Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2021

ELECTRONIC SUPPLEMENTARY INFORMATION

Photoresponsive Macrocycles for Selective Binding and Release of Sulfate

Shenglun Xiong, and Qing He*

State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineer Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.

* Correspondence: Qing He (heqing85@hnu.edu.cn)

Contents

- 1. General experimental
- 2. Synthesis
- 3. Stability of 1-trans, 2-trans, and 3-trans
- 4. Photoisomerization of the azomacrocycles
- 5. Calculations, crystal structures and binding studies
- 6. Light-controlled binding-and-release studie
- 7. X-ray experimental details
- 8. HRMS Spectra and NMR Spectra
- 9. Geometrical coordinates of the optimized structures
- 10. References

1. General experimental

All solvents and chemicals used were purchased from Sigma–Aldrich, TCI, Energy–Chemical, or Acros and used without further purification. TLC analyses were carried out using Sorbent Technologies silica gel (200 mesh) sheets. ¹H and ¹³C NMR spectra were recorded on Bruker AVANCE 400 spectrometers and the spectroscopic solvents were purchased from Cambridge Isotope Laboratories or Sigma–Aldrich. Either residual solvent peak or tetramethylsilane (TMS) was used as an internal reference. The chemical shifts are expressed in δ (ppm). High–resolution mass spectra (HRMS) were recorded on a Bruker Apex–Q IV FTMS mass spectrometer using ESI (electrospray ionization). X–ray crystallographic analyses were carried out on a Brucker D8 Venture diffractometer using a μ –focused Cu K α radiation source ($\lambda = 1.5418$ Å). All theoretical calculations were carried out with the Gaussian 09 suite¹ of programs using the X3LYP density functional.² Structural optimization was performed using a 6–31G* basis set while single–point energy was calculated with a 6–31+g* basis set. Complexation energies were corrected for basis set superposition error (BSSE) using the counterpoise correction method.^{3, 4}

2. Synthesis

Scheme S1. Synthesis of 9–11.

General synthetic method for 10–12: To a mixture of mono methyl isophthalate (5.00 g, 27.75 mmol) and SOCl₂ (6.60g, 55.48 mmol) in dichloromethane (40 mL) one drop of DMF was added. The resulting solution was refluxed overnight under N₂ atmosphere. After the volatiles were removed under reduced pressure, the residue was dissolved in dry THF (100 mL) and added slowly at 0 °C to a solution of 6 (7 or 8) (13.49 mmol) and triethylamine (5.50 g, 54.35 mmol) in dry THF (150 mL) under N₂ atmosphere. Then the resulting mixture was stirred at room temperature for further 12 h. After the solvent was removed under reduced pressure, the residue was suspended in massive water, stirred vigorous overnight and filtered. The filter cake was washed with massive water and small amount of methanol consecutively, then dried under oven at 60 °C overnight to give the pure product as white solid without further purification.

10: 40%. ¹H NMR (400 MHz, CDCl₃) δ 8.45 (s, 2H, ArH), 8.18 (d, *J* = 7.6 Hz, 2H, ArH), 8.07 (d, *J* = 8.0 Hz, 2H, ArH), 7.56 (d, *J* = 7.6 Hz, 2H, ArH), 3.95 (s, 6H, CH₃), 3.77 (brs, 4H, CH₂) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 166.4, 134.4, 132.8, 131.8, 130.8, 129.1, 128.1, 52.5, 41.3 ppm. HRMS (ESI) m/z 383.1249 [M – H]⁻ calcd for C₂₀H₁₉N₂O₆⁻, found 383.1244.

11: 46%. ¹H NMR (400 MHz, DMSO– d_6) δ 8.75 (t, J = 5.6 Hz, 2H, amide–H), 8.44 (t, J = 1.6 Hz, 2H, ArH), 8.12 (dd, J = 8.0, 1.6 Hz, 4H, ArH), 7.64 (t, J = 8.0 Hz, 2H, ArH), 3.89 (s, 6H, OMe), 3.36–3.34 (m, 4H, CH₂), 1.85 – 1.79 (m, 2H, CH₂) ppm. ¹³C NMR (100 MHz, DMSO– d_6) δ 165.8, 165.2, 135.0, 131.8, 131.6, 129.8, 128.9, 127.8, 52.3, 37.3, 29.0 ppm. HRMS (ESI) m/z 397.1405 [M – H][–] calcd for C₂₁H₂₁N₂O₆[–], found 397.1399.

12: 44%. ¹H NMR (400 MHz, DMSO– d_6) δ 8.72 (t, J = 5.6 Hz, 2H, amide–H), 8.44 (t, J = 1.6 Hz, ArH), 8.12 (t, J = 8.0 Hz, 4H, ArH), 7.63 (t, J = 8.0 Hz, 4H, ArH), 3.88 (s, 6H, CH₃), 3.34–3.30 (m, 8H, CH₂) ppm. ¹³C NMR (100 MHz, DMSO– d_6) δ 165.8, 165.1, 135.1, 131.9, 131.5, 129.8, 128.9, 127.9, 52.3, 39 (hidden in DMSO), 26.6 ppm. HRMS (ESI) m/z 411.1562 [M – H]⁻ calcd for C₂₂H₂₃N₂O₆⁻, found 411.1557.

Scheme S2. Synthesis of 13–15.

General synthetic method for 13–15: 10 (11 or 12) (5.00 g) was suspended in a solution of MeOH (100 mL) and aqueous KOH (1 M, 100 mL), stirred at 20 °C for 31 h (14 h or 92 h). After acidification (pH < 3) with aqueous HCl (1 M), the suspension was filtered, washed with HCl (1 M) and dried under oven at 60 °C overnight to obtain the product as white solid without further purification.

13: 98%. ¹H NMR (400 MHz, DMSO– d_6) δ 13.17 (brs, 2H, COOH), 8.82 (t, J = 5.2 Hz, 2H, amide–NH), 8.45 (t, J = 1.6 Hz, 2H, ArH), 8.10 – 8.06 (m, 4H, ArH), 7.61 (t, J = 7.6 Hz, 2H, ArH), 3.48–3.47 (m, 4H, CH₂) ppm. ¹³C NMR (100 MHz, DMSO– d_6) δ 166.9, 165.7, 134.9, 131.8, 131.6, 130.9, 128.7, 128.1, 39.1 ppm. HRMS (ESI) m/z 355.0936 [M – H]⁻ calcd for C₁₈H₁₅N₂O₆⁻, found 355.0931.

14: 97%. ¹H NMR (400 MHz, DMSO–*d*₆) δ 13.18 (s, 2H, COOH), 8.72 (t, J = 5.6 Hz, 2H, amide–NH), 8.44 (t, J = 1.6 Hz, ArH), 8.09–8.06 (m, 4H, ArH), 7.61 (t, J = 7.6 Hz, 2H, ArH), 3.37 (q, J = 6.4 Hz, 4H, CH₂), 1.85–1.78 (m, 2H, CH₂) ppm. 13C NMR (100 MHz, DMSO–*d*₆) δ 166.9, 165.4, 134.9, 131.8, 131.5, 130.9, 128.7, 128.0, 37.3, 29.1 ppm. HRMS (ESI) m/z 369.1092 [M – H][–] calcd for C₁₉H₁₇N₂O₆[–], found 369.1087.

15: 97%. ¹H NMR (400 MHz, D₂O) δ 8.14 (t, *J* = 2.0 Hz, 2H, ArH), 8.00 (d, *J* = 8.0 Hz, 2H, ArH), 7.79 (d, *J* = 8.0 Hz, 2H, ArH), 7.51 (t, *J* = 7.6 Hz, 2H, ArH), 3.46 – 3.38 (m, 4H, CH₂), 1.70 (p, *J* = 3.1 Hz, 4H, CH₂)

ppm. ¹³C NMR (100 MHz, DMSO– d_6) δ 166.9, 165.3, 135.0, 131.7, 131.5, 130.9, 128.7, 128.0, 39 (hidden in DMSO), 26.6 ppm. HRMS (ESI) m/z 383.1249 [M – H]⁻ calcd for C₂₀H₁₉N₂O₆⁻, found 383.1244.

Scheme S3. Synthesis of 1-trans, 2-trans, and 3-trans.

General synthetic method for 1–3: 13 (14 or 15) (2.44 mmol) was suspended in 20 mL of SOCl₂ and refluxed overnight. After the volatiles were removed *in vacuo*, the off–white solid residues were dissolved in dichloromethane (150 mL). The resulting solution and 9 (586 mg, 2.44 mmol) in dry dichloromethane (150 mL) were added dropwise in parallel into a solution of DIPEA (1.58 g, 12.25 mmol) in dry dichloromethane (200 mL). The reaction was then stirred at room teperature for 24 h under N₂ atmosphere. Subsequently, the reaction mixture was diluted with dichloromethane (500 mL) and washed with 1 M of HCl (3×500 mL), water (500 mL), 1 M of NaOH (3×500 mL), water (500 mL), and 100 mL brine consecutively. The combined organic solution was exposed to 420–425 nm light irradiation under N₂ atmosphere and stired until the photostationary state (PSS) was achieved. Then the resulting solution was concentrated *in vacuo* to give the corresponding mixture of *trans* and *cis* isomers. After the resulting solid was suspended in methanol (80 mL) and ultrasounded for 1 h, filtered, and washed with methanol. The corresponding pure *trans* compounds were obtained as orange solid without further purification.

Notably, **1**-*cis*, **2**-*cis*, and **3**-*cis* were successfully obtained from **1**–*trans*, **2**-*trans*, and **3**-*trans*, respetively, by 365–370 nm light irradiation.

1–trans: ¹H NMR (400 MHz, DMSO– d_6) δ 9.00 (t, J = 6.0 Hz, 2H, amide–H), 8.51 (s, 2H, amide–H), 7.85–7.76 (m, 10H, ArH), 7.56 (d, J = 8.4 Hz, 4H, ArH), 7.48 (t, J = 8.0 Hz, 2H, ArH), 4.40 (d, J = 6.0 Hz, 4H, CH₂), 3.3 (4H, CH₂, hidden in DHO) ppm. ¹³C NMR (100 MHz, DMSO– d_6) δ 166.5, 166.1, 151.5, 143.6, 135.1, 135.0, 130.0, 129.9, 128.9, 128.3, 126.2, 122.8, 43.4, 39.0 (hidden in DMSO) ppm.

1–cis: ¹H NMR (400 MHz, DMSO–*d*₆) δ 9.17 (t, *J* = 6.0 Hz, 2H, amide–H), 8.55 (brs, 2H, amide–H), 8.27 (s, 2H, ArH), 8.05 (d, *J* = 7.6 Hz, 2H, ArH), 7.96 (d, *J* = 7.6 Hz, 2H, ArH), 7.56 (t, *J* = 7.6 Hz, 2H, ArH), 7.25 (d, *J* = 8.4 Hz, 4H, ArH), 6.86 (d, *J* = 8.4 Hz, 4H, ArH), 4.46 (d, *J* = 6.0 Hz, 4H, ArH), 3.50–3.48 (m, 4H) ppm. ³C NMR (100 MHz, DMSO–*d*₆) δ 166.2, 165.5, 152.2, 138.6, 135.1, 133.7, 130.4, 129.6, 128.5, 127.8, 126.1, 120.0, 42.1, 39.0 (hidden in DMSO) ppm. HRMS (ESI) m/z 559.2099 [M – H][–] calcd for C₃₂H₂₇N₆O₄[–], found 559.2088, 898.4543 [M + TBA + SO₄][–] calcd for **1**, found 898.4533.

2-*trans*: ¹H NMR (400 MHz, DMSO–*d*₆) δ 9.05 (t, *J* = 6.4 Hz, 2H, amide–H), 8.44 (t, *J* = 5.6 Hz, 2H, amide–H), 7.87–7.78 (m, 8H, ArH), 7.72 (t, *J* = 1.6 Hz, 2H, ArH), 7.57 (d, *J* = 8.0 Hz, 4H, ArH), 7.51 (t, *J* = 7.6 Hz, 2H, ArH), 4.42 (d, *J* = 6.0 Hz, 4H, CH₂), 3.17–3.12 (m, 4H, CH₂), 1.67–1.59 (m, 2H, CH₂) ppm. ¹³C NMR (100 MHz, DMSO–*d*₆) δ 166.95, 165.49, 151.17, 143.70, 135.90, 134.74, 129.79, 129.65, 128.92, 128.33, 125.70, 122.70, 43.32, 37.46, 29.13 ppm.

2–*cis*: ¹H NMR (400 MHz, DMSO–*d*₆) δ 9.17 (t, *J* = 6.0 Hz, 2H, amide–H), 8.50 (t, *J* = 5.6 Hz, 2H, amide–H), 8.28 (s, 2H, ArH), 8.04 (d, *J* = 7.6 Hz, 2H, ArH), 7.96 (d, *J* = 7.6 Hz, 2H, ArH), 7.58 (t, J = 7.6 Hz, 2H, ArH), 7.25 (d, *J* = 8.0 Hz, 4H, ArH), 6.88 (d, *J* = 8.0 Hz, 4H, ArH), 4.54 (d, *J* = 6.0 Hz, 4H, CH₂), 3.3 (4H, CH₂, hidden in DHO), 1.79 – 1.76 (m, 2H, CH₂). ¹³C NMR (100 MHz, DMSO–*d*₆) δ 166.1, 165.8, 152.2, 138.5, 135.1, 134.0, 130.0, 129.9, 128.6, 127.4, 125.8, 120.0, 42.0, 36.3, 29.0. HRMS (ESI) m/z 573.2256 [M – H][–] calcd for C₃₃H₂₉N₆O₄[–], found 573.2244.

3–*trans*: ¹H NMR (400 MHz, DMSO–*d*₆) δ 9.12 (t, *J* = 6.0 Hz, 2H, amide–H), 8.49 (t, *J* = 5.2 Hz, amide–H), 7.91 – 7.84 (m, 6H, ArH), 7.81 (d, *J* = 8.4 Hz, 4H, ArH), 7.58 (d, *J* = 8.4 Hz, 4H, ArH), 7.51 (t, *J* = 8.0 Hz, 2H, ArH), 4.42 (d, *J* = 6.0 Hz, 4H, CH₂), 3.17 – 3.16 (m, 4H, CH₂), 1.43 (brs, 4H, CH₂) ppm. ¹³C NMR (100 MHz, DMSO–*d*₆) δ 166.5, 165.5, 151.1, 143.7, 135.3, 134.8, 130.1, 129.7, 128.9, 128.3, 125.7, 122.6, 43.3, 39 (hidden in DMSO), 27.1 ppm.

3–*cis*: ¹H NMR (400 MHz, DMSO–*d*₆) δ 9.15 (t, *J* = 6.0 Hz, 2H, amide–H), 8.50 (t, *J* = 5.6 Hz, 2H, amide–H), 8.30 (s, 2H, ArH), 8.03 (d, *J* = 7.6 Hz, 2H, ArH), 7.96 (d, *J* = 7.6 Hz, 2H, ArH), 7.56 (t, *J* = 7.6 Hz, 2H, ArH), 7.23 (d, *J* = 8.4 Hz, 4H, ArH), 6.85 (d, *J* = 8.4 Hz, 4H, ArH), 4.48 (d, *J* = 6.0 Hz, 4H, CH₂), 3.3 (4H, CH₂, hidden in DHO), 1.56 (brs, 4H, CH₂) ppm. ¹³C NMR (100 MHz, DMSO–*d*₆) δ 165.7, 165.6, 152.2, 138.6, 134.9, 133.9, 130.0, 129.8, 128.5, 127.4, 126.0, 120.0, 41.9, 39 (hidden in DMSO), 26.8 ppm. HRMS (ESI) m/z 587.2412 [M – H][–] calcd for C₃₄H₃₁N₆O₄[–], found 587.2400, 685.2086 [M + H + SO₄][–] calcd for **3**, found 685.2070, and 1273.4571 [2M + H + SO₄][–] calcd for **3**, found 1273.4544.

Scheme S4. Synthesis of 4-cis.

Compound 16 was prepared according to the literature.⁵

Synthesis of compound 17

To a solution of **16** (2.631 g, 5.70 mmol) in DMF (220 mL), 5.1 mL (5.10 mmol) of NaOH aquous solution (1M) was added at the rate of 0.013 mL/min by using an injection pump. After the mixture was stirred for futher 3 h, the solvent was removed under reduced pressure. The resulting resudue was redissoved in 200 mL of ethyl acetate and washed with 100 mL of aquous solution of HCl (0.5 M), then 100 mL of brine. The organic phase was separated and dried over anhydrous Na₂SO₄ for 1.5 hour. After the solvent was removed under reduced pressure, the residue was purified by column chromatography over silica gel (eluent: EA/DCM (15/100 - 35/100, v/v) to give 1.402 g (3.13 mmol, 55% yield) of **17** as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.75 (s, 1H, ArH), 8.28 (s, 1H, ArH), 8.26 (s, 1H, ArH), 3.96 (s, 3H, OCH₃), 3.44 (t, *J* = 7.6 Hz, 2H, NCH₂), 3.10 (t, *J* = 7.6 Hz, 2H, NCH₂), 1.68 (s, 2H, CH₂), 1.52 (s, 2H, CH₂), 1.36 – 1.11 (m, 20H, CH₂), 0.89 – 0.82 (m, 6H, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 167.8, 165.3, 137.2, 132.0, 131.9, 131.6, 131.0, 130.8, 52.3, 49.3, 45.3, 31.7, 31.5, 29.2, 29.1, 28.8, 28.8, 28.5, 27.3, 26.9, 26.3, 22.5, 22.4, 13.9, 13.9 ppm. HRMS (ESI) m/z 446.2912 [M - H]⁻ calcd for **17**, found 446.2907.

Synthesis of compound 18

17 (5.162 g, 11.53 mmol) was dissolved in 20 mL of SOCl₂ and refluxed overnight. After the volatiles were removed in *vacuo*, the residue was dissolved in dichloromethane (50 mL), to which a solution of Et₃N (4.165g, 41.16 mmol) and **6** (427 mg, 5.76 mmol) in dichloromethane (30 mL) was added at 0 °C in 2h. The reaction mixture was stirred at RT for further 10 h. The solution was then concentrated in *vacuo* and the resulting resulue was dissolved in 200 mL of ethyl acetate, followed by consecutive wash with 0.5 M of HCl (3×200 mL), water (200 mL), saturated NaHCO₃ (3×200 mL), water (500 mL), and brine (100 mL). After the organic phase was separated and dried over anhydrous Na₂SO₄, the solvent was removed in *vacuo*. The residue was then subject to column chromatography over silica gel (eluent: EA/DCM (33/100 - 67/100, v/v) to give 2.660 g (2.85 mmol, 25% yield) of **18** as light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.49 (s, 2H, ArH), 8.06 (s, 2H, ArH), 8.04 (s, 2H,

ArH), 7.90 (t, J = 6.3 Hz, 2H, CONH), 3.90 (s, 6H, OCH₃), 3.49 - 3.42 (m, 8H, NCH₂), 3.13 (t, J = 7.7 Hz, 4H, NCH₂), 1.84 - 1.78 (m, 2H, CH₂), 1.67 - 1.57 (m, 4H, CH₂), 1.48 (t, J = 7.4 Hz, 4H, CH₂), 1.28 (d, J = 23.5 Hz, 22H, CH₂), 1.10 (d, J = 15.6 Hz, 18H, CH₂), 0.89 - 0.76 (m, 12H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 166.3, 165.7, 137.8, 135.4, 130.8, 130.1, 129.8, 128.8, 52.6, 49.4, 45.3, 36.7, 31.9, 31.7, 29.7, 29.4, 29.3, 29.1, 28.7, 27.6, 27.2, 26.6, 22.7, 22.6, 14.1, 14.1 ppm. HRMS (ESI) m/z 931.6529 [M - H]⁻ calcd for **18**, found 967.6283.

Synthesis of compound 19

To a solution of **18** (2.660 g, 2.85 mmol) in DMF (100 mL), 5.7 mL (5.70 mmol) of NaOH aquous solution (1M) was added. The mixture was stirred at ambient temperature for 3.5 h. After removal of solvent in *vacuo*, the resulting resulue was dissolved in 100 mL of ethyl acetate and washed with 50 mL of HCl (0.5 M) and brine (100 mL), respecitvely. The organic phase was separated and dried over anhydrous Na₂SO₄. After the solvent was removed under reduced pressure, 2.05 g (2.26 mmol, 79% yield) of pure **19** was obtained as light yellow oil without futher purification. ¹H NMR (400 MHz, CDCl₃) δ 10.66 (brs, 2H, COOH), 8.51 (s, 2H, ArH), 8.33 (brs, 2H, NH), 8.15 (s, 2H, ArH), 8.09 (s, 2H, ArH), 3.45 (brs, 8H, NCH₂), 3.14 (brs, 4H, NCH₂), 1.87 (s, 2H, CH₂), 1.62 (brs, 4H, CH₂), 1.47 (brs, 4H, CH₂), 1.34 – 1.24 (m, 22H, CH₂), 1.17 – 1.06 (m, 18H, CH₂), 0.84 (t, *J* = 7.2 Hz, 6H, CH₃), 0.76 (t, *J* = 7.1 Hz, 6H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 167.7, 166.6, 136.9, 135.1, 131.0, 130.5 (2C), 129.5, 49.5, 45.5, 37.6, 31.9, 31.7, 29.4, 29.3, 29.0, 28.6, 27.5, 27.2, 26.5, 22.7, 22.6, 14.1, 14.1 ppm. HRMS (ESI) m/z 903.6216 [M - H]⁻ calcd for **19**, found 903.6212.

Synthesis of compound 4-cis

19 (954 mg, 1.05 mmol) was dissolved in 20 mL of SOCl₂ and the mixture was refluxed overnight. After the volatiles were removed in vacuo, the oil residue was dissolved in dry dichloromethane (100 mL). The resulting solution and the readily formed 9-cis (253 mg, 1.05 mmol) in dry dichloromethane (100 mL) were added dropwise in parallel into a solution of Et₃N (531 mg, 5.25 mmol) in dry dichloromethane (300 mL) at 20°C over 6 h. The reaction mixture was then stirred for further 3 h at room teperature under N₂ atmosphere. Subsequently, the reaction mixture was washed with 1 M of HCl (3×200 mL), water (300 mL), saturated NaHCO₃ aqueous solution (3 × 200 mL), water (300 mL), and 100 mL of brine, consecutively. After the organic phase was separated, dried over anhydrous Na₂SO₄, the solvent was removed to give 699 mg (0.63 mmol, 60% yield) of crude product 19 as orange solid. Pure 19 could be obtained by preparative thin layer chromatography (DCM:MeOH: $Et_3N = 50$:1:1). ¹H NMR (400 MHz, CDCl₃) & 8.33 (s, 2H, ArH), 8.01 (s, 2H, ArH), 7.99 (s, 2H, ArH), 7.69 (brs, 4H, amide-NH), 7.18 (d, *J* = 8.0 Hz, 4H, Azo-ArH), 6.79 (d, *J* = 8.0 Hz, Azo-ArH), 4.57 (d, *J* = 5.6 Hz, 4H, NCH₂), 3.48 – 3.41 (m, 8H, NCH₂), 3.20 – 3.17 (m, 4H, NCH₂), 1.70 – 1.62 (m, 6H, CH₂, hidden in HDO), 1.50 (brs, 4H, CH₂), 1.35 - 1.67 (m, 40H, CH₂), 0.89 - 0.82 (m, 12H, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 166.4, 166.0, 152.8, 137.8, 135.2, 134.8, 128.9, 128.5, 127.5, 126.6, 126.0, 120.7, 49.5, 46.4, 45.3, 43.1, 36.2, 31.9, 31.8, 29.5, 29.4, 29.2, 28.8, 27.6, 27.2, 26.7, 22.7, 22.7, 14.2, 14.2, 8.7. HRMS (ESI) m/z 1109.7526 [M + H]⁺ calcd for 4-cis, found 1109.7504.

3. Stability of 1-trans, 2-trans, and 3-trans

Fig. S1. Partial ¹H NMR spectra of 1–*trans* (1.0 mM in DMSO– d_6) recorded under dark conditions at room temperature after letting stand for 6 h, 22 h, 52 h, 102 h, and 174 h, respectively.

Fig. S2. Partial ¹H NMR spectra of **2**–*trans* (1.0 mM in DMSO– d_6) recorded under dark conditions at room temperature after letting stand for 6 h, 22 h, 52 h, 102 h, and 174 h, respectively.

Fig. S3. Partial ¹H NMR spectra of **3**–*trans* (1.0 mM in DMSO– d_6) recorded under dark conditions at room temperature after letting stand for 6 h, 22 h, 52 h, 102 h, and 174 h, respectively.

4. Photoisomerization of the azomacrocycles

Fig. S4. Partial ¹H NMR spectra of **1**–*trans* (1.0 mM in DMSO– d_6) recorded under UV light irradiation of 365–370 nm UV light over 0 min (bottom) and 5 min (top) at room temperature.

Fig. S5. Partial ¹H NMR spectra of **2**–*trans* (1.0 mM in DMSO– d_6) recorded under UV light irradiation of 365–370 nm UV light over 0 min (bottom) and 5 min (top) at room temperature.

Fig. S6. Partial ¹H NMR spectra of **3**–*trans* (1.0 mM in DMSO– d_6) recorded under UV light irradiation of 365–370 nm UV light over 0 min (bottom) and 5 min (top) at room temperature.

Fig. S7. UV–Vis spectra and photoisomerization kinetics of **1-cis** (10 μ M) in DMSO under visible light (420-425 nm, 100 W) irradiation. This photo *cis*→*trans* rate constant was calculated to be k₁ = 0.05725 s⁻¹.

Fig. S8. UV–Vis spectra and photoisomerization kinetics of **1-trans** (10 μ M) in DMSO under visible light (365-370 nm, 100 W) irradiation. This photo *trans*→*cis* rate constant was calculated to be k₁ = 0.05512 s⁻¹.

5. Calculations, crystal structures and binding studies

Fig. S9. DFT-optimized structures of 1-trans, 2-trans, 3-trans, 1-cis, 2-cis, and 3-cis.

Table S1	. Relative en	nergies	(kJ/mol)	of 1- <i>ti</i>	rans and 1	1 <i>–cis</i> , 2	-trans and	2-cis, 3-	<i>-trans</i> and	3-cis.
		<u> </u>	· /							

	1	2	3
trans	0	0	0
cis	52.51	57.76	63.01

According to Table S1, 1-*trans*, 2-*trans* and 3-*trans* are energetically stable than 1-*cis*, 2-*cis*, and 3-*cis*, respectively.

Fig. S10. (a) Top view and (b) front view of the single crystal structure of **1**–*trans*. Displacement ellipsoids are scaled to the 50% probability level. Solvent molecules are omitted for clarity

Fig. S11. (a) Top view and (b) front view of the single crystal structure of **2**–*trans*. Displacement ellipsoids are scaled to the 50% probability level. Solvent molecules are omitted for clarity

	O N H		3			
1-cis + 20.0 equiv. TBA ₂ SO ₄	O [≫] NH N=N	dHN O			l.	
1-cis + 20.0 equiv. TBA <mark>ClO₄</mark>	•	•				
1-cis + 20.0 equiv. TBA <mark>HSO₄</mark>						
1-cis + 20.0 equiv. TBAH ₂ PO ₄					l.	ر
1-cis + 20.0 equiv. TBANO ₃	•					
1-cis + 20.0 equiv. TBA <mark>SCN</mark>						
1-cis + 20.0 equiv. TBAN ₃	•	~			I I	
1-cis + 20.0 equiv. TBAI	A	<u>^-</u>				
1-cis + 20.0 equiv. TBA <mark>B</mark> r		_	1			
1-cis + 20.0 equiv. TBACl	•					
1-cis only	d		h eg	f		C
11.4 11.0 10.6 10.2 9.8	9.4 9.0 δ/pp	8.6 m	8.2 7	.8 7.4	7.0	6.6

Fig. S12. Partial ¹H NMR spectra of a 1.0 mM solution of **1–cis** recorded in the absence and presence of 20.0 equiv. of Cl⁻, Br⁻, I⁻, N₃⁻, SCN⁻, NO₃⁻, H₂PO₄⁻, HSO₄⁻, ClO₄⁻, and SO₄^{2–} (as their TBA salts) in DMSO– d_6 .

Fig. 13.¹H NMR spectroscopic titration of receptor 1–*cis* with TBAH₂PO₄ in DMSO– d_6 . The concentration of 1–*cis* was 1.0 mM.

Fig. S14. Nonlinear least–square analysis of the ¹H NMR binding data corresponding to the formation of **1**– *cis*•H₂PO₄⁻ complex. The data extracted from Fig. S13 were fitted to a 1:1 binding model to give $K_a = (4.0 \pm 0.18) \times 10^2 \text{ M}^{-1}$. The residual distribution is shown below the binding isotherm. All solid lines were obtained from non–linear curve–fitting to a 1:1 binding model using the <u>www.supramolecular.org</u> web applet.⁶

Fig. S15. ¹H NMR spectroscopic titration of receptor 1-cis with TBA₂SO₄ in DMSO- d_6 . The concentration of 1-cis was 1.0 mM.

Fig. S16. Nonlinear least–square analysis of the ¹H NMR binding data corresponding to the formation of **1**– *cis*•SO₄^{2–} complex. The data extracted from Fig. S15 were fitted to a 1:1 binding model to give $K_a = (2.0 \pm 0.18) \times 10^4 \text{ M}^{-1}$. The residual distribution is shown below the binding isotherm. All solid lines were obtained from non–linear curve–fitting to a 1:1 binding model using the <u>www.supramolecular.org</u> web applet.⁶

	O NH	dHN O				
2-cis + 20.0 equiv. TBA ₂ SO ₄		c b a			1	1
2-cis + 20.0 equiv. TBAClO ₄	^					
2-cis + 20.0 equiv. TBA <mark>HSO₄</mark>	Å -					
2-cis + 20.0 equiv. TBAH ₂ PO ₄						
2-cis + 20.0 equiv. TBANO ₃	۸			. .		/
2-cis + 20.0 equiv. TBA <mark>SCN</mark>	٨.					
2-cis + 20.0 equiv. TBAN ₃	<u>^</u>					
2-cis + 20.0 equiv. TBAI	A	A				٨
2-cis + 20.0 equiv. TBABr			11 .			
2-cis + 20.0 equiv. TBACl			11 -	4		A
2-cis only	d	i ł	n eg	ſ	a b	C

δ/ppm

Fig. S17. Partial ¹H NMR spectra of a 1.0 mM solution of **2**–*cis* recorded in the absence and presence of 20 equiv. of Cl⁻, Br⁻, I⁻, N₃⁻, SCN⁻, NO₃⁻, H₂PO₄⁻, HSO₄⁻, ClO₄⁻, and SO₄²⁻ (as their TBA salts) in DMSO–*d*₆.

2.0 11.5 11.0 10.5 10.0	9.5 9.0 ō / ppm	8.5	8.0	7.5	7.0	4.5
2-cis only						
2-cis + 0.5 equiv. TBAH ₂ PO ₄	^					
2-cis + 1.0 equiv. TBAH ₂ PO ₄						
2-cis + 1.5 equiv. TBAH ₂ PO ₄					!	
2-cis + 2.0 equiv. TBAH ₂ PO ₄						
2-cis + 2.5 equiv. TBAH ₂ PO ₄						
2-cis + 3.5 equiv. TBAH ₂ PO ₄						
2-cis + 4.5 equiv. TBAH ₂ PO ₄	·					
2-cis + 5.5 equiv. TBAH ₂ PO ₄						
2-cis + 7.5 equiv. TBAH ₂ PO ₄						ل ال
2-cis + 11.5 equiv. TBAH ₂ PO ₄		·				L
2-cis + 15.5 equiv. TBAH ₂ PO ₄						LL
2-cis + 23.5 equiv. TBAH ₂ PO ₄				السغب		ل ب
2-cis + 31.5 equiv. TBAH ₂ PO ₄						LL
2-cis + 39.5 equiv. TBAH ₂ PO ₄				المغم		LL

Fig. S18. ¹H NMR spectroscopic titration of receptor 2-cis with TBAH₂PO₄ in DMSO- d_6 . The concentration of 2-cis was 1.0 mM.

Fig. S19. Nonlinear least–square analysis of the ¹H NMR binding data corresponding to the formation of **2**– *cis*•H₂PO₄⁻ complex. The data extracted from Fig. S18 were fitted to a 1:1 binding model to give $K_a = (3.5 \pm 0.14) \times 10^2$ M⁻¹. The residual distribution is shown below the binding isotherm. All solid lines were obtained from non–linear curve–fitting to a 1:1 binding model using the <u>www.supramolecular.org</u> web applet.⁶

2-cis + 2.2 equiv. TBA ₂ SO ₄				J
$2-cis + 1.8$ equiv. TBA_2SO_4				J
2-cis + 1.4 equiv. TBA ₂ SO ₄	M	لسغس		J
2-cis + 1.2 equiv. TBA ₂ SO ₄	M.	. J		1_
2-cis + 1.0 equiv. TBA ₂ SO ₄	M_		/	L
2-cis + 0.9 equiv. TBA ₂ SO ₄	M	لسغسه		
$2-cis + 0.8$ equiv. TBA_2SO_4		لسغب		L
2-cis + 0.7 equiv. TBA ₂ SO ₄	M.			1_
$2-cis + 0.6$ equiv. TBA_2SO_4	M.			J
2-cis + 0.5 equiv. TBA ₂ SO ₄				L
2-cis + 0.4 equiv. TBA ₂ SO ₄	M			1_
2-cis + 0.3 equiv. TBA ₂ SO ₄	M			L
2-cis + 0.2 equiv. TBA ₂ SO ₄	M			L
$2-cis + 0.1$ equiv. TBA_2SO_4	M			
2-cis only	······			1_
12.2 11.8 11.4 11.0 10.6 10.2 9.8 9.4	9.0 8.6 8.2 ppm	7.8 7.4	7.0 6.6	4.4

Fig. S20. ¹H NMR spectroscopic titration of receptor 2-cis with TBA₂SO₄ in DMSO- d_6 . The concentration of 2-cis was 1.0 mM.

Fig. S21. Nonlinear least–square analysis of the ¹H NMR binding data corresponding to the formation of 2– *cis*•SO₄^{2–} complex. The data extracted from Fig. S20 were fitted to a 1:1 binding model to give $K_a = (2.3 \pm 0.5) \times 10^4$ M⁻¹. The residual distribution is shown below the binding isotherm. All solid lines were obtained from non–linear curve–fitting to a 1:1 binding model using the <u>www.supramolecular.org</u> web applet.⁶

Fig. S22. Partial ¹H NMR spectra of a 1.0 mM solution of **3**–*cis* recorded in the absence and presence of 20 equiv. of Cl⁻, Br⁻, I⁻, N₃⁻, SCN⁻, NO₃⁻, H₂PO₄⁻, HSO₄⁻, ClO₄⁻, and SO₄²⁻ (as their TBA salts) in DMSO–*d*₆.

Fig. S23. ¹H NMR spectroscopic titration of receptor 3-cis with TBAH₂PO₄ in DMSO- d_6 . The concentration of 3-cis was 1.0 mM.

Fig. S24. Nonlinear least–square analysis of the ¹H NMR binding data corresponding to the formation of **3**– *cis*•H₂PO₄⁻ complex. The data extracted from Fig. S23 were fitted to a 1:1 binding model to give $K_a = (1.8 \pm 0.08) \times 10^2$ M⁻¹. The residual distribution is shown below the binding isotherm. All solid lines were obtained from non–linear curve–fitting to a 1:1 binding model using the <u>www.supramolecular.org</u> web applet.⁶

3-cis + 2.6 equiv. TBA ₂ SO ₄		1.			۱	
3- cis + 2.2 equiv. TBA ₂ SO ₄					J	
3-cis + 1.8 equiv. TBA ₂ SO ₄					ll	
3-cis + 1.5 equiv. TBA_2SO_4					٨٨	
3-cis + 1.2 equiv. TBA ₂ SO ₄			M		ll	
3-cis + 1.0 equiv. TBA ₂ SO ₄			M		ll.	
3-cis + 0.8 equiv. TBA ₂ SO ₄						
3 - <i>cis</i> + 0.7 equiv. TBA_2SO_4	·····		M		l	
3-cis + 0.6 equiv. TBA ₂ SO ₄				_ . _		
3- $cis + 0.5$ equiv. TBA ₂ SO ₄					l	
3 - <i>cis</i> + 0.4 equiv. TBA_2SO_4						
3 - <i>cis</i> + 0.3 equiv. TBA_2SO_4				_ _		
3-cis + 0.2 equiv. TBA ₂ SO ₄			M			
3-cis + 0.1 equiv. TBA ₂ SO ₄	^					
3-cis only		l				
11.8 11.4 11.0 10.6 10.2 \$	9.8 9.4 9.0 ō / ppr	8.6 8 n	.2 7.8	7.4	7.0 6.0	6 4.4

Fig. S25. ¹H NMR spectroscopic titration of receptor 3-cis with TBA₂SO₄ in DMSO- d_6 . The concentration of 3-cis was 1.0 mM.

Fig. S26. Nonlinear least–square analysis of the ¹H NMR binding data corresponding to the formation of **3**– **cis**•SO₄^{2–} complex. The data extracted from Fig. S25 were fitted to a 1:1 binding model to give $K_a = (2.8 \pm 0.44) \times 10^3 \text{ M}^{-1}$. The residual distribution is shown below the binding isotherm. All solid lines were obtained from non–linear curve–fitting to a 1:1 binding model using the <u>www.supramolecular.org</u> web applet.⁶

Fig. S27. DFT–optimized structures of (a) $SO_4^{2-} \subset 1$ –*trans*, and (b) $2SO_4^{2-} \subset 1$ –*trans*.

Fig. S28. DFT–optimized structures of (a) $SO_4^{2-} \subset 2$ –*trans*, and (b) $2SO_4^{2-} \subset 2$ –*trans*.

Fig. S29. DFT–optimized structures of (a) $SO_4^{2-} \subset 3$ –*trans*, and (b) $2SO_4^{2-} \subset 3$ –*trans*.

Fig. S30. ¹H NMR spectroscopic titration of receptor 1-*trans* with TBA₂SO₄ in DMSO- d_6 . The concentration of 1-*trans* was 1.0 mM.

Fig. S31. Nonlinear least–square analysis of the ¹H NMR binding data corresponding to the formation of 1– trans• $2SO_4^{2-}$ complex. The data extracted from Fig. S30 were fitted to a 1:2 binding model to give $K_{al} = (9.8 \pm 0.33) \times 10^2 \text{ M}^{-1}$, $K_{a2} = (1.4 \pm 0.03) \times 10 \text{ M}^{-1}$. The residual distribution is shown below the binding isotherm. All solid lines were obtained from non–linear curve–fitting to a 1:2 binding model using the www.supramolecular.org web applet.⁶

Fig. S32. ¹H NMR spectroscopic titration of receptor 2–*trans* with TBA₂SO₄ in DMSO– d_6 . The concentration of 2–*trans* was 1.0 mM.

Fig. S33. Nonlinear least–square analysis of the ¹H NMR binding data corresponding to the formation of **2**– *trans*• $2SO_4^{2-}$ complex. The data extracted from Fig. S32 were fitted to a 1:2 binding model to give $K_{a1} = (7.1 \pm 0.4) \times 10^2 \text{ M}^{-1}$, $K_{a2} = (1.3 \pm 0.1) \times 10 \text{ M}^{-1}$. The residual distribution is shown below the binding isotherm. All solid lines were obtained from non–linear curve–fitting to a 1:2 binding model using the www.supramolecular.org web applet.⁶

Fig. S34. ¹H NMR spectroscopic titration of receptor 3-*trans* with TBA₂SO₄ in DMSO- d_6 . The concentration of 3-trans was 1.0 mM.

Fig. S35. Nonlinear least–square analysis of the ¹H NMR binding data corresponding to the formation of **3**– *trans*•2SO₄^{2–} complex. The data extracted from Fig. 34 were fitted to a 1:1 binding model to give $K_{al} = (8.0 \pm 0.4) \times 10^2 \text{ M}^{-1}$, $K_{a2} = (2.2 \pm 0.1) \times 10 \text{ M}^{-1}$. The residual distribution is shown below the binding isotherm. All solid lines were obtained from non–linear curve–fitting to a 1:1 binding model using the www.supramolecular.org web applet.⁶

6. Light-controlled binding-and-release studies

Fig. S36. Reversible photo–switch between **1–***trans* and **1–***cis* (10.0 μ M) in the presence of 25.0 equiv of TBA₂SO₄ in DMSO monitored by UV–vis spectroscopy.

Fig. S37. Reversible photo–switch between 2–*trans* and 2–*cis* (10.0 μ M) in the presence of 25.0 equiv of TBA₂SO₄ in DMSO monitored by UV–vis spectroscopy.

Fig. 38. (a) Switching cycles of **2**–*trans* (10.0 μ M in DMSO) in the presence of 25.0 equiv of TBA₂SO₄ upon alternating irradiation using 365–370 (ca. 5 min; 100 W) and 420–425 (ca. 5 min; 100 W) nm light sources. The absorbance change at 340 nm was monitored during the switching cycles. (b) Cartoon illustration of the switchable binding and release of sulfate anions.

Fig. S39. Reversible photo–switch between **3–***trans* and **3–***cis* (10.0 μ M) in the presence of 25.0 equiv of TBA₂SO₄ in DMSO monitored by UV–vis spectroscopy.

Fig. S40. (a) Switching cycles of **3**–*trans* (10.0 μ M in DMSO) in the presence of 25.0 equiv of TBA₂SO₄ upon alternating irradiation using 365–370 (ca. 5 min; 100 W) and 420–425 (ca. 5 min; 100 W) nm light sources. The absorbance change at 340 nm was monitored during the switching cycles. (b) Cartoon illustration of the switchable binding and release of sulfate anions.

Fig. S41. Partial ¹H NMR spectra (DMSO– d_6) of (a) **2**–*trans* (1.0 mM) before and (b) after photoirradiation (365–370 nm) and (c) followed by the addition of 2.0 equiv of TBA₂SO₄; (d) **2**–*trans* after the addition of 2.0 equiv of TBA₂SO₄, (e) followed by photoirradiation (365–370 nm); (f) after exposure of the solution in (e) to photoirradiation (420–425 nm), (g) further followed by photoirradiation (365–370 nm).

Fig. S42. Partial ¹H NMR spectra (DMSO– d_6) of (a) **3**–*trans* (1.0 mM) before and (b) after photoirradiation (365–370 nm) and (c) followed by the addition of 2.0 equiv of TBA₂SO₄; (d) **3**–*trans* after the addition of 2.0 equiv of TBA₂SO₄, (e) followed by photoirradiation (365–370 nm); (f) after exposure of the solution in (e) to photoirradiation (420–425 nm), (g) further followed by photoirradiation (365–370 nm).

Fig. S43. Partial ¹H NMR spectra of **4**–*cis* (2.0 mM) in CDCl₃ (a) before and (b) after contact (or SLE: solid-liquid extraction) of excess solid TMA₂SO₄, (c) followed by photoirradiation (420–425 nm).

7. X-ray experimental details

X-ray experimental for 1-trans

Single crystals of complex **1**–*trans* were obtained as orange needle via the slow evaporation of a DCM– MeOH solution of receptor **1**–*trans* in a brown vial. A suitable crystal was selected and the data were collected on a Bruker D8 VENTURE PHOTON 100 CMOS system equipped with a mirror monochromator and a Cu–K α INCOATEC I μ S micro focus source ($\lambda = 1.54178$ Å). The crystal was kept at 173 K during data collection. Using Olex2,⁷ the structure was solved with the ShelXT⁸ structure solution program using Direct Methods and refined with the ShelXL⁹ refinement package using Least Squares minimization. Tables of positional and thermal parameters, bond lengths and angles, torsion angles and figures are in the CIF file. CCDC deposition number: 2112716.

Figure S44. View of 1-trans. Displacement ellipsoids are scaled to the 50% probability level

Table S2 Crystal data and structure refinement for 1-trans.						
Identification code	1–trans					
Empirical formula	$C_{132}H_{129} N_{24}O_{21}$					
Formula weight	2387.95					
Temperature/K	173.0					
Crystal system	triclinic					
Space group	P-1					
a/Å	11.0498(17)					
b/Å	19.163(3)					
c/Å	29.251(4)					
$\alpha/^{\circ}$	99.650(10)					
β/°	90.341(8)					
$\gamma^{/\circ}$	90.270(7)					
Volume/Å ³	6106.1(15)					
Z	2					
$\rho_{calc}g/cm^3$	1.299					
μ/mm^{-1}	0.737					
F(000)	2515.0					
Crystal size/mm ³	$0.074 \times 0.066 \times 0.035$					
Radiation	CuKa ($\lambda = 1.54178 \text{ Å}$)					
2Θ range for data collection/°	3.064 to 133.682					
Index ranges	$-13 \le h \le 13, -22 \le k \le 22, -34 \le l \le 34$					
Reflections collected	72233					
Independent reflections	21062 [$R_{int} = 0.0963$, $R_{sigma} = 0.0845$]					
Data/restraints/parameters	21062/81/1685					
Goodness-of-fit on F ²	1.039					
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0764, wR_2 = 0.1956$					
Final R indexes [all data]	$R_1 = 0.1091, wR_2 = 0.2170$					
Largest diff. peak/hole / e Å ⁻³	0.77/-0.67					

X-ray experimental for 2-trans

Single crystals of complex 2–trans were obtained as orange plates via the slow evaporation of a DMF solution of receptor 2–trans in a brown vial. A suitable crystal was selected and the data were collected on a Bruker D8 VENTURE PHOTON 100 CMOS system equipped with a mirror monochromator and a Cu–K α INCOATEC I μ S micro focus source ($\lambda = 1.54178$ Å). The crystal was kept at 173 K during data collection. Using Olex2,⁷ the structure was solved with the ShelXT⁸ structure solution program using Direct Methods and refined with the ShelXL⁹ refinement package using Least Squares minimization. Tables of positional and thermal parameters, bond lengths and angles, torsion angles and figures are in the CIF file. CCDC deposition number: 2112715.

Figure S45. View of 2-trans. Displacement ellipsoids are scaled to the 50% probability level.
Table S3 Crystal data and structure refinement for 2-trans.			
Identification code	2–trans		
Empirical formula	$C_{66}H_{60}N_{12}O_8$		
Formula weight	1149.26		
Temperature/K	173.00		
Crystal system	monoclinic		
Space group	$P2_1/n$		
a/Å	9.3970(2)		
b/Å	15.8981(4)		
c/Å	50.4387(15)		
$\alpha^{\prime \circ}$	90		
β/°	92.499(2)		
γ/°	90		
Volume/Å ³	7528.1(3)		
Z	4		
$\rho_{calc}g/cm^3$	1.014		
μ/mm^{-1}	0.557		
F(000)	2416.0		
Crystal size/mm ³	$0.087\times0.069\times0.032$		
Radiation	CuKa ($\lambda = 1.54178 \text{ Å}$)		
20 range for data collection/°	3.506 to 134.266		
Index ranges	$-11 \leq h \leq 8, -18 \leq k \leq 18, -60 \leq l \leq 60$		
Reflections collected	52172		
Independent reflections	13304 [$R_{int} = 0.0730, R_{sigma} = 0.0551$]		
Data/restraints/parameters	13304/34/816		
Goodness-of-fit on F ²	1.090		
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0728, wR_2 = 0.2194$		
Final R indexes [all data]	$R_1 = 0.0881, wR_2 = 0.2302$		
Largest diff. peak/hole / e Å ⁻³	0.93/-0.33		

8. HRMS Spectra and NMR Spectra

Fig. S46. HRMS spectrum of compound 10.

Fig. S47. HRMS spectrum of compound 11.

Fig. S48. HRMS spectrum of compound 12.

Fig. S49. HRMS spectrum of compound 13.

Fig. S50. HRMS spectrum of compound 14.

Fig. S51. HRMS spectrum of compound 15.

Fig. S53. HRMS spectrum of compound 18.

Fig. S54. HRMS spectrum of compound 19.

Fig. S55. HRMS spectrum of compound 1.

Fig. S56. HRMS spectrum of compound 2.

Fig. S57. HRMS spectrum of compound 3.

Fig. S58. HRMS spectrum of compound 4.

Fig. S59. ¹H NMR spectrum of 10 recorded in CDCl₃ at 298 K.

Fig. S60. ¹³C NMR spectrum of 10 recorded in CDCl₃ at 298 K.

Fig. S61. ¹H NMR spectrum of 11 recorded in DMSO–*d*₆ at 298 K.

Fig. S62. ¹³C NMR spectrum of 11 recorded in DMSO–*d*₆ at 298 K.

Fig. S63. ¹H NMR spectrum of 12 recorded in DMSO–*d*₆ at 298 K.

Fig. S64. ¹³C NMR spectrum of 12 recorded in DMSO–*d*₆ at 298 K.

Fig. S65. ¹H NMR spectrum of 13 recorded in DMSO–*d*₆ at 298 K.

Fig. S66. ¹³C NMR spectrum of 13 recorded in DMSO–*d*₆ at 298 K.

Fig. S67. ¹H NMR spectrum of 14 recorded in DMSO–*d*₆ at 298 K.

Fig. S68. ¹³C NMR spectrum of 14 recorded in DMSO–*d*₆ at 298 K.

Fig. S69. ¹H NMR spectrum of 15 recorded in D₂O at 298 K.

Fig. S70. ¹³C NMR spectrum of 15 recorded in DMSO– d_6 at 298 K.

Fig. S71. ¹H NMR spectrum of 1–trans recorded in DMSO–*d*₆ at 298 K.

Fig. S72. ¹³C NMR spectrum of 1–trans recorded in DMSO–d₆ at 298 K.

Fig. S73. ¹H NMR spectrum of **1–cis** recorded in DMSO–*d*₆ at 298 K.

Fig. S74. ¹³C NMR spectrum of 1–cis recorded in DMSO– d_6 at 298 K.

Fig. S75. ¹H NMR spectrum of 2-trans recorded in DMSO-*d*₆ at 298 K.

Fig. S76. ¹³C NMR spectrum of 2–trans recorded in DMSO–d₆ at 298 K.

Fig. S77. ¹H NMR spectrum of **2–cis** recorded in DMSO–*d*₆ at 298 K.

Fig. S78. ¹³C NMR spectrum of 2–cis recorded in DMSO–d₆ at 298 K.

Fig. S79. ¹H NMR spectrum of **3–trans** recorded in DMSO–*d*₆ at 298 K.

Fig. S80. ¹³C NMR spectrum of 3-trans recorded in DMSO- d_6 at 298 K.

Fig. S81. ¹H NMR spectrum of **3–cis** recorded in DMSO–*d*₆ at 298 K.

Fig. S82. ¹³C NMR spectrum of 3–cis recorded in DMSO– d_6 at 298 K.

Fig. S83. ¹H NMR spectrum of 17 recorded in CDCl₃ at 298 K.

Fig. S84. ¹³C NMR spectrum of 17 recorded in CDCl₃ at 298 K.

Fig. S85. ¹H NMR spectrum of 18 recorded in CDCl₃ at 298 K.

Fig. S86. ¹³C NMR spectrum of 18 recorded in CDCl₃ at 298 K.

Fig. S87. ¹H NMR spectrum of 19 recorded in CDCl₃ at 298 K.

Fig. S88. ¹³C NMR spectrum of 19 recorded in CDCl₃ at 298 K.

Fig. S89. ¹H NMR spectrum of 4-*cis* recorded in CDCl₃ at 298 K.

Fig. S90. ¹³C NMR spectrum of 4-*cis* recorded in CDCl₃ at 298 K.

9. Geometrical coordinates of the optimized structure s

1–cis

Symbol	Х	Y	Ζ
С	-4.78104600	1.31634600	2.16087000
С	-4.11556800	0.11812000	2.85277900
Ν	-3.53294300	-0.82986900	1.91582700
С	-4.34943200	-1.71065500	1.24134100
С	-3.68333200	-2.53217000	0.17663200
0	-5.53641200	-1.84082800	1.51386100
С	-4.47180700	-2.99668700	-0.88204800
С	-3.89836300	-3.75624800	-1.89900900
С	-2.54522800	-4.08462500	-1.85104600
С	-1.75403600	-3.66581400	-0.77498200

С	-2.32762600	-2.87323400	0.22607800
С	-0.31806100	-4.10886300	-0.75843500
0	0.25910700	-4.47531400	-1.77838600
С	3.39842700	2.92135300	0.75468900
С	3.20379900	2.05879700	-0.32973100
С	4.10559900	1.03412200	-0.60446200
С	5.24747900	0.87801100	0.19048100
С	5.47741800	1.76564400	1.24878600
С	4.54105900	2.74870200	1.54755600
Ν	6.30913300	-0.01691100	-0.16498300
Ν	6.13648500	-1.22330200	-0.43092400
С	4.91130400	-1.92749200	-0.18615100
С	4.29896500	-1.93748400	1.07464600
С	3.24920500	-2.81688600	1.32206900
С	2.77015700	-3.67309500	0.32372900
С	3.37585300	-3.63817800	-0.93867000
С	4.45951600	-2.80048400	-1.18290500
С	2.44499700	4.06339000	1.05516100
С	1.65103000	-4.65527000	0.61369900
Ν	0.30458200	-4.10181400	0.46050600
Н	-5.56796700	0.95525000	1.49616200
Н	-5.23336300	1.97203800	2.91410900
Н	-4.86707900	-0.41616600	3.43868400
Н	-3.32488300	0.45554300	3.53274100
Н	-2.69996400	-0.52545500	1.43018500
Н	-5.52601400	-2.74191400	-0.89191500
Н	-4.50849700	-4.09663500	-2.73030300
Н	-2.07851600	-4.67535000 S61	-2.63194100

Н	-1.72285700	-2.51793300	1.05564500
Н	2.33881900	2.18964000	-0.97321500
Н	3.94028900	0.37444100	-1.44953300
Н	6.38717000	1.66522000	1.83292300
Н	4.71344600	3.41217800	2.39188600
Н	4.67075600	-1.29035800	1.86201700
Н	2.80493800	-2.84635500	2.31482000
Н	2.99849000	-4.28644700	-1.72322200
Н	4.96845000	-2.81333200	-2.14195500
Н	2.43903400	4.26017600	2.13534500
Н	2.77503800	4.98436700	0.56309700
Н	1.73350600	-5.01566700	1.64374400
Н	1.73857500	-5.51674700	-0.05492100
Н	-0.26132200	-4.00017200	1.28909600
Ν	1.08938700	3.83692200	0.58298300
С	0.51589100	4.63772900	-0.37330400
С	-0.82595200	4.19556100	-0.88779600
0	1.06068500	5.64944700	-0.79956700
С	-1.20567000	4.65398100	-2.15479900
С	-2.41099900	4.24308900	-2.71926700
С	-3.25605600	3.38688500	-2.01787600
С	-2.91535200	2.96221500	-0.72835200
С	-1.69526900	3.36350800	-0.17309600
С	-3.87610500	2.04792100	-0.02161600
0	-4.62819900	1.30756200	-0.64367500
Ν	-3.84385700	2.08834200	1.35190100
Н	0.68494100	2.92730300	0.75312700
Н	-0.53296900	5.32214400	-2.68141800
		S62	

Н	-2.68948200	4.58695000	-3.71086800
Н	-4.18925800	3.03724600	-2.44620800
Н	-1.42206200	3.01989500	0.82105600
Н	-3.37497100	2.87049300	1.78599400

2–cis

Symbol	Х	Y	Ζ
С	4.57084600	0.03825700	-3.00659800
С	4.50942200	-2.47802100	-2.37521200
Ν	3.42979100	-2.35702300	-1.39037900
С	3.68995100	-2.42084600	-0.04492900
С	2.50414500	-2.55378600	0.87135500
0	4.83323700	-2.34295000	0.39075400
С	2.68045700	-2.17165700	2.20705300
С	1.63669700	-2.30084400	3.12010100
С	0.40940600	-2.81935000	2.71329500
С	0.21376700	-3.20176900	1.38161000
С	1.26870100	-3.07499400	0.47065400
С	-1.12913700	-3.75953200	1.00171400
0	-1.88138700	-4.25809400	1.83149900
С	-2.65385600	3.56249000	-0.34496600
С	-2.92380300	2.53105600	0.56564500
С	-4.08695400	1.77659200	0.46256700
С	-5.02473600	2.06546700	-0.54152400
С	-4.77956400	3.11615700	-1.43121300
С	-3.58728000	3.83110200	-1.35162000

Ν	-6.33798100	1.48875700	-0.56991900
Ν	-6.56239400	0.26715100	-0.45228100
С	-5.53446100	-0.73051800	-0.50841800
С	-4.70752700	-0.85761500	-1.63149400
С	-3.85069000	-1.94911700	-1.73259600
С	-3.77358200	-2.90605700	-0.71370900
С	-4.60711900	-2.76748500	0.40391800
С	-5.50810600	-1.71056100	0.49023000
С	-1.43155800	4.44448500	-0.17699600
С	-2.78272200	-4.04826900	-0.80717800
Ν	-1.44423400	-3.68753000	-0.33390900
Н	5.26370400	0.76090600	-3.44155200
Н	3.82415200	-0.21077200	-3.77135600
Н	5.16910300	-3.29787000	-2.06954400
Н	4.03723300	-2.76393200	-3.32206600
Н	2.48616900	-2.51795500	-1.70687200
Н	3.64923400	-1.78724800	2.50703700
Н	1.78209600	-2.00142000	4.15359200
Н	-0.41143900	-2.94407900	3.41133000
Н	1.13678100	-3.45882900	-0.53762600
Н	-2.22543100	2.34309500	1.37537600
Н	-4.29033400	0.99280900	1.18383900
Н	-5.53124200	3.36253200	-2.17497500
Н	-3.40023700	4.63616800	-2.05860700
Н	-4.75938900	-0.12002100	-2.42563500
Н	-3.23313400	-2.05808700	-2.62233600
Н	-4.54815300	-3.49962600	1.20346900
Н	-6.18755600	-1.62507700	1.33285000
		S64	

Н	-1.36990700	5.15039000	-1.01123300
Н	-1.53406500	5.02477900	0.74630800
Н	-2.68611200	-4.38763700	-1.84415000
Н	-3.10902600	-4.89462600	-0.20120400
Н	-0.95293200	-2.99200600	-0.87852900
Ν	-0.15060400	3.74254800	-0.08642500
С	0.42811900	3.49721500	1.13013300
С	1.86254500	3.04779000	1.12231200
0	-0.18438200	3.66473300	2.18205400
С	2.59458700	3.26660900	2.29570400
С	3.95228800	2.96001500	2.34725200
С	4.58940800	2.42217600	1.23227000
С	3.85939200	2.14666500	0.07013000
С	2.49738300	2.46316500	0.01918900
С	4.60526800	1.57282200	-1.10109100
0	5.77677500	1.86332200	-1.31560500
Ν	3.88812900	0.73456000	-1.91928200
Н	0.43820500	3.74054800	-0.90589100
Н	2.07890400	3.69462200	3.14835800
Н	4.51652800	3.15116200	3.25521100
Н	5.65171300	2.20260100	1.23989300
Н	1.94322300	2.25711100	-0.89281600
Н	3.09047100	0.26885700	-1.50819900
С	5.35162600	-1.21281600	-2.57427900
Н	5.90649500	-0.99126900	-1.65917300
Н	6.09457200	-1.44341600	-3.34959700

3–cis

Symbol	Х	Y	Ζ
С	3.84178400	3.89722900	1.69474700
С	0.68282900	4.25077100	1.38006400
Ν	-0.62579000	3.88992500	0.84766700
С	-1.52141600	4.85883200	0.46856100
С	-2.79895800	4.37054300	-0.15493300
0	-1.30887300	6.05352700	0.64476500
С	-3.51161300	5.26795600	-0.95858900
С	-4.69652800	4.86994300	-1.57274200
С	-5.19259700	3.58422500	-1.37019400
С	-4.51526700	2.68872100	-0.53400400
С	-3.31170200	3.08632300	0.05877500
С	-5.13583000	1.33378100	-0.33257200
0	-5.96447400	0.88667200	-1.12226900
С	1.68149200	-4.26375400	0.87992100
С	0.96443300	-3.59117400	-0.11150100
С	-0.24916700	-4.08852500	-0.58577900
С	-0.74890800	-5.29715000	-0.08932900
С	-0.01591900	-6.00110600	0.87588200
С	1.16449500	-5.46900400	1.37680200
Ν	-1.86050200	-5.97581000	-0.68685600
Ν	-2.96931200	-5.44833600	-0.90467100
С	-3.37813600	-4.17688600	-0.38448900
С	-3.25588900	-3.83344100	0.96789500
С	-3.88948800	-2.68870600	1.44700400
С	-4.62908700	-1.85975300	0.59742300
		S66	

С	-4.73354200	-2.20501700	-0.75867100
C	-4.13986100	-3.36615500	-1.23793100
C	3.01355600	-3.76691600	1.42359200
C	-5.35513300	-0.64082600	1.13396600
Ν	-4.74164000	0.63877700	0.77555900
Н	4.81239500	4.30424300	1.98842300
Н	3.28781800	3.67225200	2.61242700
Н	0.54054000	5.15867800	1.97123800
Н	0.99427900	3.45299500	2.06529300
Н	-0.72009400	2.97771000	0.42332900
Н	-3.11449200	6.26886900	-1.08910800
Н	-5.23672500	5.56432300	-2.20928100
Н	-6.11015500	3.25047600	-1.84235100
Н	-2.76607500	2.39697000	0.69688500
Н	1.36412400	-2.67527700	-0.53637200
Н	-0.78978900	-3.55892100	-1.36332900
Н	-0.38445100	-6.96339800	1.21798500
Н	1.71566500	-6.01592200	2.13866900
Н	-2.70167000	-4.47556600	1.64382200
Н	-3.81950600	-2.44818100	2.50574400
Н	-5.31303100	-1.56979300	-1.42178200
Н	-4.26842800	-3.67192600	-2.27182100
Н	2.93584100	-3.62628900	2.50974100
Н	3.78197100	-4.52482800	1.24880200
Н	-5.40650100	-0.68882400	2.22605100
Н	-6.37795100	-0.62019200	0.74718600
Н	-4.16744500	1.09907300	1.46472700
Ν	3.52225200	-2.54443400	0.83242000

С	4.48393500	-2.56963300	-0.14781900
С	4.91573400	-1.23988200	-0.70166400
0	4.97482600	-3.61709300	-0.55089500
С	5.56147900	-1.25135500	-1.94410600
С	6.02683600	-0.06575500	-2.50675800
С	5.86270500	1.14057200	-1.83067500
С	5.21591700	1.17211600	-0.58991300
С	4.75126900	-0.02343600	-0.02832900
С	5.09726200	2.50795900	0.09087300
0	5.85934500	3.43296200	-0.17023500
Ν	4.09641700	2.62876200	1.01829100
Н	3.03613300	-1.68045900	1.01833100
Н	5.69970000	-2.20552500	-2.44068300
Н	6.52822600	-0.08366100	-3.46979500
Н	6.23878800	2.07310000	-2.23751800
Н	4.33220800	-0.01189200	0.97463400
Н	3.36977000	1.92907000	1.02536200
С	3.10432700	4.93644400	0.83327300
Н	2.98581000	5.84878700	1.43371000
Н	3.75724800	5.19551900	-0.00636900
С	1.73683400	4.49789500	0.29190600
Н	1.85294200	3.59223100	-0.32074400
Н	1.35119500	5.27660800	-0.37511700

1–trans

Symbol	Х	Y	Ζ
С	0.43096100	-2.43432100	0.63986900
		S68	

С	-0.43149900	-2.43502100	-0.63868900
Ν	-1.83815600	-2.21518100	-0.35654300
С	-2.78482800	-3.20690500	-0.41631100
С	-4.18405200	-2.77854000	-0.06260900
0	-2.52300700	-4.35984500	-0.73502200
С	-5.06992900	-3.75158800	0.41235700
С	-6.35957300	-3.39530100	0.80525000
С	-6.78211900	-2.07021600	0.71612900
С	-5.92728400	-1.09774900	0.18622700
С	-4.63092700	-1.45924000	-0.19552800
С	-6.37990300	0.33489200	0.13947500
0	-7.07635100	0.82094700	1.02370700
С	4.47479400	2.95995500	0.57972700
С	4.04819100	2.95264700	-0.75508900
С	2.71064400	3.17268300	-1.06600400
С	1.77270900	3.38815800	-0.04703500
С	2.20097000	3.45359200	1.28838300
С	3.54081100	3.24387400	1.58877500
Ν	0.42208900	3.45108200	-0.46834100
Ν	-0.42091600	3.45098200	0.46856000
С	-1.77156200	3.38825400	0.04724800
С	-2.19984200	3.45406900	-1.28814100
С	-3.53971200	3.24457700	-1.58856500
С	-4.47371600	2.96051400	-0.57957300
С	-4.04706800	2.95276900	0.75522100
С	-2.70949300	3.17258200	1.06617900
С	5.88088600	2.51446600	0.92982400
С	-5.87989700	2.51538900	-0.92974300

Ν	-5.94540400	1.05309600	-0.94590400
Н	0.34790200	-3.39088300	1.15843200
Н	-0.34843400	-3.39214000	-1.15622800
Н	-0.07820400	-1.64734400	-1.31819700
Н	-2.09202300	-1.34409900	0.08709700
Н	-4.72264200	-4.77725300	0.47826800
Н	-7.03433700	-4.15286300	1.19263800
Н	-7.77115100	-1.77186900	1.04828100
Н	-3.96109700	-0.69903200	-0.58782800
Н	4.76559200	2.74097900	-1.54321700
Н	2.35837800	3.14651400	-2.09247000
Н	1.46944500	3.63866800	2.06663600
Н	3.86907500	3.27701800	2.62557500
Н	-1.46831000	3.63925300	-2.06636200
Н	-3.86798900	3.27799500	-2.62535200
Н	-4.76447200	2.74099800	1.54332400
Н	-2.35720900	3.14608700	2.09263000
Н	6.61022100	2.84496400	0.18791200
Н	6.18414200	2.89900200	1.90899000
Н	-6.18315100	2.90034700	-1.90875100
Н	-6.60913600	2.84580800	-0.18769700
Н	-5.35121000	0.57958900	-1.61224400
Ν	5.94611800	1.05214100	0.94561000
С	6.37961200	0.33405100	-0.14018300
С	5.92687900	-1.09857700	-0.18662900
0	7.07515100	0.82017900	-1.02511100
С	6.78132200	-2.07126100	-0.71671700
С	6.35839500	-3.39624500	-0.80569500
		S70	

С	5.06873400	-3.75216800	-0.41253900
С	4.18324300	-2.77887500	0.06265200
С	4.63052100	-1.45970000	0.19546900
C	2.78394100	-3.20683600	0.41653900
0	2.52173400	-4.35979700	0.73485900
Ν	1.83764700	-2.21468600	0.35762000
Н	5.35278700	0.57855600	1.61266700
Н	7.77035300	-1.77322400	-1.04915700
Н	7.03288400	-4.15399200	-1.19319800
Н	4.72111700	-4.77772200	-0.47844400
Н	3.96106600	-0.69930400	0.58804400
Н	2.09158500	-1.34361500	-0.08600400
Н	0.07769500	-1.64590900	1.31852700

2–trans

Symbol	Х	Y	Ζ
С	-0.26402600	-1.94152000	1.12890400
С	1.70731300	-2.82069600	2.50218000
Ν	2.72048500	-2.36484000	1.56052600
С	3.86988000	-3.06595300	1.30881000
С	4.83501800	-2.41470100	0.35423200
0	4.11580200	-4.15072000	1.82447700
С	5.71404800	-3.24383300	-0.35118200
С	6.61145100	-2.69858400	-1.26754500
С	6.65446100	-1.32151200	-1.47435800
С	5.82096200	-0.47423400	-0.73577700
		S71	

С	4.90895600	-1.02959900	0.16877900
С	5.88456200	1.00276400	-1.00719800
0	6.16080300	1.43966200	-2.12039700
С	-5.10271000	2.50529100	0.60387500
С	-4.48534600	2.99698200	1.75722300
С	-3.15760100	3.42295100	1.72281000
С	-2.42704100	3.35293400	0.53242900
С	-3.06249800	2.92708900	-0.64851900
С	-4.38294300	2.51096400	-0.60596800
Ν	-1.04275800	3.63743900	0.64158500
Ν	-0.38897000	3.42718900	-0.41514800
С	1.01414000	3.55534600	-0.29138800
С	1.69014600	3.92682300	0.88155300
С	3.07834700	3.87990500	0.91493000
С	3.81692500	3.46466900	-0.20400900
С	3.13594100	3.14546100	-1.38666400
С	1.74759600	3.19353800	-1.43001200
С	-6.44780900	1.80952800	0.66645600
С	5.31366500	3.24035500	-0.11295700
Ν	5.61811700	1.81993400	0.05966100
Н	0.28365600	-1.76329300	0.19775400
Н	2.12163200	-3.71048800	2.97972300
Н	1.57552400	-2.05368800	3.27971600
Н	2.52292000	-1.55312200	0.99491800
Н	5.66887200	-4.31276000	-0.17230600
Н	7.27572000	-3.35053200	-1.82698200
Н	7.32924500	-0.88125100	-2.20088700
Н	4.24426600	-0.37625600	0.72759900
		S72	
Н	-5.03439700	3.01658200	2.69570300
---	-------------	---------------------	-------------
Н	-2.65282400	3.77041600	2.61888500
Н	-2.49082400	2.89552600	-1.56864300
Н	-4.86512900	2.14779600	-1.51030700
Н	1.11269100	4.21601800	1.75233600
Н	3.60195500	4.14989200	1.82973500
Н	3.70193900	2.82820600	-2.25782000
Н	1.20140300	2.92224000	-2.32791000
Н	-6.97716400	2.05836100	1.59233900
Н	-7.09251800	2.06882400	-0.17650900
Н	5.74276100	3.79740000	0.72600400
Н	5.82005200	3.55149900	-1.02877000
Н	5.37349100	1.39435600	0.94205600
Ν	-6.23555000	0.36210500	0.58635400
С	-6.46965700	-0.34642200	-0.56731500
С	-5.67232700	-1.61300800	-0.71804400
0	-7.25206600	0.03027600	-1.43149600
С	-6.23399400	-2.69884400	-1.39828700
С	-5.46884800	-3.83590900	-1.65187900
С	-4.13010300	-3.88488700	-1.26515300
С	-3.55212100	-2.80409100	-0.59082400
С	-4.33280800	-1.67528900	-0.31634400
С	-2.08230500	-2.85992900	-0.27477900
0	-1.30053400	-3.52981200	-0.94145900
Ν	-1.66940900	-2.08980900	0.77797700
Н	-5.55128900	-0.01786800	1.22556000
Н	-7.26203600	-2.62721600	-1.73822500
Н	-5.91070100	-4.67873100 \$73	-2.17506600
		515	

Н	-3.50872800	-4.74374700	-1.49623800
Н	-3.86607600	-0.79822100	0.12396000
Н	-2.36273300	-1.72213200	1.41145800
С	0.34747600	-3.14191100	1.86753200
Н	0.43549300	-3.98057200	1.17048000
Н	-0.33135800	-3.45236900	2.67263800
Н	-0.18378800	-1.03632100	1.74404200

3–trans

Symbol	Х	Y	Ζ
С	1.10374500	-2.47421000	-0.60730600
С	-1.98103500	-3.26525900	-0.54562900
Ν	-3.33052600	-2.73001000	-0.65775100
С	-4.42658100	-3.32944000	-0.09935100
С	-5.68347700	-2.49931100	-0.07597500
0	-4.40187200	-4.46738100	0.35649600
С	-6.91307700	-3.16424900	-0.01220900
С	-8.10000500	-2.43955700	0.08129000
С	-8.07273200	-1.04690500	0.13337900
С	-6.85230400	-0.36676200	0.06699100
С	-5.66477600	-1.10094500	-0.03266300
С	-6.85437000	1.13212100	0.19226500
0	-7.71610600	1.73380000	0.82263600
С	5.03237000	3.01323000	-0.15596000
С	4.46853300	3.72015600	-1.22093300
С	3.10289300	4.00184200	-1.24110900
С	2.28004200	3.57374200	-0.19481800
		S74	

С	2.84786300	2.90739100	0.90700200
С	4.20572100	2.63338000	0.91823700
Ν	0.89291100	3.79925100	-0.37240400
Ν	0.16546900	3.31648400	0.53620100
С	-1.22779900	3.43426500	0.31469600
С	-1.81771000	4.01569700	-0.81787700
С	-3.19841400	3.96890600	-0.97355200
С	-4.01633100	3.35122300	-0.01609600
С	-3.42043600	2.80910000	1.13116600
С	-2.04161900	2.85107100	1.29642700
С	6.47212000	2.54246500	-0.19940100
С	-5.50288100	3.17951900	-0.25159000
Ν	-5.81264700	1.76638800	-0.43027700
Н	0.70577900	-1.52374900	-0.98845200
Н	-2.07951500	-4.33127200	-0.32813700
Н	-1.48452700	-3.16600400	-1.51806900
Н	-3.43707800	-1.81060200	-1.05877100
Н	-6.91345800	-4.24907500	-0.01848800
Н	-9.05002300	-2.96341100	0.13039100
Н	-8.98448700	-0.46873000	0.24131500
Н	-4.71418800	-0.57628400	0.01277000
Н	5.09597000	4.03122000	-2.05249800
Н	2.64660800	4.52378700	-2.07627400
Н	2.20230800	2.59939200	1.72147200
Н	4.64273500	2.09933900	1.75871100
Н	-1.18003900	4.46775100	-1.56893700
Н	-3.65291200	4.40019800	-1.86245400
Н	-4.04326500	2.33389600	1.88432500
		S75	

Н	-1.56389700	2.41828600	2.16980400
Н	7.02536200	3.06637200	-0.98764800
Н	6.99448600	2.71204700	0.74592700
Н	-5.82031000	3.76359100	-1.12493000
Н	-6.10017700	3.51672100	0.60045100
Н	-5.20868000	1.23072800	-1.03557300
Ν	6.50434000	1.10054000	-0.42537800
С	7.03150200	0.20815800	0.47119900
С	6.60018000	-1.21842300	0.27038800
0	7.77848900	0.53991900	1.38427000
С	7.48935600	-2.25487500	0.57366300
С	7.09122700	-3.58182600	0.41837400
С	5.79487600	-3.88560300	0.00323100
С	4.87736100	-2.85943400	-0.24554500
С	5.29725700	-1.52985100	-0.13175300
С	3.47174500	-3.23252200	-0.63457000
0	3.20957800	-4.29929600	-1.17855700
Ν	2.52192200	-2.28880800	-0.34379300
Н	5.93365900	0.74076700	-1.17697700
Н	8.48539000	-2.00362700	0.92347100
Н	7.79178200	-4.38409600	0.63037000
Н	5.46813500	-4.91266600	-0.12138000
Н	4.60026000	-0.72511400	-0.34728100
Н	2.77555500	-1.54726600	0.29337700
Н	1.03133300	-3.21369100	-1.40719600
С	-1.18666800	-2.55069000	0.55874800
Н	-1.27677700	-1.46399100	0.40895000
Н	-1.66829300	-2.76990500	1.51893500
		S76	

С	0.30334500	-2.90994200	0.63481600
Н	0.72586200	-2.40718700	1.51480700
Н	0.44188600	-3.98544700	0.79980800

 $1-cis \cdot SO_4^{2-}$ complex

Symbol	Х	Y	Ζ
С	-5.19324900	0.54874400	0.41702400
С	-4.76383700	-0.69144500	1.20270600
Ν	-3.90317200	-1.60397300	0.47318600
С	-4.29541300	-2.85394000	0.14928800
С	-3.20632800	-3.74946400	-0.39225600
0	-5.44730700	-3.29249700	0.29028100
С	-3.56953000	-4.77741300	-1.26777000
С	-2.60604800	-5.66027300	-1.75296500
С	-1.28123700	-5.54209100	-1.33886700
С	-0.90647600	-4.53361700	-0.44211000
С	-1.87345300	-3.63370900	0.02339500
С	0.52708000	-4.52874000	0.02293900
0	1.27879400	-5.47543400	-0.27046700
С	3.26537700	2.86875900	0.42773100
С	2.94645200	1.87675600	-0.50929400
С	3.95013700	1.14818500	-1.13458600
С	5.29639200	1.39368900	-0.83681800
С	5.62858700	2.46734400	-0.00482600
С	4.61540000	3.17937500	0.63726500
		S77	

Ν	6.36929600	0.61490700	-1.39197900
Ν	6.35575600	-0.64111100	-1.34986300
С	5.35262600	-1.36494200	-0.61247900
С	5.07128000	-1.09696900	0.73196100
С	4.08074800	-1.81987000	1.38684500
С	3.35204400	-2.81623500	0.72977400
С	3.69476900	-3.12983700	-0.59315900
С	4.70324800	-2.42865700	-1.25044100
С	2.19577900	3.51908700	1.29493600
С	2.22928400	-3.54103200	1.45073700
Ν	0.93729800	-3.49190800	0.78887600
Н	-5.57944300	0.25368500	-0.56649900
Н	-6.03058000	1.03151900	0.94259100
Н	-5.66015900	-1.25324900	1.47772300
Н	-4.23973100	-0.37631900	2.11278500
Н	-2.96158600	-1.26199400	0.19308900
Н	-4.61524800	-4.86975900	-1.54529500
Н	-2.89032500	-6.45001100	-2.44585100
Н	-0.51446700	-6.23061600	-1.67845700
Н	-1.60068200	-2.85424800	0.72591400
Н	1.90996500	1.60481000	-0.67699700
Н	3.68287000	0.34542100	-1.81300700
Н	6.67645100	2.69339100	0.17587300
Н	4.87926700	3.97702200	1.32983400
Н	5.58899300	-0.29249000	1.24319400
Н	3.83365300	-1.57190800	2.41612500
Н	3.15434600	-3.92545500	-1.09752900
Н	4.96200200	-2.65986100	-2.28041100
		S78	

Н	2.15311000	2.95447200	2.23692700
Н	2.47636700	4.54978300	1.52679400
Н	2.10265600	-3.09376000	2.44220800
Н	2.49241000	-4.59768800	1.57064800
Н	0.37185900	-2.64011400	0.98012700
Ν	0.86015900	3.54373600	0.73730100
С	0.32652300	4.69971300	0.28254000
С	-1.07663200	4.64625300	-0.27619800
0	0.93941800	5.77808600	0.30319700
С	-1.45134500	5.74450600	-1.06057400
С	-2.72256000	5.81080600	-1.62021000
С	-3.63400700	4.78618400	-1.38699900
С	-3.28652200	3.68303800	-0.59670200
С	-1.99862100	3.61264400	-0.04018000
С	-4.38669400	2.65613000	-0.41191100
0	-5.51563900	2.88733800	-0.87717100
Ν	-4.11724100	1.51754100	0.25445500
Н	0.39287200	2.62055200	0.66254900
Н	-0.72077500	6.53309100	-1.20563100
Н	-3.00486600	6.66321200	-2.23540400
Н	-4.63772600	4.80700300	-1.79726900
Н	-1.72919300	2.76998000	0.59359700
Н	-3.19384200	1.29107100	0.66770600
0	0.34727600	0.88087700	0.56889300
S	-0.80259100	-0.03608900	0.92683900
0	-0.30017400	-1.19641100	1.76508300
0	-1.83870600	0.75825400	1.70867800
0	-1.44791900	-0.57175400	-0.33116500
		S79	

2–*cis*•SO₄^{2–} complex

Symbol	Х	Y	Ζ
C	5 00020100	1 24754500	1 7(729200
C	-5.09039100	-1.24/54500	-1./6/38200
С	-4.93689700	1.35179100	-1.57657400
Ν	-3.96995400	1.79631700	-0.58972500
С	-4.19545900	2.92048900	0.12649700
С	-3.00063900	3.51152700	0.83241300
0	-5.28651900	3.50950900	0.17768900
С	-3.22488800	4.28863600	1.97301900
С	-2.16975000	4.96541900	2.58214100
С	-0.89498400	4.91147600	2.02363100
С	-0.65795500	4.15074800	0.87195600
С	-1.71091000	3.43238400	0.29151600
С	0.71524800	4.24029300	0.26136100
0	1.48751500	5.15372100	0.60593400
С	3.37913900	-2.93699400	-0.42844600
С	3.13503200	-1.81730000	0.37750800
С	4.18978400	-1.05384100	0.86227000
С	5.51383800	-1.38489900	0.54071400
С	5.76893900	-2.56276500	-0.17042000
С	4.70660500	-3.31614200	-0.66552800
Ν	6.65861000	-0.61748800	0.94705700
Ν	6.69320900	0.63539600	0.85423600
С	5.63688500	1.37392500 \$80	0.21439400

С	5.20613200	1.09471500	-1.08681100
С	4.13964300	1.80613600	-1.62682400
С	3.48433400	2.80071000	-0.89349400
С	3.98376200	3.13329000	0.37479700
С	5.06701900	2.44368900	0.91360700
С	2.24462700	-3.68305500	-1.11630600
С	2.26019200	3.49676700	-1.46367700
Ν	1.04358200	3.33228900	-0.68380600
Н	-5.87492400	-2.00929100	-1.82732800
Н	-4.68103700	-1.08952800	-2.77300200
Н	-5.64401600	2.17782500	-1.68807600
Н	-4.40934200	1.22143700	-2.53232200
Н	-3.08970800	1.25822700	-0.44549200
Н	-4.23952700	4.36429900	2.35200700
Н	-2.34629600	5.55672900	3.47858300
Н	-0.06568000	5.47007800	2.44513800
Н	-1.54008200	2.83595200	-0.59784000
Н	2.11467800	-1.49224100	0.55565800
Н	3.97643200	-0.16957800	1.45126600
Н	6.80017400	-2.84625600	-0.36454900
Н	4.91103500	-4.20731100	-1.25677900
Н	5.66298900	0.28388400	-1.64492600
Н	3.77302300	1.54639800	-2.61676600
Н	3.49398800	3.92551200	0.93282500
Н	5.44195700	2.68191900	1.90562700
Н	2.18420400	-3.31684500	-2.15064500
Н	2.47319000	-4.75232300	-1.14744900
Н	2.05393800	3.09455200	-2.46038700

Н	2.45598300	4.57172800	-1.54861300
Н	0.45728500	2.50825200	-0.93511100
Ν	0.93753400	-3.52606400	-0.52043600
С	0.45467800	-4.46929700	0.32300700
С	-0.92714400	-4.23052900	0.87323500
0	1.07950700	-5.49598200	0.62532400
С	-1.26538100	-4.91185000	2.04820800
С	-2.54153200	-4.78700900	2.58982300
С	-3.49860500	-4.01269800	1.93913800
С	-3.18241000	-3.33451800	0.75624900
С	-1.88584100	-3.43241800	0.23347200
С	-4.32094800	-2.62370600	0.06389200
0	-5.48992500	-2.86406100	0.40883600
Ν	-4.02036500	-1.79524000	-0.95728600
Н	0.50255900	-2.58343700	-0.60714100
Н	-0.51041100	-5.54170200	2.50759800
Н	-2.79626700	-5.30787300	3.51081300
Н	-4.51459900	-3.93010900	2.31037700
Н	-1.63399500	-2.91284300	-0.68623700
Н	-3.05815900	-1.49510500	-1.19877200
С	-5.72460600	0.06300600	-1.26680300
Н	-5.93036700	-0.01303300	-0.19450900
Н	-6.70041700	0.15120000	-1.76989900
0	0.37448200	-0.86451600	-0.66663700
S	-0.80872400	-0.04557600	-1.14523300
0	-0.30983800	1.20733200	-1.84369800
0	-1.64059700	-0.88141100	-2.10183100
0	-1.67342900	0.34661100	0.03261700
		S82	

3–*cis*•SO₄^{2–} complex

Symbol	Х	Y	Ζ
С	-5.50093500	-0.38934400	-1.30596000
С	-4.44934600	2.55307600	-0.56632200
Ν	-3.19150100	3.10460500	-0.09993500
С	-3.05909900	4.39534800	0.25718500
С	-1.65824400	4.84007000	0.60232600
0	-3.99008200	5.21628900	0.28909000
С	-1.52699900	5.98398200	1.39621100
С	-0.26567000	6.49297200	1.69608800
С	0.86977200	5.88520500	1.16837300
С	0.75453500	4.74913100	0.35630400
С	-0.51304500	4.21575700	0.08909600
С	2.02984800	4.23279900	-0.25466100
0	3.06988700	4.90979000	-0.16806900
С	2.76489000	-3.47443800	-0.39159500
С	2.72737100	-2.40362200	0.51216800
С	3.89353700	-1.95750300	1.12075700
С	5.12112100	-2.56950100	0.83273300
С	5.14628400	-3.72149200	0.04242900
С	3.97495600	-4.15193000	-0.58130300
Ν	6.37608300	-2.07572700	1.33479700
Ν	6.69839400	-0.86910900	1.19293800
С	5.88516800	0.03119600	0.41524600

5.52170300	-0.24256200	-0.90779300
4.66865600	0.62493800	-1.58057000
4.16395000	1.77416500	-0.96333000
4.61943900	2.09104400	0.32414000
5.49078700	1.23915400	0.99929600
1.55282000	-3.81988600	-1.24174300
3.16093900	2.65047200	-1.69462700
2.00035100	3.05290100	-0.91610500
-6.32731800	-0.96725200	-1.73495100
-5.00024400	0.14683500	-2.11712300
-5.15205000	3.38224500	-0.68662300
-4.27314600	2.10887600	-1.55417200
-2.43818000	2.40487600	0.05785200
-2.43454500	6.46237600	1.75063200
-0.16812800	7.37556700	2.32532600
1.86372200	6.28090300	1.34757300
-0.61276000	3.33081500	-0.53392600
1.79634400	-1.86339500	0.66562800
3.85965600	-1.09072700	1.77154900
6.09338600	-4.22729100	-0.12746800
4.00617800	-5.01546600	-1.24317500
5.84959400	-1.16273500	-1.37958900
4.34426800	0.37533400	-2.58819900
4.27587900	3.00868700	0.78971900
5.82058500	1.46784100	2.00931300
1.58153900	-3.18267900	-2.13603000
1.61582700	-4.86271300	-1.56362100
2.79456300	2.11045600 884	-2.57298800
	5.52170300 4.66865600 4.16395000 4.61943900 5.49078700 1.55282000 3.16093900 2.00035100 -6.32731800 -5.00024400 -5.15205000 -4.27314600 -2.43818000 -2.43818000 -2.43454500 -0.16812800 1.86372200 -0.61276000 1.79634400 3.85965600 6.09338600 4.00617800 5.84959400 4.34426800 4.27587900 5.82058500 1.58153900 1.61582700 2.79456300	5.52170300 -0.24256200 4.668655600 0.62493800 4.16395000 1.77416500 4.61943900 2.09104400 5.49078700 1.23915400 1.55282000 -3.81988600 3.16093900 2.65047200 2.00035100 3.05290100 -6.32731800 -0.96725200 -5.00024400 0.14683500 -5.15205000 3.38224500 -4.27314600 2.10887600 -2.43818000 2.40487600 -2.43454500 6.46237600 -0.16812800 7.37556700 1.86372200 6.28090300 -0.61276000 3.33081500 1.79634400 -1.86339500 3.85965600 -1.09072700 6.09338600 -4.22729100 4.00617800 -5.01546600 5.84959400 -1.16273500 4.34426800 0.37533400 4.27587900 3.0868700 5.82058500 1.46784100 1.58153900 -3.18267900 1.61582700 -4.86271300 2.79456300 2.11045600

Н	3.65919400	3.56720500	-2.03076700
Н	1.17743600	2.42021200	-0.95417900
Ν	0.25997900	-3.62933100	-0.61738300
С	-0.37500200	-4.69102600	-0.06783900
С	-1.77098800	-4.46807600	0.45343600
0	0.12419800	-5.82477100	-0.02181800
С	-2.26265100	-5.42911800	1.34497000
С	-3.57368100	-5.35688500	1.80525400
С	-4.41344700	-4.34705600	1.34447600
С	-3.94194100	-3.38165000	0.44655700
С	-2.60808100	-3.43146300	0.01669300
С	-4.96474800	-2.39046300	-0.05595900
0	-6.17075600	-2.59673700	0.16022400
Ν	-4.52947900	-1.32187400	-0.75549600
Н	-0.05973100	-2.64800700	-0.49445300
Н	-1.59701700	-6.23217800	1.64367900
Н	-3.94769500	-6.09969600	2.50713300
Н	-5.45380200	-4.28707300	1.64566800
Н	-2.22984700	-2.67838900	-0.67030100
Н	-3.52912600	-1.08047200	-0.88599200
С	-6.07173800	0.59554300	-0.26786200
Н	-6.83800200	1.21441300	-0.76265500
Н	-6.58785300	0.00289400	0.49503400
С	-5.00848500	1.48669000	0.38586300
Н	-4.17768200	0.86183000	0.73003900
Н	-5.42296600	1.98429400	1.27297100
0	0.02432400	-0.89401400	-0.15293700
S	-0.87955200	0.20321500	-0.67546700

0	-0.07467500	1.19461400	-1.49423500
0	-1.96079800	-0.43273300	-1.53066300
0	-1.52235800	0.94225400	0.47836100

1-*trans*•SO₄²⁻ complex

Symbol	Х	Y	Ζ
С	-0.26570800	3.35263700	0.72756500
С	0.28664200	3.34437300	-0.72255800
Ν	1.66134200	2.87506400	-0.75598000
С	2.70803400	3.70659400	-0.85555000
С	4.09680100	3.10563400	-0.71135500
0	2.60958200	4.92710900	-1.06212200
С	5.15824500	3.97908700	-0.97639200
С	6.47846000	3.55502300	-0.86243400
С	6.75287700	2.25008300	-0.47021900
С	5.70828100	1.36140900	-0.18362200
С	4.37553500	1.78977600	-0.31155500
С	6.13698700	-0.02523100	0.22153100
0	7.30038000	-0.40515500	0.04736800
С	-4.14944600	-3.11556400	-0.79272000
С	-3.60287800	-3.88293300	-1.82895100
С	-2.34849500	-4.46503400	-1.68519900
С	-1.62733000	-4.28782700	-0.49730000
С	-2.20720800	-3.59307400	0.57733800
С	-3.46291500	-3.02937500	0.42456000
Ν	-0.24433700	-4.54665400	-0.53340600
Ν	0.31827800	-4.56128300	0.59796800
		S86	

С	1.68838500	-4.23611600	0.54760000
С	2.15144300	-3.34177700	-0.43228300
С	3.41094700	-2.78046700	-0.29881000
С	4.21768300	-3.06062600	0.81055200
С	3.76964900	-3.99510000	1.75373200
С	2.51259000	-4.57957800	1.62761100
С	-5.36654500	-2.25139300	-1.01228800
С	5.47288000	-2.24929100	1.03437300
Ν	5.20629900	-0.83297700	0.79292900
Н	-0.21620200	4.34674700	1.17574700
Н	0.23686900	4.33425400	-1.17984500
Н	-0.31262700	2.63600900	-1.30009400
Н	1.69809900	1.86221900	-0.53013000
Н	4.90096400	4.99163600	-1.26757300
Н	7.29384400	4.24253700	-1.07791200
Н	7.76900400	1.88193400	-0.37912800
Н	3.54730700	1.10966600	-0.11866900
Н	-4.12638400	-3.94928600	-2.78082100
Н	-1.86661500	-4.97293900	-2.51589200
Н	-1.59860100	-3.36428000	1.44033900
Н	-3.86346000	-2.40540100	1.21888800
Н	1.45223200	-2.95694400	-1.16900400
Н	3.72613600	-2.02709800	-1.01528400
Н	4.38252300	-4.21218100	2.62714400
Н	2.12454500	-5.24275400	2.39629200
Н	-5.71134600	-2.33591800	-2.05295700
Н	-6.21361300	-2.54238900	-0.38008100
Н	6.28914600	-2.52885100	0.35822400
		S87	

Н	5.84640200	-2.40351100	2.05697400
Н	4.24977100	-0.51880800	0.90570200
Ν	-5.05702200	-0.86063300	-0.68563200
С	-6.03758000	-0.02322300	-0.26107900
С	-5.64581400	1.36249900	0.17961600
0	-7.22191800	-0.38318100	-0.23823000
С	-6.70708000	2.24064700	0.43694400
С	-6.45523900	3.54393600	0.85115100
С	-5.14212300	3.97902200	1.00875400
С	-4.06802300	3.11646500	0.76291100
С	-4.32315700	1.80020800	0.34968700
С	-2.68348100	3.71487700	0.93695900
0	-2.58192500	4.91714500	1.23249400
Ν	-1.64131500	2.89108200	0.75018200
Н	-4.08039700	-0.57796800	-0.70631800
Н	-7.71661700	1.86673800	0.30428400
Н	-7.28291600	4.22267800	1.04794400
Н	-4.90304300	4.99067800	1.31897100
Н	-3.48581300	1.12617200	0.17546200
Н	-1.71087000	1.89198700	0.45487600
Н	0.33110800	2.64680000	1.31096100
S	-0.16983100	-0.50111000	-0.07019400
0	-0.37285000	-1.36323200	1.13888700
0	0.06121400	-1.31367600	-1.31110100
0	-1.42031200	0.37979300	-0.29612500
0	1.03340500	0.42118100	0.18272500

2–*trans*•SO₄^{2–} complex

Symbol	Х	Y	Ζ
С	0.29374900	3.44325700	-1.24621500
С	-0.25812100	3.43044600	1.25590700
Ν	-1.55843100	2.77611000	1.16875200
С	-2.66787400	3.46354000	1.48334100
С	-4.01528900	2.82592100	1.19976200
Ο	-2.64620600	4.60408700	1.97928500
С	-5.12753600	3.54621400	1.65154300
С	-6.41957300	3.09185900	1.40654200
С	-6.61241300	1.91562900	0.69182200
С	-5.51387300	1.18232700	0.22311500
С	-4.20925300	1.63328300	0.48657400
С	-5.85699000	-0.07630900	-0.52873100
Ο	-7.02318700	-0.48786900	-0.56619100
С	3.92223600	-3.02566300	1.31842800
С	3.39417100	-3.95994800	2.22138100
С	2.21719800	-4.63958500	1.92866200
С	1.55171300	-4.39176600	0.71886200
С	2.11720300	-3.51570400	-0.22145500
С	3.29996100	-2.86062600	0.07733200
Ν	0.19159300	-4.73681400	0.60566700
Ν	-0.24023100	-4.73534900	-0.58320900
С	-1.60039700	-4.39306700	-0.70182300
С	-2.18625600	-3.54259000	0.24974000
С	-3.36164500	-2.87810500	-0.05725000
С	-3.95640700	-3.00965800	-1.31609000

С	-3.41301300	-3.92422600	-2.22950800
С	-2.24336000	-4.61259500	-1.92909500
С	5.05264100	-2.10199300	1.71679800
С	-5.06962600	-2.06727500	-1.71785400
Ν	-4.85098400	-0.73568600	-1.16463800
Н	0.28807600	4.08134600	-2.13473600
Н	-0.24653500	4.05785800	2.15193200
Н	0.49007800	2.63834200	1.35109000
Н	-1.54017700	1.83561100	0.71330000
Н	-4.93339300	4.46970900	2.18611200
Н	-7.27616000	3.65806000	1.76705800
Н	-7.60399300	1.53118400	0.47948100
Н	-3.33671500	1.06832300	0.15847400
Н	3.86569200	-4.09142400	3.19401000
Н	1.75009900	-5.29016300	2.66332300
Н	1.53030700	-3.20573000	-1.07745300
Н	3.66808500	-2.11139500	-0.61571600
Н	-1.61786900	-3.26277300	1.12722300
Н	-3.74561200	-2.14539900	0.64509000
Н	-3.86366800	-4.02979900	-3.21499000
Н	-1.75986900	-5.24342000	-2.67020000
Н	5.13006400	-2.06480800	2.81297900
Н	6.02726900	-2.43408900	1.34236400
Н	-6.05194400	-2.38555200	-1.35172700
Н	-5.13835100	-2.02319200	-2.81428400
Н	-3.88885800	-0.41772100	-1.08556700
Ν	4.85208300	-0.76405200	1.17249700
С	5.86170300	-0.11920100	0.52725800
		S90	

С	5.52955900	1.14547000	-0.21949300
0	7.02202400	-0.54742600	0.55370600
С	6.63460100	1.87067400	-0.68547700
С	6.45236800	3.05169300	-1.39502800
С	5.16449100	3.51889100	-1.63767400
С	4.04570100	2.80656800	-1.18944000
С	4.22895800	1.60908300	-0.48147400
С	2.70425100	3.45858600	-1.46919100
0	2.69375600	4.60511300	-1.95156100
Ν	1.58839800	2.77695200	-1.16554400
Н	3.89462900	-0.43180100	1.09950100
Н	7.62270100	1.47620500	-0.47527900
Н	7.31400500	3.61165800	-1.75321800
Н	4.97872300	4.44681900	-2.16751100
Н	3.35121000	1.04997000	-0.15722900
Н	1.55974300	1.83051200	-0.72271300
С	0.02092600	4.28823900	0.00987700
Н	-0.84200000	4.94557500	-0.15748300
Н	0.88876200	4.93704800	0.18496600
Н	-0.46132100	2.65893700	-1.35163600
S	-0.00397700	-0.43809800	-0.02806200
0	0.27313000	-1.24608900	-1.25669200
0	-0.27729800	-1.28911000	1.17154800
0	1.20748300	0.47758400	0.27373100
0	-1.21784300	0.48387500	-0.29879100

3–*trans*•SO₄^{2–} complex

Symbol	Х	Y	Ζ
С	0.11398900	-3.55078600	-0.35075000
С	-1.53536900	-2.43380000	-3.07260900
Ν	-2.38757600	-2.08152200	-1.94350800
С	-3.52163800	-2.76576000	-1.72204300
С	-4.39242500	-2.33776700	-0.55818900
0	-3.90775300	-3.70720500	-2.43672700
С	-5.38282100	-3.24554900	-0.16543600
С	-6.29886400	-2.91455500	0.82927800
С	-6.26040500	-1.65207900	1.41117300
С	-5.27786100	-0.72853600	1.03173200
С	-4.32559300	-1.08281700	0.06260500
С	-5.39797600	0.64428400	1.63317300
0	-6.45570900	1.02029400	2.15268500
С	4.38233900	2.54962300	-1.20273000
С	3.35924100	2.13828600	-2.06120000
С	2.18368000	2.87152700	-2.16488100
С	2.02310900	4.02558600	-1.39041600
С	3.08386800	4.51448000	-0.61622400
С	4.25743900	3.77537500	-0.53072200
Ν	0.66674400	4.40854800	-1.26536700
Ν	0.37827800	4.87210200	-0.12991600
С	-0.99307700	4.72219000	0.19562200
С	-1.88466400	3.98883300	-0.60486000
С	-3.05840100	3.50427300	-0.05749100
С	-3.34885100	3.68826100	1.30253900
С	-2.51410200	4.51147600	2.06410600
С	-1.34929500	5.03877400	1.51100200
		S92	

C -4.44719100 2.87443300 1.94261 N -4.32478800 1.47263700 1.54881 H -0.09256400 -4.58419600 -0.05823 H -2.18316600 -2.61696400 -3.93770 H -0.90529200 -1.55842600 -3.25719 H -0.90529200 -1.55842600 -3.25719 H -1.97590600 -1.39095800 -1.27252 H -5.41891300 -4.19853200 -0.68226 H -7.05843000 -3.63201400 1.13293 H -6.99361600 -1.34179500 2.14813 H -3.54267900 -0.39030900 -0.23579 H 3.41654600 1.17367100 -2.5813 H 1.32712300 2.45289100 -2.68155 H 2.93439100 5.40342900 -0.01179 H 5.05931300 4.10600300 0.12700 H -1.57440300 3.70199400 -1.60030 H -2.72979800 4.66605900 3.11953 H -0.63560200 5.58357300 2.12267	
N -4.32478800 1.47263700 1.54881 H -0.09256400 -4.58419600 -0.05823 H -2.18316600 -2.61696400 -3.93770 H -0.90529200 -1.55842600 -3.25719 H -1.97590600 -1.39095800 -1.27252 H -5.41891300 -4.19853200 -0.68226 H -5.41891300 -3.63201400 1.13293 H -6.99361600 -1.34179500 2.14813 H -6.99361600 -1.34179500 2.14813 H -3.54267900 -0.39030900 -0.23579 H 3.41654600 1.17367100 -2.55813 H 1.32712300 2.45289100 -2.68155 H 2.93439100 5.40342900 -0.01179 H 5.05931300 4.10600300 0.12700 H -1.57440300 3.70199400 -1.60030 H -2.72979800 4.66605900 3.11953 H -0.63560200 5.58357300 2.12267 H 5.97164400 1.18407400 -1.75942	400
H -0.09256400 -4.58419600 -0.05823 H -2.18316600 -2.61696400 -3.93770 H -0.90529200 -1.55842600 -3.25719 H -1.97590600 -1.39095800 -1.27252 H -5.41891300 -4.19853200 -0.68226 H -7.05843000 -3.63201400 1.13293 H -6.99361600 -1.34179500 2.14813 H -3.54267900 -0.39030900 -0.23579 H 3.41654600 1.17367100 -2.55813 H 1.32712300 2.45289100 -2.68155 H 2.93439100 5.40342900 -0.01179 H 5.05931300 4.10600300 0.12700 H -1.57440300 3.70199400 -1.60030 H -2.72979800 4.66605900 3.11953 H -0.63560200 5.58357300 2.12267 H 5.97164400 1.18407400 -1.75942 H 6.27228100 2.06053200 -0.26132 H -5.45051700 3.20077300 1.64139	600
H -2.18316600 -2.61696400 -3.93770 H -0.90529200 -1.55842600 -3.25719 H -1.97590600 -1.39095800 -1.27252 H -5.41891300 -4.19853200 -0.68226 H -7.05843000 -3.63201400 1.13293 H -6.99361600 -1.34179500 2.14813 H -3.54267900 -0.39030900 -0.23579 H 3.41654600 1.17367100 -2.55813 H 1.32712300 2.45289100 -2.68155 H 2.93439100 5.40342900 -0.01179 H 5.05931300 4.10600300 0.12700 H -1.57440300 3.70199400 -1.60030 H -2.72979800 4.66605900 3.11953 H -0.63560200 5.58357300 2.12267 H 5.97164400 1.18407400 -1.75942 H 6.27228100 2.06053200 -0.26132 H -5.45051700 3.20077300 1.64139 H -4.40730600 2.97763900 3.03622 <td>700</td>	700
H -0.90529200 -1.55842600 -3.25719 H -1.97590600 -1.39095800 -1.27252 H -5.41891300 -4.19853200 -0.68226 H -7.05843000 -3.63201400 1.13293 H -6.99361600 -1.34179500 2.14813 H -6.99361600 -1.34179500 2.14813 H -3.54267900 -0.39030900 -0.23579 H 3.41654600 1.17367100 -2.55813 H 1.32712300 2.45289100 -2.68155 H 2.93439100 5.40342900 -0.01179 H 5.05931300 4.10600300 0.12700 H -1.57440300 3.70199400 -1.60030 H -2.72979800 4.66605900 3.11953 H -0.63560200 5.58357300 2.12267 H 5.97164400 1.18407400 -1.75942 H 6.27228100 2.06053200 -0.26132 H -5.45051700 3.20077300 1.64139 H -4.40730600 2.97763900 3.03622 <td>600</td>	600
H -1.97590600 -1.39095800 -1.27252 H -5.41891300 -4.19853200 -0.68226 H -7.05843000 -3.63201400 1.13293 H -6.99361600 -1.34179500 2.14813 H -3.54267900 -0.39030900 -0.23579 H 3.41654600 1.17367100 -2.55813 H 1.32712300 2.45289100 -2.68155 H 2.93439100 5.40342900 -0.01179 H 5.05931300 4.10600300 0.12700 H -1.57440300 3.70199400 -1.60030 H -2.72979800 4.66605900 3.11953 H -0.63560200 5.58357300 2.12267 H 5.97164400 1.18407400 -1.75942 H 6.27228100 2.06053200 -0.26132 H -5.45051700 3.20077300 1.64139 H -4.40730600 2.97763900 3.03622	500
H -5.41891300 -4.19853200 -0.68226 H -7.05843000 -3.63201400 1.13293 H -6.99361600 -1.34179500 2.14813 H -3.54267900 -0.39030900 -0.23579 H 3.41654600 1.17367100 -2.55813 H 1.32712300 2.45289100 -2.68155 H 2.93439100 5.40342900 -0.01179 H 5.05931300 4.10600300 0.12700 H -1.57440300 3.70199400 -1.60030 H -2.72979800 4.66605900 3.11953 H -0.63560200 5.58357300 2.12267 H 5.97164400 1.18407400 -1.75942 H 6.27228100 2.06053200 -0.26132 H -5.45051700 3.20077300 1.64139 H -4.40730600 2.97763900 3.03622	300
H -7.05843000 -3.63201400 1.13293 H -6.99361600 -1.34179500 2.14813 H -3.54267900 -0.39030900 -0.23579 H 3.41654600 1.17367100 -2.55813 H 1.32712300 2.45289100 -2.68155 H 2.93439100 5.40342900 -0.01179 H 5.05931300 4.10600300 0.12700 H -1.57440300 3.70199400 -1.60030 H -2.72979800 4.66605900 3.11953 H -0.63560200 5.58357300 2.12267 H 5.97164400 1.18407400 -1.75942 H 6.27228100 2.06053200 -0.26132 H -5.45051700 3.20077300 1.64139 H -4.40730600 2.97763900 3.03622	500
H -6.99361600 -1.34179500 2.14813 H -3.54267900 -0.39030900 -0.23579 H 3.41654600 1.17367100 -2.55813 H 1.32712300 2.45289100 -2.68155 H 2.93439100 5.40342900 -0.01179 H 5.05931300 4.10600300 0.12700 H -1.57440300 3.70199400 -1.60030 H -2.72979800 4.66605900 3.11953 H -0.63560200 5.58357300 2.12267 H 5.97164400 1.18407400 -1.75942 H 6.27228100 2.06053200 -0.26132 H -5.45051700 3.20077300 1.64139 H -4.40730600 2.97763900 3.03622	600
H -3.54267900 -0.39030900 -0.23579 H 3.41654600 1.17367100 -2.55813 H 1.32712300 2.45289100 -2.68155 H 2.93439100 5.40342900 -0.01179 H 5.05931300 4.10600300 0.12700 H -1.57440300 3.70199400 -1.60030 H -3.69879200 2.86160900 -0.65564 H -2.72979800 4.66605900 3.11953 H -0.63560200 5.58357300 2.12267 H 5.97164400 1.18407400 -1.75942 H 6.27228100 2.06053200 -0.26132 H -5.45051700 3.20077300 1.64139 H -4.40730600 2.97763900 3.03622	500
H3.416546001.17367100-2.55813H1.327123002.45289100-2.68155H2.934391005.40342900-0.01179H5.059313004.106003000.12700H-1.574403003.70199400-1.60030H-3.698792002.86160900-0.65564H-2.729798004.666059003.11953H-0.635602005.583573002.12267H5.971644001.18407400-1.75942H6.272281002.06053200-0.26132H-5.450517003.200773001.64139H-4.407306002.977639003.03622	500
H 1.32712300 2.45289100 -2.68155 H 2.93439100 5.40342900 -0.01179 H 5.05931300 4.10600300 0.12700 H -1.57440300 3.70199400 -1.60030 H -3.69879200 2.86160900 -0.65564 H -2.72979800 4.66605900 3.11953 H -0.63560200 5.58357300 2.12267 H 5.97164400 1.18407400 -1.75942 H 6.27228100 2.06053200 -0.26132 H -5.45051700 3.20077300 1.64139 H -4.40730600 2.97763900 3.03622	400
H 2.93439100 5.40342900 -0.01179 H 5.05931300 4.10600300 0.12700 H -1.57440300 3.70199400 -1.60030 H -3.69879200 2.86160900 -0.65564 H -2.72979800 4.66605900 3.11953 H -0.63560200 5.58357300 2.12267 H 5.97164400 1.18407400 -1.75942 H 6.27228100 2.06053200 -0.26132 H -5.45051700 3.20077300 1.64139 H -4.40730600 2.97763900 3.03622	600
H 5.05931300 4.10600300 0.12700 H -1.57440300 3.70199400 -1.60030 H -3.69879200 2.86160900 -0.65564 H -2.72979800 4.66605900 3.11953 H -0.63560200 5.58357300 2.12267 H 5.97164400 1.18407400 -1.75942 H 6.27228100 2.06053200 -0.26132 H -5.45051700 3.20077300 1.64139 H -4.40730600 2.97763900 3.03622	400
H -1.57440300 3.70199400 -1.60030 H -3.69879200 2.86160900 -0.65564 H -2.72979800 4.66605900 3.11953 H -0.63560200 5.58357300 2.12267 H 5.97164400 1.18407400 -1.75942 H 6.27228100 2.06053200 -0.26132 H -5.45051700 3.20077300 1.64139 H -4.40730600 2.97763900 3.03622	400
H -3.69879200 2.86160900 -0.65564 H -2.72979800 4.66605900 3.11953 H -0.63560200 5.58357300 2.12267 H 5.97164400 1.18407400 -1.75942 H 6.27228100 2.06053200 -0.26132 H -5.45051700 3.20077300 1.64139 H -4.40730600 2.97763900 3.03622	500
H -2.72979800 4.66605900 3.11953 H -0.63560200 5.58357300 2.12267 H 5.97164400 1.18407400 -1.75942 H 6.27228100 2.06053200 -0.26132 H -5.45051700 3.20077300 1.64139 H -4.40730600 2.97763900 3.03622	000
H -0.63560200 5.58357300 2.12267 H 5.97164400 1.18407400 -1.75942 H 6.27228100 2.06053200 -0.26132 H -5.45051700 3.20077300 1.64139 H -4.40730600 2.97763900 3.03622	600
H 5.97164400 1.18407400 -1.75942 H 6.27228100 2.06053200 -0.26132 H -5.45051700 3.20077300 1.64139 H -4.40730600 2.97763900 3.03622	300
H6.272281002.06053200-0.26132H-5.450517003.200773001.64139H-4.407306002.977639003.03622	100
H -5.45051700 3.20077300 1.64139 H -4.40730600 2.97763900 3.03622	700
Н –4.40730600 2.97763900 3.03622	800
	400
Н –3.41988000 1.13575700 1.23340	400
N 4.92811200 0.47645000 -0.07700	200
C 5.74079800 -0.32110100 0.66175	900
C 5.10077500 -1.49241500 1.35395	400
O 6.95789700 -0.11257800 0.74695 \$93	300

С	5.83294700	-2.12785600	2.36405800
С	5.32408000	-3.26606200	2.98562900
С	4.09855400	-3.79447500	2.58153400
С	3.35315600	-3.16678600	1.57890200
С	3.85626500	-2.00925400	0.97398400
С	2.09031400	-3.84399800	1.09068500
0	1.95364400	-5.06644600	1.26045700
Ν	1.20998100	-3.04700800	0.46318800
Н	3.91406400	0.37199400	-0.05225700
Н	6.80411400	-1.72079800	2.62703600
Н	5.89518400	-3.75583000	3.77207100
Н	3.70318500	-4.71043800	3.00953400
Н	3.27969500	-1.53985800	0.18345500
Н	1.32894400	-2.01482800	0.39533300
С	0.49689100	-3.45606000	-1.84127000
Н	1.29421000	-4.19070300	-2.02622200
Н	-0.75812900	-2.93120800	-0.13948800
С	-0.65142600	-3.67377000	-2.84054600
Н	-1.28786300	-4.51820300	-2.54542600
Н	-0.21678700	-3.94095700	-3.81621000
Н	0.92789500	-2.46255700	-2.01367000
S	0.15923800	0.33928700	-0.67983100
0	0.08386900	1.76439700	-0.23202100
0	0.23235300	0.22894400	-2.18395300
0	1.40879000	-0.32562800	-0.07243300
0	-1.08383200	-0.41740800	-0.17419200

1-*trans*•2SO₄²⁻ complex

Symbol	Х	Y	Ζ
С	0.10135100	1.59307800	0.52154700
С	-0.85015300	2.67877500	1.08679700
Ν	-2.24232500	2.34678200	0.78384000
С	-3.01888000	3.21007400	0.08827400
С	-4.30150400	2.67073700	-0.52776400
0	-2.70325300	4.38686700	-0.15374500
С	-5.11121900	3.59557500	-1.19622600
С	-6.20884100	3.17313200	-1.94705000
С	-6.48757300	1.81373600	-2.06850400
С	-5.70666500	0.87497000	-1.38487500
С	-4.62941800	1.30939300	-0.59816300
С	-5.95445500	-0.59256000	-1.64133200
0	-6.39603600	-0.96801100	-2.74556400
С	4.94166900	-2.62977600	-0.16138700
С	4.19606100	-2.48289100	1.01543300
С	2.86054900	-2.86911300	1.03243800
С	2.24246100	-3.40687200	-0.10590700
С	3.00593100	-3.61434400	-1.27020100
С	4.34156300	-3.22464600	-1.28796900
Ν	0.84397900	-3.53849300	0.01373100
Ν	0.19640800	-3.90653500	-1.00668700
С	-1.21021200	-3.74727400	-0.84674000
С	-1.78372900	-2.95827500	0.16746200
С	-3.14647000	-2.70598800	0.18730200
С	-3.98238100	-3.23141900	-0.81454900
С	-3.41720000	-4.04010600 895	-1.80796400
		575	

С	-2.04290700	-4.29279600	-1.83210700
С	6.30624200	-1.95635100	-0.25061400
С	-5.45859900	-2.84536200	-0.82232200
Ν	-5.62808400	-1.41765000	-0.62866100
Н	-0.29935400	1.30512300	-0.45634400
Н	-0.63522900	3.63367400	0.60793900
Н	-0.70531600	2.78393200	2.16983200
Н	-2.65678600	1.48644700	1.21165600
Н	-4.82785000	4.64181800	-1.13868500
Н	-6.82690000	3.90628300	-2.46692100
Н	-7.29209200	1.45185400	-2.70378200
Н	-4.02779700	0.58581900	-0.05512800
Н	4.61982900	-1.96351700	1.88307900
Н	2.24602300	-2.67182200	1.90492300
Н	2.51848100	-4.01079400	-2.15592700
Н	4.91795700	-3.30878800	-2.20802700
Н	-1.14144100	-2.49631600	0.90746300
Н	-3.54791200	-2.03972600	0.95016600
Н	-4.05159700	-4.43855800	-2.59992100
Н	-1.58959300	-4.87743000	-2.63021100
Н	6.84641500	-2.08190700	0.69381300
Н	6.90210600	-2.37023600	-1.07188100
Н	-5.97535500	-3.36290200	-0.00204500
Н	-5.92945400	-3.13121900	-1.76865600
N	6.12102600	-0.52953500	-0.46761500
С	6.02530000	-0.01541800	-1.70663800
С	5.27901400	1.29501400	-1.79584700
0	6.44592900	-0.56678700	-2.74331300
		S96	

С	5.62065800	2.21559700	-2.78914200
С	4.82884900	3.34563100	-2.99768900
С	3.64737200	3.50845700	-2.27667800
С	3.27561400	2.58060300	-1.29391200
С	4.12643800	1.50231200	-1.01904100
С	1.85149200	2.67050100	-0.77347500
0	1.02638000	3.29685100	-1.45539200
Ν	1.50745500	1.97473100	0.33592100
Н	6.49362300	2.01523600	-3.40595500
Н	5.10580800	4.07407100	-3.76041500
Н	2.95897800	4.31987600	-2.49221200
Н	3.87166000	0.80214000	-0.22740200
Н	2.23115100	1.53916900	0.93597100
Н	0.08931500	0.71005100	1.16621000
Н	-5.50199600	-1.09031900	0.38533900
Н	5.92727100	0.09269700	0.39305200
S	4.83384000	0.72483900	2.65179000
0	5.22477100	-0.62014000	3.23251100
0	4.78725400	1.78332800	3.70266200
0	5.88499500	1.10577400	1.58879600
0	3.49034100	0.57838000	1.93662900
S	-4.60221400	-0.06625900	2.69770200
0	-3.26753500	-0.01592600	1.92659100
0	-5.46437600	-1.12951400	1.97483900
0	-4.38191300	-0.50538700	4.10901300
0	-5.27872500	1.26789000	2.60566700

2-*trans*•2SO₄²⁻ complex

Symbol	Х	Y	Ζ
С	0.54578700	1.93051200	0.98030800
С	-1.58292700	2.94052500	2.05817000
Ν	-2.58643400	2.45863100	1.11181900
С	-3.13025300	3.30264600	0.20579700
С	-4.10719200	2.71175100	-0.79411100
0	-2.82242000	4.50339100	0.12337300
С	-4.57350200	3.56547600	-1.80151700
С	-5.38924700	3.07990700	-2.82295300
С	-5.73549100	1.72944000	-2.85658500
С	-5.30779900	0.87083900	-1.83974500
С	-4.49937000	1.36626600	-0.80504900
С	-5.61789100	-0.60455500	-1.94389900
0	-5.74026000	-1.14864100	-3.05822600
С	4.80623400	-2.78532300	-0.10113900
С	4.07033500	-2.56976900	1.07203500
С	2.71937600	-2.89986300	1.10431700
С	2.07059700	-3.43044800	-0.02019100
С	2.81766200	-3.69118500	-1.18355100
С	4.17169300	-3.37107600	-1.21321900
Ν	0.66829500	-3.52860100	0.11560700
Ν	0.00714700	-3.81325400	-0.92229500
С	-1.39955900	-3.67678000	-0.74849500
С	-2.00878200	-3.19830400	0.42664300
С	-3.37070900	-2.93636100	0.46437100
С	-4.16358800	-3.14470700	-0.68084800

С	-3.56617600	-3.65632400	-1.83910700
С	-2.19629700	-3.92375100	-1.87410700
С	6.21723400	-2.21573600	-0.20110300
С	-5.61839900	-2.69203500	-0.66201300
Ν	-5.71007600	-1.24366200	-0.76429800
Н	-0.05104000	1.47974200	0.17860800
Н	-1.93483500	3.88049900	2.50652400
Н	-1.53604300	2.18683000	2.85132400
Н	-3.07865600	1.58191000	1.38616300
Н	-4.25184500	4.60182300	-1.76838100
Н	-5.73282800	3.75166300	-3.61016900
Н	-6.32342200	1.31239500	-3.67043300
Н	-4.16677100	0.69405300	-0.01863300
Н	4.53579000	-2.05616200	1.91979300
Н	2.11805400	-2.67240300	1.97906800
Н	2.30818700	-4.08452400	-2.05805800
Н	4.74091500	-3.50660000	-2.13108600
Н	-1.38426000	-2.98045600	1.28495700
Н	-3.83303300	-2.51560600	1.36210400
Н	-4.17028100	-3.78474100	-2.73495300
Н	-1.71019300	-4.27280400	-2.78254500
Н	6.71950800	-2.30072000	0.76703200
Н	6.79979000	-2.73608800	-0.97048900
Н	-6.07102900	-2.95890500	0.29750900
Н	-6.17630500	-3.15878500	-1.48366300
Н	-5.82151700	-0.69852600	0.14748000
Ν	6.14751100	-0.79735500	-0.52241700
С	6.00773000	–0.36857400 S99	-1.78968800

С	5.34782600	0.98217900	-1.93428500
0	6.31695600	-1.02571600	-2.80301600
С	5.65282700	1.78993900	-3.03254500
С	4.91734100	2.95142600	-3.27182000
С	3.82523800	3.26279300	-2.46299200
С	3.49212800	2.45139600	-1.37049600
С	4.28879500	1.33632600	-1.08264500
С	2.15543400	2.70985500	-0.69772200
0	1.31104900	3.38205100	-1.31062500
Ν	1.91805500	2.12217300	0.49423400
Н	6.06245900	-0.10752900	0.29507800
Н	6.44869300	1.47581200	-3.70370400
Н	5.16481400	3.58931700	-4.12084700
Н	3.17565900	4.10436200	-2.68394200
Н	4.05902000	0.71596900	-0.22068600
Н	2.67548800	1.64889900	1.02333000
С	-0.17601700	3.19570400	1.47101600
Н	-0.25346800	3.90573500	0.64466000
Н	0.43057200	3.66703800	2.25839800
Н	0.61815200	1.19848400	1.79094000
S	5.20239800	0.62713300	2.60266300
0	5.55210200	-0.76234500	3.10103900
0	5.32163800	1.64467800	3.68942500
0	6.16872900	0.97901600	1.45666900
0	3.78873500	0.59458100	2.01819400
S	-5.18569500	-0.28454700	2.58434700
0	-3.79394600	0.11464900	2.08067200
0	-5.22193200	-1.79052100 S100	2.74413300

0	-5.52147800	0.41595100	3.86029800
0	-6.19898800	0.10531600	1.49392900

3–*trans*•2SO₄^{2–} complex

Symbol	Х	Y	Ζ
С	-1.19705000	-2.27632800	0.39311500
С	2.02978700	-2.91954100	1.27844300
Ν	3.30648700	-2.42257000	0.77213400
С	4.14944000	-3.19619800	0.05978500
С	5.28132700	-2.48175800	-0.65857700
0	3.99269000	-4.41790900	-0.12091200
С	6.17034400	-3.26248100	-1.40331700
С	7.13117400	-2.66204500	-2.21985700
С	7.19216800	-1.27367800	-2.32405700
С	6.32644900	-0.47634700	-1.56617600
С	5.38639300	-1.08576900	-0.72614200
С	6.32640000	1.01903400	-1.78008700
0	6.66525900	1.49451900	-2.88090400
С	-4.95421700	2.80117100	0.33067500
С	-4.14248200	2.31369800	1.36504100
С	-2.77157800	2.54655000	1.32845900
С	-2.17976000	3.26240200	0.27674600
С	-2.99708400	3.78437900	-0.74267800
С	-4.36844800	3.54892800	-0.70815400
Ν	-0.76903300	3.29532300	0.31765000
Ν	-0.17212100	3.87832200	-0.63043700
С	1.24314800	3.72135900	-0.58132900
		S101	

С	1.91196500	2.84917600	0.29711800
С	3.28709000	2.67648600	0.22154700
С	4.03918500	3.37131100	-0.74420800
С	3.37548500	4.25150000	-1.60744100
С	1.99164700	4.42514600	-1.53312100
С	-6.41943400	2.37942200	0.28108700
С	5.54555400	3.14466500	-0.84277200
Ν	5.89891500	1.74385000	-0.72770800
Н	-0.71450900	-1.67221400	-0.38703100
Н	2.18640100	-3.71464700	2.02428000
Н	1.57518600	-2.07132300	1.80017800
Н	3.62768100	-1.50445500	1.17184600
Н	6.06172800	-4.34150700	-1.34762800
Н	7.81458900	-3.28259400	-2.80047300
Н	7.88806800	-0.78347200	-3.00004800
Н	4.71479300	-0.46891100	-0.13743200
Н	-4.58125100	1.69143100	2.15109500
Н	-2.12028000	2.12527900	2.08799800
Н	-2.53356800	4.32245100	-1.56404200
Н	-4.99885300	3.89578100	-1.52503000
Н	1.33604600	2.28194200	1.01860300
Н	3.76257100	1.96084500	0.89353300
Н	3.94432800	4.78406200	-2.36970600
Н	1.46472200	5.07983000	-2.22405000
Н	-6.83109900	2.36362000	1.29442200
Н	-7.00230100	3.06261600	-0.34783900
Н	6.04188500	3.68596500	-0.02480500
Н	5.92893200	3.52666900	-1.79467600
		S102	2

Ν	-6.52935900	1.02511400	-0.24103200
С	-6.53423600	0.77105400	-1.56195100
С	-6.04508500	-0.60788500	-1.93868800
0	-6.83640600	1.59292800	-2.44817500
С	-6.50942300	-1.22292200	-3.10337400
С	-5.92276200	-2.40841500	-3.55046400
С	-4.81787400	-2.93424800	-2.88225800
С	-4.32782400	-2.31770200	-1.72344000
С	-4.97773000	-1.18089800	-1.22949800
С	-2.97451700	-2.76179600	-1.20560000
0	-2.21453800	-3.35783200	-1.98837800
Ν	-2.61728500	-2.39943000	0.04623500
Н	-7.30918300	-0.74265100	-3.66207400
Н	-6.29544400	-2.89530000	-4.45196900
Н	-4.27991100	-3.79537900	-3.26762900
Н	-4.62047500	-0.71107400	-0.31782800
Н	-3.29829000	-1.95522600	0.69728100
Н	-1.16437900	-1.69752800	1.31989600
С	-0.40017700	-3.59695000	0.52003200
Н	-0.52825000	-4.02433100	1.52556600
Н	-0.84069900	-4.30201700	-0.18919000
С	1.09777600	-3.44846800	0.16661800
Н	1.18162500	-2.77566700	-0.69686100
Н	1.49755600	-4.41184500	-0.16351100
Н	5.89969500	1.37110300	0.27526400
Н	-6.47206700	0.21497800	0.45713000
S	-5.55464900	-0.93791500	2.54859400
0	-5.73582300	0.40161700	3.23358200
		S103	3

0	-5.71003900	-2.07453500	3.50363400
0	-6.60795900	-1.04881400	1.43211900
0	-4.17557700	-0.95562600	1.88040200
S	5.28155800	0.19961500	2.60934800
0	5.05474400	0.60018300	4.02997700
0	6.00881400	1.34149100	1.86997900
0	6.07050800	-1.06823200	2.48277800
0	3.93046300	0.02158400	1.87551200

10. References

- R. E. Gaussian 09, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; and Fox, D. J., Gaussian, Inc., Wallingford CT, 2009.
- 2. X. Xu and W. A. Goddard, P. Natl. Acad. Sci. USA, 2004, 101, 2673-2677.
- 3. S. F. Boys and F. Bernardi, *Mol. Phys.*, 2002, 100, 65-73.
- 4. F. B. van Duijneveldt, J. G. C. M. van Duijneveldt-van de Rijdt and J. H. van Lenthe, *Chem. Rev.*, 1994, **94**, 1873-1885.
- 5. P. Du, Y. Xu, X. Jiang and Z. Li, Sci. China Chem., 2009, 52, 489-496.
- 6. BindFit. www.supramolecular.org (accessed February 26).
- 7. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339-341.
- 8. G. M. Sheldrick, Acta Crystallogr. A., 2015, 71, 3-8.
- 9. G. M. Sheldrick, Acta Crystallogr. C., 2015, 71, 3-8.