Supporting information

Redox-active Ligand Based Mn(I)-Catalyst for Hydrosilylative Ester Reduction

Soumi Chakraborty, Arpan Das and Swadhin K. Mandal*

Department of Chemical Sciences, Indian Institute of Science Education and ResearchKolkata, Mohanpur-741246, India.
*E-mail: swadhin.mandal@iiserkol.ac.in

Contents:

I. General considerations and instrumentations. S2
II. Experimental procedures. S3-S16
III. Electrochemical data. S17-S18
IV. Spectroscopic characterization of Mn-complex. S18-S20
V. Characterization data for alcohol products. S20-S29
VI. X-ray crystallography details. S29-S32
VII. Computational details. S33-S39
VIII. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of alcohols. S40-S66
IX. References. S66-S67

I. General considerations and instrumentations.

All catalytic and control reactions were performed under oxygen free atmosphere (Argon or nitrogen) using standard Schlenk techniques or inside a glovebox. All solvents used in the experiments were dried over sodium/benzophenone mixture or CaH_{2} and distilled prior to use. All chemicals were purchased from Sigma-Aldrich or Merck or Alfa Aesar and used as received. Analytical thin layer chromatography (TLC) was performed on a Merck 60 F254 silica gel plate (0.25 mm thickness). Column chromatography was performed on Merck 60 silica gel (100-200 mesh). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on JEOL ECS 400 MHz spectrometer and on a Bruker Avance III 500 MHz spectrometer in CDCl_{3} or $\mathrm{DMSO} \mathrm{d}_{6}$ or $\mathrm{CD}_{3} \mathrm{CN}$ with residual undeuterated solvent (eg. $\mathrm{CDCl}_{3}, 7.26 / 77.0$) as an internal standard. Chemical shifts (δ) are given in ppm, and J values are given in Hz . All chemical shifts were reported in ppm using tetramethylsilane as a reference. Chemical shifts (δ) downfield from the reference standard were assigned positive values. Evaporation of solvents was performed under reduced pressure using a rotary evaporator. All the glassware and NMR tubes used for experiments were kept in oven at $120^{\circ} \mathrm{C}$ for overnight (12h). EPR spectroscopic measurements were performed in Bruker (X-band) spectrometer. X-ray crystallographic measurements were performed in Agilent X-ray diffractometer. GC-MS experiments were performed on a Perkin Elmer Clarus 590 gas chromatography using Clarus SQ 8 S mass spectrometer. Cyclic voltammetry was performed using CH instrument with glassy carbon and platinum wire electrodes, $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode, tetrabutylammonium perchlorate electrolyte, under N_{2} atmosphere. Ester synthesis from corresponding carboxylic acid was performed following Fischer esterification process. ${ }^{1} \mathrm{~N}, \mathrm{~N}, \mathrm{O}-\mathrm{PLY}(\mathbf{1})$ was synthesized following reported literature. ${ }^{2}$

II. Experimental Procedures.

a) Synthetic Procedure 2.

In a 50 mL Schlenk flask, $\mathrm{N}, \mathrm{N}, \mathrm{O}-\mathrm{PLY}$ ligand (1) $(0.3 \mathrm{~g}, 1.04 \mathrm{mmol})$ and $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Br}(1 \mathrm{mmol})$ were taken in dry THF and stirred under nitrogen atmosphere in dark for 10 hours at room temperature. After completion, bright orange precipitate was observed in the reaction mixture. The solvent was decanted and the precipitate was washed with dry THF several times in aerobic atmosphere. Finally, the orange compound was dried over high vacuum and stored in dark. Crystals suitable for SC-XRD were grown from concentrated THF solution of the orange solid at room temperature in 3-4 days. The complex was characterized by X-ray diffraction, elemental analysis, NMR, IR and UV-vis spectroscopy. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, rt, 400 MHz): $12.53(\mathrm{~s}, 1 \mathrm{H}), 8.67(\mathrm{~d}, 1 \mathrm{H}, J=4 \mathrm{~Hz}), 8.24(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 8.11-8.05(\mathrm{~m}, 3 \mathrm{H}), 7.94-7.92(\mathrm{~m}$, 1H), 7.56-7.52 (m, 2H), 7.49-7.47 (m, 2H), $6.91(\mathrm{~d}, 1 \mathrm{H}, J=4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (DMSO- d_{6}, rt, 500 MHz): 157.3, 157.2, 157.2, 155.7, 153.8, 149.2, 149.2, 146.1, 139.5, 139.0, 138.9, $132.4,132.1,128.9,128.1,125.0,124.5,123.3,122.4,120.9,115.8,67.5 . \operatorname{IR}\left(400-2000 \mathrm{~cm}^{-1}\right)$: 2909, 2818, 1989, 1898, 1607, 1573, 1464, 1344, 1253, 1230, 1190, 1179, 1093, 1053, 1008, 893, 836, 761, 676, 625, 533. Anal. calculated for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{BrMnN}_{2} \mathrm{O}_{5}: \mathrm{C}, 54.09 ; \mathrm{H}, 3.84 ; \mathrm{N} 4.85$. Found: C, 54.04; H, 3.84; N, 4.83. The molecular formula was calculated from crystallographically determined unit which contains lattice held THF molecule (used as crystallization solvent).
b) Synthetic procedure of 3 .

In a nitrogen filled glove box, compound $2(120 \mathrm{mg}, 0.24 \mathrm{mmol})$ and $\mathrm{AgBF}_{4}(0.24 \mathrm{mmol})$ were taken in a 50 mL Schlenk flask in dry THF (6 mL). The flask was closed properly with glass stopper and stirred at room temperature for 4 hours. A sharp colour change from bright orange to dark red was clearly observed through the course of the reaction. After completion, the reaction mixture was allowed to settle down, when pale yellow precipitate was observed at the bottom of the flask. The reaction mixture was filtered through celite plug under nitrogen atmosphere and dried over high vacuum to get dark red solid compound. Red colored block shaped single crystals suitable to X-ray diffraction were grown from concentrated THF solution layered by ether $(6: 1 \mathrm{v} / \mathrm{v})$ at room temperature under nitrogen atmosphere. The compound was finally characterized with X-ray diffraction, elemental analysis, HRMS and IR spectroscopy. IR (400-2000 cm ${ }^{-1}$): 3212, 2933, 2013, 1898, 1607, 1556, 1515, 1482, 1424, 1350, 1242, 1008, 841, 796, 767, 681, 625, 568. HRMS calculated for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{MnN}_{2} \mathrm{O}_{4}[\mathrm{M}]^{+}: \mathrm{m} / \mathrm{z} 425.0329$. Found: 425.0307. Anal. calculated for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{BF}_{4} \mathrm{MnN}_{2} \mathrm{O}_{4}$: C, 51.60 ; $\mathrm{H}, 2.76$; N 5.47. Found: C, 51.55; H, 2.75; N, 5.43.

Fig. S1 HRMS spectrum of $\mathrm{Mn}(\mathrm{I})$ complex 3.

c) General Procedure for optimization of catalytic ester hydrosilylation using 3.

In a nitrogen filled glovebox, $\mathbf{3}(5 \mathrm{~mol} \%)$ and potassium hydride ($5 \mathrm{~mol} \%$) were taken in a pressure tube equipped with a stir bar. $800 \mu \mathrm{~L}$ solvent was added to that and kept for stirring for 5 min . at room temperature. PMHS (2 equiv.) was added to it followed by addition of methyl-4-chlorobenzoate (1 equiv.). The tube was closed with a glass-stopper and kept for stirring at $50^{\circ} \mathrm{C}$ for 12 hours. After completion, the reaction mixture was exposed to air and
treated with $\mathrm{MeOH}(1 \mathrm{~mL})$ and $1(\mathrm{M}) \mathrm{NaOH}$ solution $(1 \mathrm{~mL})$ and stirred at room temperature for an hour. 1,4-dimethoxybenzene was used as internal standard. The organic part was extracted in EtOAc and dried over rotary evaporator. Conversion of product was calculated from ${ }^{1} \mathrm{H}$ NMR spectroscopy with respect to the internal standard. Alcohol product was isolated through silica column with 15% EtOAc-hexane mixture and characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy. By varying solvent, temperature and reductant, the reaction condition was optimized.

Table S1. Optimization of Reaction Condition for Ester Hydrosilylation Using $\mathbf{3}$ as a Catalyst.

Entry	$\begin{gathered} \text { Cat. } \\ (\mathbf{m o l} \%) \end{gathered}$	Reductant (mol\%)	$\begin{aligned} & \text { PMHS } \\ & \text { (equiv.) } \end{aligned}$	Solvent	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Conversion (yield) in \%
1	3 (5)	KH (5)	1	THF	50	48
2	3 (5)	KH (5)	2	THF	50	99 (95)
3	3 (5)	KH (5)	2	MeCN	50	92
4	-	KH (5)	2	THF	50	25
5	3 (5)	-	2	THF	50	-
6	3 (5)	KH (5)	2	THF	(at RT)	-
7	3 (5)	KH (5)	2	THF	50	98 (performed in dark)
8	AgBF_{4}	KH (5)	2	THF	50	-
9	3 (5)	KH (5)	HMTS (2)	THF	50	94 (92)

d) General Procedure for catalytic ester hydrosilylation using 3.

In a nitrogen filled glovebox, 3 ($5 \mathrm{~mol} \%$) and potassium hydride ($5 \mathrm{~mol} \%$) were taken in a pressure tube equipped with a stir bar. $800 \mu \mathrm{~L}$ THF was added to the reaction mixture and kept for stirring for 5 min . at room temperature. PMHS (2 equiv.) was added to it followed by addition of ester (1 equiv.). The tube was closed with a glass-stopper and kept for stirring at 50 ${ }^{\circ} \mathrm{C}$ for 8-12 hours. Following this, the reaction mixture was exposed to air and treated with $\mathrm{MeOH}(1 \mathrm{~mL})$ and $1(\mathrm{M}) \mathrm{NaOH}$ solution $(1 \mathrm{~mL})$ and stirred at room temperature for an hour. The organic part was extracted in EtOAc and dried over a rotary evaporator. Alcohol products were isolated through silica column with $10-40 \%$ EtOAc-hexane mixture and characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy.
e) Procedure for ester hydrosilylation in presence of radical scavengers.

In a nitrogen filled glovebox, $\mathbf{3}$ ($5 \mathrm{~mol} \%$) and potassium hydride ($5 \mathrm{~mol} \%$) were taken in a pressure tube equipped with a stir bar. THF $(800 \mu \mathrm{~L})$ was added to it and allowed to stir for 5 minutes at room temperature. PMHS $(0.48 \mathrm{mmol})$ was added to it followed by addition of methyl-4-chlorobenzoate $(0.24 \mathrm{mmol})$ and radical scavenger $(0.48 \mathrm{mmol})$. The tube was closed properly with a glass-stopper and kept for stirring at $50^{\circ} \mathrm{C}$ for 12 hours. After completion, the reaction mixture was treated with $\mathrm{MeOH}(1 \mathrm{~mL})$ and $1(\mathrm{M}) \mathrm{NaOH}$ solution $(1 \mathrm{~mL})$ and stirred
at room temperature for an hour. 1,4-dimethoxybenzene was added to it as an internal standard. The organic part was extracted in EtOAc and dried over a rotary evaporator. Conversion of product was calculated from ${ }^{1} \mathrm{H}$ NMR spectroscopy with respect to the internal standard.

Table S2. Catalytic reaction in presence of radical scavenger.

Entry	Radical Scavenger	Conversion
$\mathbf{1}$	TEMPO	No conversion
$\mathbf{2}$	Galvinoxyl free radical	No conversion

f) Synthesis procedure of 6 .

In a nitrogen filled glove box, $\mathbf{3}(120 \mathrm{mg}, 0.24 \mathrm{mmol})$ was taken in a 50 mL Schlenk flask in acetonitrile (6 mL) and stirred at room temperature for 3-5 minutes to obtain a clear solution. Potassium hydride (0.24 mmol) was added to the solution and the reaction pot was closed properly with glass stopper and stirred at room temperature for 2 hours. A sharp colour change from deep red to dark green was observed within 30 minutes of the reaction. After completion, the reaction mixture was filtered through celite plug under nitrogen atmosphere and dried over high vacuum to get dark green solid compound, which was highly sensitive to air and moisture, and stored inside the glove box. The compound was characterized with HRMS and EPR spectroscopy (at 100 K , in acetonitrile solution). HRMS calculated for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{MnN}_{2} \mathrm{O}_{4}[\mathrm{M}]^{+}$: m/z 425.0329. Found: 425.0338 .

Fig. S2 HRMS spectrum of Mn(I) radical species 6 .

g) Procedure for catalytic ester hydrosilylation with active catalyst 6.

In a nitrogen filled glovebox, $\mathbf{6}(5 \mathrm{~mol} \%)$ was taken in a pressure tube equipped with a stir bar followed by THF ($800 \mu \mathrm{~L}$). PMHS (2 equiv.) was added to it followed by addition of methyl-

4-chlorobenzoate (1 equiv.). The tube was closed with a glass-stopper and kept for stirring at $50^{\circ} \mathrm{C}$ for 12 hours. After completion, the reaction mixture was exposed to air and treated with $\mathrm{MeOH}(1 \mathrm{~mL})$ and $1(\mathrm{M}) \mathrm{NaOH}$ solution $(1 \mathrm{~mL})$ and stirred at room temperature for an hour. The organic part was extracted in EtOAc and dried over a rotary evaporator. Product was isolated through silica column with 15% EtOAc-hexane mixture and characterized with NMR spectroscopy. Isolated yield of the product was reported by taking average yield of two results.

h) Procedure for characterization of TEMPO-trapped silyl radical intermediate (7).

In a nitrogen filled glovebox, $\mathbf{6}$ (1 equiv.) was taken in a pressure tube equipped with a stir bar. $800 \mu \mathrm{~L}$ THF was added to that and kept for stirring for 5 minutes at room temperature. HMTS (1 equiv.) and TEMPO (1 equiv.) were added to it and continued to stir for 6 hours at room temperature. After completion, the reaction mixture was analyzed by HRMS to detect the TEMPO-trapped silyl radical species. HRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{39} \mathrm{NO}_{3} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{H}]^{+}: \mathrm{m} / \mathrm{z}$ 378.2311. Found: 378.2330.

Fig. S3 HRMS spectrum of TEMPO-trapped silyl radical compound 7.

i) Procedure for characterization of $[M n(I)-H]$ species (8).

In a nitrogen filled glovebox, $\mathbf{6}(0.06 \mathrm{mmol})$ was taken in a screw cap NMR tube in $600 \mu \mathrm{~L}$ $\mathrm{CD}_{3} \mathrm{CN}$ stirred by hand for a few minutes to get the green solution. HMTS $(0.06 \mathrm{mmol})$ was added to the reaction mixture and the NMR tube was closed properly with a screw cap and tied with parafilm. The tube was heated at $50{ }^{\circ} \mathrm{C}$ for 15 minutes and analyzed with ${ }^{1} \mathrm{H}$ NMR spectroscopy. Singlet at $\delta-8.80 \mathrm{ppm}$ confirms the presence of $\mathrm{Mn}(\mathrm{I})-\mathrm{H}$ species in the reaction mixture. ${ }^{3}$

Fig. S4. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right.$, rt) displaying the $[\mathrm{Mn}(\mathrm{I})-\mathrm{H}]$ resonance at δ $8.80 \mathrm{ppm}(\mathbf{8})$.

l) Procedure for characterization of silylated products.

In a nitrogen filled glovebox, $3(5 \mathrm{~mol} \%)$ and a potassium hydride ($5 \mathrm{~mol} \%$) were taken in a pressure tube equipped with a stir bar. $800 \mu \mathrm{~L}$ THF was added to that and kept for stirring for 5 min . at room temperature. HMTS (2 equiv.) was added to it followed by addition of methyl-4-chlorobenzoate (1 equiv.). The tube was closed with a glass-stopper and kept for stirring at $50^{\circ} \mathrm{C}$ for 12 hours. After completion, the reaction mixture was analyzed by GC-MS (in THF solution) technique. Formation of silylated product $\mathbf{1 0}^{\prime}$ and side product $\mathbf{1 1}^{\prime}$ were confirmed by the respective mass spectra. Further, to isolate the silylated product $\mathbf{1 0}^{\prime}$, the reaction mixture was passed through silica column with 30% EtOAc-hexane mixture. The eluent was dried over a rotary evaporator to get yellow oil type compound. The compound was characterized by ${ }^{1} \mathrm{H}$ ${ }^{13} \mathrm{C}$ and ${ }^{29} \mathrm{Si}$ NMR spectroscopy and HRMS to further confirm the formation of $\mathbf{1 0}$ '. HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{ClO}_{3} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{H}]^{+}: \mathrm{m} / \mathrm{z} 362.1951$. Found: 362.1938.

GC-MS Method applied for detection of silylated products.

Retention time plot.

Fig. S5. Retention time plot for GC-MS.

Retention time- 4.19 minutes.

Retention time- 9.32 minutes

Retention time- 9.82 minutes

Fig. S6. Mass spectra for compound $\mathbf{1 0}^{\prime}$ and $\mathbf{1 1}^{\prime}$.

Display Report

Analysis Info		Acquisition Date	8/31/2021 11:11:30 AM	
Analysis Name	D:IDatalUser datal2021\AUGUST\SKM_SC_88R1.d			
Method	Tune_pos_Standard.m	Operator	IISER Kolkata	
Sample Name	SKM_SC_88R1	Instrument maXis impact	8282001.00127	
Comment				

Acquisition Parameter					
Source Type	ESI				
Focus	Active	lon Polarity	Positive	Set Nebulizer	0.5 Bar
Scan Begin	$50 \mathrm{~m} / \mathrm{z}$	Set Capillary	3400 V	Set Dry Heater	$200{ }^{\circ} \mathrm{C}$
Scan End	$1000 \mathrm{~m} / \mathrm{z}$	Sen End Plate Offset	-500 V	Set Dry Gas	$4.0 \mathrm{~V} / \mathrm{min}$
		Set Charging Voltage	2000 V	Set Divert Valve	Source
		Set Corona	0 nA	Set APCI Heater	$0^{\circ} \mathrm{C}$

SKM_SC_88R1.d
Bruker Compass DataAnalysis 4.1 printed: 8/31/2021 11:17:12 AM by: IISER Kolkata Page 1 of 1

Fig. S7. HRMS spectrum for compound $\mathbf{1 0}^{\prime}$.

III. Electrochemical data.

Cyclic Voltammetry study.

Cyclic voltammetry was performed using a glassy carbon working electrode and a platinum wire counter electrode, $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode, tetrabutylammonium perchlorate electrolyte, under N_{2} atmosphere in dry acetonitrile solvent.

Fig. S8. Cyclic voltammogram of N,N,O-PLY (1) in acetonitrile.

Fig. S9. Cyclic voltammogram of $\mathrm{Mn}(\mathrm{I})$-complex (2) in acetonitrile.

Fig. S10. Cyclic voltammogram of $\mathrm{Mn}(\mathrm{I})$-complex (3) in acetonitrile.

IV. Spectroscopic characterization data of Mn-complex.

a) NMR spectroscopy for characterization of 2 .

Fig. S11. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{DMSO}^{2}-d_{6}, 400 \mathrm{MHz}\right.$, rt) of $\mathbf{2}$.

Fig. S12. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(\mathrm{DMSO}-d_{6}, 500 \mathrm{MHz}\right.$, rt) of $\mathbf{2}$.

b) EPR spectroscopy of 6 .

EPR spectrum of $\mathbf{6}$ was recorded in acetonitrile solution at 100 K (in X-band), packed under N_{2} atmosphere.

Fig. S13. EPR spectrum of $\mathrm{Mn}(\mathrm{I})$-radical species 6 in acetonitrile solution at 100K.
b) UV-Vis spectroscopy of 2 .

UV-vis spectrum was recorded in dry acetonitrile solution at room temperature under nitrogen atmosphere.

Fig. S14. UV-Vis spectrum of $\mathrm{Mn}(\mathrm{I})-\mathrm{N}, \mathrm{N}, \mathrm{O}-\mathrm{PLY}$ complex 2.

V. Characterization data for alcohol products.

4-Chlorobenzyl alcohol (5a) ${ }^{4}$: Colorless liquid. Yield 95%. The crude product was purified by column chromatography using silica gel (100-200 mesh) with 15% of EtOAc in hexane.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}) 7.32-7.26(\mathrm{~m}, 4 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 2.02(\mathrm{br} . \mathrm{s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm})$ 139.2, 133.3, 128.6, 128.2, 64.4.

Benzyl alcohol (5b) ${ }^{4}$: Colorless liquid. Yield 92%. The crude product was purified by column chromatography using silica gel (100-200 mesh) with 15% of EtOAc in hexane.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}) 7.33-7.27(\mathrm{~m}, 5 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 2.19$ (br. s, 1 H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta(\mathrm{ppm}) 140.8,128.4,127.5,126.9,65.1$.

4-Iodobenzyl alcohol (5c) $)^{5}$: Pale white liquid. Yield 92%. The crude product was purified by column chromatography using silica gel (100-200 mesh) with 20\% of EtOAc in hexane.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}) 7.66(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 7.07(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 4.59$ (s, 2H), 2.46 (br. s, 1H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}) 140.4,137.5,128.8,92.9,64.4$.

4-Methoxybenzyl alcohol (5d $)^{6}$: Colorless liquid. Yield 90%. The crude product was purified by column chromatography using silica gel (100-200 mesh) with 20\% of EtOAc in hexane. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}) 7.27(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 6.87(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 4.59$ (s, 2H), $3.79(\mathrm{~s}, 3 \mathrm{H}), 2.06$ (br. s, 1H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm})$ 159.2, 133.1, 128.6, 113.9, 65.0, 55.3.

3-Bromobenzyl alcohol (5e) ${ }^{7}$: Colorless liquid. Yield 90%. The crude product was purified by column chromatography using silica gel (100-200 mesh) with 20\% of EtOAc in hexane.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}) 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.17-7.10(\mathrm{~m}$, 2H), 4,52 (s, 2H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta(\mathrm{ppm}) 143.0,130.5,130.0,129.8,125.3,122.5$, 64.1.

2-Methoxybenzyl alcohol (5f) ${ }^{4}$: Colorless liquid. Yield 85%. The crude product was purified by column chromatography using silica gel (100-200 mesh) with 20\% of EtOAc in hexane.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}) 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.93\left(\mathrm{t}, 1 \mathrm{H}, J_{l}=8 \mathrm{~Hz}, J_{2}\right.$ $=8 \mathrm{~Hz}), 6.89(\mathrm{~d}, 1 \mathrm{H}, J=4 \mathrm{~Hz}), 4.68(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}) 157.4,129.0,128.9,128.7,120.6,110.2$, 62.1, 55.2.

2-Chlorobenzyl alcohol ($\mathbf{5 g})^{8}$: Colorless liquid. Yield 88%. The crude product was purified by column chromatography using silica gel (100-200 mesh) with 20\% of EtOAc in hexane.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm})$ 7.46-7.34 (m, 2H), 7.26-7.22 (m, 2H), $4.74(\mathrm{~s}$, 2H), 2.94 (br. s, 1H)
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta(\mathrm{ppm}) 138.1,132.5,129.2,128.6,128.5,126.9$, 62.4.

2-Phenylbenzyl alcohol $\mathbf{(5 h})^{9}$: Colorless liquid. Yield 80%. The crude product was purified by column chromatography using silica gel (100-200 mesh) with 20\% of EtOAc in hexane.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}) 7.55-7.57(\mathrm{dd}, 1 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 7 \mathrm{H}), 7.31-7.28$ (m, 1H), $4.62(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}) 141.3,140.6,138.0,130.0,129.1,128.4$, 128.2, 127.7, 127.6, 127.2, 63.1.

2-Thiophenemethanol $(\mathbf{5 i})^{10}$: Colorless liquid. Yield 81%. The crude product was purified by column chromatography using silica gel (100-200 mesh) with 20\% of EtOAc in hexane.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}) 7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.01-7.00(\mathrm{~m}, 1 \mathrm{H})$, 6.99-6.97 $(\mathrm{m}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta(\mathrm{ppm}) 143.9,126.8,125.5,125.4,59.9$.

4-Phenyl-1-butanol (5j) ${ }^{11}$: Colorless liquid. Yield 70%. The crude product was purified by column chromatography using silica gel (100-200 mesh) with 20\% of EtOAc in hexane.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}) 7.30-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.18(\mathrm{~m}, 3 \mathrm{H}), 3.65(\mathrm{~m}$, $2 \mathrm{H}), 2.64-2.63(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.61(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}) 142.3,128.4,128.2,125.7,62.7,35.6,32.2$, 27.5.

Cyclohexane-1-methanol (5k) ${ }^{4}$: Colorless liquid. Yield 95%. The crude product was purified by column chromatography using silica gel (100-200 mesh) with 20\% of EtOAc in hexane.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}) 3.40(\mathrm{~s}, 2 \mathrm{H}), 1.71-1.64(\mathrm{~m}, 5 \mathrm{H}), 1.45(\mathrm{br} . \mathrm{s}, 1 \mathrm{H})$, 1.23-1.12 (m, 4H), 0.94-0.86 (m, 2H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}) 68.6,40.4,29.5,26.5,25.8$.

Adamentane-1-methanol (51): Pale white solid. Yield 85%. The crude product was purified by column chromatography using silica gel (100-200 mesh) with 20\% of EtOAc in hexane.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}) 3.18$ (s, 2H), 1.97 (br. s, 1H), 1.70-1.62 (m, 7H), 1.50-1.49 (m, 5H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}) 73.8,39.0,37.1,34.4,28.1$.
HRMS calculated for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]+189.1301$, found 189.1300.

Cinnamyl alcohol (5m) ${ }^{12}$: Colorless oil. Yield 85%. The crude product was purified by column chromatography using silica gel (100-200 mesh) with 20\% of EtOAc in hexane.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}) 7.39-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.24$ $(\mathrm{m}, 1 \mathrm{H}), 6.62-6.58(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}), 6.38-6.32(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta(\mathrm{ppm}) 136.6,131.0,128.5,128.4,127.6,126.4$, 63.5.

1-Hexanol (5n) ${ }^{4}$: Colorless liquid. Yield 75%. The crude product was purified by column chromatography using silica gel (100-200 mesh) with 30\% of EtOAc in hexane.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm})$ 3.70-3.57(t, 2H), 1.56 (br. m, 2H), 1.41-1.25 (m, $6 \mathrm{H}), 0.97-0.89(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}) 63.1,32.7,31.6,25.4,22.6,14.0$.

Capric alcohol or 1-decanol (50) ${ }^{6}$: Pale yellow oil. Yield 84%. The crude product was purified by column chromatography using silica gel (100-200 mesh) with 30\% of EtOAc in hexane.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}) 3.62-3.59\left(\mathrm{t}, 2 \mathrm{H}, J_{I}=4 \mathrm{~Hz}, J_{2}=8 \mathrm{~Hz}\right), 1.56-1.52(\mathrm{t}$, $\left.2 \mathrm{H}, J_{1}=8 \mathrm{~Hz}, J_{2}=8 \mathrm{~Hz}\right), 1.25(\mathrm{~m}, 14 \mathrm{H}), 0.88-0.84\left(\mathrm{t}, 3 \mathrm{H}, J_{1}=8 \mathrm{~Hz}, J_{2}=8 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}) 62.9,32.7,31.8,29.6,29.5,29.4,29.3,25.7$, 22.6, 14.0.

Lauryl alcohol or 1 -dodecanol ($\mathbf{5 p})^{6}$: Pale yellow oil. Yield 88%. The crude product was purified by column chromatography using silica gel (100-200 mesh) with 30\% of EtOAc in hexane.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}) 3.61-3.58\left(\mathrm{t}, 2 \mathrm{H}, J_{l}=4 \mathrm{~Hz}, J_{2}=8 \mathrm{~Hz}\right), 1.53-1.52$ $(\mathrm{m}, 2 \mathrm{H}) 1.39-1.24(\mathrm{~m}, 18 \mathrm{H}), 0.87-0.84\left(\mathrm{t}, 3 \mathrm{H}, J_{l}=8 \mathrm{~Hz}, J_{2}=4 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}) 62.9,32.7,31.9,29.6,29.6,29.6,29.6,29.4$, 29.3, 25.7, 22.6, 14.0.

Myristyl alcohol or 1-tetradecanol (5q) ${ }^{6}$: Pale white solid. Yield 85%. The crude product was purified by column chromatography using silica gel (100-200 mesh) with 30% of EtOAc in hexane.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}) 3.64-3.61\left(\mathrm{t}, 2 \mathrm{H}, J_{I}=4 \mathrm{~Hz}, J_{2}=8 \mathrm{~Hz}\right), 1.55-1.52$ $(\mathrm{m}, 2 \mathrm{H}) 1.33-1.25(\mathrm{~m}, 22 \mathrm{H}), 0.89-0.85\left(\mathrm{t}, 3 \mathrm{H}, J_{l}=8 \mathrm{~Hz}, J_{2}=8 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta(\mathrm{ppm}) 63.0,32.8,31.9,29.6,29.6,29.6,29.6,29.5$, 29.4, 29.3, 29.3, 25.7, 22.7, 14.1.

Steryl alcohol or 1-octaecanol (5r): Pale yellow solid. Yield 85%. The crude product was purified by column chromatography using silica gel (100-200 mesh) with 30% of EtOAc in hexane.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}) 3.63-3.60\left(\mathrm{t}, 2 \mathrm{H}, J_{l}=12 \mathrm{~Hz}, J_{2}=4 \mathrm{~Hz}\right), 1.70$ (br. s, $1 \mathrm{H}), 1.58-1.51(\mathrm{~m}, 2 \mathrm{H}) 1.32-1.20(\mathrm{~m}, 30 \mathrm{H}), 0.88-0.85\left(\mathrm{t}, 3 \mathrm{H}, J_{l}=4 \mathrm{~Hz}, J_{2}=8 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}) 63.0,32.8,31.9,29.7,29.6,29.6,29.6,29.4$, 29.3, 25.7, 22.7, 14.1.

HRMS calculated for $\mathrm{C}_{18} \mathrm{H}_{38} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]+293.2886$, found 293.1884.

Oleyl alcohol (5t) ${ }^{6}$: Pale yellow oil. Yield 88%. The crude product was purified by column chromatography using silica gel (100-200 mesh) with 30\% of EtOAc in hexane.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}) 5.35-5.32(\mathrm{~m}, 2 \mathrm{H}), 3.63-3.60\left(\mathrm{t}, 2 \mathrm{H} J_{l}=4 \mathrm{~Hz}, J_{2}=\right.$ $8 \mathrm{~Hz}), 2.01-1.99(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.24(\mathrm{~m}, 21 \mathrm{H}), 0.89-0.85(\mathrm{~m}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}) 129.9,129.8,127.9,62.9,32.7,31.9,29.7$, 29.7, 29.6, 29.5, 29.4, 29.3, 29.2, 27.2, 25.7, 25.6, 22.6, 14.1.

1-Undecylenic alcohol $(\mathbf{5 u})^{6}$: Colorless oil. Yield 86%. The crude product was purified by column chromatography using silica gel (100-200 mesh) with 30\% of EtOAc in hexane.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm})$ 5.79-5.75 (m, 1H), 4.99-4.89 (m, 2H), 3.61-3.58 $\left(\mathrm{t}, 2 \mathrm{H}, J_{I}=4 \mathrm{~Hz}, J_{2}=8 \mathrm{~Hz}\right), 2.02-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.15(\mathrm{~m}, 13 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta(\mathrm{ppm})$ 139.1, 114.0, 62.8, 33.7, 32.7, 29.5, 29.4, 29.3, 29.0, 28.8, 25.7.

1,4-Undecandiol (5v): Pale white oil. Yield 88%. The crude product was purified by column chromatography using silica gel (100-200 mesh) with 30% of EtOAc in hexane.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm})$ 3.64-3.58(m,3H), 3.31 (br. s., 1H), 2.50 (br. s, $1 \mathrm{H}), 1.67-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.26(\mathrm{~m}, 10 \mathrm{H}), 0.88-0.84(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}) 71.8,62.8,37.5,34.3,31.8,29.6,29.3,29.0$, 25.7, 22.6, 14.0.

HRMS calculated for $\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]+211.1718$, found 211.1721.

2-(4-isobutylphenyl)propan-1-ol (5w) $)^{13}$: Pale yellow oil. Yield 84%. The crude product was purified by column chromatography using silica gel (100-200 mesh) with 30\% of EtOAc in hexane.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}) 7.15-7.10(\mathrm{~m}, 4 \mathrm{H}), 3.69(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 2.97-$ 2.88 (sextette, 1 H), $2.45(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 1.88-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 1.27(\mathrm{~d}, 3 \mathrm{H}, J=$ $8 \mathrm{~Hz}), 0.90(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=4 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta(\mathrm{ppm})$ 140.7, 140.1, 129.4, 127.1, 68.8, 45.0, 42.0, 30.2, 22.4, 17.6.

4-(hydroxymethyl)-N,N-dipropylbenzenesulfonamide (5x) ${ }^{14}$: Pale yellow oil. Yield 90%. The crude product was purified by column chromatography using silica gel (100-200 mesh) with 30% of EtOAc in hexane.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}) 7.66(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 7.41(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 4.70$ $(\mathrm{s}, 2 \mathrm{H}), 3.03-2.99\left(\mathrm{dt}, 4 \mathrm{H}, J_{d}=2 \mathrm{~Hz}, J_{t}=4 \mathrm{~Hz}\right), 1.53-1.47(\mathrm{~m}, 4 \mathrm{H}), 0.85-0.81\left(\mathrm{dt}, 6 \mathrm{H}, J_{d}=2 \mathrm{~Hz}\right.$, $\left.J_{t}=4 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta(\mathrm{ppm}) 145.8,138.5,127.0,126.8,63.9,49.9,21.9$, 11.1.

2-(2-fluoro-[1,1'-biphenyl]-4-yl)propan-1-ol (5y) ${ }^{15}$: Pale yellow oil. Yield 82%. The crude product was purified by column chromatography using silica gel (100-200 mesh) with 30% of EtOAc in hexane.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}) 7.56-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.12-7.04$ $(\mathrm{m}, 2 \mathrm{H}), 3.75(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 3.03-2.98(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~d}, 3 \mathrm{H}, J=4 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta(\mathrm{ppm}) 160.8,158.8,145.5,145.4,130.7,130.7$, $128.9,128.8,128.4,127.5,123.5,123.4,115.0,114.8,68.3,41.9,17.4$.

3-(4,5-diphenyloxazol-2-yl)propan-1-ol (5z) ${ }^{14}$: Pale yellow oil. Yield 85%. The crude product was purified by column chromatography using silica gel (100-200 mesh) with 30% of EtOAc in hexane.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}) 7.62-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.30$ $(\mathrm{m}, 5 \mathrm{H}), 3.79-3.76\left(\mathrm{t}, 2 \mathrm{H}, J_{l}=8 \mathrm{~Hz}, J_{2}=4 \mathrm{~Hz}\right), 3.00-2.96\left(\mathrm{t}, 2 \mathrm{H}, J_{l}=8 \mathrm{~Hz}, J_{2}=8 \mathrm{~Hz}\right), 2.12-2.06$ (m, 2H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta(\mathrm{ppm}) 163.5,145.3,134.7,132.2,128.8$, 128.6, $128.5,128.4,128.1,127.8,126.4,61.8,29.4,25.2$.

VI. X-ray crystallographic details.

Suitable single crystals of $\mathbf{2}$ and $\mathbf{3}$ were selected and mounted under nitrogen atmosphere using the X-TEMP2 and intensity data were collected on a Super Nova, Dual, Cu at zero, Eos diffractometer. All the crystals were kept at 100 K during data collection. Using Olex2, ${ }^{16}$ the structure was solved with the ShelXT ${ }^{17}$ structure solution program using Intrinsic Phasing and refined with the ShelXL ${ }^{18}$ refinement package using Least Squares minimisation. All nonhydrogen atoms were refined with anisotropic displacement parameters. Crystallographic data (including structure factors) for the structures have been deposited with the Cambridge Crystallographic Data Centre. Copies of the data can be obtained free of charge from the Cambridge Crystallographic Data Centre via 2101729 and 2101730 contain the supplementary crystallographic data of compounds $\mathbf{2}$ and $\mathbf{3}$, respectively for this paper.

Crystallographic and data collection parameters for 2 and 3.

Fig. S15. Molecular structure of 2. Thermal ellipsoids represent 50% probability. Selected bond distances (\AA) and angles (degree) in 2: Mn-N1 2.130, Mn-N2 2.060, Mn-Br 2.520, N1-Mn-N2 80.62.

Table S3. Crystal data and structure refinement for 2.

CCDC	2101729
Identification code	MnBr 1
Empirical formula	$\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{BrMnN}_{2} \mathrm{O}_{4}$
Formula weight	505.20
Temperature $/ \mathrm{K}$	$100.00(10)$
Crystal system	monoclinic
Space group	$\mathrm{P}_{1} / \mathrm{n}$
a / \AA	$10.9430(3)$
b / \AA	$12.3084(3)$
c / \AA	$17.5419(4)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$94.232(2)$
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$2356.29(10)$
Z	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.424

Fig. S16. Molecular structure of 3. Thermal ellipsoids represent 50% probability. Selected bond distances (\AA) and angles (degree) in 3: Mn-N1 2.083, Mn-N2 2.040, N1-Mn-N2 81.32.

Table S4. Crystal data and structure refinement for 3.

CCDC
Identification code

2101730
SOU_MNAGBF4

Empirical formula	$\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{BF}_{4} \mathrm{MnN}_{2} \mathrm{O}_{4}$
Formula weight	512.10
Temperature/K	$100.00(10)$
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
a / \AA	$10.7249(7)$
b / \AA	$14.4773(7)$
c / \AA	$13.6836(6)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$102.311(5)$
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{\circ}$	$2075.8(2)$
Z	4
$\rho_{\text {calc }}{ }^{3} /$ cm	

VII. Computational details.

All theoretical calculations to interpret the experimental observations were performed using Gaussian16 quantum chemistry package ${ }^{19}$. Density Functional Theory (DFT) calculations were performed at B3LYP level of theory ${ }^{20}$. We used LANL2DZ ${ }^{21}$ basis set with the relativistic effective core potential for Mn atom and $6-31+\mathrm{g}(\mathrm{d})$ basis for other elements $(\mathrm{H}, \mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Br})$. The geometries were optimized without any symmetry constraints. Geometry optimizations were performed starting from crystal structure of complexes.

Optimized structure of 2, 3 and 6.

2

3

6

Fig. S17. Optimized structures of compound 2, $\mathbf{3}$ and $\mathbf{6}$ using B3LYP level of theory (with basis set $6-31+\mathrm{g}(\mathrm{d})$ for $\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{O}, \mathrm{Br}$ and LANL2DZ for Mn$)$.

Molecular Orbitals.

HOMO (2)
Energy: -5.818 eV

Fig. S18. Calculated MO profiles of 2, $\mathbf{3}$ and $\mathbf{6}$ at the B3LYP/6-31 $+\mathrm{g}(\mathrm{d}) / \mathrm{LANL} 2 \mathrm{DZ}$ level of theory (iso value $=0.05$) .

Table S5. Energies, enthalpies, and free energies (in Hartree) of the optimized structures:

Comp.	$\mathbf{Z P E}$	$\mathbf{\Delta E}$	$\mathbf{\Delta H}$	$\mathbf{\Delta G}$	\mathbf{E}	\mathbf{H}	\mathbf{G}
$\mathbf{2}$	0.315506	0.341498	0.342443	0.257922	-3932.3285	-3932.3275	-3932.4120
$\mathbf{3}$	0.316036	0.339557	0.340501	0.263224	-1360.6832	-1360.6822	-1360.7595
$\mathbf{6}$	0.313250	0.336720	0.337664	0.259984	-1360.8732	-1360.8723	-1360.9499

xyz coordinates.

Compound 2.
Electronic Energy: -3932.66998 Hartree
No. of imaginary frequency: 0
01

Br	-2.82448	-1.80570	-0.96083
Mn	-1.44582	-0.49401	0.75963
O	-3.62466	-1.14307	2.65539
N	-2.36291	1.24342	0.02121
O	-0.09884	-3.05887	1.45851
N	-0.11526	0.00132	-0.95602
H	0.03346	-0.94658	-1.33370
O	1.27450	-2.21993	-1.49359
C	4.70376	-1.83533	-0.54581
H	5.62563	-2.41234	-0.50328
C	3.61248	1.69583	0.22860
C	2.31317	-0.25557	-0.59008
C	-1.96651	1.65295	-1.20138
C	-0.93738	0.80116	-1.89934

H	-0.30287	1.41488	-2.54987
H	-1.47273	0.07619	-2.52134
C	1.15246	0.54442	-0.60414
C	2.30127	-1.66707	-1.05523
C	3.56085	-2.40663	-0.99382
H	3.51964	-3.44064	-1.32200
C	2.42484	2.46948	0.16424
H	2.46030	3.51667	0.45512
C	3.54978	0.32436	-0.15993
C	4.75056	-0.45290	-0.12208
C	-2.52318	2.77552	-1.81998
H	-2.17287	3.07413	-2.80402
C	4.84460	2.25380	0.65848
H	4.87134	3.29990	0.95421
C	5.93988	0.13300	0.30881
H	6.84460	-0.47011	0.33676
C	1.23481	1.91339	-0.24007
H	0.33644	2.52076	-0.25092
C	5.99147	1.48344	0.70311
H	6.93102	1.91465	1.03617
C	-0.60690	-2.06763	1.16729
C	-3.52400	3.49170	-1.16708
H	-3.97346	4.36375	-1.63373
C	-3.93327	3.06511	0.09737
H	-4.70837	3.58570	0.65040
C	-3.32426	1.94439	0.65281
H	-3.61358	1.58470	1.63376
C	-2.76908	-0.89477	1.92050
O	0.00225	0.97944	2.87132
C	-0.53782	0.41373	2.01459

Compound 3.
Electronic Energy: -1361.022756 Hartree
No. of imaginary frequency: 0
11

Mn	-1.45212	-0.97120	-0.06613
O	-0.26421	-0.14161	1.41526
O	-2.80034	-2.66295	1.98423
N	-0.42320	0.50644	-1.21737
H	-0.70843	0.38149	-2.18805
O	0.49287	-3.17192	-0.58100
N	-2.75202	0.65701	0.19504
O	-3.17769	-1.93600	-2.27858
C	1.01898	0.38168	1.16255

$\begin{array}{llll}\text { C } & -0.88636 & 1.86653 & -0.77721\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.24076 & 2.18640 & 0.04452\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.75614 & 2.59060 & -1.58989\end{array}$
$\begin{array}{llll}\text { C } & -2.31271 & 1.83511 & -0.29442\end{array}$
$\begin{array}{llll}\text { C } & 1.68454 & 0.29719 & 0.07367\end{array}$
$\begin{array}{llll}\text { C } & -2.50913 & -1.57890 & -1.41014\end{array}$
$\begin{array}{llll}\text { C } & -3.10761 & 2.98205 & -0.29726\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.72189 & 3.90828 & -0.71292\end{array}$
$\begin{array}{llll}\text { C } & -3.99775 & 0.60009 & 0.70844\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.32232 & -0.36318 & 1.08496\end{array}$
$\begin{array}{llll}\text { C } & -4.84335 & 1.70386 & 0.75808\end{array}$
$\begin{array}{llll}\mathrm{H} & -5.83517 & 1.60168 & 1.18571\end{array}$
$\begin{array}{llll}\text { C } & 3.11250 & 0.33646 & 0.08497\end{array}$
$\begin{array}{llll}\text { C } & 3.12647 & 0.35851 & -2.35905\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.67180 & 0.36099 & -3.29914\end{array}$
$\begin{array}{llll}\text { C } & 3.82689 & 0.36505 & 1.32093\end{array}$
$\begin{array}{llll}\text { C } & 1.72218 & 0.27729 & 2.57514\end{array}$

H	1.16287	0.23212	3.50416
C	0.96707	0.14120	1.35143
C	1.74253	0.39399	-2.36807
H	1.20918	0.44390	-3.31466
C	5.26733	0.37521	-1.10784
H	5.81473	0.37590	-2.04674
C	-4.39255	2.91895	0.24110
H	-5.02933	3.79851	0.25133
C	3.84398	0.35452	-1.14057
C	3.08058	0.36797	2.55487
H	3.63376	0.41809	3.48988
C	5.22222	0.40092	1.30661
H	5.76093	0.43034	2.25052
C	-0.24561	-2.31225	-0.38144
C	-2.28782	-2.02208	1.17986
C	5.94373	0.39864	0.09598
H	7.02879	0.41850	0.11536

Compound 6.
Electronic Energy: -1361. 209967 Hartree
No. of imaginary frequency: 0
02
$\begin{array}{llll}\mathrm{Mn} & -1.43732 & -0.94849 & -0.19982\end{array}$
$\begin{array}{llll}\mathrm{O} & -0.35522 & -0.22212 & 1.36324\end{array}$
$\begin{array}{llll}\mathrm{O} & -2.73429 & -2.89262 & 1.63336\end{array}$
$\begin{array}{llll}\mathrm{N} & -0.44373 & 0.67589 & -1.14296\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.72796 & 0.69985 & -2.12159\end{array}$
$\begin{array}{llll}\text { O } & 0.56541 & -3.02581 & -0.93227\end{array}$
$\begin{array}{llll}\mathrm{N} & -2.78391 & 0.60254 & 0.24839\end{array}$
$\begin{array}{llll}\mathrm{O} & -3.07775 & -1.69262 & -2.55221\end{array}$
$\begin{array}{llll}\text { C } & 1.00804 & 0.57046 & -1.11086\end{array}$

C	-0.90738	1.94201	-0.49723
H	-0.27143	2.10968	0.37529
H	-0.76680	2.79316	-1.17595
C	-2.33486	1.84173	-0.03501
C	1.66539	0.28150	0.11955
C	-2.43908	-1.41099	-1.62541
C	-3.13495	2.97453	0.14080
H	-2.74147	3.95519	-0.11071
C	-4.03437	0.46305	0.72696
H	-4.35708	-0.55073	0.93697
C	-4.88375	1.54294	0.94672
H	-5.88068	1.37296	1.34018
C	3.10064	0.33085	0.13683
C	3.12050	0.79558	-2.27831
H	3.66920	0.97197	-3.19972
C	3.81589	0.12692	1.36050
C	1.69371	-0.21721	2.52732
H	1.13288	-0.44639	3.42946
C	0.94540	-0.05967	1.32801
C	1.73083	0.80802	-2.28127
H	1.19566	1.01398	-3.20811
C	5.25451	0.61501	-1.02403
H	5.80466	0.80122	-1.94350
C	-4.42568	2.82658	0.64386
H	-5.06246	3.69404	0.79294
C	3.83732	0.58262	-1.07010
C	3.06831	-0.12333	2.54841
H	3.60768	-0.26660	3.48253
C	5.22977	0.17757	1.35497
H	5.76387	0.02236	2.28969

C	-0.18542	-2.19965	-0.64479
C	-2.23437	-2.14906	0.90465
C	5.93513	0.41588	0.17533
H	7.02182	0.44585	0.19173

VIII. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of alcohols.

Fig. 19. ${ }^{1} \mathrm{H}$ NMR spectrum of 4-Chlorobenzyl alcohol (5a) in CDCl_{3}.

Fig. 20. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 4-Chlorobenzyl alcohol (5a) in CDCl_{3}.

Fig. 21. ${ }^{1} \mathrm{H}$ NMR spectrum of Benzyl alcohol (5b) in CDCl_{3}.

Fig. 22. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of Benzyl alcohol (5b) in CDCl_{3}.

Fig. 23. ${ }^{1} \mathrm{H}$ NMR spectrum of 4-Iodobenzyl alcohol (5c) in CDCl_{3}.

Fig. 24. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 4-Iodobenzyl alcohol (5c) in CDCl_{3}.

Fig. 25. ${ }^{1} \mathrm{H}$ NMR spectrum of 4-Methoxybenzyl alcohol (5d) in CDCl_{3}.

Fig. 26. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 4-Methoxybenzyl alcohol (5d) in CDCl_{3}.

Fig. 27. ${ }^{1} \mathrm{H}$ NMR spectrum of 3-Bromobenzyl alcohol (5e) in CDCl_{3}.

Fig. 28. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 3-Bromobenzyl alcohol (5e) in CDCl_{3}.

Fig. 29. ${ }^{1} \mathrm{H}$ NMR spectrum of 2-Methoxybenzyl alcohol (5f) in CDCl_{3}.

Fig. 30. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 2-Methoxybenzyl alcohol (5f) in CDCl_{3}.

Fig. 31. ${ }^{1} \mathrm{H}$ NMR spectrum of 2-Chlorobenzyl alcohol ($\mathbf{5 g}$) in CDCl_{3}.

Fig. 32. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 2-Chlorobenzyl alcohol (5g) in CDCl_{3}.

Fig. 33. ${ }^{1} \mathrm{H}$ NMR spectrum of 2-Phenylbenzyl alcohol (5h) in CDCl_{3}.

Fig. 34. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 2-Phenylbenzyl alcohol (5h) in CDCl_{3}.

Fig. 35. ${ }^{1} \mathrm{H}$ NMR spectrum of 2-Thiophenemethanol (5i) in CDCl_{3}.

Fig. 36. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 2-Thiophenemethanol (5i) in CDCl_{3}.

Fig. 37. ${ }^{1} \mathrm{H}$ NMR spectrum of 4-Phenyl-1-butanol (5j) in CDCl_{3}.

Fig. 38. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 4-Phenyl-1-butanol $(\mathbf{5 j})$ in CDCl_{3}.

Fig. 39. ${ }^{1} \mathrm{H}$ NMR spectrum of Cyclohexane-1-methanol ($\mathbf{5 k}$) in CDCl_{3}.

Fig. 40. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of Cyclohexane-1-methanol (5k) in CDCl_{3}.

Fig. 41. ${ }^{1} \mathrm{H}$ NMR spectrum of Adamentane-1-methanol (5I) in CDCl_{3}.

Fig. 42. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of Adamentane-1-methanol (51) in CDCl_{3}.

Fig. 43. ${ }^{1} \mathrm{H}$ NMR spectrum of Cinnamyl alcohol (5m) in CDCl_{3}.

Fig. 44. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of Cinnamyl alcohol (5m) in CDCl_{3}.

Fig. 45. ${ }^{1} \mathrm{H}$ NMR spectrum of 1-Hexanol (5n) in CDCl_{3}.

Fig. 46. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 1-Hexanol (5n) in CDCl_{3}.

Fig. 47. ${ }^{1} \mathrm{H}$ NMR spectrum of Capric alcohol or 1-Decanol (50) in CDCl_{3}.

Fig. 48. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of Capric alcohol or 1-Decanol (50) in CDCl_{3}.

Fig. 49. ${ }^{1} \mathrm{H}$ NMR spectrum of Lauryl alcohol or 1-dodecanol (5p) in CDCl_{3}.

Fig. 50. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of Lauryl alcohol or 1-dodecanol (5p) in CDCl_{3}.

Fig. 51. ${ }^{1} \mathrm{H}$ NMR spectrum of Myristyl alcohol or 1-tetradecanol (5q) in CDCl_{3}.

Fig. 52. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of Myristyl alcohol or 1-tetradecanol (5q) in CDCl_{3}.

Fig. 53. ${ }^{1} \mathrm{H}$ NMR spectrum of Steryl alcohol or 1-octaecanol (5r) in CDCl_{3}.

Fig. 54. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of Steryl alcohol or 1-octaecanol (5r) in CDCl_{3}.

Fig. 55. ${ }^{1} \mathrm{H}$ NMR spectrum of Oleyl alcohol (5t) in CDCl_{3}.

Fig. 56. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of Oleyl alcohol (5t) in CDCl_{3}.

Fig. 57. ${ }^{1} \mathrm{H}$ NMR spectrum of 1-Undecylenic alcohol $(\mathbf{5 u})$ in CDCl_{3}.

Fig. 58. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 1-Undecylenic alcohol (5u) in CDCl_{3}.

Fig. 59. ${ }^{1} \mathrm{H}$ NMR spectrum of 1,4-Undecandiol (5v) in CDCl_{3}.

Fig. 60. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 1,4-Undecandiol (5v) in CDCl_{3}.

Fig. 61. ${ }^{1} \mathrm{H}$ NMR spectrum of 2-(4-isobutylphenyl)propan-1-ol (5w) in CDCl_{3}.

Fig. 62. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 2-(4-isobutylphenyl)propan-1-ol (5w) in CDCl_{3}.

Fig. 63. ${ }^{1} \mathrm{H}$ NMR spectrum of 4-(hydroxymethyl)-N,N-dipropylbenzenesulfonamide (5x) in CDCl_{3}.

Fig. 64. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 4-(hydroxymethyl)-N,N-dipropylbenzenesulfonamide ($5 \mathbf{x}$) in CDCl_{3}.

Fig. 65. ${ }^{1} \mathrm{H}$ NMR spectrum of 2-(2-fluoro-[1,1'-biphenyl]-4-yl)propan-1-ol (5y) in CDCl_{3}.

Fig. 66. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 2-(2-fluoro-[1, 1'-biphenyl]-4-yl)propan-1-ol (5y) in CDCl_{3}.

Fig. 67. ${ }^{1} \mathrm{H}$ NMR spectrum of 3-(4,5-diphenyloxazol-2-yl)propan-1-ol (5z) in CDCl_{3}.

Fig. 68. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 3-(4,5-diphenyloxazol-2-yl)propan-1-ol (5z) in CDCl_{3}.

Fig. 69. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0}^{\prime}$ after flash column of the reaction mixture in CDCl_{3}.

Fig. 70. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 0}$ after flash column of the reaction mixture in CDCl_{3}.

T 71. ${ }^{29} \mathrm{Si}$ NMR spectrum of $\mathbf{1 0}$ ' after flash column of the reaction mixture in CDCl_{3}.

References:

1. Moumne, R.; Lavielle, S.; Karoyan, P. J. Org. Chem. 2006, 71, 3332-3334.
2. Chakraborty, S.; Das, A.; Ahmed, J.; Barman, S.; Mandal, S. K. Chem. Commun. 2020, 56, 13788-13791.
3. Martinez-Ferrate, O.; Chatterjee, B.; Werle, C.; Leitner, W. Catal. Sci. Technol. 2019, 9, 6370-6378.
4. Amberchan, G.; Snelling, R. A.; Moya, E.; Landi, M.; Lutz, K.; Gatihi, R.; Singaram, B. J. Org. Chem. 2021, 86, 6207-6227.
5. Oates, C. L.; Widegren, M. B.; Clarke, M. L. Chem. Commun. 2020, 56, 8635-8638.
6. Behera, R. R.; Ghosh, R.; Panda, S.; Khamari, S.; Bagh, B. Org. Lett. 2020, 22, 36423648.
7. Pandey, V. K.; Tiwari, C. S.; Rit, A. Org. Lett. 2021, 23, 1681-1686.
8. Matsubara, K.; Mitsuyama, T.; Shin, S.; Hori, M.; Ishikawa, R.; Koga, Y. Organometallics 2021, 40, 1379-1387.
9. Choe, H. R.; Han, S. S.; Kim, Y.; Hong, C.; Cho, E. J.; Nam, K. M. ACS Appl. Mater. Interfaces 2021, 13, 1714-1722.
10. Choudhary, P.; Bahuguna, A.; Kumar, A.; Dhankhar, S. S.; Nagaraja, C. M.; Krishnan, V. Green Chem. 2020, 22, 5084-5095.
11. Kuhwald, C.; Kirschning, A. Org. Lett. 2021, 23, 4300-4304.
12. Mahata, S.; Sahu, A.; Shukla, P.; Rai, A. Singh, M.; Rai, V. K. New J. Chem. 2018, 42, 19945-19952.
13. Kaithal, A.; Hölscher, M.; Leitner, W. Chem. Sci. 2021, 12, 976-982.
14. Cao, H. Q.; Liu, H. N.; Liu, Z. Y.; Qiao, B.; Zhang, F. G.; Ma, J. A. Org. Lett. 2020, 22, 6414-6419.
15. Friest, J. A.; Maezato, Y.; Broussy, S.; Blum, P.; Berkowitz, D. B. J. Am. Chem. Soc. 2010, 132, 5930-5931.
16. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.
17. Sheldrick, G. M. Acta Cryst. 2015, A71, 3-8.
18. Sheldrick, G.M. Acta Cryst. 2015, C71, 3-8.
19. Frisch, M. J. et al. Gaussian 16, Revision B.01, Fox, Gaussian, Inc., Wallingford CT, 2016.
20. Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
21. Yang, Y.; Weaver, M. N.; Merz, Jr, K. M. J. Phys. Chem. A 2009, 1123, 9843-9851.
