 Hz, 1H), 3.49 – 3.32 (m, 4H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>)  $\delta$  202.52, 197.07, 141.41, 139.72, 134.92, 133.69, 131.70, 129.54, 128.98, 128.90, 127.52, 118.63, 36.49, 32.92.

1-(3-fluorophenyl)-4-phenylbutane-1,4-dione (5f)



<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 8.03 (d, J = 7.0 Hz, 2H), 7.83 (d, J = 7.8 Hz, 1H), 7.71 (dd, J = 9.5, 1.0 Hz, 1H), 7.58 (t, J = 7.4 Hz, 1H), 7.53 – 7.42 (m, 3H), 7.33 – 7.24 (m, 1H), 3.45 (dd, J = 12.1, 5.6 Hz, 4H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 198.44, 197.50, 197.48, 164.12, 161.66, 138.91, 138.85, 136.67, 133.26, 130.35, 130.27, 128.65, 128.14, 123.94, 123.91, 120.28, 120.07, 114.99, 114.77, 32.71, 32.54.

1-(4-chlorophenyl)-4-(3-fluorophenyl)butane-1,4-dione (5g)



<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.97 (d, J = 8.5 Hz, 2H), 7.83 (dt, J = 7.8, 1.3 Hz, 1H), 7.70 (dd, J = 9.4, 1.1 Hz, 1H), 7.46 (d, J = 8.6 Hz, 3H), 7.30 (ddd, J = 8.3, 2.7, 0.9 Hz, 1H), 3.43 (s, 4H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 197.33, 197.26, 164.13, 161.66, 139.72, 138.79, 138.73, 135.00, 130.38, 130.30, 129.56, 128.98, 123.92, 123.89, 120.38, 120.16, 115.00, 114.78, 32.67, 32.47.

1-phenyl-4-(p-tolyl)butane-1,4-dione (5h)



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.08 – 8.00 (m, 2H), 7.94 (d, J = 8.3 Hz, 2H), 7.58 (t, J = 7.3 Hz, 1H), 7.48 (t, J = 7.6 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 3.45 (s, 4H), 2.42 (s, 3H).
<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 198.84, 198.35, 143.96, 136.83, 134.32, 133.15, 129.30, 128.61, 128.26, 128.15, 32.64, 32.50, 21.68.

1-(4-fluorophenyl)-4-phenylbutane-1,4-dione (5i)



<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 8.11 – 8.00 (m, 4H), 7.58 (t, J = 7.4 Hz, 1H), 7.51 – 7.44 (m, 2H), 7.15 (t, J = 8.6 Hz, 2H), 3.45 (ddd, J = 10.0, 4.4, 0.9 Hz, 4H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 198.61, 197.13, 167.09, 164.56, 136.71, 133.23, 130.82, 130.73, 128.64, 128.14, 115.82, 115.60, 32.59, 32.46.

#### 1-(4-chlorophenyl)-4-phenylbutane-1,4-dione (5j)



<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 8.01 (dd, *J* = 20.7, 7.8 Hz, 4H), 7.59 (t, *J* = 7.3 Hz, 1H), 7.48 (dd, *J* = 14.2, 8.2 Hz, 4H), 3.50 – 3.40 (m, 4H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 198.52, 197.52, 139.61, 136.68, 135.13, 133.25, 129.56, 128.94, 128.64, 128.13, 32.56, 32.52.

1,4-di-p-tolylbutane-1,4-dione (5k)



<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.94 (d, J = 8.1 Hz, 4H), 7.28 (d, J = 8.1 Hz, 4H), 3.42 (s, 4H), 2.41 (s, 6H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 198.45, 143.90, 134.37, 129.28, 128.26, 32.54, 21.67.

1-(4-chlorophenyl)-4-(p-tolyl)butane-1,4-dione (5l)



<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.95 (dd, *J* = 19.9, 8.4 Hz, 4H), 7.45 (d, *J* = 8.6 Hz, 2H), 7.27 (d, *J* = 8.6 Hz, 2H), 3.47 – 3.38 (m, 4H), 2.42 (s, 3H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 198.15, 197.65, 144.05, 139.57, 135.18, 134.22, 129.57, 129.32, 128.93, 128.25, 32.56, 32.46, 21.68.

1-(4-chlorophenyl)-4-(4-fluorophenyl)butane-1,4-dione (5m)



<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 8.06 (dd, *J* = 8.9, 5.4 Hz, 2H), 7.98 (d, *J* = 8.6 Hz, 2H), 7.46 (d, *J* = 8.6 Hz, 2H), 7.15 (t, *J* = 8.6 Hz, 2H), 3.42 (s, 4H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 197.43, 196.94, 172.11, 167.13, 164.60, 139.68, 135.04, 133.15, 130.82, 130.73, 129.56, 128.97, 115.86, 115.64, 32.51, 32.43.

1,4-bis(4-chlorophenyl)butane-1,4-dione (5n)



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.00 – 7.95 (m, 4H), 7.50 – 7.42 (m, 4H), 3.42 (s, 4H).
<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 197.34, 139.71, 135.01, 129.56, 128.98, 32.49.

1-(2,5-difluorophenyl)-4-phenylbutane-1,4-dione (50)



<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 (dd, J = 8.3, 1.4 Hz, 2H), 7.64 – 7.54 (m, 2H), 7.48 (t, J = 7.5 Hz, 2H), 7.25 – 7.11 (m, 2H), 3.45 (s, 4H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>)  $\delta$  198.29, 136.67, 133.22, 128.63, 128.13, 121.47, 121.37, 121.22, 121.13, 118.32, 118.13, 118.05, 116.71, 116.50, 37.32, 37.24, 32.58, 32.56.

7

1-(5-fluoro-2-methylphenyl)-4-phenylbutane-1,4-dione (5p)



<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 8.03 (d, *J* = 7.0 Hz, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.54 - 7.44 (m, 3H), 7.22 (dd, *J* = 8.5, 5.5 Hz, 1H), 7.09 (td, *J* = 8.3, 2.8 Hz, 1H), 3.50 – 3.43 (m, 2H), 3.34 – 3.27 (m, 2H), 2.45 (s, 3H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 201.63, 201.60, 198.39, 161.84, 159.41, 139.14, 139.08, 136.65, 133.53, 133.49, 133.30, 133.24, 133.22, 128.64, 128.11, 118.20, 117.99, 115.37, 115.15, 35.27, 32.83, 20.39.

1-(4-chlorophenyl)-4-(2,5-difluorophenyl)butane-1,4-dione (5q)



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.96 (d, J = 8.6 Hz, 2H), 7.57 (ddd, J = 8.6, 5.4, 3.2 Hz, 1H), 7.46 (d, J = 8.5 Hz, 2H), 7.26 – 7.11 (m, 2H), 3.42 (dd, J = 5.2, 3.4 Hz, 4H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 197.11, 195.60, 195.56, 139.67, 135.01, 129.54, 128.96, 121.58, 121.48, 121.33, 121.24, 118.43, 118.35, 118.16, 118.08, 116.72, 116.69, 116.47, 116.44, 37.29, 37.21, 32.50, 32.48.

1-(furan-2-yl)-4-phenylbutane-1,4-dione (5t)



<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.02 (d, J = 7.0 Hz, 2H), 7.69 – 7.53 (m, 2H), 7.47 (t, J = 7.6 Hz, 2H), 7.27 (d, J = 1.9 Hz, 1H), 6.55 (dd, J = 3.6, 1.7 Hz, 1H), 3.45 (t, J = 6.6 Hz, 2H), 3.31 (t, J = 6.3 Hz, 2H). <sup>13</sup>**C NMR** (101 MHz, CDCl3)  $\delta$  198.39, 187.89, 152.56, 146.39, 136.64, 133.21, 128.62, 128.12, 117.15, 112.25, 32.28, 32.25.

## 3. General procedure for asymmetric hydrogenation of 1,4-diketones



To a 4.0 mL vial was added the catalyst precursor  $[Ir(COD)Cl]_2$  (6.72 mg,  $1.0 \times 10^{-2}$  mmol), ligand ( $R_C$ , $R_C$ , $S_{FC}$ )-*f*-amphox (12.2 mg,  $2.2 \times 10^{-2}$  mmol) and anhydrous toluene (2.0 mL) in the argon-filled glovebox. The mixture was stirred for 2 h at 25 °C giving orange red solution. And then 0.1 mmol of 1,4-diketones, KOH (0.56 mg, 0.01 mmol) were added into a 5 mL hydrogenation vessel. 1.0 mL anhydrous MTBE was added as solvent and a solution of  $Ir/(R_C,R_C,S_{FC})$ -*f*-amphox in anhydrous toluene (10 µL) was added *via* an injection port. Then the vessel was placed in an autoclave, closed it and moved it out from golvebox. The autoclave quickly purged with hydrogen gas for three times, then pressurized to 40 atm H<sub>2</sub>. The reaction solution was stirred at room temperature (25 °C - 30 °C) until for 12 h, then released pressure carefully. The solution of reaction mixture was purified by flash chromatography on silica gel with ethyl acetate and the solvent was removed under reduced pressure. The ee value was determined by chiral HPLC analysis of the hydrogenation product chiral diol directly. The absolute configurations of 1,4-diols were assigned by analogy.

#### (1*S*,4*S*)-1,4-diphenylbutane-1,4-diol (6a)



99% yield, >100:1 dr, >99.9% ee. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.40 – 7.23 (m, 10H), 4.85 – 4.52 (m, 2H), 2.87 (s, 2H), 1.98 – 1.76 (m, 4H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 144.64, 128.47, 127.53, 125.84, 74.61, 35.92.

**Optical Rotation**:  $[\alpha]_D^{25} = -62.0$  (c = 1.00, CHCl<sub>3</sub>). The enantiomeric excess was determined by HPLC on Chiral OJ-H column, 210 nm, 30 °C, n-hexane: i-PrOH = 90:10; flow 1.0 mL/min; t<sub>R</sub> (major) = 33.68 min.



(1S,4S)-1-(2-fluorophenyl)-4-phenylbutane-1,4-diol (6b)



99% yield, 33:1 dr, >99.9% ee. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.46 (td, J = 7.5, 1.9 Hz, 1H), 7.33 (d, J = 3.8 Hz, 4H), 7.28 – 7.19 (m, 2H), 7.13 (t, J = 6.8 Hz, 1H), 7.04 – 6.95 (m, 1H), 5.02 (dd, J = 7.4, 4.1 Hz, 1H), 4.70 (dd, J = 7.8, 4.0 Hz, 1H), 3.01 (s, 2H), 1.97 – 1.82 (m, 4H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  160.89, 158.45, 144.52, 131.67, 131.53, 128.79, 128.71, 128.50, 127.58, 127.27, 127.22, 125.82, 124.29, 124.25, 115.35, 115.14, 74.61, 68.33, 68.31, 35.73, 34.85.

**Optical Rotation**:  $[\alpha]_D^{25} = -25.1$  (c = 1.00, CHCl<sub>3</sub>). The enantiomeric excess was determined by HPLC on Chiral AD-3 column, 210 nm, 30 °C, n-hexane: i-PrOH = 90:10; flow 1.0 mL/min; t<sub>R</sub> (major) = 17.04 min, t<sub>R</sub> (minor) = 19.75 min, 20.92 min.



| Signal 1: DAD1 C, Sig=210,4 Ref=360,100 |                       |                      |                          |           |           | al 1: DA         | D1 C, | Sig=210        | ,4 Ref=360,1    | 100             |           |
|-----------------------------------------|-----------------------|----------------------|--------------------------|-----------|-----------|------------------|-------|----------------|-----------------|-----------------|-----------|
| Peak<br>#                               | RetTime Type<br>[min] | Width A<br>[min] [mA | rea Height<br>U*s] [mAU] | Area<br>% | Peak<br># | RetTime<br>[min] | Туре  | Width<br>[min] | Area<br>[mAU*s] | Height<br>[mAU] | Area<br>% |
|                                         |                       |                      |                          |           |           |                  |       |                |                 |                 |           |
| 1                                       | 17.028 BB             | 0.4758 6887          | .20654 207.22250         | 26.4658   | 1         | 17.040           | BB    | 0.5113         | 3.49621e4       | 991.82367       | 97.0627   |
| 2                                       | 19.673 BV             | 0.5220 5864          | .97705 162.92426         | 22.5376   | 2         | 19.746           | BB    | 0.3912         | 344.38980       | 12.20428        | 0.9561    |
| 3                                       | 20.826 VB             | 0.5807 6415          | .82471 157.01456         | 24.6544   | 3         | 20.916           | BB    | 0.4774         | 713.63147       | 20.33602        | 1.9812    |
| 4                                       | 22.970 BB             | 0.6231 6855          | .07031 155.87086         | 26.3423   |           |                  |       |                |                 |                 |           |

(15,4S)-1-(2-bromophenyl)-4-phenylbutane-1,4-diol (6c)



99% yield, >100:1 dr, >99.9% ee. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.56 (dd, J = 7.8, 1.7 Hz, 1H), 7.50 (dd, J = 8.0, 1.3 Hz, 1H), 7.37 – 7.27 (m, 6H), 7.11 (td, J = 7.7, 1.8 Hz, 1H), 5.08 (dd, J = 8.7, 2.6 Hz, 1H), 4.73 (dd, J = 8.4, 3.7 Hz, 1H), 2.86 (s, 2H), 2.02 – 1.77 (m, 4H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  144.53, 143.60, 132.64, 128.75, 128.51, 127.72, 127.61, 127.29, 125.84, 121.90, 74.71, 73.13, 35.94, 34.58.

**Optical Rotation**:  $[\alpha]_D^{25} = -39.5$  (c = 1.00, CHCl<sub>3</sub>). The enantiomeric excess was determined by HPLC on Chiral AD-3 column, 210 nm, 30 °C, n-hexane: i-PrOH = 90:10; flow 1.0 mL/min; t<sub>R</sub> (major) = 15.54 min.



(1S,4S)-1-(4-chlorophenyl)-4-(2-fluorophenyl)butane-1,4-diol (6d)



99% yield, >100:1 dr, 99.8% ee. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.45 (td, *J* = 7.6, 1.9 Hz, 1H), 7.33 – 7.21 (m, 5H), 7.14 (td, *J* = 7.5, 1.2 Hz, 1H), 7.04 – 6.97 (m, 1H), 5.02 (dd, *J* = 7.8, 3.8 Hz, 1H), 4.75 – 4.61 (m, 1H), 3.14 (s, 2H), 1.95 – 1.79 (m, 4H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 171.29, 160.83, 158.40, 143.03, 133.12, 131.50, 131.37, 128.91, 128.83, 128.58, 127.19, 124.32, 124.29, 115.40, 115.18, 73.83, 68.29, 68.26, 35.84, 34.63.

**Optical Rotation**:  $[\alpha]_D^{25} = -37.8$  (c = 1.00, CHCl<sub>3</sub>). The enantiomeric excess was determined by HPLC on Chiral OJ-H column, 210 nm, 30 °C, n-hexane: i-PrOH = 85:15; flow 1.0 mL/min; t<sub>R</sub> (major) = 15.16 min, t<sub>R</sub> (minor) = 14.05 min, 16.71 min.



(1S,4S)-1-(2-bromophenyl)-4-(4-chlorophenyl)butane-1,4-diol (6e)



99% yield, >100:1 dr, >99.9% ee. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.53 (ddd, J = 15.7,
7.9, 1.5 Hz, 2H), 7.28 (q, J = 8.6 Hz, 5H), 7.13 (td, J = 7.6, 1.7 Hz, 1H), 5.05 (dd, J = 12

8.7, 2.7 Hz, 1H), 4.68 (dd, *J* = 7.7, 4.1 Hz, 1H), 3.51 (s, 2H), 1.96 – 1.71 (m, 4H). <sup>13</sup>C **NMR** (101 MHz, CDCl<sub>3</sub>) δ 143.42, 143.01, 133.10, 132.66, 128.83, 128.57, 127.74, 127.21, 127.18, 121.82, 73.90, 73.08, 36.14, 34.45.

**Optical Rotation**:  $[\alpha]_D^{25} = -55.1$  (c = 1.00, CHCl<sub>3</sub>). The enantiomeric excess was determined by HPLC on Chiral AD-3 column, 210 nm, 30 °C, n-hexane: i-PrOH = 90:10; flow 1.0 mL/min; t<sub>R</sub> (major) = 15.62min, t<sub>R</sub> (minor) = 16.67 min.



(1S,4S)-1-(3-fluorophenyl)-4-phenylbutane-1,4-diol (6f)



99% yield, >100:1 dr, >99.9% ee. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.32 (d, J = 18.3 Hz, 4H), 7.28 – 7.24 (m, 2H), 7.09 – 7.01 (m, 2H), 6.96 – 6.90 (m, 1H), 4.70 – 4.65 (m, 2H), 3.25 (s, 1H), 2.92 (s, 1H), 1.92 – 1.78 (m, 4H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  163.77, 162.14, 147.45, 147.41, 144.47, 129.93, 129.87, 128.52, 127.63, 125.79, 121.40, 121.38, 114.29, 114.15, 112.80, 112.66, 74.59, 73.88, 73.86, 36.00, 35.70.

**Optical Rotation**:  $[\alpha]_D^{25} = -27.6$  (c = 1.00, CHCl<sub>3</sub>). The enantiomeric excess was determined by HPLC on Chiral AD-3 column, 210 nm, 30 °C, n-hexane: i-PrOH = 90:10; flow 1.0 mL/min; t<sub>R</sub> (major) = 9.39 min.



(1S,4S)-1-(4-chlorophenyl)-4-(3-fluorophenyl)butane-1,4-diol (6g)



99% yield, >100:1 dr, >99.9% ee. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.30 – 7.26 (m, 3H), 7.21 (d, *J* = 8.5 Hz, 2H), 7.03 (t, *J* = 8.3 Hz, 2H), 6.94 (td, *J* = 9.0, 8.4, 3.2 Hz, 1H), 4.63 (s, 2H), 3.33 (d, *J* = 12.6 Hz, 2H), 1.87 – 1.77 (m, 4H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  164.18, 161.73, 147.28, 147.21, 142.97, 133.16, 130.01, 129.93, 128.60, 127.16, 121.34, 121.32, 114.44, 114.23, 112.78, 112.56, 73.85, 73.82, 35.85.

**Optical Rotation**:  $[\alpha]_D^{25} = -33.2$  (c = 1.00, CHCl<sub>3</sub>). The enantiomeric excess was determined by HPLC on Chiral AD-3 column, 210 nm, 30 °C, n-hexane: i-PrOH = 90:10; flow 1.0 mL/min; t<sub>R</sub> (major) = 15.07 min.



| Signal 1: DAD1 C, Sig=210,4 Ref=360,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Peak RetTime Type         Width         Area         Height         Area           #         [min]         [min]         [mAU*s]         [mAU]         %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Signal 1: DAD1 C, Sig=210,4 Ref=360,100<br>Peak RetTime Type Width Area Height Area<br># [min] [min] [mAU*s] [mAU] % |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<> | <br>1 15.072 BB 0.3393 4094.70142 179.41325 100.0000                                                                 |

#### (1S,4S)-1-phenyl-4-(p-tolyl)butane-1,4-diol (6h)



99% yield, 19:1 dr, >99.9% ee. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.36 – 7.24 (m, 5H),
7.21 (d, J = 8.2 Hz, 2H), 7.14 (d, J = 7.9 Hz, 2H), 4.66 (ddd, J = 11.7, 7.7, 4.3 Hz, 2H),
2.87 (d, J = 43.6 Hz, 2H), 2.34 (s, 3H), 1.93 – 1.75 (m, 4H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 144.71, 141.68, 137.18, 129.14, 128.44, 127.47, 125.86, 125.80, 74.60, 74.47,
36.00, 35.85, 21.12.

**Optical Rotation**:  $[\alpha]_D^{25} = -35.1$  (c = 1.00, CHCl<sub>3</sub>). The enantiomeric excess was determined by HPLC on Chiral IC column, 210 nm, 25 °C, n-hexane: i-PrOH = 88:12; flow 1.0 mL/min; t<sub>R</sub> (major) = 14.40 min, t<sub>R</sub> (minor) = 13.83 min, 15.62 min.



(1S,4S)-1-(4-fluorophenyl)-4-phenylbutane-1,4-diol (6i)



99% yield, >100:1 dr, 98.5% ee. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.36 – 7.26 (m, 7H),
7.01 (t, J = 8.7 Hz, 2H), 4.75 – 4.65 (m, 2H), 2.77 (s, 2H), 1.95 – 1.75 (m, 4H). <sup>13</sup>C
NMR (101 MHz, CDCl<sub>3</sub>) δ 163.35, 160.92, 144.53, 140.41, 140.38, 128.53, 127.64,
127.49, 127.41, 125.79, 115.35, 115.14, 74.65, 73.96, 36.06, 35.78.

**Optical Rotation**:  $[\alpha]_D^{25} = -37.4$  (c = 1.00, CHCl<sub>3</sub>). The enantiomeric excess was determined by HPLC on Chiral IF column, 210 nm, 25 °C, n-hexane: i-PrOH = 88:12; flow 1.0 mL/min; t<sub>R</sub> (major) = 9.31 min, t<sub>R</sub> (minor) = 10.56 min, 11.47 min, 12.40 min.



### (15,45)-1-(4-chlorophenyl)-4-phenylbutane-1,4-diol (6j)



99% yield, >100:1 dr, 99.6% ee. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.27 (d, J = 1.1 Hz, 1H), 7.25 - 7.22 (m, 3H), 7.22 - 7.17 (m, 5H), 4.62 (td, J = 7.6, 4.4 Hz, 2H), 2.65 (s, 2H), 1.86 - 1.70 (m, 4H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 144.46, 143.14, 133.09, 128.57, 128.54, 127.67, 127.22, 125.77, 74.64, 73.88, 36.02, 35.69.

**Optical Rotation**:  $[\alpha]_D^{25} = -22.8$  (c = 1.00, CHCl<sub>3</sub>). The enantiomeric excess was determined by HPLC on Chiral AD-3 column, 220 nm, 30 °C, n-hexane: i-PrOH = 90:10; flow 1.0 mL/min; t<sub>R</sub> (major) = 15.98 min, t<sub>R</sub> (minor) = 19.00 min, 19.36 min, 21.10 min.



(1*S*,4*S*)-1,4-di-*p*-tolylbutane-1,4-diol (6k)



99% yield, 76:1 dr, >99.9% ee. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.94 (d, J = 8.1 Hz, 4H),
7.28 (s, 4H), 3.42 (s, 4H), 2.41 (s, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 198.45, 143.90,
134.37, 129.28, 128.26, 32.54, 21.67.

**Optical Rotation**:  $[\alpha]_D^{25} = -49.6$  (c = 0.50, CHCl<sub>3</sub>). The enantiomeric excess was determined by HPLC on Chiral AD-3 column, 220 nm, 30 °C, n-hexane: i-PrOH = 90:10; flow 1.0 mL/min; t<sub>R</sub> (major) = 18.22 min, t<sub>R</sub> (minor) = 23.42 min.



| Signal 1: DAD1 A, Sig=220,4 Ref=360,100 |                            |                |                            |                                        |                                   | Sign                          | al 1: DAD | 01 A,            | Sig=220  | ,4 Ref=360,1     | 100                    |                      |                   |
|-----------------------------------------|----------------------------|----------------|----------------------------|----------------------------------------|-----------------------------------|-------------------------------|-----------|------------------|----------|------------------|------------------------|----------------------|-------------------|
| Peak<br>#                               | RetTime<br>[min]<br>       | Туре           | Width<br>[min]             | Area<br>[mAU*s]<br>                    | Height<br>[mAU]                   | Area<br>%                     | Peak<br># | RetTime<br>[min] | Туре     | Width<br>[min]   | Area<br>[mAU*s]        | Height<br>[mAU]      | Area<br>%         |
| 1<br>2<br>3                             | 18.249<br>22.323<br>23.403 | BB<br>BV<br>VB | 0.4777<br>0.5166<br>0.6388 | 3228.04712<br>2769.92554<br>6234.21875 | 97.13160<br>79.87865<br>139.10869 | 26.3898<br>22.6446<br>50.9657 | 1         | 18.220<br>23.416 | BB<br>BB | 0.4844<br>0.5606 | 1.51410e4<br>197.89963 | 450.19681<br>4.70646 | 98.7098<br>1.2902 |

(1S,4S)-1-(4-chlorophenyl)-4-(p-tolyl)butane-1,4-diol (6l)



99% yield, >100:1 dr, 99.6% ee. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.30 (d, *J* = 8.5 Hz, 2H), 7.28 – 7.19 (m, 4H), 7.16 (d, *J* = 7.9 Hz, 2H), 4.66 (dt, *J* = 7.7, 3.6 Hz, 2H), 3.23 (s, 1H), 2.80 (s, 1H), 2.36 (s, 3H), 1.92 – 1.76 (m, 4H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 143.21, 141.50, 137.33, 133.00, 129.19, 128.52, 127.23, 125.73, 74.47, 73.85, 36.14, 35.69, 21.12.

**Optical Rotation**:  $[\alpha]_D^{25} = -49.5$  (c = 1.00, CHCl<sub>3</sub>). The enantiomeric excess was determined by HPLC on Chiral AD-3 column, 210 nm, 30 °C, n-hexane: i-PrOH = 90:10; flow 1.0 mL/min; t<sub>R</sub> (major) = 16.31 min, t<sub>R</sub> (minor) = 18.96 min, 19.42 min.



(1S,4S)-1-(4-chlorophenyl)-4-(4-fluorophenyl)butane-1,4-diol (6m)



99% yield, >100:1 dr, 97.4% ee. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.29 (d, J = 8.3 Hz, 3H), 7.23 (d, J = 8.6 Hz, 3H), 7.00 (t, J = 8.7 Hz, 2H), 4.65 (dd, J = 7.4, 3.4 Hz, 2H), 3.01 (d, J = 40.8 Hz, 2H), 1.93 – 1.72 (m, 4H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 163.39, 160.95, 143.03, 140.25, 140.21, 133.16, 128.60, 127.43, 127.35, 127.17, 115.41, 115.19, 73.93, 73.87, 35.96, 35.93.

**Optical Rotation**:  $[\alpha]_D^{25} = -42.1$  (c = 1.00, CHCl<sub>3</sub>). The enantiomeric excess was determined by HPLC on Chiral IF column, 210 nm, 30 °C, n-hexane: i-PrOH = 88:12; flow 1.0 mL/min; t<sub>R</sub> (major) = 8.87 min, t<sub>R</sub> (minor) = 9.47 min, 10.39 min.



#### (15,4S)-1,4-bis(4-chlorophenyl)butane-1,4-diol (6n)



99% yield, >100:1 dr, >99.9% ee. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.29 (d, J = 8.2 Hz, 4H), 7.23 (d, J = 8.1 Hz, 4H), 4.65 (d, J = 4.7 Hz, 2H), 2.92 (s, 2H), 1.88 – 1.73 (m, 4H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 141.93, 132.16, 127.58, 126.12, 72.82, 34.83.

**Optical Rotation**:  $[\alpha]_D^{25} = -37.8$  (c = 0.50, CHCl<sub>3</sub>). The enantiomeric excess was determined by HPLC on Chiral AD-3 column, 220 nm, 30 °C, n-hexane: i-PrOH = 90:10; flow 1.0 mL/min; t<sub>R</sub> (major) = 17.37 min, t<sub>R</sub> (minor) = 20.09 min.



(15,45)-1-(2,5-difluorophenyl)-4-phenylbutane-1,4-diol (60)



99% yield, >100:1 dr, >99.9% ee. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.33 (d, *J* = 6.6 Hz, 4H), 7.29 – 7.26 (m, 1H), 7.22 – 7.15 (m, 1H), 6.99 – 6.83 (m, 2H), 4.97 (t, *J* = 5.7 Hz, 1H), 4.69 (dd, *J* = 7.9, 3.5 Hz, 1H), 3.04 (s, 2H), 1.96 – 1.80 (m, 4H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 160.18, 160.16, 157.77, 157.75, 156.53, 154.16, 154.14, 144.32, 133.76, 133.69, 133.60, 133.53, 128.54, 127.69, 125.78, 116.38, 116.30, 116.14, 116.05, 115.03, 114.95, 114.79, 114.70, 113.96, 113.91, 113.71, 113.66, 74.63, 67.89, 35.60, 34.91.

**Optical Rotation**:  $[\alpha]_D^{25} = -40.7$  (c = 1.00, CHCl<sub>3</sub>). The enantiomeric excess was determined by HPLC on Chiral OD-3 column, 210 nm, 30 °C, n-hexane: i-PrOH = 90:10; flow 1.0 mL/min; t<sub>R</sub> (major) = 16.25 min.



(1S,4S)-1-(5-fluoro-2-methylphenyl)-4-phenylbutane-1,4-diol (6p)



99% yield, 25:1 dr, >99.9% ee. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.34 (d, *J* = 4.4 Hz, 4H), 7.28 (d, *J* = 4.3 Hz, 1H), 7.20 (dd, *J* = 10.2, 2.9 Hz, 1H), 7.04 (dd, *J* = 8.4, 5.8 Hz, 1H), 6.83 (td, *J* = 8.3, 2.8 Hz, 1H), 4.88 (t, *J* = 6.2 Hz, 1H), 4.71 (dd, *J* = 8.2, 4.5 Hz, 1H), 3.04 (s, 2H), 2.20 (s, 3H), 2.00 – 1.86 (m, 2H), 1.78 (q, *J* = 7.0, 6.5 Hz, 2H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>)  $\delta$  162.89, 160.47, 145.09, 145.03, 144.50, 131.60, 131.52, 129.51, 129.48, 128.53, 127.63, 125.79, 113.77, 113.57, 112.22, 112.00, 74.66, 70.60, 70.59, 36.01, 34.80, 18.24.

**Optical Rotation**:  $[\alpha]_D^{25} = -60.4$  (c = 1.00, CHCl<sub>3</sub>). The enantiomeric excess was determined by HPLC on Chiral IF column, 210 nm, 30 °C, n-hexane: i-PrOH = 88:12; flow 1.0 mL/min; t<sub>R</sub> (major) = 8.85 min, t<sub>R</sub> (minor) = 9.61 min, 10.94 min.



| Signal 1: DAD1 C, Sig=210,4 Ref=360,100 |                       |                            |                                |           | Signal 1: DAD1 C, Sig=210,4 Ref=360,100                                   |
|-----------------------------------------|-----------------------|----------------------------|--------------------------------|-----------|---------------------------------------------------------------------------|
| Peak<br>#                               | RetTime Type<br>[min] | Width Area<br>[min] [mAU*s | Height<br>] [mAU]              | Area<br>% | Peak RetTime Type Width Area Height Area<br># [min] [min] [mAU*s] [mAU] % |
|                                         | 9 090 PP              | 0 1012 2046 08             | 780 321 43826                  | 22 0150   |                                                                           |
| 2                                       | 9.755 BV              | 0.2045 4993.86             | 789 321.43820<br>279 377.05154 | 27.8605   | 1 8.848 BV R 0.1763 7074.02197 614.70929 96.1588                          |
| 3                                       | 10.202 VB             | 0.2193 3868.75             | 366 272.99463                  | 21.5836   | 2 9.611 VB E 0.2172 134.93028 9.19562 1.8341                              |
| 4                                       | 11.187 BB             | 0.2488 5115.82             | 129 316.20224                  | 28.5409   | 3 10.935 88 0.2378 147.65228 9.27228 2.00/1                               |
|                                         |                       |                            |                                |           |                                                                           |

(15,45)-1-(4-chlorophenyl)-4-(2,5-difluorophenyl)butane-1,4-diol (6q)



99% yield, 82:1 dr, >99.9% ee. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.35 – 7.24 (m, 5H), 7.20 (ddd, J = 8.9, 5.6, 3.1 Hz, 1H), 7.02 – 6.88 (m, 2H), 4.99 (s, 1H), 4.70 (s, 1H), 3.46 (d, J = 16.2 Hz, 1H), 3.09 (s, 1H), 1.95 – 1.81 (m, 4H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ 160.18, 160.15, 157.77, 157.75, 156.48, 154.11, 154.09, 142.83, 133.58, 133.51, 133.42, 133.35, 133.27, 128.64, 127.14, 116.46, 116.37, 116.21, 116.12, 115.16, 115.08, 114.92, 114.83, 113.87, 113.82, 113.62, 113.58, 73.87, 67.83, 35.67, 34.67. **Optical Rotation**:  $[\alpha]_D$  <sup>25</sup> = -43.3 (c = 1.00, CHCl<sub>3</sub>). The enantiomeric excess was determined by HPLC on Chiral IA column, 210 nm, 30 °C, n-hexane: i-PrOH = 88:12; flow 1.0 mL/min; t<sub>R</sub> (major) = 10.45 min, t<sub>R</sub> (minor) = 13.01 min.



(1S,4S)-1,4-di(thiophen-2-yl)butane-1,4-diol (6r)



99% yield, >100:1 dr, >99.9% ee. <sup>1</sup>**H NMR** (400 MHz, DMSO-d6) δ 6.48 (d, *J* = 5.0 Hz, 2H), 6.11 – 5.98 (m, 4H), 4.67 (d, *J* = 4.7 Hz, 2H), 3.90 (q, *J* = 5.1 Hz, 2H), 0.98 – 0.72 (m, 4H). <sup>13</sup>**C NMR** (101 MHz, DMSO-d6) δ 156.03, 131.63, 129.11, 127.96, 73.41, 40.93.

**Optical Rotation**:  $[\alpha]_D^{25} = -18.1$  (c = 1.00, CHCl<sub>3</sub>). The enantiomeric excess was determined by HPLC on Chiral AD-H column, 220 nm, 30 °C, n-hexane: i-PrOH = 90:10; flow 1.0 mL/min; t<sub>R</sub> (major) = 22.33 min, t<sub>R</sub> (minor) = 24.23 min.



#### (1S,4R)-1-phenylpentane-1,4-dio (6s)



99% yield, 7:4 dr, >99.9% ee. <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) δ 7.37 – 7.20 (m, 5H), 4.71 – 4.58 (m, 1H), 3.78 (dq, *J* = 24.2, 6.1 Hz, 1H), 1.87 – 1.74 (m, 2H), 1.59 – 1.39 (m, 2H), 1.19 – 1.09 (m, 3H). <sup>13</sup>**C NMR** (151 MHz, CDCl<sub>3</sub>) δ 144.93, 144.75, 128.39, 127.39, 127.35, 125.86, 125.83, 74.66, 74.13, 68.22, 67.73, 36.19, 36.00, 35.06, 34.94, 23.62, 23.32. **Optical Rotation**: The enantiomeric excess was determined by HPLC on Chiral AD-3 column, 210 nm, 30 °C, n-hexane: i-PrOH = 90:10; flow 1.0 mL/min;  $t_R$  (major) = 9.60 min,  $t_R$  (minor) = 10.82 min.



(1S,4S)-1-(furan-2-yl)-4-phenylbutane-1,4-diol (6t)



99% yield, 75:1 dr, >99.9% ee. <sup>1</sup>**H NMR** (600 MHz, CDCl3) δ 7.34 (d, J = 4.4 Hz, 5H), 7.27 (q, J = 4.3 Hz, 1H), 6.34 – 6.29 (m, 1H), 6.21 (d, J = 3.2 Hz, 1H), 4.73 (dt, J = 8.0, 5.1 Hz, 2H), 2.58 (d, J = 113.7 Hz, 2H), 2.01 – 1.91 (m, 3H), 1.87 – 1.80 (m, 1H). <sup>13</sup>**C NMR** (151 MHz, CDCl3) δ 156.61, 144.49, 141.91, 128.52, 127.63, 125.82, 110.16, 105.80, 74.45, 67.87, 35.41, 32.25.

**Optical Rotation**: The enantiomeric excess was determined by HPLC on Chiral AS-3 column, 220 nm, 25 °C, n-hexane: i-PrOH = 90:10; flow 1.0 mL/min;  $t_R$  (major) = 12.91 min,  $t_R$  (minor) = 14.69 min.

| DAD1.C. Sigr220.4 Refr380.100 (D1CHEMSTA, 259.RAC.NEW-20211101 2021-11-01 14-21-06/DrineFdted=006.D) | DAD1 C. Sig=220.4 Ref=360.100 (Sona,JY)SJY-259-rac-new-20211101 2021-11-01 14-21-04/OnlineEdited=007.D) |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| nAU j E g                                                                                            | nAU - 8                                                                                                 |
| 2 2 C                                                                                                | 500 -                                                                                                   |
| 160-                                                                                                 |                                                                                                         |
| 1 6                                                                                                  |                                                                                                         |
| 140 -                                                                                                | 400 -                                                                                                   |
|                                                                                                      |                                                                                                         |
|                                                                                                      |                                                                                                         |
| 100-                                                                                                 | 300 -                                                                                                   |
|                                                                                                      |                                                                                                         |
| 80 -                                                                                                 |                                                                                                         |
|                                                                                                      | 200-                                                                                                    |
|                                                                                                      |                                                                                                         |
| 40-                                                                                                  |                                                                                                         |
|                                                                                                      | 100                                                                                                     |
|                                                                                                      |                                                                                                         |
| of Municipal VV                                                                                      |                                                                                                         |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                              |                                                                                                         |
| 5 10 15 20 25 mm                                                                                     | 5 10 15 20 25 #19                                                                                       |
| Signal 1. DAD1 C Sig=220 / Ref=360 100                                                               |                                                                                                         |
| 51ghai 1. DADI C, 51g-220,4 Kei-500,100                                                              |                                                                                                         |
|                                                                                                      | Signal I: DADI C, Sig=220,4 Ref=360,100                                                                 |
| Peak RetTime Type Width Area Height Area                                                             |                                                                                                         |
| # [min] [min] [mAII*s] [mAII] %                                                                      | Peak RetTime Type Width Area Height Area                                                                |
| " [min] [min] [mio] 0                                                                                | # [min] [min] [m]][to] [m]]] 9                                                                          |
|                                                                                                      | T [min] [min] [mAO"S] [mAO] 8                                                                           |
| 1 12.877 BV 0.3478 4011.55737 180.17473 26.0225                                                      |                                                                                                         |
| 2 13.668 VV 0.3406 3694.20044 167.93747 23.9638                                                      | 1 12.905 BB 0.3640 1.21743e4 526.04846 98.7458                                                          |
|                                                                                                      | 2 14 685 BB 0.3579 154 63133 6 53953 1.2542                                                             |
| 5 17.011 VD 0.5050 5000.17005 154.05500 25.7550                                                      |                                                                                                         |
| 4 16.168 BB 0.4318 4041.80957 145.61195 26.2187                                                      |                                                                                                         |
|                                                                                                      |                                                                                                         |

# 4. General procedure for asymmetric hydrogenation of benzil (7)



To a 4.0 mL vial was added the catalyst precursor  $[Ir(COD)CI]_2$  (6.72 mg,  $1.0 \times 10^{-2}$  mmol), ligand ( $R_C,R_C,S_{FC}$ )-*f*-amphox (12.2 mg,  $2.2 \times 10^{-2}$  mmol) and anhydrous THF (2.0 mL) in the argon-filled glovebox. The mixture was stirred for 2.0 h at 25 °C giving orange red solution. And then benzil 7 (0.1 mmol), Cs<sub>2</sub>CO<sub>3</sub> (1.63 mg, 0.005 mmol), and anhydrous THF (1.0 mL) were added into a 5 mL hydrogenation vessel, and a solution of Ir/( $R_C,R_C,S_{FC}$ )-*f*-amphox in anhydrous THF (10 µL) was added *via* an injection port. Then the vessel was placed in an autoclave, closed it and moved it out from golvebox. The autoclave quickly purged with hydrogen gas for three times, then pressurized to 40 atm H<sub>2</sub>. The reaction solution was stirred at room temperature (25 °C - 30 °C) until for 24 h, then released pressure carefully. The product was purified by flash chromatography on silica gel with ethyl acetate.

#### (1*R*,2*R*)-1,2-diphenylethane-1,2-diol (8a)



99% yield, 7:3 dr, >99.9% ee. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.30 (d, J = 6.2 Hz, 3H),
7.22 (t, J = 6.1 Hz, 5H), 7.10 (s, 2H), 4.80 (s, 1H), 4.67 (s, 1H), 3.10 (s, 1H), 2.44 (s, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 139.77, 128.21, 128.13, 128.08, 127.93, 127.13, 127.02, 79.02, 78.06.

**Optical Rotation**: The enantiomeric excess was determined by HPLC on Chiral OJ-H column, 210 nm, 25 °C, n-hexane: i-PrOH = 90:10; flow 0.5 mL/min;  $t_R$  (major) = 31.73 min. The absolute configuration was assigned by comparing with literature data.<sup>[2]</sup>

<sup>[2]</sup> T. Touge, T. Hakamata, H. Nara, T. Kobayashi, N. Sayo, T. Saito, Y. Kayaki, and
T. Ikariya, J. Am. Chem. Soc., 2011, 133 (38), 14960-14963.



## 5. General procedure for synthesis of 1,5-diketones (9)



Aluminum chloride (1.33 g, 10 mmol) was added to the solution of glutaryl chloride (845 mg) in benzene (10 mL) at room temperature. The solution was stirred for 4 h at 25 °C. After completion of the reaction, add saturated ammonium chloride solution to the solution. Extracted with ethyl acetate, organic layer was dried over sodium sulphate and concentrated under reduced pressure. The obtained residue was purified by flash chromatography on silica gel.

#### 1,5-di-*p*-tolylpentane-1,5-dione (9b)



65% yield. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.88 (d, J = 8.3 Hz, 4H), 7.25 (d, J = 8.0 Hz, 4H), 3.08 (t, J = 7.0 Hz, 4H), 2.40 (s, 6H), 2.18 (p, J = 6.9 Hz, 2H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 199.61, 143.82, 134.43, 129.28, 128.22, 37.57, 21.64, 18.95.

#### 1,5-bis(4-isopropylphenyl)pentane-1,5-dione (9c)



49% yield. <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.92 (dd, J = 8.4, 1.9 Hz, 4H), 7.34 – 7.28 (m, 4H), 3.08 (t, J = 7.0 Hz, 4H), 2.96 (p, J = 6.9 Hz, 2H), 2.18 (p, J = 7.0 Hz, 2H), 1.26 (d, J = 7.0 Hz, 12H). <sup>13</sup>**C** NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  199.63, 154.55, 134.78, 128.36, 126.68, 37.59, 34.26, 23.69, 19.00.

# 6. General procedure for asymmetric hydrogenation of 1,5-diketones



To a 4.0 mL vial was added the catalyst precursor  $[Ir(COD)Cl]_2$  (6.72 mg,  $1.0 \times 10^{-2}$  mmol), ligand ( $R_C$ , $R_C$ , $S_{FC}$ )-*f*-amphox (12.2 mg,  $2.2 \times 10^{-2}$  mmol) and anhydrous IPA (2.0 mL) in the argon-filled glovebox. The mixture was stirred for 2.0 h at 25 °C giving orange red solution. And then 1,5-diketone **9** (0.1 mmol), Cs<sub>2</sub>CO<sub>3</sub> (3.25 mg, 0.01 mmol.) were added into a 5 mL hydrogenation vessel. 1.0 mL anhydrous IPA was added as solvent and a solution of  $Ir/(R_C,R_C,S_{FC})$ -*f*-amphox in anhydrous IPA (10 µL) was added via an injection port. Then the vessel was placed in an autoclave, closed it and moved it out from golvebox. The autoclave quickly purged with hydrogen gas for three times, then pressurized to 40 atm H<sub>2</sub>. The reaction solution was stirred at room temperature (25 °C - 30 °C) until for 12 h, then released pressure carefully. The solution of reaction mixture was purified by flash chromatography on silica gel with ethyl acetate and the solvent was removed under reduced pressure. The evalue was determined by chiral HPLC analysis of the hydrogenation product chiral diol directly. The absolute configurations of 1,5-diol were assigned by analogy.

## (1*S*,5*S*)-1,5-diphenylpentane-1,5-diol (10a)



99% yield, >100:1 dr, >99.9% ee. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.36 – 7.29 (m, 8H), 7.29 – 7.25 (m, 2H), 4.66 (ddd, *J* = 8.2, 5.3, 3.0 Hz, 2H), 2.01 (d, *J* = 3.2 Hz, 2H), 1.88 – 1.79 (m, 2H), 1.76 – 1.68 (m, 2H), 1.48 (p, *J* = 7.8 Hz, 2H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 144.78, 128.49, 127.57, 125.84, 74.46, 38.82, 22.29. **Optical Rotation**: The enantiomeric excess was determined by HPLC on Chiral OJ-H column, 210 nm, 25 °C, n-hexane: i-PrOH = 90:10; flow 1.0 mL/min;  $t_R$  (major) = 32.37 min.







99% yield, 92:1 dr, >99.9% ee. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.20 (d, J = 7.7 Hz, 4H), 7.14 (d, J = 7.7 Hz, 4H), 4.63 – 4.57 (m, 2H), 2.34 (s, 6H), 2.13 (s, 2H), 1.81 (dq, J = 15.3, 7.8 Hz, 2H), 1.69 (td, J = 13.5, 7.9 Hz, 2H), 1.45 (p, J = 7.7 Hz, 2H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  141.89, 137.17, 129.14, 125.82, 74.23, 38.78, 22.38, 21.13.

**Optical Rotation**: The enantiomeric excess was determined by HPLC on Chiral AD-3 column, 220 nm, 25 °C, n-hexane: i-PrOH = 90:10; flow 1.0 mL/min;  $t_R$  (major) = 40.14 min,  $t_R$  (minor) = 26.76 min.



| Signal 1: DAD1 C, Sig=220,4 Ref=360,100                                                                                                                                                                                                                                                                          | Signal 1: DAD1 C, Sig=220,4 Ref=360,100                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Peak RetTime Type Width Area Height Area<br># [min] [min] [mAU*s] [mAU] %<br>                                                                                                                                                                                                                                    | Peak RetTime Type Width Area Height Area<br># [min] [min] [mAU*s] [mAU] %                     |
| 1         22.728         BB         0.7805         1.37752e4         253.30539         23.3546           2         27.792         BB         0.9635         3.17318e4         471.27997         53.7984           3         40.555         BB         1.3874         1.34757e4         140.20245         22.8469 | 1 26.756 BB 0.8332 318.14532 4.59847 1.0747<br>2 40.138 BB 1.3651 2.92854e4 308.60568 98.9253 |

(15,55)-1,5-bis(4-isopropylphenyl)pentane-1,5-diol (10c)



99% yield, >100:1 dr, >99.9% ee. <sup>1</sup>**H NMR** (600 MHz, CDCl3)  $\delta$  7.24 (d, J = 8.2 Hz, 4H), 7.19 (d, J = 8.3 Hz, 4H), 4.62 (dd, J = 8.0, 5.3 Hz, 2H), 2.90 (p, J = 6.9 Hz, 2H), 2.13 (s, 2H), 1.83 (dq, J = 15.1, 7.7 Hz, 2H), 1.71 (td, J = 13.4, 7.8 Hz, 2H), 1.49 (p, J = 7.7 Hz, 2H), 1.25 (d, J = 6.9 Hz, 12H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  147.15, 141.20, 125.46, 124.82, 73.23, 37.67, 32.77, 22.98, 21.42.

**Optical Rotation**: The enantiomeric excess was determined by HPLC on Chiral OD-3 column, 220 nm, 25 °C, n-hexane: i-PrOH = 90:10; flow 1.0 mL/min;  $t_R$  (major) = 11.82 min.



# 7. Mechanistic investigation



To a 4.0 mL vial was added the catalyst precursor  $[Ir(COD)Cl]_2$  (6.72 mg,  $1.0 \times 10^{-2}$  mmol), ligand ( $R_C,R_C,S_{FC}$ )-*f*-amphox (12.2 mg,  $2.2 \times 10^{-2}$  mmol) and anhydrous toluene (2.0 mL) in the argon-filled glovebox. The mixture was stirred for 2 h at 25 °C giving orange red solution. And then 0.1 mmol of 1,4-diphenylbutane-1,4-dione (**5a**), KOH (0.56 mg, 0.01 mmol) were added into a 5 mL hydrogenation vessel. 1.0 mL anhydrous MTBE was added as solvent and a solution of  $Ir/(R_C,R_C,S_{FC})$ -*f*-amphox in anhydrous toluene (10 µL) was added *via* an injection port. Then the vessel was placed in an autoclave, closed it and moved it out from golvebox. The autoclave quickly purged with hydrogen gas for three times, then pressurized to 40 atm H<sub>2</sub>. The reaction solution was stirred at room temperature for 30 min, then released pressure carefully.

The reaction mixture was purified by flash chromatography on silica gel with ethyl acetate. The mono-reduced product (*S*)-4-hydroxy-1,4-diphenylbutan-1-one (**5a'**) could be obtained in 6.7% yield with 99% ee, and only a trace amount of **6a** was detected.

#### (S)-4-hydroxy-1,4-diphenylbutan-1-one (5a')



6.7% yield, 99% ee. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.94 (dd, *J* = 8.4, 1.4 Hz, 2H), 7.58 - 7.53 (m, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.40 - 7.33 (m, 4H), 7.30 - 7.26 (m, 1H), 4.83 (dd, *J* = 7.4, 5.3 Hz, 1H), 3.11 (t, *J* = 7.0 Hz, 2H), 2.50 (s, 1H), 2.26 - 2.16 (m, 2H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 200.59, 144.37, 136.85, 133.16, 128.61, 128.54, 128.12, 127.61, 125.78, 73.63, 34.79, 33.08.

**Optical Rotation**:  $[\alpha]_D^{22} = -23.8$  (c = 1.00, CHCl<sub>3</sub>). The enantiomeric excess was determined by HPLC on Chiral OJ-H column, 240 nm, 30 °C, n-hexane: i-PrOH = 90:10;

flow 1.0 mL/min;  $t_R$  (major) = 16.89 min,  $t_R$  (minor) = 19.28 min. The absolute configuration of 1,4-diphenylbutane-1,4-diol **5a**' was assigned to be (*S*) by comparing the optical rotation with literature data.<sup>[3]</sup>



The isolation of the intermediate revealed the nature of this stepwise transformation from 1,4-diketones to 1,4-diols.



<sup>[3]</sup> Y. Xia, L. Lin, F. Chang, X. Fu, X. Liu and X. Feng, *Angew. Chem. Int. Ed.* 2015, 54,13748-13752.

# 8. Synthesis of (2R,5R)-1-benzyl-2,5-diphenylpyrrolidine (6a')



(2R,5R)-1-benzyl-2,5-diphenylpyrrolidine (**6a'**) was prepared as described in literature.<sup>[4]</sup> To the solution of methanesulfonyl chloride (0.2 mL, 2.6 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (10 mL) at -20 °C was added a solution of (1*S*,4*S*)-1,4-diphenylbutane-1,4-diol (**6a**, 242 mg, 1.0 mmol, >99% ee) and Et<sub>3</sub>N (0.42 mL, 3.0 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (10 mL). The reaction mixture was stirred for 2 h at -20 °C, then quenched with aq. sat. NH<sub>4</sub>Cl (2 mL) and extracted with DCM. The organic layer was dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated to approximately 5 mL under reduced pressure, and immediately used for the next reaction without further purification.

Benzylamine (2 mL, 20 mmol) was added at 0 °C to the solution obtained in the previous step and the mixture was stirred at 0 °C for 12 h. Then, the mixture was extracted with DCM. The organic layer was dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated under reduced pressure. The obtained residue was purified by flash chromatography on silica gel.

Using the similar procedure, the corresponding racemic sample could be obtained. Unfortunately, after repeated purification, *rac*-**6a'** still could not be completely separated from *meso*-**6a'**.

<sup>[4]</sup> M. Periasamy, M. Seenivasaperumal and V. D. Rao, Synthesis, 2003, 16, 2507-2510.

(2R,5R)-1-benzyl-2,5-diphenylpyrrolidine (6a')



69% yield, 6:1 dr, 95% ee. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.35 – 7.26 (m, 9H), 7.25 – 7.16 (m, 4H), 7.11 (d, J = 7.2 Hz, 2H), 4.27 (t, J = 5.5 Hz, 2H), 3.57 (d, J = 14.1 Hz, 1H), 3.08 (d, J = 14.1 Hz, 1H), 2.63 – 2.48 (m, 2H), 2.04 – 1.91 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 142.86, 139.06, 127.26, 127.13, 127.05, 126.84, 125.84, 125.28, 64.16, 49.91, 32.20.

**Optical Rotation**: The enantiomeric excess was determined by HPLC on Chiral OD-H column, 254 nm, 25 °C, n-hexane: i-PrOH = 98:2; flow 0.8 mL/min;  $t_R$  (major) = 5.00 min,  $t_R$  (minor) = 4.63 min.



# 9. NMR Spectra
























210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 11 (ppm)





210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 r1 (ppm)



















210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

























210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 f1 (ppm)



40 30 20 10 0 -10



















210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)









1.72 H20 1.72 H20 1.72 H20 1.72 H20 SJY-2.5F,4CI-AH.10.fid 

 7.3.3

 7.3.3

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25

 7.4.25</ — 3.42 — 3.08 } *}* 2:00 2:06 1:01 1.03<u>4</u> 1.00-4.06 1.00-8.5 8.0 6.0 5.0 4.0 f1 (ppm) 3.0 -0.5 -1.0 -1.5 9.5 9.0 7.5 7.0 6.5 5.5 3.5 2.5 2.0 1.5 1.0 0.5 0.0 4.5 
160.18

157.77

157.75

157.75

157.75

157.75

157.75

157.75

157.75

157.75

157.75

155.15

155.48

154.11

155.23

133.55

133.55

133.55

133.56

133.56

133.57

133.58

116.27

115.16

116.27

116.27

116.27

1116.27

1116.27

1115.16

1116.27

1116.27

1116.27

1116.27

1116.27

1115.16

1115.16

1115.16

1115.16

1116.27

1115.16

1115.18

1115.18

1113.62

1113.62

1113.62

1113.62

1113.62

1113.62

1113.62

1113.62

1113.62

1113.62

1113.62

1113.62

1113.62

1113.62

113. SJY-2,5Fe,4CI-AH.2.fid 35.67 34.67





210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 11 (ppm)





SJY-260-1.10.fid





210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 f1 (ppm) -10


















