Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

# Concise Synthesis and Application of Enantiopure Spirobiphenoxasilin-Diol and Its Related Chiral Ligands

Lei Yang<sup>a,b</sup>, Wen-Qiang Xu<sup>a,b</sup>, Tao Liu<sup>b</sup>, Yichen Wu<sup>b</sup>, Biqin Wang<sup>\*,a</sup>, and Peng Wang<sup>\*,b,c,d</sup>

<sup>a</sup>College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China

<sup>b</sup>State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, China

<sup>c</sup>CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, China

<sup>d</sup>School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China

# **Table of Contents**

| 1. General Information                                                               | S2  |
|--------------------------------------------------------------------------------------|-----|
| 2. Experimental Section                                                              | S3  |
| 2.1 Ligand Synthesis                                                                 | S3  |
| 2.2 Rh-Catalyzed Asymmetric Hydrogenation of $\alpha$ -Dehydroamino Acid Derivatives | S10 |
| 2.2.1 Preparation of α-Dehydroamino Acid Derivatives                                 | S10 |
| 2.2.2 General Procedure for Asymmetric Hydrogenation                                 | S12 |
| 2.3 Other Applications with SPOSiOL-Derived Ligands                                  | S15 |
| 3. X-Ray Structures                                                                  | S17 |
| 3.1 X-Ray Structure of ( <i>R</i> )- <b>SPOSiOL</b> .                                | S17 |
| 3.2 X-Ray Structure of <b>7</b>                                                      | S18 |
| 4. References                                                                        | S19 |
| 5. NMR Spectra                                                                       | S20 |
| 6. HPLC Charts                                                                       | S50 |

#### **1. General Information**

Rh(COD)<sub>2</sub>BF<sub>4</sub> was purchased from Laajoo. (1*S*, 1'*S*)-bis (1-phenylethyl) amine was purchased from Accela. Chlorodiphenylphosphine was purchased from Adamas. Other reagents were purchased from TCI, Sigma-Aldrich, Aladdin, Adamas-beta, J&K, 9-Ding, and Energy Chemical of the highest purity grade and used without further purification, unless otherwise indicated. Tetrahydrofuran (THF), diethyl ether (Et<sub>2</sub>O), dichloromethane (CH<sub>2</sub>Cl<sub>2</sub>) and toluene were dried using the solvent purification system. Other anhydrous solvents were purchased from J&K. TMEDA was dried over NaOH. TEA was dried over CaH<sub>2</sub>.The extent of reaction was monitored by thin–layer chromatography (TLC), performed on 0.25 mm silica gel HSGF254. The TLC plates were visualized by ultraviolet light (254 nm) or treatment with potassium permanganate stain followed by gentle heating.

NMR spectra were recorded on Varian 400, Bruker 400 and Agilent 400 (400 Hz for <sup>1</sup>H; 375 Hz for <sup>19</sup>F; 162 Hz for <sup>31</sup>P; 100 Hz for <sup>13</sup>C) spectrometer. The chemical shifts ( $\delta$ ) were quoted in parts per million (ppm) referenced to TMS (0.0 ppm for <sup>1</sup>H NMR), CDCl<sub>3</sub> (77.0 ppm for <sup>13</sup>C NMR), Acetone-d<sub>6</sub> (206.4 ppm for <sup>13</sup>C NMR) and external 85% H<sub>3</sub>PO<sub>4</sub> for <sup>31</sup>P NMR respectively. The following abbreviations were used to explain multiplicities: s = singlet, d =doublet, t = triplet, q = quartet, p = pentet, h = heptet, m = multiplet, and br = broad. Coupling constants, *J*, were reported in Hertz unit (Hz). <sup>13</sup>C NMR spectra were fully decoupled by broad band proton decoupling. High-resolution mass spectra (HRMS) were recorded on an Agilent Mass spectrometer using ESI–TOF, CI/EI or MALDI. Ultraviolet–visible spectra (UV-Vis) were recorded on a Shimadzu UV–Vis spectrophotometer (UV-2700). HPLC analyses were performed on a SHIMADZU LC-20AT liquid chromatograph and Thermo Fisher UltiMate 3000 liquid chromatograph.

#### 2. Experimental Section

#### 2.1 Ligand Synthesis



Synthesis of the bis(2-bromophenyl) iodonium tetrafluoroborate S-1<sup>[1]</sup>: To a suspension of *m*-chloroperbenzoic acid (*m*-CPBA, 75% active oxidant, 7.6 g, 33 mmol, 1.1 equiv.) in CH<sub>2</sub>Cl<sub>2</sub> (120 mL) was added iodobromobenzene (3.9 mL, 30 mmol, 1.0 equiv.) under nitrogen, followed by slow addition of BF<sub>3</sub>·Et<sub>2</sub>O (9.3 mL, 75 mmol, 2.5 equiv.) at room temperature. After stirred at room temperature for 1.0 hour, the reaction was cooled to 0 °C and *o*-bromophenylboronic acid (6.6 g, 33 mmol, 1.1 equiv.) was added portionwise. The reaction was then warmed to room temperature and stirred overnight. The reaction mixture was concentrated to 2/3 of the volume and diethyl ether was added to induce precipitation of the product. The precipitate was filtered to afford the diaryliodonium salt S-1 (12.6 g, 80% yield) as a yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.01 (d, *J* = 8.0 Hz, 2H), 7.85 (dd, *J* = 8.0, 1.6 Hz, 2H), 7.56 (t, *J* = 7.6 Hz, 2H), 7.47 (t, *J* = 7.6 Hz, 2H).



Synthesis of the dibromo-3-phenoxyanisole  $2^{[2]}$ : 'BuOK (3.4 g, 30 mmol, 1.5 equiv.) and 2-bromo-3methoxyphenol S-2 (4.06 g, 20 mmol, 1.0 equiv.) was suspended in THF (50 mL) under nitrogen and the reaction was left to stir at 0 °C for 10 minutes. Diaryliodonium salt S-1 (12.6 g, 24 mmol, 1.2 equiv.) was then added in one portion at the same temperature. After warmed up to room temperature, the reaction was allowed to stir at 40 °C. The reaction was monitored by TLC until S-2 was completely consumed. Upon completion, the reaction was quenched with H<sub>2</sub>O at 0 °C and the aqueous phase was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3×10 mL). The combined organic phases were dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated. The crude product was purified by flash chromatography (PE: EA = 20:1) to give product **2** (6.7 g, 94 % yield) as a white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.64 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.27–7.23 (m, 1H), 7.21 (t, *J* = 8.0 Hz, 1H), 7.02 (td, *J* = 7.6, 1.2 Hz, 1H), 6.87 (dd, *J* = 8.4, 1.6 Hz, 1H), 6.71 (dd, *J* = 8.4, 1.2 Hz, 1H), 6.47 (dd, *J* = 8.4, 1.2 Hz, 1H), 3.94 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  157.56, 154.44, 153.15, 133.76, 128.56, 128.32, 125.02, 119.64, 114.18, 111.53, 107.00, 103.88, 56.49; HRMS (EI) m/z Calcd for C<sub>13</sub>H<sub>10</sub>Br<sub>2</sub>O<sub>2</sub>[M]<sup>+</sup>: 355.9048, found: 355.9042.



**General Procedure A for the synthesis of the 1,1'-dimethoxy-10,10'-spirobi[dibenzo[***b,e***][1,4]oxasiline] 3**<sup>[3]</sup> **:**To a solution of **1** (2.10 g, 10.5 mmol, 2.02 equiv.) in THF (10 mL) was added dropwise a premixed of *"*BuLi (2.5 M in Hexane, 8.8 mL, 22 mmol, 4.23 equiv.) and TMEDA (3.3 mL, 22 mmol, 4.23 equiv.) at –30 °C under N<sub>2</sub>. The reaction

mixture was allowed to warm up to room temperature and stirred at the same temperature for 16 hours. To the reaction mixture was then added dropwise a THF (4.0 mL) solution of tetrachlorosilane (0.6 mL, 5.2 mmol, 1.0 equiv.) at – 78 °C, and the reaction mixture was stirred at room temperature for another 24 hours. The reaction mixture was quenched with H<sub>2</sub>O and the aqueous phase was extracted with DCM. The collected organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, and the volatiles were removed under reduced pressure. The resulted solid was washed with petroleum ether, and filtered to give part of **3** (0.44 g). Then the filtrate was evaporated and the crude material was purified by flash chromatography (PE: EA = 20:1) to give pure product **3** (75.9 mg) as a white solid.

Total weight: 0.52 g, 24 % yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.43–7.38 (m, 2H), 7.34 (t, *J* = 8.0 Hz, 2H), 7.28–7.22 (m, 4H), 6.99 (td, *J* = 7.2, 1.2 Hz, 2H), 6.89 (dd, *J* = 8.4, 0.8 Hz, 2H), 6.40 (d, *J* = 8.0, 2H), 3.35 (s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  164.53, 161.36, 160.95, 135.42, 132.30, 131.10, 122.30, 117.25, 110.74, 105.92, 103.86, 55.69; HRMS (ESI) m/z Calcd for C<sub>26</sub>H<sub>21</sub>O<sub>4</sub>Si [M+H]<sup>+</sup>: 425.1209, found: 425.1204.



General Procedure B for the synthesis of the 1,1'-dimethoxy-10,10'-spirobi[dibenzo[*b,e*][1,4]oxasiline]  $3^{[4]}$ : To an anhydrous THF (32 mL) solution of 2-bromo-1-(2-bromophenoxy)-3-methoxybenzene 2 (7.3 g, 20.3 mmol, 2.03 equiv.) was added 'BuLi (1.3 M in pentane, 63 mL, 81.2 mmol, 8.12 equiv.) dropwise at -78°C under N<sub>2</sub>. After stirred at -78°C for 1.0 hour, SiCl<sub>4</sub> (1.2 mL, 10 mmol, 1.0 equiv.) was added dropwise to the above suspension at the same temperature. After warmed up to room temperature, the reaction mixture was allowed to stir at 40 °C overnight. The reaction was then quenched with H<sub>2</sub>O, and the aqueous phase was extracted with CH<sub>2</sub>Cl<sub>2</sub>. The organic layer was washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated to afford a yellow solid. The solid was washed with petroleum ether and filtered to get the product **3** (3.8 g, 90% yield) as a white solid.



Synthesis of the 9'9-spirobiphenoxasilin-diol (±)-SPOSiOL (4) <sup>[4]</sup>: A 350 mL sealed tube with a magnetic stirring bar was charged with **3** (7.9 g, 18.6 mmol, 1.0 equiv.) and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (1.86 g, 3.63 mmol, 20 mol%) in the glovebox. The tube was sealed and moved outside of the glovebox, followed by injection of anhydrous CH<sub>2</sub>Cl<sub>2</sub> (89.0 mL). HSiEt<sub>3</sub> (8.9 mL, 55.8 mmol, 3.0 equiv.) was added dropwise to the above suspension. The reaction was monitored by TLC until **3** was completely consumed. The mixture was then filtered through a short silica gel column with a mixed solvent of PE and EA (v/v, 20/1) as the eluent. The solution was concentrated to afford the TES protected **S**-**3** as a yellow solid. **S**-**3** was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (50 mL) under nitrogen, followed by addition of KF (2.16 g, 37.2 mmol, 2.0 equiv.) and MeOH (50 mL). The resulting mixture was stirred at the room temperature. Upon completion, the reaction mixture was filtered to remove insoluble salts, and the filtrate was evaporated to afford a white solid. The solid was washed with petroleum ether and filtered to give (±)- **SPOSiOL** (**4**) (7.31 g, 99% yield) as a white solid. <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD)  $\delta$  7.38–7.32 (m, 2H), 7.20 (t, *J* = 8.0 Hz, 2H), 7.16–7.11 (m, 4H), 6.94 (td, *J* =

7.2, 0.8 Hz, 2H), 6.70 (d, *J* = 8.4, 2H), 6.32 (d, *J* = 8.0, 2H), 4.88 (s, 2H).



Synthesis of the (1*R*)-(-)-menthyl chloroformate (*S*)-4 <sup>[5,6]</sup>: To a toluene (260 mL) solution of triphosgene (22.0 g, 74 mmol, 0.41 equiv.) was added the toluene (150 mL) solution of pyridine (21.9 mL, 27 mmol, 0.15 equiv.) dropwise at 0 °C under N<sub>2</sub>. The reaction mixture was then stirred at the same temperature for 15 minutes, followed by addition of the toluene (100 mL) solution of (-)-menthol (28.1g, 180 mmol, 1.0 equiv.) dropwise. After stirring for 18 h at room temperature, the reaction was quenched with H<sub>2</sub>O and the aqueous phase was extracted with EA. The organic layers were dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated to afford the crude (1*R*)-(-)-menthyl chloroformate (*S*)-4 (38.1 g, 97% yield) as a yellow liquid, which could be used for the next step without further purification. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  4.74 (td, *J* = 10.8, 4.4 Hz, 1H), 2.17–2.10 (m, 1H), 2.00–1.88 (m, 1H), 1.75–1.65 (m, 2H), 1.52–1.42 (m, 2H), 1.19–0.99 (m, 2H), 0.96–0.86 (m, 7H), 0.81 (d, *J* = 6.8 Hz, 3H).



**Resolution of** (±)-**SPOSiOL** (4) <sup>[5]</sup>: To a solution of racemic (±)-**SPOSiOL** (4) (7.31g, 18.4 mmol, 1.0 equiv.) and NaOH (3.24 g, 80.9 mmol, 4.4 equiv.) in water (52.0 mL) was added a chloroform (52.0 mL) solution of *tetra*butylammonium bromide (TBAB, 3.24 g, 10.1 mmol, 0.55 equiv.). With rapid stirring, (-)-menthyl chloroformate (*S*)-4 (12.3 g, 56.1 mmol, 3.0 equiv.) was added. Upon completion, two phases were separated, and the aqueous phase was extracted with CH<sub>2</sub>Cl<sub>2</sub>. The organic phase was dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated to afford a crude product. The crude product was purified by flash chromatography (PE then PE: EA = 20:1) to give pure product **5** + **5**' (10.3 g, 74 % yield) as a yellow solid, which was recrystallized from PE/DCM to give **5** (3.97 g, 39% yield, >99: 1 dr) as a white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.45 (t, *J* = 8.2 Hz, 2H), 7.40 (td, *J* = 6.8, 1.6 Hz, 2H), 7.25–7.20 (m, 4H), 7.16 (d, *J* = 8.4 Hz, 2H), 6.99 (td, *J* = 7.2, 1.2 Hz, 2H), 6.91 (d, *J* = 8.0 Hz, 2H), 4.18 (td, *J* = 10.8, 4.4 Hz, 2H), 1.83–1.72 (m, 2H), 1.67–1.51 (m, 6H), 1.39–1.20 (m, 4H), 1.06–0.77 (m, 16H), 0.75–0.63 (m, 8H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  160.88, 160.29, 155.76, 152.14, 135.78, 132.31, 131.91, 122.80, 117.83, 115.24, 115.13, 114.65, 108.25, 78.82, 46.74, 39.85, 34.03, 31.20, 25.70, 23.11, 21.98, 20.82, 16.16; HRMS (ESI) *m/z* Calcd for C<sub>46</sub>H<sub>52</sub>O<sub>8</sub>SiNa [M+Na]<sup>+</sup>: 783.3329, found: 783.3324; [α]<sub>D</sub><sup>27</sup> = +4.3 (c = 1.0, CHCl<sub>3</sub>).

Recrystallization (PE/DCM) was performed for several times with the mother liquid to leave a yellow solution, which was then concentrated to get **5**' (4.55 g, 44% yield, 96:4 dr). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.49–7.38 (m, 4H), 7.25–7.18 (m, 4H), 7.14 (dd, *J* = 8.4, 0.8 Hz, 2H), 6.99 (td, *J* = 7.2, 1.2 Hz, 2H), 6.95 (dd, *J* = 8.0, 0.8 Hz, 2H), 4.18 (td, *J* = 10.8, 4.4 Hz, 2H), 1.74–1.65 (m, 4H), 1.65–1.59 (m, 4H), 1.37–1.23 (m, 6H), 0.90–0.83 (m, 14H), 0.76–0.68 (m, 2H), 0.62 (d, *J* = 6.8 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  160.84, 160.15, 155.90, 151.90, 135.62, 132.33, 131.76, 122.83, 117.62, 115.37, 115.26, 114.49, 108.05, 78.81, 46.66, 39.91, 34.02, 31.19, 25.48, 23.02, 21.96, 20.90, 16.07. [ $\alpha$ ] $_{D}^{27}$  = -23.3 (c = 1.0, CHCl<sub>3</sub>).



Synthesis of the (*R*)-SPOSiOL<sup>[3,5]</sup>: To a solution of **5** (3.80 g, 5.0 mmol, 1.0 equiv.) in MeOH (83 mL)/H<sub>2</sub>O (10 mL) was added KOH (5.37 g, 96 mmol, 19.2 equiv.) and the mixture refluxed for 8.0 hours. The mixture was then cooled to room temperature, evaporated part of solvents and extracted with *n*-hexane. The aqueous layer was separated, acidified with 6 M HCl to PH = 6 and a white precipitate appeared. Diethyl ether was then added to the above suspension. The organic phase was separated, dried over Na<sub>2</sub>SO<sub>4</sub> and evaporated in vacuo to give (*R*)-SPOSiOL (1.82 g, 92% yield, 99.3% ee) as a white solid. Determined by HPLC analysis: Chiralcel IA column (25 cm); hexane/2-propanol = 80/20; flow rate, 1.0 mL/min; 254 nm;  $t_R$  (major) = 6.86 min;  $t_R$  (minor) = 9.18 min.

**Recrystallization of (***R***)-SPOSiOL:** (*R*)-SPOSiOL (1.42 g, 78% yield, 99.7% ee) was recrystallized from *n*-hexane/<sup>i</sup>PrOH. Determined by HPLC analysis: Chiralcel IA column (25 cm); hexane/2-propanol = 80/20; flow rate, 1.0 mL/min; 254 nm;  $t_R$  (major) = 6.86 min;  $t_R$  (minor) = 9.18 min.  $[\alpha]_D^{25} = +1.33$  (c = 0.5, EtOH).



**Synthesis of the** (*S*)-**SPOSiOL** <sup>[3,5]</sup>: To a solution of **5'** (3.31 g, 4.4 mmol, 1.0 equiv., 96:4 dr) in MeOH (73.0 mL) was added KOH (17.1 g, 305 mmol, 69.3 equiv.) and H<sub>2</sub>O (18.0 mL). The mixture was refluxed for 1.0 hour, cooled to room temperature and part of solvents was evaporated, followed by addition of *n*-Hexane. The aqueous layer was collected for further purification. In the meantime, the combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated to recover the starting material **5'** which was further refluxed with MeOH (33.0 mL) and KOH/H<sub>2</sub>O (5.9 g KOH in 8.0 mL H<sub>2</sub>O) for another 1.0 hour. The mixture was then cooled to room temperature and part of solvents were evaporated. The reaction mixture was extracted with *n*-hexane again. The separated aqueous layer, combining with the above one, was acidified with 6.0 M HCl to pH = 6 and a white precipitate was appeared. Diethyl ether was then added to the above suspension. The Et<sub>2</sub>O phase was separated, dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated to give (*S*)-**SPOSiOL** (1.45 g) as a white solid. Following the similar procedure, (*S*)-**SPOSiOL** (0.57 g) was obtained starting from **5'** (1.24 g, 1.6 mmol, 1.0 equiv., 96:4 dr) as a white solid.

Total weight: 2.02 g, 85 % yield, 93.6% ee. Determined by HPLC analysis: Chiralcel IA column (25 cm); hexane/2-propanol = 80/20; flow rate, 1.0 mL/min; 254 nm;  $t_R$  (major) = 9.18 min;  $t_R$  (minor) = 6.86 min. [ $\alpha$ ]<sub>D</sub><sup>25</sup> = -1.35 (c =0.5, EtOH).



Synthesis of the *N*, *N*-dimethyl-1,5,7,11-tetraoxa-6-phospha-15*b*-silacycloocta[3,2,1-*de*:7,8,1-*d'e'*] dianthracen-6-amine 6a <sup>[4]</sup>: To an anhydrous and degassed DCM (2.5 mL) solution of (*R*)-SPOSiOL (198 mg, 0.5 mmol, 1.0 equiv.) was added triethylamine (0.35 mL, 2.5 mmol, 5.0 equiv.) under N<sub>2</sub>, followed by addition of 1,1-dichloro-*N*,*N*-dimethylphosphanamine (0.10 mL, 0.87 mmol, 1.74 equiv.) at -40 °C. The resulting mixture was then warmed to room temperature. Upon completion, the mixture was filtered through a pad of silica gel (pretreated with hexane/Et<sub>3</sub>N = 50/1, degassed) with PE/EA (10/1, v/v, degassed) as eluent. The filtrate was concentrated and 6a was obtained in 80 % yield (189 mg) as a white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.55 (t, *J* = 8.0 Hz, 1H), 7.50 (t, *J* = 8.0 Hz, 1H), 7.36–7.23 (m, 3H), 7.23–7.15 (m, 4H), 7.11 (dd, *J* = 7.6, 2.0 Hz, 1H), 7.03–6.94 (m, 3H), 6.75 (d, *J* = 8.0 Hz, 1H), 2.32 (d, *J* = 9.2 Hz, 6H); [ $\alpha$ ]<sub>D</sub><sup>28</sup> = +159.2 (c =0.12, CHCl<sub>3</sub>).



To a solution of PCl<sub>3</sub> (0.22 mL, 2.5 mmol, 5.0 equiv.) in DCM (4 mL) was added TEA (0.69 mL, 5 mmol, 10 qeuiv.) at room temperature, followed by the addition of distilled diisopropylamine (0.35 mL, 2.5 mmol, 5.0 equiv.) at 0 °C. The reaction mixture was then warmed to room temperature and stirred at the same temperature for 12 h to afford a DCM solution of alkylphosphine chloride.

To a solution of (*R*)-**SPOSiOL** (198.2 mg, 0.5 mmol, 1.0 equiv.) and triethylamine (0.69 mL, 5 mmol, 10 equiv.) in anhydrous and degassed DCM was added the DCM solution of aforementioned alkylphosphine chloride under N<sub>2</sub> at 0 °C and then the reaction was stirred at room temperature. Upon completion, the reaction solution was diluted with degassed solution of PE and EA (v/v= 1:1) and filtered through a short pad of silica gel. Solvents were removed under reduced pressure and the resulting mixture was recrystallized from THF and Hexane to provide **6c** in 48% yield (126.5 mg) as a white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.54 (t, *J* = 8.4 Hz, 1H), 7.49 (t, *J* = 8.0 Hz, 1H), 7.38– 7.12 (m, 7H), 7.07–6.98 (m, 2H), 6.98–6.89 (m, 3H), 3.20–3.16 (m, 2H), 1.14-0.99 (m, 12H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  162.99 (d, *J* = 2.2 Hz), 162.67, 160.37, 160.15, 158.89, 158.80, 156.75, 156.63, 133.68, 133.51, 133.03 (d, *J* = 2.0 Hz), 132.43, 131.12, 113.10, 123.59, 123.47, 120.42, 120.40, 118.26, 118.25, 117.96, 117.84, 117.60 (d, *J* = 6.0 Hz), 114.69, 114.66, 114.00, 110.35 (d, *J* = 3.5 Hz), 109.14, 46.56, 45.29, 24.46, 19.29; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  139.11; HRMS (ESI) m/z calcd for C<sub>30</sub>H<sub>29</sub>NO<sub>4</sub>SiP [M+H]<sup>+</sup>: 526.1598, found: 526.1605. [ $\alpha$ ]<sub>D</sub><sup>25</sup>= 119.20 (*c* = 1.0, THF).

$$Ph \underbrace{\overset{H}{\underset{Me}{\rightarrow}}}_{Me} \stackrel{1) \stackrel{n}{\underset{B}{\rightarrow}}}_{Me} \frac{1) \stackrel{n}{\underset{Me}{\rightarrow}}}_{2) PCI_{3}, -78 \stackrel{\circ}{\underset{C}{\rightarrow}} C \text{ to } \text{ rt}} \stackrel{Ph}{\underset{Me}{\rightarrow}} \stackrel{i}{\underset{Me}{\rightarrow}} \stackrel{Ph}{\underset{Me}{\rightarrow}} \stackrel{i}{\underset{Me}{\rightarrow}} \stackrel{Ph}{\underset{Me}{\rightarrow}} \stackrel{i}{\underset{Me}{\rightarrow}} \stackrel{OH}{\underset{Me}{\rightarrow}} \stackrel{TEA}{\underset{THF, -23 \stackrel{\circ}{\underset{C}{\rightarrow}} C \text{ to } \text{ rt}}} \stackrel{OH}{\underset{He}{\rightarrow}} \stackrel{i}{\underset{Me}{\rightarrow}} \stackrel{Ph}{\underset{Me}{\rightarrow}} \stackrel{i}{\underset{Me}{\rightarrow}} \stackrel{H}{\underset{Me}{\rightarrow}} \stackrel{H}{\underset{Me}{\rightarrow}} \stackrel{H}{\underset{Me}{\rightarrow}} \stackrel{H}{\underset{He}{\rightarrow}} \stackrel{H}{\underset{Me}{\rightarrow}} \stackrel{H}{\underset{Me}{\rightarrow}} \stackrel{H}{\underset{He}{\rightarrow}} \stackrel{H}{\underset{He}{\rightarrow} \stackrel{H}{\underset{He}{\rightarrow}} \stackrel{H}{\underset{He}{\rightarrow} \stackrel{H}{\underset{He}{\rightarrow}} \stackrel{H}{\underset{He}{\rightarrow} \stackrel{H}{\underset{He}{\rightarrow}} \stackrel{H}{\underset{He}{\rightarrow} \stackrel{H}{\underset{He}{\rightarrow}} \stackrel{H}{\underset{He}{\rightarrow}} \stackrel{H}{\underset{He}$$

**Synthesis of 6c**<sup>[4]</sup>: A flame-dried 10 mL Schlenk tube were charged with (*IS*, *I'S*)-bis(1-phenylethyl)amine (0.20 mL, 0.89 mmol, 1.8 equiv.) and anhydrous THF (2.0 mL) under nitrogen, the solution was then cooled to -78 °C and <sup>*n*</sup>BuLi (2.5 M in Hexane, 0.38 mL, 0.95 mmol, 1.9 equiv.) was added dropwise. After stirred at the same temperature for 2 hours, the THF (1.0 mL) solution of phosphorus trichloride (74  $\mu$ L, 0.85 mmol, 1.7 equiv.) was added dropwise to the above THF solution of lithium amide at -78 °C under N<sub>2</sub>. The reaction mixture was warmed to room temperature and stirred for 12 hours to afford a THF solution of alkylphosphine chloride.

To a solution of (*R*)-**SPOSiOL** (198.8 mg, 0.5 mmol, 1.0 equiv.) in anhydrous and degassed THF (2.5 mL) was added triethylamine (0.35 mL, 2.5 mmol, 5.0 equiv.) under N<sub>2</sub>, followed by the slow addition of the THF solution of aforementioned alkylphosphine chloride at -23 °C. The reaction mixture was then stirred at room temperature. Upon completion, the mixture was filtered through a pad of silica gel (pretreated with hexane/Et3N = 50/1, degassed) with PE/EA (5/1, v/v, degassed) as eluent. The resulting mixture was concentrated and the crude product was purified by flash chromatography (PE:EA = 50:1, degassed) to give pure product **6c** (147 mg, 45 % yield) as a white solid.<sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>COCD<sub>3</sub>)  $\delta$  7.76 (t, *J* = 8.0 Hz, 1H), 7.42–7.35 (m, 3H), 7.38–7.27 (m, 2H), 7.27–7.13 (m, 10H), 7.11–7.00 (m, 2H), 6.98–6.93 (m, 1H), 6.80–6.73 (m, 4H), 5.61 (d, *J* = 6.8 Hz, 1H), 4.58–4.48 (m, 2H), 1.65 (d, *J* = 7.2 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CD<sub>3</sub>COCD<sub>3</sub>)  $\delta$  164.04 (d, *J* = 2.1 Hz), 163.93, 161.41, 161.37, 159.70, 159.61, 157.07, 156.94, 144.11, 135.01 (d, *J* = 2.1 Hz), 134.32, 134.24, 134.16, 132.83, 132.77, 129.4 (d, *J* = 2.2 Hz), 128.97, 128.04, 125.0 (d, *J* = 2.4 Hz), 121.56, 121.14, 119.71, 119.69, 119.09 (d, *J* = 6.6 Hz), 118.86 (d, *J* = 6.2 Hz), 116.06, 116.04, 115.14, 110.90, 110.86, 110.20, 110.18, 55.67, 55.55; <sup>31</sup>P NMR (162 MHz, CD<sub>3</sub>COCD<sub>3</sub>)  $\delta$  139.49; HRMS (ESI) m/z Calcd for C<sub>40</sub>H<sub>32</sub>NO<sub>4</sub>PSi [M+Na]<sup>+</sup>: 672.1736, found: 672.1730; [ $\alpha$ ]<sub>D</sub><sup>28</sup> = -89.6 (c = 0.1, EtOH).



Synthesis of 6d<sup>[4]</sup>: A flame-dried 10 mL Schlenk tube were charged with (*1R*, *1'R*)-bis(1-phenylethyl)amine (157.8 mg, 0.7 mmol, 1.7 equiv.) and anhydrous THF (1.0 mL) under nitrogen, the solution was then cooled to -78 °C and <sup>*n*</sup>BuLi (2.5 M in Hexane, 0.31 mL, 0.772 mmol, 1.88 equiv.) was added dropwise. After stirred at the same temperature for 2 hours, the THF (1.0 mL) solution of phosphorus trichloride (61  $\mu$ L, 0.7 mmol, 1.7 equiv.) was

added dropwise to the above THF solution of lithium amide at -78 °C under N<sub>2</sub>. The reaction mixture was warmed to room temperature and stirred for 12 hours to afford a THF solution of alkylphosphine chloride.

To a solution of (*R*)-**SPOSiOL** (163.1 mg, 0.411 mmol, 1.0 equiv.) in anhydrous and degassed THF (2.1 mL) was added triethylamine (285 µL, 2.055 mmol, 5.0 equiv.) under N<sub>2</sub>, followed by the slow addition of the THF solution of aforementioned alkylphosphine chloride at -23 °C. The reaction mixture was then stirred at room temperature. Upon completion, the mixture was filtered through a pad of silica gel (pretreated Et<sub>3</sub>N, degassed) with PE/EA (5/1, v/v, degassed) as eluent. The resulting mixture was concentrated and the crude product was purified by recrystallization (Hexane/Et<sub>2</sub>O) to give pure product **6d** (157.1 mg, 59 % yield) as a white solid.<sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>COCD<sub>3</sub>)  $\delta$  7.79 (t, *J* = 8.2 Hz, 1H), 7.64 (t, *J* = 8.2 Hz, 1H), 7.45–7.36 (m, 3H), 7.32–7.23 (m, 5H), 7.22–7.17 (m, 1H), 7.15–6.96 (m, 13H), 6.76 (d, *J* = 8.0 Hz, 1H), 4.49 (brs, 2H), 1.47 (brs, 6H); <sup>13</sup>C NMR (125 MHz, CD<sub>3</sub>COCD<sub>3</sub>)  $\delta$  <sup>13</sup>C NMR (125 MHz, CD<sub>3</sub>COCD<sub>3</sub>)  $\delta$  164.30, 163.88, 161.63, 161.25, 159.39, 159.31, 158.04, 157.95, 135.07, 134.51, 134.04, 132.92, 132.85, 128.77, 127.65, 125.16, 124.95, 122.37, 120.34, 119.94, 119.18, 119.15, 118.35, 118.30, 115.83, 115.62, 110.97, 110.15, 110.13, 53.65; <sup>31</sup>P NMR (162 MHz, CD<sub>3</sub>COCD<sub>3</sub>)  $\delta$  135.23; HRMS (ESI) m/z Calcd for C<sub>40</sub>H<sub>32</sub>NO<sub>4</sub>PSi [M+Na]<sup>+</sup>: 672.1730, found: 672.1735; [ $\alpha$ ]<sub>D</sub><sup>28</sup> = 151.9 (c = 0.1, EtOH).



Synthesis of the 1,1'-bis((diphenylphosphaneyl)oxy)-10, 10'-spirobi[dibenzo[*b*,*e*][1,4]oxasiline] 7: To a toluene (5.0 mL) suspension of (*R*)-SPOSiOL (199.3 mg, 0.5 mmol, 1.0 equiv.) was added triethylamine (0.51 mL, 3.67 mmol, 7.34 equiv.) under N<sub>2</sub>. The resulting mixture was stirred at -50 °C for 20 minutes. Then the toluene (2.0 mL) solution of chlorodiphenylphosphane (0.3 mL, 1.67 mmol, 3.34 equiv.) was added into the above mixture. The resulting mixture was allowed to stir at room temperature. Upon completion, the mixture was filtered through a pad of silica gel (pretreated with Petroleum ether/Et<sub>3</sub>N = 50/1, degassed) with petroleum ether/EtOAc (5/1, v/v, degassed) as eluent. The filtrate was concentrated and 7 was obtained in 73 % yield (281 mg) as a white solid. <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>COCD<sub>3</sub>)  $\delta$  7.44–7.38 (m, 2H), 7.36 (t, *J* = 8.0 Hz, 2H), 7.33–7.24 (m, 4H), 7.21–7.11 (m, 10H), 7.08–6.94 (m, 10H), 6.94–6.86 (m, 4H), 6.76 (dd, *J* = 8.4, 0.8 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CD<sub>3</sub>COCD<sub>3</sub>)  $\delta$  206.40, 162.83, 162.73, 162.54, 160.78, 140.36, 140.19, 136.46, 133.76, 133.74, 132.64, 131.72, 131.57, 131.48, 131.33, 130.77, 130.68, 130.06, 129.60, 129.56, 129.53, 129.48, 129.34, 126.42, 123.83, 118.83, 118.43, 113.58, 109.56, 109.28, 107.21, 107.18, 30.73, 30.53, 30.34, 30.15, 29.96, 29.76, 29.57; <sup>31</sup>P NMR (162 MHz, CD<sub>3</sub>COCD<sub>3</sub>)  $\delta$  105.24; MS (MALDI-TOF) *m*/z Calcd for C<sub>48</sub>H<sub>34</sub>O<sub>4</sub>P<sub>2</sub>Si [M]<sup>+</sup>: 765.1780, found: 765.1774; [ $\alpha$ ]<sub>D</sub><sup>28</sup> = -19.5 (c = 0.1, EtOH).

# 2.2 Rh-Catalyzed Asymmetric Hydrogenation of α-Dehydroamino Acid Derivatives 2.2.1 Preparation of α-Dehydroamino Acid Derivatives



**Method A:** A suspension of *N*-acetylglycine (10 mmol, 1.0 equiv.), sodium acetate (10 mmol, 1.0 equiv.), acetic anhydride (9.2 mL) and the corresponding aldehyde (10 mmol, 1.0 equiv.) was stirred at 100 °C for 4 hours. Then the mixture was left stirring overnight at room temperature. After that, this suspension was mixed with water and stirred at room temperature for half an hour. The insoluble material was separated by filtration, washed with water or purified by flash chromatography on silica gel to get **S-5**. To **S-5** was added MeOH (10 mL) and sodium methoxide in methanol (2.0 mL of 25% CH<sub>3</sub>ONa in CH<sub>3</sub>OH). The reaction mixture was stirred at room temperature for 15 min. The reaction was quenched with H<sub>2</sub>O and the aqueous phase was extracted with CH<sub>2</sub>Cl<sub>2</sub>. The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated to afford a crude product. Then the crude material was purified by flash chromatography to give pure product.

**Method B:** A suspension of *N*-acetylglycine (5.0 mmol, 1.2 equiv.), sodium acetate (5.0 mmol, 1.2 equiv.), acetic anhydride (5.0 mL) and the corresponding aldehyde (1.0 equiv.) was stirred at 100 °C for 4 hours. After that, this suspension was poured into ice water. The insoluble material was separated by filtration and washed with cold ethanol to get **S-5**. To **S-5** was added MeOH (11.2 mL) and sodium methoxide (5 mmol, 1.2 equiv.) and stirred at room temperature for 30 min. The reaction was quenched with H<sub>2</sub>O and the aqueous phase was extracted with CH<sub>2</sub>Cl<sub>2</sub> until TLC detected the shadowless point of view. The combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated to afford a crude product. Then the crude material was purified by flash chromatography to give pure product.

**Method C:** A suspension of *N*-acetylglycine (20 mmol, 1.0 equiv.), sodium acetate (20 mmol, 1.0 equiv.), acetic anhydride (12.0 mL) and the corresponding aldehyde (20 mmol, 1.0 equiv.) was stirred at 80 °C overnight. After this time, this suspension was mixed with water and stirred at room temperature for half an hour. The insoluble material was separated by filtration to get **S-5**. To **S-5** was added EtOH (100 mL) and trimethylamine (2 ml). The reaction mixture was then stirred at 80 °C for 2 hours. The reaction was quenched with H<sub>2</sub>O and the aqueous phase was extracted with  $CH_2Cl_2$ . The combined organic layers were dried over  $Na_2SO_4$  and concentrated to afford a crude product. Then the crude material was purified by flash chromatography to give pure product.



#### Methyl (Z)-2-acetamido-3-phenylacrylate (8a)<sup>[7,10]</sup>:

**8a** was synthesized following the method A. 0.39 g, 18% yield, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.68–7.30 (m, 6H), 6.98 (s, 1H), 3.85 (s, 3H), 2.14 (s, 3H).



#### Ethyl (Z)-2-acetamido-3-phenylacrylate (8b)<sup>[8]</sup>:

**8b** was synthesized following the method C. 1.82 g, 39% yield, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.51–7.29 (m, 6H), 7.02 (s,1H), 4.31 (q, *J* = 6.8 Hz, 2H), 2.13 (s, 3H), 1.36 (t, *J* = 6.8 Hz, 3H).

#### Methyl (Z)-2-acetamido-3-(4-chlorophenyl) acrylate (8c)<sup>[9]</sup>:

**8c** was synthesized following the method A. 1.19 g, 47% yield, yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.42–7.29 (m, 5H), 7.06 (s, 1H), 3.86 (s, 3H), 2.14 (s, 3H).

#### Methyl (Z)-2-acetamido-3-(4-bromophenyl) acrylate (8d) [7]:

**8d** was synthesized following the method B. 0.60 g, 40% yield, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.49 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 6.8 Hz, 2H), 7.30 (s, 1H), 7.08 (s, 1H), 3.86 (s, 3H), 2.14 (s, 3H).



#### Methyl (Z)-2-acetamido-3-(3-chlorophenyl) acrylate (8e)<sup>[10]</sup>:

**8e** was synthesized following the method A. 1.56 g, 61% yield, yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.44 (s, 1H), 7.36–7.28 (m, 4H), 7.10 (s, 1H), 3.86 (s, 3H), 2.14 (s, 3H).



#### Methyl (Z)-2-acetamido-3-(2- bromophenyl) acrylate (8f)<sup>[10]</sup>:

**8f** was synthesized following the method A. 1.15 g, 39% yield, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.62 (d, *J* = 8.0 Hz, 1H), 7.46–7.38 (m, 2H), 7.31–7.25 (m, 1H), 7.18 (t, *J* = 7.6 Hz, 1H), 7.01 (s, 1H), 3.88 (s, 3H), 2.05 (s, 3H).



#### Methyl (Z)-2-acetamido-3-(2,4-dichlorophenyl) acrylate (8g):

**8g** was synthesized following the method A. 1.36 g, 47% yield, yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.47–7.40 (m, 2H), 7.36 (d, *J* = 8.4Hz, 1H), 7.30 (s, 3H), 7.20 (d, *J* = 7.6 Hz, 1H), 3.87 (s, 3H), 2.04 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  168.33, 165.13, 134.89, 134.65, 131.42, 129.94, 129.36, 126.85, 125.94, 52.84, 23.18; HRMS (ESI) *m*/*z* Calcd for C<sub>12</sub>H<sub>12</sub>Cl<sub>2</sub>NO<sub>3</sub> [M+H]<sup>+</sup>: 288.0194, found: 288.0189.

Methyl (Z)-2-acetamido-3-(2-bromo-4-fluorophenyl) acrylate (8h):

**8h** was synthesized following the method A. 1.10 g, 35% yield, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.47–7.29 (m, 4H), 7.04–6.95 (m, 1H), 3.87 (s, 3H), 2.02 (s, 3H); <sup>19</sup>F NMR (375 MHz, CDCl<sub>3</sub>)  $\delta$  -109.63 (d, *J* = 7.3 Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  168.79, 165.12, 161.87 (d, *J* = 253.6 Hz), 130.65, 130.50 (d, *J* = 8.6 Hz), 128.8, 125.87, 124.61 (d, *J* = 9.4 Hz), 119.92 (d, *J* = 24.3 Hz), 114.50 (d, *J* = 21.3 Hz), 52.68, 22.92.; HRMS (ESI) *m*/*z* Calcd for C<sub>12</sub>H<sub>12</sub>BrFNO<sub>3</sub> [M+H]<sup>+</sup>: 315.9985, found: 315.9979.

#### Methyl (Z)-2-acetamido-3-(3,5-dimethoxyphenyl) acrylate (8i):

**8i** was synthesized following the method A. 1.03 g, 37% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.27 (s, 1H), 7.12 (s, 1H), 6.62 (s, 2H), 6.44 (s, 1H), 3.84 (s, 3H), 3.77 (s, 6H), 2.12 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 168.98, 165.56, 160.56, 135.20, 132.00, 124.96, 107.45, 101.56, 55.22, 52.57, 23.08; HRMS (ESI) *m/z* Calcd for C<sub>14</sub>H<sub>18</sub>NO<sub>5</sub> [M+H]<sup>+</sup>: 280.1185, found: 280.1180.



#### Methyl (Z)-2-acetamido-3- (2-fluoro-5-(trifluoromethyl) phenyl)) acrylate (8j):

**8j** was synthesized following the method A. 0.87 g, 29% yield, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.70 (d, *J* = 5.6 Hz, 1H), 7.58–7.53(m, 1H), 7.43 (s, 1H), 7.38 (s, 1H), 7.18 (t, *J* = 9.2 Hz, 1H), 3.90 (s, 3H), 2.10 (s, 3H); <sup>19</sup>F NMR (375 MHz, CDCl<sub>3</sub>)  $\delta$  -62.24, -106.78; <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  168.49, 164.31, 161.10 (d, *J* = 254.0 Hz), 129.51 (d, *J* = 2.0 Hz), 127.61, 126.69, 124.88 (q, *J* = 35.3 Hz), 123.23 (q, *J* = 270.4 Hz), 122.11 (d, *J* = 14.3 Hz), 119.62 (d, *J* = 3.4 Hz), 116.56 (d, *J* = 23.6 Hz), 52.00, 21.75; HRMS (ESI) *m*/*z* Calcd for C<sub>13</sub>H<sub>12</sub>F<sub>4</sub>NO<sub>3</sub> [M+H]<sup>+</sup>: 306.0753, found: 306.0748.

#### 2.2.2 General Procedure for Asymmetric Hydrogenation



An 8.0 mL reaction tube was charged with  $[Rh(cod)_2]BF_4$  (0.41 mg, 0.001 mmol,) and ligand *R*-6a (1.0 mg, 0.0022 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (0.5 mL), and stirred at room temperature for 15 min. The above solution was then injected into another 8.0 mL reaction tube containing substrate **8** (0.1 mmol, 1.0 equiv.), followed by the injection of CH<sub>2</sub>Cl<sub>2</sub> (2.5 mL). The reaction tube was placed in an autoclave and pressed with 2.0 atm of H<sub>2</sub>. The reaction was stirred at room temperature for 16 hours. After releasing H<sub>2</sub>, the solution was concentrated, and the residue was then purified by preparative thin-layer chromatography to afford **9**.

#### Methyl (R)-acetylphenylalaninate (9a)<sup>[10]</sup>

**9a** was synthesized following the general procedure. 99% yield, 93% ee, white solid. Determined by HPLC analysis: Chiralcel IA column (25 cm); hexane/2-propanol = 92/8; flow rate, 1.0 mL/min; 40 °C, 254 nm;  $t_R$  (major) = 9.61 min;  $t_R$  (minor) = 11.29 min. [ $\alpha$ ]<sub>D</sub><sup>27</sup> = -83.2 (c = 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.34–7.23 (m, 3H), 7.12–7.06 (m, 2H), 5.92 (s, 1H), 4.89 (dt, *J* = 7.8, 5.8 Hz, 1H), 3.73 (s, 3H), 3.16 (dd, *J* = 14.0, 6.0 Hz, 1H), 3.10 (dd, *J* = 14.0, 6.0 Hz, 1H), 1.99 (s, 3H).

#### Ethyl (R)-acetylphenylalaninate (9b)<sup>[12]</sup>

**9b** was synthesized following the general procedure. 99% yield, 95% ee, white solid. Determined by HPLC analysis: Chiralcel IA column (25 cm); hexane/2-propanol = 92/8; flow rate, 1.0 mL/min; 40 °C, 254 nm;  $t_R$  (major) = 8.20 min;  $t_R$  (minor) = 10.31 min; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.33–7.21 (m, 3H), 7.13–7.08 (m, 2H), 5.99 (d, *J* = 7.8 Hz, 1H), 4.87 (dt, *J* = 7.8, 5.8 Hz, 1H), 4.20–4.14 (m, 2H), 3.14 (dd, *J* = 13.6, 5.6 Hz, 1H), 3.10 (dd, *J* = 14.0, 5.6 Hz, 1H)., 1.99 (s, 3H), 1.25 (t, *J* = 7.2 Hz, 3H).



#### Methyl (R)-2-acetamido-3-(4-chlorophenyl) propanoate (9c)<sup>[13]</sup>

**9c** was synthesized following the general procedure. 99% yield, 95% ee, white solid. Determined by HPLC analysis: Chiralcel IA column (25 cm); hexane/2-propanol = 92/8; flow rate, 1.0 mL/min; 40 °C, 254 nm;  $t_R$  (major) = 10.89 min;  $t_R$  (minor) = 12.71 min; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.26 (d, *J* = 8.4 Hz, 2H), 7.03 (d, *J* = 8.0 Hz, 2H), 6.09 (s, 1H), 4.90–4.83 (m, 1H), 3.73 (s, 3H), 3.13 (dd, *J* = 13.6, 5.6 Hz, 1H), 3.05 (dd, *J* = 13.6, 5.6 Hz, 1H), 1.99 (s, 3H).



#### Methyl (R)-2-acetamido-3-(4-bromophenyl) propanoate (9d)<sup>[13]</sup>

**9d** was synthesized following the general procedure. 99% yield, 95% ee, white solid. Determined by HPLC analysis: Chiralcel IA column (25 cm); hexane/2-propanol = 92/8; flow rate, 1.0 mL/min; 40 °C, 220 nm;  $t_R$  (major) = 11.51 min;  $t_R$  (minor) = 13.48 min; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.41 (d, *J* = 8.4 Hz, 2H), 6.97 (d, *J* = 8.4 Hz, 2H), 6.05 (s, 1H), 4.90–4.83 (m, 1H), 3.73 (s, 3H), 3.12 (dd, *J* = 14.0, 6.0 Hz, 1H), 3.03 (dd, *J* = 14.0, 5.6 Hz, 1H), 1.99 (s, 3H).

#### Methyl (R)-2-acetamido-3-(3-chlorophenyl) propanoate (9e)<sup>[14]</sup>

**9e** was synthesized following the general procedure. 99% yield, 94% ee, white solid. Determined by HPLC analysis: Chiralcel IA column (25 cm); hexane/2-propanol = 92/8; flow rate, 1.0 mL/min; 40 °C, 254 nm;  $t_R$  (major) = 9.78 min;  $t_R$  (minor) = 11.12 min; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.26–7.19 (m, 2H), 7.09 (s, 1H), 7.03– 6.94 (m, 1H), 6.01 (s, 1H), 4.90–4.83 (m, 1H), 3.74 (s, 3H), 3.14 (dd, *J* = 14.0, 6.0 Hz, 1H), 3.06 (dd, *J* = 13.6, 5.6 Hz, 1H), 2.01 (s, 3H).



#### Methyl (R)-2-acetamido-3-(2-bromophenyl) propanoate (9f)<sup>[13]</sup>

**9f** was synthesized following the general procedure. 99% yield, 91% ee, white solid. Determined by HPLC analysis: Chiralcel IA column (25 cm); hexane/2-propanol = 92/8; flow rate, 1.0 mL/min; 40 °C, 254 nm;  $t_R$  (major) = 10.91 min;  $t_R$  (minor) = 13.54 min; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.55 (d, *J* = 7.6, 1H), 7.28–7.22 (m, 1H), 7.20 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.11 (td, *J* = 7.6, 2.0 Hz, 1H), 6.07 (d, *J* = 8.0 Hz, 1H), 4.96–4.88 (m, 1H), 3.73 (s, 3H), 3.32 (dd, *J* = 13.6, 6.0 Hz, 1H), 3.19 (dd, *J* = 14.0, 7.6 Hz, 1H), 1.96 (s, 3H).



#### Methyl (R)-2-acetamido-3-(2,4-dichlorophenyl) propanoate (9g)

**9g** was synthesized following the general procedure. 99% yield, 93% ee, colorless liquid. Determined by HPLC analysis: Chiralcel IA column (25 cm); hexane/2-propanol = 92/8; flow rate, 1.0 mL/min; 40 °C, 254 nm; t<sub>R</sub> (major) = 10.09 min; t<sub>R</sub> (minor) = 12.69 min;  $[\alpha]_D^{28}$  = -44.4 (c = 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.38 (d, *J* = 2.0 Hz, 1H), 7.19 (dd, *J* = 8.2, 2.0 Hz, 1H), 7.13 (d, *J* = 8.0 Hz, 1H), 6.10 (d, *J* = 8.0 Hz, 1H), 4.92–4.85 (m, 1H), 3.73 (s, 3H), 3.28 (dd, *J* = 14.0, 6.4 Hz, 1H), 3.14 (dd, *J* = 14.0, 6.8 Hz, 1H), 1.97 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  171.89, 169.65, 135.09, 133.59, 132.74, 131.99, 129.40, 127.21, 52.55, 52.19, 34.96, 23.04; HRMS (ESI) *m/z* Calcd for C<sub>12</sub>H<sub>13</sub>BrFNO<sub>3</sub>Na [M+Na]<sup>+</sup>:312.0170, found:312.0165.

#### Methyl (R)-2-acetamido-3-(2-bromo-4-fluorophenyl) propanoate (9h)

**9h** was synthesized following the general procedure. 99% yield, 93% ee, white solid. Determined by HPLC analysis: Chiralcel IA column (25 cm); hexane/2-propanol = 92/8; flow rate, 1.0 mL/min; 40 °C, 254 nm;  $t_R$  (major) = 10.50 min;  $t_R$  (minor) = 13.42 min. [ $\alpha$ ]<sub>D</sub><sup>27</sup> = -25.8 (c = 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.30 (dd, *J* = 8.2, 2.8 Hz, 1H), 7.18 (dd, *J* = 8.4, 6.0 Hz, 1H), 6.98 (td, *J* = 8.0, 2.4 Hz, 1H), 6.08 (d, *J* = 8.4 Hz, 1H), 4.93–4.86 (m, 1H), 3.73 (s, 3H), 3.29 (dd, *J* = 14.0, 6.4 Hz, 1H), 3.15 (dd, *J* = 14.0, 7.6 Hz, 1H), 1.97 (s, 3H); <sup>19</sup>F NMR (375 MHz, CDCl<sub>3</sub>)  $\delta$  -112.99 (td, *J* = 8.0, 5.8 Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  171.97, 169.65, 161.33 (d, *J* = 250.5 Hz), 131.87, 131.87 (d, *J* = 8.2 Hz), 124.81 (d, *J* = 9.4 Hz), 120.10 (d, *J* = 24.3 Hz), 114.77 (d, *J* = 21.0 Hz), 52.55, 52.41, 37.17, 23.07; HRMS (ESI) *m/z* Calcd for C<sub>12</sub>H<sub>13</sub>BrFNO<sub>3</sub>Na [M+Na]<sup>+</sup>: 339.9961, found:339.9955.



#### Methyl (R)-2-acetamido-3-(3,5-dimethoxyphenyl) propanoate (9i)

**9i** was synthesized following the general procedure. 99% yield, 96% ee, white solid. Determined by HPLC analysis: Chiralcel IA column (25 cm); hexane/2-propanol = 96/4; flow rate, 1.0 mL/min; 220 nm;  $t_R$  (major) = 33.88 min;  $t_R$ 

(minor) = 37.42 min;  $[\alpha]_D^{26}$  = -65.5 (c = 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.35 (t, *J* = 2.4 Hz, 1H), 6.24 (d, *J* = 2.4 Hz, 2H), 5.94 (d, *J* = 7.2 Hz, 1H), 4.90–4.83 (m, 1H), 3.76 (s, 6H), 3.75 (s, 3H), 3.13–2.99 (m, 2H), 2.00 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  172.01, 169.61, 160.81, 137.98, 107.22, 98.89, 55.21, 52.93, 52.32, 37.93, 23.11; HRMS (ESI) *m*/*z* Calcd for C<sub>14</sub>H<sub>19</sub>NO<sub>5</sub>Na [M+Na]<sup>+</sup>: 304.1161, found: 304.1155.



#### Methyl (R)-2-acetamido-3- (2-fluoro-5-(trifluoromethyl) phenyl) propanoate (9j)

**9** was synthesized following the general procedure. 94% yield, 96% ee, white solid. Determined by HPLC analysis: Chiralcel IA column (25 cm); hexane/2-propanol = 92/8; flow rate, 1.0 mL/min; 40 °C, 254 nm;  $t_R$  (major) = 7.48 min;  $t_R$  (minor) = 8.37 min. [ $\alpha$ ]<sub>D</sub><sup>26</sup> = -65.9 (c = 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.56–7.50 (m, 1H), 7.40 (dd, *J* = 6.8, 2.4 Hz, 1H), 7.14 (t, *J* = 8.8 Hz, 1H), 6.04 (d, *J* = 6.0 Hz, 1H), 4.92–4.85 (m, 1H), 3.76 (s, 3H), 3.31 (dd, *J* = 14.0, 5.6 Hz, 1H), 3.16 (dd, *J* = 14.0, 5.6 Hz, 1H), 1.99 (s, 3H); <sup>19</sup>F NMR (375 MHz, CDCl<sub>3</sub>)  $\delta$  -62.05, -112.30 (t, *J* = 3.7 Hz).; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  171.66, 169.79, 163.05 (d, *J* = 251.5 Hz), 129.18 (dd, *J* = 5.8, 3.6 Hz), 126.83 (d, *J* = 3.5 Hz), 126.54–126.40 (m), 124.26 (d, *J* = 17.4 Hz), 123.58 (q, *J* = 270 Hz), 115.92 (d, *J* = 23.9 Hz), 52.51, 52.17, 31.35, 22.80; HRMS (ESI) *m*/*z* Calcd for C<sub>13</sub>H<sub>13</sub>F<sub>4</sub>NO<sub>3</sub>Na [M+Na]<sup>+</sup>: 330.0729, found: 330.0724.

#### 2.3 Other Applications with SPOSiOL-Derived Ligands



A 12 mL tube was charged with Cu(OTf)<sub>2</sub> (1.1 mg, 0.003 mmol, 1.0 mol%), (*R*,*S*,*S*)-**6c** (3.9 mg, 0.006 mmol, 2.0 mol%) and toluene (0.9 mL) in the glovebox. The reaction mixture was then stirred at room temperature for 30 min. After that, Et<sub>2</sub>Zn (1.0 M in hexane, 0.45 mmol, 1.5 equiv.) and **10** (29  $\mu$ L, 0.3 mmol, 1.0 equiv.) were injected at 0 °C under N<sub>2</sub> outside of the glovebox and the reaction was kept at the same temperature for another 3 hours. The reaction was quenched with saturated NH<sub>4</sub>Cl and the mixture was extracted with Et<sub>2</sub>O for 3 times. The combined organic layers were dried with Na<sub>2</sub>SO<sub>4</sub> and carefully concentrated. The residue was purified by chromatography (PE/Et<sub>2</sub>O = 6/1 as eluent) to give **11**<sup>[15]</sup> (31.9 mg, 84% yield, 81% ee). Determined by chiral GLC using SUPELCO GAMMA DEX 225 column (2 min at 60 °C, 3 °C/min until 120 °C, 10 min at 120 °C), t<sub>R</sub> (major) = 23.97 min; t<sub>R</sub> (minor) = 24.18 min. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.52–2.21 (m, 3H), 2.12–1.89 (m, 3H), 1.78–1.61 (m, 2H), 1.48–1.25 (m, 3H), 0.93 (t, *J* = 7.6 Hz, 3H).



A 12 mL tube was charged with Pd<sub>2</sub>(dba)<sub>3</sub> (4.6 mg, 0.005 mmol, 5.0 mol%), (R,R,R)-6c (6.5 mg, 0.01 mmol, 10

mol%), NaO'Bu (19.2 mg, 0.2 mmol, 2.0 equiv.) and toluene (0.5 mL) in the glovebox, followed by the injection of **12** (18.5 mg, 0.1 mmol, 1.0 equiv.) and *p*-bromoanisole (25  $\mu$ L, 0.2 mmol, 2.0 equiv.) under N<sub>2</sub> outside of the glovebox. The reaction mixture was then heated to 80 °C for 6 hours. After cooled to room temperature, the mixture was filtered through a short pad of silica gel with EtOAc as eluent. The resulting solution was evaporated, and the residue was purified by preparative thin-layer chromatography to afford **13**<sup>[16]</sup> (26.9 mg, 92%, 83% ee). Determined by HPLC analysis: Chiralcel IA column (25 cm); hexane/2-propanol = 99/1; flow rate, 1.0 mL/min; 30 °C, 229 nm; t<sub>R</sub> (major) = 8.37 min; t<sub>R</sub> (minor) = 10.44 min. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.19–7.03 (m, 2H), 6.83 (d, *J* = 7.9 Hz, 2H), 4.04–3.85 (m, 1H), 3.79 (s, 3H), 3.43–3.21 (m, 2H), 3.13–2.92 (m, 1H), 2.61–2.42 (m, 1H), 1.83–1.64 (m, 4H), 1.51 (s, 6H).

# 3. X-Ray Structures

# 3.1 X-Ray Structure of (R)-SPOSiOL (CCDC 2112131)

Single crystals of (R)-**SPOSiOL** were obtained by recrystallization from PE/Et<sub>2</sub>O. The molecular structure and X-ray diffractional data/refinement of R-SPOSiOL were shown below.

|                       | ( <i>R</i> )- <b>SP</b> |                                |                    |
|-----------------------|-------------------------|--------------------------------|--------------------|
| Bond precision:       |                         | C-C = 0.0150  Å                | Wavelength=0.71073 |
| Cell:                 | a=9.1800(5)             | b=27.5745(18)                  | c=9.1884(6)        |
|                       | alpha=90                | beta=111.569(2)                | gamma=90           |
| Temperature:          | 293 K                   |                                |                    |
|                       |                         | Calculated                     | Reported           |
| Volume                |                         | 2163.0(2)                      | 2163.0(2)          |
| Space group           |                         | P 21                           | P 21               |
| Hall group            |                         | P 2yb                          | P 2yb              |
| Moiety formula        |                         | C24 H16 O4 Si, 2(H2O)          | ?                  |
| Sum formula           |                         | C24 H20 O6 Si                  | C24 H20 O6 Si      |
| Mr                    |                         | 432.49                         | 432.49             |
| Dx,g cm <sup>-3</sup> |                         | 1.328                          | 1.328              |
| Z                     |                         | 4                              | 4                  |
| Mu (mm-1)             |                         | 0.147                          | 0.147              |
| F000                  |                         | 904.0                          | 904.0              |
| F000'                 |                         | 904.79                         |                    |
| h,k,lmax              |                         | 11,33,11                       | 11,33,11           |
| Nref                  |                         | 8051[ 4116]                    | 8019               |
| Tmin,Tmax             |                         | 0.981,0.988                    | 0.645,0.746        |
| Tmin'                 |                         | 0.980                          |                    |
| Correction method     | = # Reported T Lin      | nits: Tmin=0.645 Tmax=0.746 Al | osCorr = MULTI-    |

SCAN

| Data completeness= 1.95/1.00 | Theta(max)= 25.497              |
|------------------------------|---------------------------------|
| R(reflections)= 0.0502(6455) | wR2(reflections)= 0.1259( 8019) |
| S = 1.086                    | Npar= 559                       |

### **3.2 X-Ray Structure of 7** (CCDC 2112132)

Single crystals of 7 were obtained by recrystallization from PE/THF. The molecular structure and X-ray diffractional data/refinement of 7 were shown below.



## 4. References

- [1]. Beaud, R.; Phipps, R. J.; Gaunt, M. J. J. Am. Chem. Soc. 2016, 138, 13183-13186.
- [2]. Jalalian N.; Ishikawa, E. E.; Silva, L. F.; Olofsson, Jr., B. Org. Lett. 2011, 13, 1552–1555.
- [3]. Yuge, H.; Horiuchi, S.; Noda, S.; Nishi, T.; Kajiyama, K. Chem. Lett, 2020, 49, 550–552.
- [4]. Chang, X.; Ma, P.-L.; Chen, H.-C.; Li, C.-Y.; Wang, P. Angew. Chem. Int. Ed., 2020, 59, 8937–8940.
- [5]. Li, Z.-A.; Liang X.-M.; Wu, F.; Wan, B.-S. *Tetrahedron: Asymmetry*, **2004**, *15*, 665–669.
- [6]. Hajra, S.; Bhowmick, M.; Maji, B.; D. Sinha. J. Org. Chem. 2007, 72, 4872-4876.
- [7]. Jursic, B.S.; Sagiraju, S.; Ancalade, D.K.; Clark, T.; Stevens, E.D. Synth. Commun. 2007, 37, 1709–1714.
- [8]. Jia. J.; Ling, Z.; Zhang, Z.-F.; Tamura, K.; Gridnev, I. D.; Imamoto, T.; Zhang, W.-B. *Adv. Synth. Catal.* **2018**, *360*, 738–743.
- [9]. Clagg, K.; Hou, H. -Y.; Weinstein, A. B.; Russell, D.; Stahl, S. S.; Koenig, S. G. Org. Lett. 2016, 18, 3586–3589.
- [10]. Storch, G.; Trapp, O. Angew. Chem., Int. Ed., 2015, 54, 3580-3586.
- [11]. Ouyang, G.-H.; He, Y.-M.; Li, Y.; Xiang, J.-F.; Fan, Q.-H. Angew. Chem. Int. Ed., 2015, 54, 4334–4337.
- [12]. Singjunla, Y.; Pigeaux, M.; Laporte, R.; Baudoux, J.; Rouden, J. Eur. J. Org. Chem., 2017, 2017, 4319–4323.
- [13]. Saito, Y.; Kobayashi, S. J. Am. Chem. Soc. 2020, 142, 16546–16551.
- [14]. Luo, Y.-E.; Ouyang, G.-H.; Tang, Y.-P.; He, Y.-M.; Fan, Q.-H. J. Org. Chem. 2020, 85, 8176–8184.
- [15]. Zhang, W.; Wang, C.-J.; Gao, W.; Zhang, X. Tetrahedron Lett. 2005, 46, 6087–6090.
- [16]. Chang, X.; Ma, P.-L.; Chen, H.-C.; Li, C.-Y.; Wang, P. Angew. Chem. Int. Ed. 2020, 59, 8937–8940.

# 5. NMR Spectra



y1-OMe-Br.4.fid















![](_page_25_Figure_0.jpeg)

# 163.005 163.005 160.150 160.370 160.370 160.370 160.370 160.370 160.370 160.370 160.370 160.370 156.747 156.747 155.723 156.747 155.723 156.747 133.65 133.552 133.552 133.427 133.552 133.427 133.552 133.427 133.552 111.2665 1117.566 1117.566 1117.566 1117.566 1117.566 1117.566 1117.566 1117.566 1117.566 1117.566 1117.566 1117.566 1117.566 1117.566 1117.566 1117.566 1117.566 1117.566 1117.566 1117.566 1117.567 1117.566 1117.568 1111.566 1117.568 1111.566 1117.568 1111.566 1117.568 1111.566

It-1780-I-C.1.fid

![](_page_26_Figure_1.jpeg)

y1-1-N-C.5.fid

# 16403 16403 16113 16113 16113 16113 16113 16113 16113 16113 16113 16113 16113 16113 16113 115504 115634 1135203 1135203 1135203 1135233 1135233 1135233 1135233 1135233 1135233 113533 113533 113533 113533 113533 113533 113533 113533 113533 113533 113533 113533 113533 113533 113534 113535 113536 113536 113536 113536 113536 113536</

![](_page_27_Figure_2.jpeg)

th.

![](_page_27_Figure_4.jpeg)

fl (ppm)

![](_page_28_Figure_0.jpeg)

![](_page_29_Figure_0.jpeg)

![](_page_29_Figure_1.jpeg)

![](_page_29_Figure_2.jpeg)

![](_page_30_Figure_0.jpeg)

230 220 210 200 190 180 170 160 150 140 -10 fl (ppm)

![](_page_31_Figure_1.jpeg)

![](_page_31_Figure_2.jpeg)

![](_page_32_Figure_0.jpeg)

![](_page_33_Figure_0.jpeg)

![](_page_34_Figure_0.jpeg)

![](_page_35_Figure_0.jpeg)

![](_page_35_Figure_2.jpeg)

yl-Br,F-s-F.9.fid

![](_page_36_Figure_1.jpeg)

![](_page_36_Figure_2.jpeg)

![](_page_36_Figure_3.jpeg)

fl (ppm)

![](_page_37_Figure_0.jpeg)

![](_page_38_Figure_0.jpeg)

190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

![](_page_39_Figure_0.jpeg)

![](_page_40_Figure_0.jpeg)

![](_page_41_Figure_0.jpeg)

![](_page_42_Figure_0.jpeg)

![](_page_43_Figure_0.jpeg)

y1-06104-10-p-f.14.fid

![](_page_44_Figure_1.jpeg)

![](_page_44_Figure_2.jpeg)

![](_page_44_Figure_3.jpeg)

![](_page_45_Figure_0.jpeg)

![](_page_46_Figure_0.jpeg)

-15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 f1 (ppm)

![](_page_47_Figure_0.jpeg)

![](_page_48_Figure_0.jpeg)

# 6. HPLC Charts: (*R*)-9'9-Spirobiphenoxasilin-diol:

![](_page_49_Figure_1.jpeg)

![](_page_49_Figure_2.jpeg)

# <Peak Table>

| PDAC  | n1 254nm  |        |        |        |      |      |      |
|-------|-----------|--------|--------|--------|------|------|------|
| Peak# | Ret. Time | Area   | Height | Conc.  | Unit | Mark | Name |
| 1     | 6.857     | 335950 | 29178  | 50.113 |      |      |      |
| 2     | 9.184     | 334435 | 20570  | 49.887 |      |      |      |
| Total |           | 670385 | 49747  |        |      |      |      |

#### <Chromatogram>

mAU

![](_page_49_Figure_7.jpeg)

#### <Peak Table>

PDA Ch1 254nm

| Peak# | Ret. Time | Area    | Height | Conc.  | Unit | Mark | Name |
|-------|-----------|---------|--------|--------|------|------|------|
| 1     | 6.853     | 5022857 | 441188 | 99.645 |      |      |      |
| 2     | 9.212     | 17902   | 1113   | 0.355  |      |      |      |
| Total |           | 5040759 | 442301 |        |      |      |      |

# <Chromatogram>

![](_page_50_Figure_1.jpeg)

![](_page_50_Figure_2.jpeg)

# <Peak Table>

| PDA C | h1 254nm  |         |        |        |      |      |      |
|-------|-----------|---------|--------|--------|------|------|------|
| Peak# | Ret. Time | Area    | Height | Conc.  | Unit | Mark | Name |
| 1     | 6.854     | 1187059 | 103743 | 99.853 |      |      |      |
| 2     | 9.197     | 1743    | 114    | 0.147  |      | M    |      |
| Total |           | 1188802 | 103857 |        |      |      |      |

# (S)-9'9-Spirobiphenoxasilin-diol:

![](_page_50_Figure_6.jpeg)

![](_page_50_Figure_7.jpeg)

# <Peak Table> PDA Ch1 254nm

|       | 204000    |       |        |        |      |      |      |
|-------|-----------|-------|--------|--------|------|------|------|
| Peak# | Ret. Time | Area  | Height | Conc.  | Unit | Mark | Name |
| 1     | 6.886     | 3172  | 284    | 3.188  |      |      |      |
| 2     | 9.268     | 96337 | 5856   | 96.812 |      |      |      |
| Total |           | 99509 | 6140   |        |      |      |      |

# Methyl (*R*)-acetylphenylalaninate (9a):

![](_page_51_Figure_1.jpeg)

# <Chromatogram>

![](_page_51_Figure_3.jpeg)

![](_page_51_Figure_4.jpeg)

# <Peak Table>

| PDA C | h1 254nm  |        |        |        |      |      |      |
|-------|-----------|--------|--------|--------|------|------|------|
| Peak# | Ret. Time | Area   | Height | Conc.  | Unit | Mark | Name |
| 1     | 9.608     | 108715 | 7874   | 50.465 |      |      |      |
| 2     | 11.292    | 106710 | 6546   | 49.535 |      |      |      |
| Total |           | 215424 | 14419  |        |      |      |      |

# <Chromatogram>

mAU

![](_page_51_Figure_9.jpeg)

# <Peak Table> PDA Ch1 254nm

| PDAC  | <u>11 204000</u> |        |        |        |      |      |      |
|-------|------------------|--------|--------|--------|------|------|------|
| Peak# | Ret. Time        | Area   | Height | Conc.  | Unit | Mark | Name |
| 1     | 9.554            | 383670 | 27219  | 96.573 |      |      |      |
| 2     | 11.351           | 13615  | 893    | 3.427  |      |      |      |
| Total |                  | 397285 | 28112  |        |      |      |      |

Ethyl (*R*)-acetylphenylalaninate (9b):

![](_page_52_Figure_1.jpeg)

# <Chromatogram>

mAU

![](_page_52_Figure_4.jpeg)

# <Peak Table>

| PDAC  | n1 254nm  |         |        |        |      |      |      |
|-------|-----------|---------|--------|--------|------|------|------|
| Peak# | Ret. Time | Area    | Height | Conc.  | Unit | Mark | Name |
| 1     | 8.200     | 877916  | 72584  | 50.020 |      |      |      |
| 2     | 10.308    | 877228  | 55907  | 49.980 |      |      |      |
| Total |           | 1755144 | 128492 |        |      |      |      |

# <Chromatogram>

mAU

![](_page_52_Figure_9.jpeg)

| PDA C | h1 254nm  |        |        |        |      |      |      |
|-------|-----------|--------|--------|--------|------|------|------|
| Peak# | Ret. Time | Area   | Height | Conc.  | Unit | Mark | Name |
| 1     | 8.215     | 551635 | 45854  | 97.493 |      |      |      |
| 2     | 10.454    | 14187  | 1075   | 2.507  |      |      |      |
| Total |           | 565822 | 46929  |        |      |      |      |

# Methyl (*R*)-2-acetamido-3-(4-chlorophenyl)propanoate (9c):

![](_page_53_Figure_1.jpeg)

# <Chromatogram>

![](_page_53_Figure_3.jpeg)

# <Peak Table>

| PDA C | h1 254nm  |        |        |        |      |      |      |
|-------|-----------|--------|--------|--------|------|------|------|
| Peak# | Ret. Time | Area   | Height | Conc.  | Unit | Mark | Name |
| 1     | 10.894    | 216289 | 13329  | 50.244 |      |      |      |
| 2     | 12.713    | 214188 | 11790  | 49.756 |      |      |      |
| Total |           | 430477 | 25118  |        |      |      |      |

#### <Chromatogram>

mAU

![](_page_53_Figure_8.jpeg)

| PDA C | h1 254nm  |        |        |        |      |      |      |
|-------|-----------|--------|--------|--------|------|------|------|
| Peak# | Ret. Time | Area   | Height | Conc.  | Unit | Mark | Name |
| 1     | 10.838    | 646966 | 38822  | 97.384 |      |      |      |
| 2     | 12.791    | 17380  | 1007   | 2.616  |      |      |      |
| Total |           | 664347 | 39829  |        |      |      |      |

# Methyl (R)-2-acetamido-3-(4-bromophenyl)propanoate (9d):

![](_page_54_Figure_1.jpeg)

## <Chromatogram>

![](_page_54_Figure_3.jpeg)

## <Peak Table>

| <u>PDA C</u> | h1 220nm  |          |        |        |      |      |      |
|--------------|-----------|----------|--------|--------|------|------|------|
| Peak#        | Ret. Time | Area     | Height | Conc.  | Unit | Mark | Name |
| 1            | 11.505    | 7609948  | 438031 | 50.121 |      | S    |      |
| 2            | 13.476    | 7573254  | 378620 | 49.879 |      | V    |      |
| Total        |           | 15183202 | 816651 |        |      |      |      |

# <Chromatogram>

![](_page_54_Figure_7.jpeg)

# <Peak Table> PDA Ch1 220nm

| PDAC  | n1 220nm  |         |        |        |      |      |      |
|-------|-----------|---------|--------|--------|------|------|------|
| Peak# | Ret. Time | Area    | Height | Conc.  | Unit | Mark | Name |
| 1     | 11.461    | 3051005 | 170236 | 97.708 |      |      |      |
| 2     | 13.443    | 71571   | 3490   | 2.292  |      |      |      |
| Total |           | 3122577 | 173726 |        |      |      |      |

#### Methyl (R)-2-acetamido-3-(3-chlorophenyl)propanoate (9e):

![](_page_55_Figure_1.jpeg)

<Peak Table>

| F | PDA C | h1 254nm  |        |        |        |      |      |      |
|---|-------|-----------|--------|--------|--------|------|------|------|
| ſ | Peak# | Ret. Time | Area   | Height | Conc.  | Unit | Mark | Name |
| ſ | 1     | 9.779     | 111367 | 7865   | 50.137 |      |      |      |
|   | 2     | 11.120    | 110757 | 6995   | 49.863 |      |      |      |
|   | Total |           | 222123 | 14860  |        |      |      |      |

20.0 min

### <Chromatogram>

mAU

![](_page_55_Figure_6.jpeg)

| PDA C | h1 254nm  |        |        |        |      |      |      |
|-------|-----------|--------|--------|--------|------|------|------|
| Peak# | Ret. Time | Area   | Height | Conc.  | Unit | Mark | Name |
| 1     | 9.720     | 702681 | 48737  | 97.048 |      |      |      |
| 2     | 11.155    | 21372  | 1229   | 2.952  |      |      |      |
| Total |           | 724053 | 49965  |        |      |      |      |

# Methyl (*R*)-2-acetamido-3-(2-bromophenyl)propanoate (9f):

![](_page_56_Figure_1.jpeg)

# <Chromatogram>

![](_page_56_Figure_3.jpeg)

# <Peak Table>

| PDA C | h1 254nm  |        |        |        |      |      |      |
|-------|-----------|--------|--------|--------|------|------|------|
| Peak# | Ret. Time | Area   | Height | Conc.  | Unit | Mark | Name |
| 1     | 10.906    | 213077 | 12657  | 50.101 |      |      |      |
| 2     | 13.536    | 212220 | 10396  | 49.899 |      |      |      |
| Tota  |           | 425297 | 23053  |        |      |      |      |

#### <Chromatogram>

mAU

![](_page_56_Figure_8.jpeg)

| PDA C | h1 254nm  |        |        |        |      |      |      |
|-------|-----------|--------|--------|--------|------|------|------|
| Peak# | Ret. Time | Area   | Height | Conc.  | Unit | Mark | Name |
| 1     | 10.839    | 452502 | 25994  | 95.664 |      |      |      |
| 2     | 13.627    | 20511  | 1113   | 4.336  |      |      |      |
| Total |           | 473013 | 27107  |        |      |      |      |

# Methyl (*R*)-2-acetamido-3-(2,4-dichlorophenyl)propanoate (9g):

![](_page_57_Figure_1.jpeg)

# <Chromatogram>

mAU

![](_page_57_Figure_4.jpeg)

## <Peak Table>

| PDA C | h1 254nm  |        |        |        |      |      |      |
|-------|-----------|--------|--------|--------|------|------|------|
| Peak# | Ret. Time | Area   | Height | Conc.  | Unit | Mark | Name |
| 1     | 10.085    | 102042 | 6813   | 50.017 |      |      |      |
| 2     | 12.692    | 101972 | 5358   | 49.983 |      |      |      |
| Total |           | 204014 | 12171  |        |      |      |      |

## <Chromatogram>

mAU

![](_page_57_Figure_9.jpeg)

| PDA C | h1 254nm  |        |        |        |      |      |      |
|-------|-----------|--------|--------|--------|------|------|------|
| Peak# | Ret. Time | Area   | Height | Conc.  | Unit | Mark | Name |
| 1     | 9.996     | 474860 | 30526  | 96.422 |      |      |      |
| 2     | 12.751    | 17622  | 962    | 3.578  |      |      |      |
| Total |           | 492482 | 31488  |        |      |      |      |

# Methyl (*R*)-2-acetamido-3-(2-bromo-4-fluorophenyl)propanoate (9h):

![](_page_58_Figure_1.jpeg)

## <Chromatogram>

mAU

![](_page_58_Figure_4.jpeg)

# <Peak Table>

| FUAC  | 111 2341111 |        |        |        |      |      |      |
|-------|-------------|--------|--------|--------|------|------|------|
| Peak# | Ret. Time   | Area   | Height | Conc.  | Unit | Mark | Name |
| 1     | 10.500      | 297037 | 19298  | 50.033 |      |      |      |
| 2     | 13.416      | 296650 | 14918  | 49.967 |      |      |      |
| Total |             | 593687 | 34216  |        |      |      |      |

#### <Chromatogram>

mAU

![](_page_58_Figure_9.jpeg)

| PDA C | h1 254nm  |        |        |        |      |      |      |
|-------|-----------|--------|--------|--------|------|------|------|
| Peak# | Ret. Time | Area   | Height | Conc.  | Unit | Mark | Name |
| 1     | 10.441    | 611751 | 38612  | 96.501 |      |      |      |
| 2     | 13.486    | 22183  | 1193   | 3.499  |      |      |      |
| Total |           | 633934 | 39805  |        |      |      |      |

# Methyl (*R*)-2-acetamido-3-(3,5-dimethoxyphenyl)propanoate (9i):

![](_page_59_Figure_1.jpeg)

# <Chromatogram>

mAU

![](_page_59_Figure_4.jpeg)

# <Peak Table>

| PDA C | h1 220nm  |         |        |        |      |      |      |
|-------|-----------|---------|--------|--------|------|------|------|
| Peak# | Ret. Time | Area    | Height | Conc.  | Unit | Mark | Name |
| 1     | 33.884    | 4738955 | 73832  | 50.252 |      |      |      |
| 2     | 37.424    | 4691346 | 68218  | 49.748 |      | SV   |      |
| Tota  |           | 9430301 | 142051 |        |      |      |      |

## <Chromatogram>

mAU

![](_page_59_Figure_9.jpeg)

| PDAC  | n i 220nm |         |        |        |      |      |      |
|-------|-----------|---------|--------|--------|------|------|------|
| Peak# | Ret. Time | Area    | Height | Conc.  | Unit | Mark | Name |
| 1     | 33.839    | 4063897 | 64416  | 98.004 |      | S    |      |
| 2     | 37.781    | 82764   | 1451   | 1.996  |      |      |      |
| Total |           | 4146661 | 65867  |        |      |      |      |

# Methyl (*R*)-2-acetamido-3- (2-fluoro-5-(trifluoromethyl)phenyl)propanoate (9i):

![](_page_60_Figure_1.jpeg)

![](_page_60_Figure_2.jpeg)

mAU

![](_page_60_Figure_4.jpeg)

# <Peak Table>

| PDA Chi 254nm |       |           |        |        |        |      |      |      |
|---------------|-------|-----------|--------|--------|--------|------|------|------|
|               | Peak# | Ret. Time | Area   | Height | Conc.  | Unit | Mark | Name |
|               | 1     | 7.482     | 221433 | 20795  | 49.977 |      |      |      |
|               | 2     | 8.367     | 221635 | 19479  | 50.023 |      | V    |      |
|               | Total |           | 443068 | 40273  |        |      |      |      |

#### <Chromatogram>

mAU

![](_page_60_Figure_9.jpeg)

| PDA Ch1 254nm |           |        |        |        |      |      |      |  |
|---------------|-----------|--------|--------|--------|------|------|------|--|
| Peak#         | Ret. Time | Area   | Height | Conc.  | Unit | Mark | Name |  |
| 1             | 7.470     | 618492 | 57514  | 97.756 |      |      |      |  |
| 2             | 8.395     | 14197  | 1251   | 2.244  |      | V    |      |  |
| Total         |           | 632688 | 58765  |        |      |      |      |  |

![](_page_61_Figure_0.jpeg)

![](_page_61_Figure_1.jpeg)

| Sorted By        | :        | Signal      |       |  |
|------------------|----------|-------------|-------|--|
| Multiplier       | :        | 1.0000      |       |  |
| Dilution         | :        | 1.0000      |       |  |
| Use Multiplier a | Dilution | Factor with | ISTDs |  |

Signal 1: FID1 A, Front Signal

| Peak | RetTime | Туре | Width  | Area     | Height   | Area     |
|------|---------|------|--------|----------|----------|----------|
| #    | [min]   |      | [min]  | [pA*s]   | [pA]     | 8        |
|      |         |      |        |          |          |          |
| 1    | 23.970  | BV   | 0.0726 | 67.38173 | 13.75987 | 90.41273 |
| 2    | 24.180  | VB   | 0.0736 | 7.14509  | 1.47174  | 9.58727  |

![](_page_62_Figure_0.jpeg)

Area Percent Report

Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs

Signal 1: FID1 A, Front Signal

| Peak | RetTime | Type | Width  | Area     | Height   | Area     |
|------|---------|------|--------|----------|----------|----------|
| #    | [min]   |      | [min]  | [pA*s]   | [pA]     | 8        |
|      |         |      |        |          |          |          |
| 1    | 23.970  | BV   | 0.0726 | 67.38173 | 13.75987 | 90.41273 |
| 2    | 24.180  | VB   | 0.0736 | 7.14509  | 1.47174  | 9.58727  |

![](_page_63_Figure_0.jpeg)

![](_page_63_Figure_1.jpeg)

## <Peak Table>

| PDA Ch1 229nm |           |          |        |        |      |      |      |  |
|---------------|-----------|----------|--------|--------|------|------|------|--|
| Peak#         | Ret. Time | Area     | Height | Conc.  | Unit | Mark | Name |  |
| 1             | 8.213     | 5894532  | 411065 | 50.115 |      |      |      |  |
| 2             | 10.224    | 5867520  | 170671 | 49.885 |      | M    |      |  |
| Total         |           | 11762052 | 581736 |        |      |      |      |  |

#### <Chromatogram> mAU

![](_page_63_Figure_5.jpeg)

#### <Peak Table> PDA Ch1 229nm

| _ |       |           |         |        |        |      |      |      |  |
|---|-------|-----------|---------|--------|--------|------|------|------|--|
| Ρ | eak#  | Ret. Time | Area    | Height | Conc.  | Unit | Mark | Name |  |
|   | 1     | 8.369     | 3400611 | 236194 | 91.341 |      | M    |      |  |
|   | 2     | 10.435    | 322362  | 8991   | 8.659  |      |      |      |  |
| Г | Total |           | 3722973 | 245185 |        |      |      |      |  |