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Experimental Section
Materials
Copper acetate monohydrate (Cu(OAc), -H,0), phosphomolybdic acid (H;PMo1,049-nH,0),
ruthenium chloride hydrate (RuCl;-xH,0), 1,3,5-benzenetricarboxylic acid (H3;BTC, 98%),
sodium hydroxide (NaOH), and iron (III) chloride hexahydrate (FeCl;-6H,0) were obtained from
Sinopharm Chemical Reagent Co. Ltd. Commercial Pt/C (20 wt%) was provided by Johnson
Matthey. Graphene oxide (GO) was purchased from XFNANO, China. All reagents were utilized
without further purification.
Preparation of NENU-5/GO. Different amounts of GO (10, 20, and 40 mg) were dispersed into
10 mL of distilled water by ultrasonication for 2 h, respectively. Then, 0.2 g of Cu(OAc),-H,0
and 0.17 g of H3PMo0,,049'nH,O were added into the above solution and stirred for 30 min to
form solution A. The pH of A was changed into 4.0 with the assistance of NaOH. 0.14 g of
H;BTC was dissolved in ethanol solution (40 mL) to form solution B, which was added into the
solution A with vigorously stirring. Finally, the product was collected, washed with alcohol/water,
and dried at 50 °C for 12 h, which were denoted as NENU-5/GO (10, 20, and 40 mg), respectively.
In control experiment, NENU-5 was prepared with the identical method except for the addition
of GO.
Preparation of RuCl;-NENU-5/GO. In a typical procedure, 0.1 g of the resulting NENU-5/GO
(10, 20, and 40 mg) were dispersed into 80 mL of the mixed solution (Vetmanol : Vwater = 1:1) to
achieve a uniform suspension, respectively, and then 60 uL of RuCly xH,O solution (10 mg mL-")
was added the above solution. After continuous stirring for 12 h, the products were filtered,
washed with water and dried at 50 °C, which were defined as RuCl;-NENU-5/GO (10, 20, and 40
mg), respectively.
For comparison, RuCl;-NENU-5 was also synthesized via the same processes for RuCl;-NENU-
5/GO.
Preparation of Ru-MoO,@PC/rGO, The resultant RuCI3-NENU-5/GO (20 mg) was carbonized
at 600 °C under Ar for 5 h, and then etched by FeCl; solution (0.1 M) for 12 h. After washed with

water, the obtained sample was denoted as Ru-MoO,@PC/rGO.



In addition, Ru-MoO,@PC/rGO (10 and 40), MoO,@PC, and Ru-MoO,@PC were obtained
from RuCl;-NENU-5/GO (10 and 40 mg), NENU-5 and Ru-NENU-5 through the similar way to
Ru-MoO,@PC/rGO, respectively.

Instruments. The structural and morphological features of the as-synthesized nanomaterials were
analyzed by scanning electron microscope (JSM-7600F, JEOL), transmission electron microscopy
(JEOL-2100F, JEOL), powder X-Ray diffraction (D/max 2500VL/PC, Japan), gas sorption
analyzer (ASAP 2050, Micromeritics), X-ray photon spectroscopy (PHI 5000 Verasa Probe,
ULAC-PHI), respectively.

Electrochemical measurements. The electrocatalytic HER properties were investigated in a
typical three-electrode setup on a CHI 760E in 1.0 M KOH solution. 4 mg of the designed catalyst
and 60 pL of nafion solution (5 wt%) were uniformly dispersed in 1940 pL of ethanol by
continuously sonicating for at least 30 min. Subsequently, 5 pL of the ink was decorated on a
glassy carbon electrode (GCE, 0.14 mg cm2). For comparison, commercial Pt/C (20 wt%) catalyst
was also prepared with the same method. An Hg/HgO and graphite rod were utilized as the
reference and counter electrode, respectively. Noticeably, the Hg/HgO electrode was calibrated in
H,-saturated 1.0 M KOH solution, where the Pt foil was used as the working and counter electrode,
respectively (Fig. S20, EIST). Erug = 0.924 V + Eygngo.

Additionally, cyclic voltammetry (CV) at a sweep rate of 100 mV s!' and linear sweep
voltammetry (LSV) at 5 mV s*! were carried out, respectively. In this work, the potentials were
corrected with 95% iR drop compensation. The double-layer capacitor (Cy) was assessed using
CVs at 20-100 mV s! in the region of 24-124 mV.

To investigate the stability at a large current density, the obtained catalyst was also loaded on

carbon cloth (1*1 ¢cm2, loading amount:1 mg cm2).

Computational Details

Density functional theory (DFT) calculations have been carried out using the Vienna ab-initio
simulation package (VASP). The Perdew-Burke-Ernzerbof (PBE) exchange and correlation
functional is chosen.!: 2 To describe the interactions between valence electrons and ion cores, the
Blochl’s all-electron-like projector augmented wave (PAW) method is used.> # The plane wave

basis set kinetic cutoff energy of 450 eV with a Monkhost-Pack k-point grid of 3x3x1 are



applied.> The convergence tolerance of total energy calculation is determined at 1.0 x 107°
eV/atom with ionic force minimization level of 0.01 eV/A. A vacuum layer as large as 20 A is
used along the ¢ direction to avoid the periodic interactions.

The Gibbs free energies for HER are calculated by utilizing the computational hydrogen
electrode model® 7:

AG = AE + AZPE — TAS (1)

Where AE is the energy difference of adsorption. AZPE and TAS are the zero-point energy
correction term and the entropy correction term, respectively. The two terms are obtained by the
frequency calculation at T=300 K.® The Gibbs free energy of (H'+¢") is equivalent to the energy of

1/2 Gy in the study.
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S1. Figures in Supporting Information
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Fig. S1 (a) SEM image and (b) PXRD pattern of RuCl;-NENU-5/GO.

In Fig. Sla, the SEM image displays that the obtained RuCl;-NENU-5 crystals with the
octahedral or slightly truncated octahedral morphology, are homogeneously decorated over
the GO nanosheets. The PXRD measurement was performed to examine the phase
structure of RuCl;-NENU-5/GO. In Fig. S1b, the PXRD pattern of RuCl;-NENU-5/GO
coincides well with simulated NENU-5, supporting that the crystal structures preserve
nearly intact. Hence, these results significantly highlight the feasibility of this synthetic

route.
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Fig. S2 PXRD patterns of simulated NENU-5, as-synthesized NENU-5, NENU-5/GO, and RuCl;-
NENU-5, respectively.



Fig. S3 (a, b) SEM images of NENU-5.



Fig. S4 (a, b) SEM images of NENU-5/GO.
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Fig. S5 (a, b) SEM images of RuCl;-NENU-5.
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Fig. S6 (a) PXRD pattern and (b) N, sorption isotherm of Ru-MoO,@PC/rGO. Inset of (b) is the

corresponding pore size distribution.
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Fig. S7 EDS of Ru-MoO,@PC/rGO.
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Fig. S8 (a, b) SEM images of MoO,@PC.



Fig. S9 (a, b) SEM images of MoO,@PC/rGO.



Fig. S10 (a, b) SEM images of Ru-MoO,@PC.
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Fig. S11 PXRD patterns of MoO,@PC, MoO,@PC/rGO, and Ru-MoO,@PC, respectively.
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Fig. S12 (a) Polarization curves and (b) Tafel plots of Ru-MoO,@PC/rGO with different loadings
of rGO (10, 20, and 40 mg).



Fig. S13 (a-d) CV curves of MoO,@PC, MoO,@PC/rGO, Ru-MoO,@PC,
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and Ru-

MoO,@PC/rGO measured within the range of 24-124 mV vs. RHE with scan rate from 20 to 100

mV s, respectively.
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Fig. S14 Normalized HER activities of different catalysts.
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Fig. S15 Chronopotentiometry curves of Ru-MoO,@PC/rGO at 150 mA cm™2.

As shown in Fig. S15, 80.6% of the current density could be remained during continuously

operating at 150 mA ¢m™ for 10 h.
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Fig. S16 (a) SEM, (b, ¢c) TEM images, and (d) PXRD of Ru-MoO,@PC/rGO after stability test.
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Fig. S17 (a-d) High-resolution spectra of Mo 3d, Ru 3p, P 2p, and O 1s of Ru-MoO,@PC/rGO,

after HER stability test.

“As shown in Fig. S17, the XPS analysis proves that the chemical states remain unchanged after
durability tests. The contents of C, Mo, Ru, P, and O are 73.8, 2.75, 2.37, 0.62, and 20.46 at%,

respectively.”
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Fig. S18 (a, b) Top views of MoO,@PC/rGO and Ru-MoO,@PC/rGO after optimization, where

the Mo atoms are substituted by Ru atoms on the Ru-MoO,@PC/rGO.
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Fig. S19 Free energy diagram on single-sites of MoO,@PC/rGO and Ru-MoO,@PC/rGO for

HER.

“DFT calculations were performed to fundamentally comprehend into the remarkable HER
performance of Ru-MoO,@PC/rGO. As the first step of DFT calculations, we propose two
rational models with three possible sites named as MoO,@PC/rGO-Mo, Ru-MoO,@PC/rGO-Mo,
and Ru-MoO,@PC/rGO-Ru (Fig. S18). As is well known, the HER activity is strongly related to
the Gibbs free energy of hydrogen adsorption (AG#*y) on the catalysts surface. As shown in Fig.
S19, the AG*y for Ru-MoO,@PC/rGO-Ru, Ru-MoO,@PC/tGO-Mo, and MoO,@PC/rGO-Mo is

-0.0534, 0.355, and 0.833 eV, respectively. The |AG*y | value of Ru-MoO,@PC/rGO-Ru closest



to zero implies the excellent behavior to adsorb hydrogen. On the basis of DFT calculations, the
introduction of Ru atoms on the MoO,@PC/rGO surface can accelerate electron transfer in the
catalytic process, and Ru-doping in the Mo site may boost electrocatalytic process by offering
numerous active sites for HER, which significantly explains why Ru-MoO,@PC/rGO shows

outstanding HER activity.”
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S2. Table in Supporting Information

Table S1. Comparison of catalytic performance of Ru-MoO,@PC/rGO and other reported

materials toward HER 1in in alkaline conditions.

Tafel slope Mo
Catalysts References
[mV dec!] (mV)

Ru-MoO,@PC/rGO 43.5 126 This work
(NisFe,4),P@PC/PG 45 242 Adv. Funct. Mater. 2021, 31, 2010912.
MoO,/MoS,/C 49 91 Adv. Funct. Mater. 2021, 31, 2101715.
CoP@FeCoP/NC 56.34 141 Chem. Eng. J. 2021, 403, 126312.
Ru/CosN-CoF, 144 53 Chem. Eng. J. 2021, 414, 128865.
S-CoO,/NF 80 136 Nano Energy 2020, 71, 104652.
FeCo/Co,P@NPCF 120 260 Adv. Energy Mater. 2020, 10, 1903854.
MoO,-FeP@C 48 103 Adv. Mater. 2020, 32, 2000455.
Mo-Ni;S,/NiPy/NF 68.4 109 Adv. Energy Mater. 2020, 10, 1903891

ACS Appl. Mater. Interfaces 2020, 12,

NiFeP@C 75.8 160
19447.
Cr-doped FeNiP/NCN 69.5 190 Adv. Mater. 2019, 31, 1900178.
NiFeP/NCH 125 216 J. Am. Chem. Soc. 2019, 141, 7906.
Fe-CoP 92 78 Adv. Sci. 2018, 5, 1800949.

CoP@BCN 52 215 Adv. Energy Mater. 2017, 7, 1601671.




S3. Note in Supporting Information
Note 1. The HER process in alkaline media can be described using the following elementary

steps:

under alkaline condition:

H,O+e¢ > H,  +OH (Volmer reaction)

H, +H,0+¢" —>H, +OH" (Heyrovsky reaction)



