Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Subvalent mixed Si_xGe_y oligomers: (Cl₃Si)₄Ge and Cl₂(Me₂EtN)SiGe(SiCl₃)₂

Chantal Kunkel, Michael Bolte, Hans-Wolfram Lerner, Philipp Albert, and Matthias Wagner*

Table of contents:

1	General Considerations	S2
2	Synthetic procedures	S3
3	X-ray crystal structure analyses	S17
4	EDX measurements	S22
5	References	S23

1 General Considerations

All reactions were carried out under an inert-gas atmosphere (dry argon or nitrogen) using standard Schlenk or glovebox techniques. Commercially available substances were used as received. (Cl₃Si)₄Si,⁵¹ [*n*Bu₄N][(Cl₃Si)₃C],⁵² [*n*Bu₄N][(Cl₃Si)₃Ge],⁵³ and AlCl₃^{S4} were synthesized according to literature. Thermolabile compounds were stored in a freezer (-78 °C, -30 °C), in dry-ice baths (-78 °C), or in an *i*PrOH bath connected to a cryostat system (Julabo Haake F6). Solvents were dried over Na metal (*n*-hexane) or CaH₂ (CH₂Cl₂) and either freshly distilled prior to use or stored over molecular sieves (4 Å). C₆D₆ and CD₂Cl₂ were stored over molecular sieves (4 Å). NMR spectra were recorded on a Bruker Avance III HD 500 MHz spectrometer, equipped with a Prodigy BBO 500 S1 probe. ¹H/¹³C{¹H} NMR spectra were referenced against (residual) solvent signals (C₆D₆: 7.16 ppm/128.06 ppm; CD₂Cl₂: 5.32/53.84 ppm).^{55 27}Al NMR spectra were calibrated against external Al(NO₃)₃ in D₂O (δ (²⁷Al) = 0).^{56 29}Si NMR spectra were calibrated against external Si(CH₃)₄ (δ (²⁹Si) = 0); whenever present, SiCl₄ (δ (²⁹Si) = -18.9)^{S7} was used as internal standard. Abbreviations: s = singlet, t = triplet, q = quartet, m = multiplet, br = broad signal, n.o. = not observable.

2 Synthetic procedures

2.1 Synthesis of (Cl₃Si)₄Ge, 1

An ampoule, equipped with a magnetic stirring bar, was charged with $[nBu_4N][(Cl_3Si)_3Ge]$ (0.600 g, 0.835 mmol, 1.0 eq), AlCl₃ (0.114 g, 0.855 mmol, 1.0 eq), SiCl₄ (7.15 g, 42.1 mmol, 50.4 eq), and CH₂Cl₂ (5.0 mL). The ampoule was flame-sealed under reduced pressure and the orange solution was stirred for 24 h. Afterwards, the ampoule was opened, its content transferred to a Schlenk vessel, and all volatiles were removed under reduced pressure. Extraction of the solid, orange-colored residue with boiling *n*-hexane (3x40 mL) in the glovebox afforded **1** as a colorless solid. Yield: 0.463 g (0.759 mmol, 91%).

The non-extractable solid was dissolved in CD_2Cl_2 and found to consist essentially of $[nBu_4N][AlCl_4]$ (¹H, ¹³C{¹H}, and ²⁷Al{¹H} NMR spectroscopy; quantitative yield relative to AlCl₃).

Note: 1) The reaction was also performed with 6 or 22 eq of SiCl₄. We observed an increase in the yield of **1** with increasing amount of SiCl₄ present. 2) It is strongly recommended to use freshly prepared (rather than commercial) AlCl₃, and a sealed glass ampoule (rather than a Schlenk tube connected to an overpressure valve) as reaction vessel. CAUTION: Appropriate safety precautions should be observed to avoid overpressure inside the ampoule.

²⁹Si NMR (99.4 MHz, CD₂Cl₂, 298 K): δ = 3.9 (s; (Cl₃Si)₄Ge)

Figure S1: ²⁹Si{¹H} NMR spectrum of 1 (99.4 MHz, CD₂Cl₂, 298 K)

freshly prepared mixture

¹H NMR (500.18 MHz, CD₂Cl₂, 298 K): δ = 3.12-3.08 (m, 2H; NCH₂CH₂), 1.65-1.59 (m, 2H; NCH₂CH₂), 1.48–1.42 (m, 2H; CH₂CH₃), 1.02 (t, 3H, ³J_{HH} = 7.4 Hz; CH₂CH₃)

²⁷Al{¹H} NMR (130.3 MHz, CD₂Cl₂, 298 K): δ = 115.1 (s; [(Cl₃Si)₃GeA/Cl₃]⁻), 103.8 (s; [A/Cl₄]⁻)

²⁹Si{¹H} NMR (99.4 MHz, CD₂Cl₂, 298 K): δ = 14.0 (br; [(Cl₃Si)₃GeAlCl₃]⁻)

Figure S2: ¹H NMR spectrum (500.18 MHz, CD_2Cl_2 , 298 K) of a freshly prepared mixture of $[nBu_4N][(Cl_3Si)_3Ge]$ and AlCl₃.

Figure S3: ²⁷Al{¹H} NMR spectrum (130.3 MHz, CD_2Cl_2 , 298 K) of a freshly prepared mixture of [*n*Bu₄N][(Cl₃Si)₃Ge] and AlCl₃.

Figure S4: ²⁹Si{¹H} NMR spectrum (99.4 MHz, CD_2Cl_2 , 298 K) of a freshly prepared mixture of $[nBu_4N][(Cl_3Si)_3Ge]$ and AlCl₃.

after partial conversion to 1, [AlCl₄]⁻, and SiCl₄

¹H NMR (500.18 MHz, CD₂Cl₂, 298 K): δ = 3.12-3.09 (m, 2H; NCH₂CH₂), 1.65-1.58 (m, 2H; NCH₂CH₂), 1.47-1.41 (m, 2H; CH₂CH₃), 1.02 (t, 3H, ³J_{HH} = 7.4 Hz; CH₂CH₃)

²⁷Al{¹H} NMR (130.3 MHz, CD₂Cl₂, 298 K): δ = 115.1 (s; [(Cl₃Si)₃GeA/Cl₃]⁻), 103.8 (s; [A/Cl₄]⁻)

²⁹Si{¹H} NMR (99.4 MHz, CD₂Cl₂, 298 K): δ = 14.0 (br; [(Cl₃S*i*)₃GeAlCl₃]⁻), 3.8 (s, (Cl₃S*i*)₄Ge), -18.9 (S*i*Cl₄)

Figure S5: ¹H NMR spectrum (500.18 MHz, CD_2Cl_2 , 298 K) of a reaction mixture of $[nBu_4N][(Cl_3Si)_3Ge]$ and $AlCl_3$ after partial conversion of the initially formed $[nBu_4N][(Cl_3Si)_3GeAlCl_3]$ to **1**, $[nBu_4N][AlCl_4]$, and SiCl₄.

Figure S6: ²⁷Al{¹H} NMR spectrum (130.3 MHz, CD_2Cl_2 , 298 K) of a reaction mixture of $[nBu_4N][(Cl_3Si)_3Ge]$ and AlCl₃ after partial conversion of the initially formed $[nBu_4N][(Cl_3Si)_3GeAlCl_3]$ to **1**, $[nBu_4N][AlCl_4]$, and SiCl₄.

Figure S7: ²⁹Si{¹H} NMR spectrum (99.4 MHz, CD_2Cl_2 , 298 K) of a reaction mixture of $[nBu_4N][(Cl_3Si)_3Ge]$ and AlCl₃ after partial conversion of the initially formed $[nBu_4N][(Cl_3Si)_3GeAlCl_3]$ to **1**, $[nBu_4N][AlCl_4]$, and SiCl₄.

after complete conversion to 1, [AICl₄]⁻, and SiCl₄

¹H NMR (500.18 MHz, CD₂Cl₂, 298 K): δ = 3.14-3.11 (m, 2H; NCH₂CH₂), 1.66-1.59 (m, 2H; NCH₂CH₂), 1.47–1.40 (m, 2H; CH₂CH₃), 1.02 (t, 3H, ³J_{HH} = 7.4 Hz; CH₂CH₃)

²⁷Al{¹H} NMR (130.3 MHz, CD₂Cl₂, 298 K): δ = 103.8 (s; [A/Cl₄]⁻)

²⁹Si{¹H} NMR (99.4 MHz, CD₂Cl₂, 298 K): δ = 3.8 (s, (Cl₃Si)₄Ge), -18.9 (SiCl₄)

Figure S8: ¹H NMR spectrum (500.18 MHz, CD_2Cl_2 , 298 K) of a reaction mixture of $[nBu_4N][(Cl_3Si)_3Ge]$ and AlCl₃ after complete conversion of the initially formed $[nBu_4N][(Cl_3Si)_3GeAlCl_3]$ to **1**, $[nBu_4N][AlCl_4]$, and SiCl₄.

Figure S9: ²⁷Al{¹H} NMR spectrum (130.3 MHz, CD₂Cl₂, 298 K) of a reaction mixture of $[nBu_4N][(Cl_3Si)_3Ge]$ and AlCl₃ after complete conversion of the initially formed $[nBu_4N][(Cl_3Si)_3GeAlCl_3]$ to **1**, $[nBu_4N][AlCl_4]$, and SiCl₄.

Figure S10: ²⁹Si{¹H} NMR spectrum (99.4 MHz, CD_2Cl_2 , 298 K) of a reaction mixture of $[nBu_4N][(Cl_3Si)_3Ge]$ and $AlCl_3$ after complete conversion of the initially formed $[nBu_4N][(Cl_3Si)_3GeAlCl_3]$ to **1**, $[nBu_4N][AlCl_4]$, and $SiCl_4$.

2.2 Synthesis of the adduct between [nBu₄N][(Cl₃Si)₃C] and AlCl₃

An NMR tube was charged with $[nBu_4N][(Cl_3Si)_3C]$ (0.050 g, 0.076 mmol, 1.0 eq), AlCl₃ (0.020 g, 0.150 mmol, 2.0 eq), and CD₂Cl₂ (0.6 mL). The NMR tube was flame-sealed and NMR spectra were recorded. The ²⁹Si NMR spectrum showed a complete conversion of $[(Cl_3Si)_3C]^-$ to $[(Cl_3Si)_3CAlCl_3]^-$. In addition to $[(Cl_3Si)_3CAlCl_3]^-$, the $[AlCl_4]^-$ anion could also be detected in the ²⁷Al NMR spectrum.

Note: 2 eq of AlCl₃ are necessary to achieve a complete conversion of $[(Cl_3Si)_3C]^-$ to $[(Cl_3Si)_3CAlCl_3]^-$. In all reactions of $[(Cl_3Si)_3C]^-$ with AlCl₃, $[AlCl_4]^-$ was observable in the ²⁷Al NMR spectra. Single crystals of $[(Cl_3Si)_3CAlCl_3]^-$ were obtained from a reaction of $[(Cl_3Si)_3C]^-$ with AlCl₃ (1 eq).

¹H NMR (500.18 MHz, CD₂Cl₂, 298 K): δ = 3.11-3.08 (m, 2H; NCH₂), 1.64-1.58 (m, 2H; NCH₂CH₂), 1.46-1.41 (m, 2H; CH₂CH₃), 1.02 (t, 3H, ³J_{HH} = 7.3 Hz; CH₂CH₃)

¹³C{¹H} NMR (125.8 MHz, CD₂Cl₂, 298 K): δ = 59.4 (s; NCH₂), 24.2 (s; NCH₂CH₂), 20.0 (s; CH₂CH₃), 13.7 (s; CH₂CH₃), n.o. (Si₃CAI)

²⁷Al NMR (130.3 MHz, CD₂Cl₂, 298 K): δ = 113.2 (br; [(Cl₃Si)₃CA/Cl₃]⁻), 106.8 (s; [A/Cl₄]⁻)

²⁹Si NMR (99.4 MHz, CD₂Cl₂, 298 K): δ = -3.5 (s; SiCl₃)

Figure S11: ¹H NMR spectrum (500.18 MHz, CD₂Cl₂, 298 K) of the reaction mixture of [*n*Bu₄N][(Cl₃Si)₃C] and AlCl₃.

Figure S12: ¹³C{¹H} NMR spectrum (125.8 MHz, CD_2Cl_2 , 298 K) of the reaction mixture of [*n*Bu₄N][(Cl₃Si)₃C] and AlCl₃.

Figure S13: ²⁷Al NMR spectrum (130.3 MHz, CD_2Cl_2 , 298 K) of the reaction mixture of $[nBu_4N][(Cl_3Si)_3C]$ and AlCl₃.

Figure S14: ²⁹Si NMR spectrum (99.4 MHz, CD₂Cl₂, 298 K) of the reaction mixture of [*n*Bu₄N][(Cl₃Si)₃C] and AlCl₃.

2.3 Synthesis of Cl₂(Me₂EtN)SiGe(SiCl₃)₂, 2

Method 1: from **1** and Me_2EtN . An NMR tube was charged with neat **1** (0.080 g, 0.131 mmol, 1.0 eq) and immersed in a Dewar flask containing liquid N₂ (-196 °C). A solution of Me_2EtN (0.018 g, 0.246 mmol, 1.9 eq) in C_6D_6 (0.6 mL) was added. The NMR tube was flame-sealed, allowed to warm until the C_6D_6 liquefied, and placed into the NMR spectrometer precooled to 10 °C. NMR spectra were recorded at 10 °C, revealing that **2** and SiCl₄ had formed.

Note regarding Method 1: According to NMR, the conversion $1 \rightarrow 2$ was essentially quantitative.

¹H NMR (500.18 MHz, C₆D₆, 283 K): δ = 2.42 (q, 2H, ³J_{HH} = 7.2 Hz; CH₂CH₃), 1.65 (s, 6H; N(CH₃)₂), 0.10 (t, 3H, ³J_{HH} = 7.2 Hz; CH₂CH₃)

¹³C{¹H} NMR (125.8 MHz, C₆D₆, 283 K): δ = 52.6 (s; CH₂CH₃), 41.7 (s; N(CH₃)₂), 6.0 (s; CH₂CH₃)

²⁹Si{¹H} NMR (99.4 MHz, C₆D₆, 283 K): δ = 45.3 (s; SiCl₂), 27.7 (s; SiCl₃), -18.9 (SiCl₄)

¹H/²⁹Si HMBC NMR (500.2/99.4 MHz, C₆D₆, 283 K): cross peaks were observed between the couples δ = 2.42/45.3 and 1.65/45.3.

Figure S15: ¹H NMR spectrum (500.18 MHz, C_6D_6 , 283 K) of the reaction mixture of 1 and Me₂EtN. *) Me₂EtN

Figure S16: ${}^{13}C{}^{1}H$ NMR spectrum (125.8 MHz, C₆D₆, **283** K) of the reaction mixture of **1** and Me₂EtN. *) Me₂EtN

Figure S17: ²⁹Si{¹H} NMR spectrum (99.4 MHz, C_6D_6 , **283 K**) of the reaction mixture of **1** and Me₂EtN.

Figure S18: ${}^{1}H/{}^{29}Si$ HMBC NMR spectrum (500.2/99.4 MHz, C₆D₆, 283 K) of the reaction mixture of 1 and Me₂EtN.

Method 2: from Si₂Cl₆, GeCl₄, and Me₂EtN. A Schlenk tube was charged with Si₂Cl₆ (2.45 g, 9.12 mmol, 3.8 eq), GeCl₄ (0.513 g, 2.39 mmol, 1.0 eq), and CH₂Cl₂ (8.0 mL). Upon addition of Me₂EtN (0.30 mL, 0.203 g, 2.77 mmol, 1.2 eq) at room temperature with vigorous stirring, the colorless solution instantaneously turned pale yellow. Immediately after the addition was complete, the solution was cooled to -78 °C. Stirring was continued at -78 °C for 1 h. Crystals of **2** suitable for X-ray analysis were grown by slowly cooling the sample from -30 °C to -45 °C in a cryostat. The pale yellow mother liquor was removed with a syringe (at -45 °C). All remaining volatiles were removed under reduced pressure and **2** was isolated in the form of colorless crystal blocks (cooling should be maintained all the time). Sample preparation for NMR spectroscopic investigation was performed at -78 °C and the NMR spectra were recorded at -30 °C. When the sample was subsequently warmed to room temperature, a red oil formed. The NMR tube was opened and MeOH was added. All volatiles were evaporated under ambient pressure. The colorless solid residue was analyzed by EDX, confirming the presence of germanium.

Note regarding Method 2: A high dilution of the reaction mixture seems to be crucial for suppressing the formation of poly(chlorosilane)s (red oil). The yield of **2** could not be determined, due to the pronounced thermolability of the compound.

Figure S19: ²⁹Si{¹H} NMR spectrum (99.4 MHz, CD₂Cl₂, **243 K**) of isolated crystals of **2**. Minor differences in the chemical shift values of the resonances shown in Figures S19 and S17 are either due to the different measurement temperatures or reflect the error margins of the NMR method.

2.4 NMR spectroscopic investigation of a mixture of 1 and (Cl₃Si)₄Si

An NMR tube was charged with **1** (0.040 g, 0.066 mmol, 1.0 eq), $(Cl_3Si)_4Si$ (0.038 g, 0.067 mmol, 1.0 eq), and CD_2Cl_2 (0.5 mL). The NMR tube was flame-sealed and NMR spectra were recorded. In the ²⁹Si{¹H} NMR spectrum, two separate sets of signals can be observed for **1** and $(Cl_3Si)_4Si$.

Figure S20: 29 Si{ 1 H} NMR spectrum (99.4 MHz, CD₂Cl₂, 298 K) of a mixture of **1** and (Cl₃Si)₄Si.

2.5 NMR spectroscopic investigation of a mixture of 2 and 2^{si}

An NMR tube was charged with **1** (0.030 g, 0.049 mmol, 1.0 eq), (Cl₃Si)₄Si (0.028 g, 0.049 mmol, 1.0 eq), and CD₂Cl₂ (0.5 mL). The NMR tube was immersed in a Dewar flask containing liquid N₂ (–196 °C), and a freshly prepared solution of Me₂EtN in CH₂Cl₂ (0.11 mL, 1M, 0.11 mmol, 2.2 eq) was added. The NMR tube was flame-sealed, warmed until the solvent liquefied, and stored at –78 °C. The sample was placed into an NMR spectrometer, precooled to –30 °C. In the ²⁹Si{¹H} NMR spectrum, two separate sets of signals can be observed for **2** and **2**^{Si, S8} After the measurement at –30 °C, the NMR spectrometer was warmed to –10, 10, and 25 °C to record NMR spectra also at these temperatures.

Note: Solutions of Me₂EtN in CH₂Cl₂/CD₂Cl₂ have to be freshly prepared prior to use. If they are stored over longer periods of time, an activation of the solvent by Me₂EtN is observed (see the NMR and X-ray characterization data of the activation product [Me₂EtNCH₂Cl]Cl in Figures S25, S26, and S30).

Figure S21: ²⁹Si{¹H} NMR spectrum (99.4 MHz, CD_2Cl_2 , **243 K**) of a reaction mixture of (Cl_3Si)₄Si and **1** with Me₂EtN. *) unknown impurity; **) SiCl₄.

Figure S22: ²⁹Si{¹H} NMR spectrum (99.4 MHz, CD_2Cl_2 , **263 K**) of a reaction mixture of (Cl_3Si)₄Si and **1** with Me₂EtN. **) SiCl₄.

Figure S23: ²⁹Si{¹H} NMR spectrum (99.4 MHz, CD_2Cl_2 , **283 K**) of a reaction mixture of (Cl_3Si)₄Si and **1** with Me₂EtN. **) SiCl₄.

Figure S24: ²⁹Si{¹H} NMR spectrum (99.4 MHz, CD_2Cl_2 , 298 K) of a reaction mixture of (Cl_3Si)₄Si and 1 with Me₂EtN. **) SiCl₄.

2.6 Synthesis of [Me₂EtNCH₂Cl]Cl

A solution of Me₂EtN in CH₂Cl₂ was prepared. Upon storing at room temperature overnight, colorless crystals of [Me₂EtNCH₂Cl]Cl had formed. Sample preparation for X-ray analysis and NMR spectroscopy was carried out under ambient air.

¹H NMR (500.18 MHz, CD₂Cl₂, 298 K): δ = 5.95 (s, 2H; CH₂Cl), 3.80 (q, 2H, ³J_{HH} = 7.3 Hz; CH₂CH₃), 3.48 (s, 6H; N(CH₃)₂), 1.43 (t, 3H, ³J_{HH} = 7.3 Hz; CH₂CH₃)

¹³C{¹H} NMR (125.8 MHz, CD₂Cl₂, 298 K): δ = 68.8 (s; CH₂Cl), 58.6 (s; CH₂CH₃), 49.0 (s; N(CH₃)₂), 8.6 (s; CH₂CH₃)

Figure S25: ¹H NMR spectrum (500.18 MHz, CD₂Cl₂, 298 K) of [Me₂EtNCH₂Cl]Cl.

Figure S26: ¹³C{¹H} NMR spectrum (125.8 MHz, CD₂Cl₂, 298 K) of [Me₂EtNCH₂Cl]Cl.

3 X-ray crystal structure analyses

Crystal structure determinations. Data for all structures were collected on a STOE IPDS II two-circle diffractometer with a Genix Microfocus tube with mirror optics using MoK_{α} radiation ($\lambda = 0.71073$ Å). The data were scaled using the frame scaling procedure in the *X*-*AREA* program system (Stoe & Cie, 2002).⁵⁹ The structures were solved by direct methods using the program *SHELXS* (Sheldrick, 2008) and refined against *F*² with full-matrix least-squares techniques using the program *SHELXL* (Sheldrick, 2008).⁵¹⁰

CCDC files (2105157, 2105158, 2105159) contain the supplementary crystallographic data for this paper and can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

Figure S27: Molecular structure of **2**, in the solid state. Displacement ellipsoids are shown at the 50% probability level. Selected bond lengths [Å] and bond angles [°]: Ge(1)-Si(1) = 2.3929(7), Ge(1)-Si(2) = 2.3692(7), Ge(1)-Si(3) = 2.3792(7), Si(1)-N(1) = 1.908(2); Si(1)-Ge(1)-Si(2) = 95.72(2), Si(1)-Ge(1)-Si(3) = 94.70(2), Si(2)-Ge(1)-Si(3) = 97.85(3), N(1)-Si(1)-Ge(1) = 106.06(7), N(1)-Si(1)-Cl(1) = 100.97(7), N(1)-Si(1)-Cl(2) = 100.97(7), Cl(1)-Si(1)-Cl(2) = 105.51(4), Cl(1)-Si(1)-Ge(1) = 123.52(4), Cl(2)-Si(1)-Ge(1) = 116.36(4); N(1)-Si(1)-Ge(1)-Si(2) = -121.01(7), N(1)-Si(1)-Ge(1)-Si(3) = 140.59(7), Cl(1)-Si(1)-Ge(1)-Si(2) = -5.66(5), Cl(2)-Si(1)-Ge(1)-Si(3) = 29.27(4). **CCDC: 2105157.**

2 crystallizes isomorphous with **2**^{si}.^{S8} If the Ge atom is refined as a Si atom, the figures of merit become significantly worse: R1 = 0.2677, wR2 = 0.5746 (instead of R1 = 0.0282, wR2 = 0.0658; [I > 2σ (I)]). In addition, the Si atom goes non positive definite and in the final difference density map, an extremely high peak of 26.74 e/Å³ appears at 0.03 Å from Si.

As a blind test, we also refined the data obtained on 2^{si} by Schweizer *et al.* ^{s8} as **2**. If the central Si atom (Si2) is refined as a Ge atom, the figures of merit become significantly worse: *R1* = 0.1638, *wR2* = 0.3660 (instead of *R1* = 0.0311, *wR2* = 0.0510; [I > 2 σ (I)]).

Figure S28: Overlay of the crystal structures of 2 (purple) and 2^{si} (blue), shown in two different orientations.

Figure S29: Molecular structure of $[nBu_4N][(Cl_3Si)_3CAlCl_3]$, in the solid state. Displacement ellipsoids are shown at the 50% probability level. The $[nBu_4N]^+$ cation is omitted for clarity. Symmetry operator for generating equivalent atoms: x, -y+3/2, z. Color code: green = Cl, light blue = Si, dark blue = Al or Si. **CCDC: 2105158.**

The cation $[nBu_4N]^+$ and anion $[(Cl_3Si)_3CAlCl_3]^-$ are located on a mirror plane. Left: In the anion, the Si and Al atoms are disordered over two equally occupied positions, the overlay of both generating a cube. The mutually disordered Si and Al atoms were constrained to have the same coordinates and displacement parameters. The site occupation factors were refined so that the sum for the Al atoms in one anion is 1 and the sum of the Si atoms is 3. Right: The Al atom in each tetrahedral unit is disordered over three positions through rotation about the C(1)–Si(4) axis. Site occupation factors: E(1) = 0.182(4) Al, E(2) = 0.179(4) Al, and E(3) = 0.139(4) Al.

Si and Al are not distinguishable using the applied method since their electron count differs by only 1 e⁻. Nevertheless, the presence of the cation $[nBu_4N]^+$ (not shown) proves that also an anionic species must be present. This rules out that all four –ECl₃ moieties contain fully occupied Si atoms. Since $[(Cl_3Si)_3C]^-$ adopts a trigonal-planar geometry in the solid state, the observed tetragonally coordinated C atom rules out the possibility that the investigated crystal consists of unreacted, disordered $[(Cl_3Si)_3C]^-$.^{S2,S11} Furthermore, the presence of a four-coordinate Al atom is evidenced by ²⁷Al NMR spectroscopy.

Figure S30: Molecular structure of [Me₂EtNCH₂Cl]Cl, in the solid state. Displacement ellipsoids are shown at the 50% probability level. **CCDC: 2105159.**

The absolute structure could be determined: Flack-x-parameter 0.13(10).

	2	[<i>n</i> Bu ₄ N]	[Me ₂ EtNCH ₂ Cl]Cl
		[(Cl ₃ Si) ₃ CAICl ₃]	
formula	$C_4H_{11}Cl_8GeNSi_3$	C ₁₇ H ₃₆ AlCl ₁₂ NSi ₃	$C_5H_{13}Cl_2N$
Mr	513.60	395.56	158.06
<i>T</i> [K]	173(2)	173(2)	173(2)
radiation, λ [Å]	0.71073	0.71073	0.71073
crystal system	monoclinic	monoclinic	trigonal
space group	P 21/c	P 2 ₁ /m	R 3c
<i>a</i> [Å]	14.2948(6)	10.7853(14)	18.134(2)
<i>b</i> [Å]	10.5166(3)	11.6435(17)	18.134(2)
<i>c</i> [Å]	12.7899(5)	14.0828(18)	13.1827(13)
α [°]	90	90	90
β [°]	104.601(3)	91.747(11)	90
γ [°]	90	90	120
<i>V</i> [Å ³]	1860.64(12)	1767.7(4)	3754.2(9)
Ζ	4	2	18
D _{calcd} [g cm ⁻³]	1.833	1.486	1.258
F(000)	1008	808	1512
μ [mm ⁻¹]	2.968	1.079	0.691
crystal size [mm]	0.190 x 0.160 x	0.150 x 0.050 x	0.500 x 0.300 x
	0.160	0.050	0.250
rflns collected	35547	17906	2906
independent rflns (R _{int})	3495 (0.0440)	3499, (0.1562)	1549 (0.0343)
data/restraints/parame	3495 / 0 / 154	3499 / 1 / 197	1549 / 1 / 73
ters			
GOF on <i>F</i> ²	1.221	1.101	0.995
$R_1, wR_2[I > 2\sigma(I)]$	0.0282, 0.0658	0.1015, 0.2062	0.0284, 0.0664
R_1 , wR_2 (all data)	0.0303, 0.0667	0.1764, 0.2402	0.0308, 0.0671
largest diff peak and	0.323, -0.372	1.677, -0.490	0.165, -0.162
hole [e Å ^{–3}]			
	-	•	

4 EDX measurements

EDX measurements were carried out using an Amray 1830 Scanning Electron Microscope, controlled by an IXRF 550i controller, and the software *Iridium Ultra*.

Figure S31: EDX spectrum of 1.

Figure S32: EDX spectrum obtained from a sample of single crystals of **2** after they were redissolved in CD_2Cl_2 , stored at room temperature, and quenched with MeOH.

5 References

- S1 F. Meyer-Wegner, A. Nadj, M. Bolte, N. Auner, M. Wagner, M. C. Holthausen and H.-W.
 Lerner, *Chem. Eur. J.*, 2011, 17, 4715–4719.
- S2 I. Georg, J. Teichmann, M. Bursch, J. Tillmann, B. Endeward, M. Bolte, H.-W. Lerner, S. Grimme and M. Wagner, J. Am. Chem. Soc., 2018, 140, 9696–9708.
- S3 J. Teichmann, C. Kunkel, I. Georg, M. Moxter, T. Santowski, M. Bolte, H.-W. Lerner, S. Bade and M. Wagner, *Chem. Eur. J.*, 2019, 25, 2740–2744.
- S4 F. Stockhausen and L. Gattermann, Ber. Dtsch. Chem. Ges., 1892, 25, 3521–3525.
- S5 G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J.
 E. Bercaw and K. I. Goldberg, *Organometallics*, 2010, 29, 2176–2179.
- S6 J. Burt, W. Levason, M. E. Light and G. Reid, *Dalton Trans.*, 2014, **43**, 14600–14611.
- S7 J. Tillmann, L. Meyer, J. I. Schweizer, M. Bolte, H.-W. Lerner, M. Wagner and M. C. Holthausen, *Chem. Eur. J.*, 2014, 20, 9234–9239.
- S8 J. I. Schweizer, M. G. Scheibel, M. Diefenbach, F. Neumeyer, C. Würtele, N. Kulminskaya,
 R. Linser, N. Auner, S. Schneider and M. C. Holthausen, *Angew. Chem., Int. Ed.*, 2016, 55, 1782–1786.
- S9 X.-A. Stoe & Cie, *Diffractometer control program system*, Stoe & Cie, Darmstadt, Germany, 2002.
- S10 G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112–122.
- S11 U. Böhme, M. Gerwig, F. Gründler, E. Brendler and E. Kroke, *Eur. J. Inorg. Chem.*, 2016, 5028–5035.