Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Photochemical transformation of chlorobenzenes and white phosphorus into arylphosphines and phosphonium salts

Marion Till¹, Verena Streitferdt², Daniel J. Scott¹, Michael Mende¹, Ruth M. Gschwind² and Robert Wolf*¹

¹Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany ²Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany E-mail: <u>robert.wolf@ur.de</u>

Table of contents

S1. General information	2
S2. General procedure for photochemical functionalization of P_4 (0.04 mmol scale)	4
S3. Optimization of reaction conditions	5
S4. Characterization of optimized 0.04 mmol scale reactions	10
S5. Isolation and characterization of selected products (reactions at 0.8 mmol scale)	21
S6. <i>In situ</i> NMR experiments	26
S7. Photochemical phenylation of PhPH ₂ , Ph ₂ PH, Ph ₄ P ₂ and Ph ₃ P	30
S8. Side product [TDAE]Cl ₂	33
S9. References	34

S1. General information

All reactions and manipulations were performed under an N₂ atmosphere (< 0.1 ppm O₂, H₂O) through use of a GS Glovebox (GS117717). All glassware was oven-dried (160 °C) overnight prior to use. Benzene was dried over Na and stored over molecular sieves (3 Å). Acetonitrile, dimethyl sulfoxide and dimethylformamide were distilled from CaH₂ and stored over molecular sieves (3 Å). Benzene was distilled from Na/benzophenone and stored over molecular sieves (3 Å). Acetone was stirred over CaSO₄ (3 h) and distilled after dynamically drying over molecular sieves (3 Å). THF and toluene were purified using an MBraun SPS-800 system and stored over molecular sieves (3 Å). C₆D₆ was distilled from K and stored over molecular sieves (3 Å). All other chemicals were purchased from major suppliers (Aldrich, ABCR); liquids were purified by Kugelrohr distillation and freeze-pump-thaw degassed three times prior to use; P₄, Ph₃P and Ph₃PO were purified by sublimation; all others were used as received.

With the exception of *in situ* experiments (for details of which, see section S6), qualitative NMR spectra were recorded at room temperature on Bruker Avance III HD 400 (400 MHz) spectrometers and were processed using Topspin 3.2. Chemical shifts δ , are reported in parts per million (ppm); ¹H and ¹³C shifts are reported relative to SiMe₄ and were calibrated internally to residual solvent peaks, while ³¹P shifts were referenced externally to 85 % H₃PO₄ (aq.).

NMR samples were prepared in the glovebox using NMR tubes fitted with screw caps. Optimization reactions (see S3) and photochemical phenylation reactions of PhPH₂, Ph₂PH, Ph₄P₂ and Ph₃P (see S7) were analyzed by ³¹P{¹H} spectra using only a single scan (DS = 0, D1 = 2 s). The accuracy of this method was confirmed by preparing solutions of (*o*-tol)₃P or [Ph₄P]Cl and 0.05 mmol Ph₃PO in MeCN/PhH (1.5 mL, 0.5 mL, respectively), and comparing the measured and expected relative integrations (Figure S1).

Figure S1. Plots showing the consistency between measured (by integration against 0.05 mmol Ph₃PO using a ${}^{31}P{}^{1}H$ experiment (zgig) with a single scan) and expected (based on mass added) molar quantities of (*o*-tol)₃P (left) or [Ph₄P]Cl (right) in MeCN/PhH (3:1) solutions.

Quantitative measurements for the substrate screening were conducted on Bruker Avance HD III 400 (400 MHz) spectrometers. Yields were determined by $1D^{31}P{^1H}$ NMR spectroscopy. In order to meet quantitative conditions special attention was payed to the following aspects:

- Pulse lengths were calibrated. The O1P of the spectrum was set close to the frequencies of interest to enable maximum excitation. In cases where the distance between signals of interest was greater than 21000 Hz, one spectrum was recorded for each signal of interest, having its O1P close to the respective frequency.
- *T*¹ relaxation times were determined for all peaks of interest and a D1 of ≥ 5 ×*T*¹ was used to ensure full relaxation between scans.
- The NS was adjusted so that the S/N-ratio (signal to noise ratio) was higher than 100/1. In order to reduce measurement time and to increase the S/N-ratio compared to a standard 1D experiment using only a 90° pulse (zg experiment), the zgig pulse program (inverse gated decoupled) was used, applying proton decoupling during the acquisition time. Since the zgig pulse program uses decoupling, it had to be ensured that any signal enhancement due to NOE (nuclear Overhauser effect) is negligible. Therefore, zg and zgig experiments were conducted and the integrals of the signals of interest were compared. For all reaction mixtures investigated, the integrals corresponding to both the internal standard (Ph₃PO) and the product stayed constant.
- After acquisition, the spectra were processed and integrated, and the yields were determined by referencing the integral of the product to that of the standard Ph₃PO.
- The quantitative spectra of the substrate screening are shown in S4.

S2. General procedure for photochemical functionalization of P₄ (0.04 mmol scale)

To a 10 mL stoppered tube equipped with a stirring bar were added the appropriate chlorobenzene derivative (0.4 mmol, 10 equiv. based on the phosphorus atom), organic photoreductant $TDAE^{[1]}$ (0.2 mmol, 5 equiv. based on the phosphorus atom), and P₄ (0.01 mmol, 1 equiv., as a stock solution in 71.3 µL benzene). The mixture was dissolved in acetone (0.5 mL). The tube was sealed, placed in a water-cooled block (to ensure a near-ambient temperature was maintained, Figure S2), and irradiated with UV light (365 nm, 4.3 V, 700 mA, Osram OSLON SSL 80) for 20 h (unless stated otherwise). Ph₃PO (0.02 mmol, stock solution in benzene) was subsequently added to act as an internal standard. The resulting mixture was subjected to NMR analysis.

Figure S2. Illustration of the equipment setup used for photochemical reactions at 0.04 mmol scale.

S3. Optimization of reaction conditions

F / P	+ xs. CI + xs	s. TDAE Quv-LE acetone N ₂ atn - [TE	EDs (365 nm) e/benzene, nosphere, Ph DAE]Cl ₂ ↓	Ph Ph Ph Ph + I Ph Ph Ph
Entry	Conditions	Full conv. of P 4?	Conv. to [Ph₄P]Cl / %	Conv. to Ph₃P / %
1	Standard ^[a]	\checkmark	53	9
2	No light	X	0	0
3	No TDAE	X	0	0
4	No PhCl	X	0	0
5	PhF instead of PhCl	X	0	0
6	PhBr instead of PhCl	\checkmark	43	10
7	PhI instead of PhCl	\checkmark	14	10
8	P_{red} instead of P_4	-	0	0

Table S1. Photochemical functionalization of P₄ to [Ph₄P]Cl and Ph₃P: screening of control experiments.^[a]

[a] For the general procedure, see section S2.

Table S2. Photochemical functionalization of P_4 to $[Ph_4P]Cl$ and Ph_3P : screening of LEDs at different temperatures.^[a]

P	P + xs. (CI + xs. T	DAE acetone/bo N ₂ atmos - [TDAE	EDs enzene, phere, F ⊑]CI⊉	Ph I⊕ P [™] Ph Ph	Ph <mark>P</mark> Ph I Ph
Entry	LEDs	Full conv. of P ₄?	Conv. to [Ph₄P]Cl / %	Conv. to Ph₃P / %	Conv. to Ph₄P₂ / %	Conv. to Int1 / %
1	455 nm	\checkmark	21	8	3	3
2	455 nm ^[b]	\checkmark	17	11	3	0[~]
3	420 nm	\checkmark	52	15	0[~]	0[~]
4	420 nm ^[c]	\checkmark	37	12	0[~]	4
5	400 nm	\checkmark	43	15	0[~]	4
6	385 nm	\checkmark	38	9	0[~]	0[~]
7	365 nm ^[a]	\checkmark	53	9	1	
8	365 nm ^[d]	\checkmark	43	11	2	0[~]
9	365 nm ^[c]	\checkmark	39	10	0[~]	2

[a] The general procedure (section S2) was modified to use the LEDs indicated. For the general procedure, see section S2. [b] Photoreactor 7W, 36 °C. [c] Cooling with cryostat to -5 °C. [d] Cooling with cryostat to 0 °C. [~] Signal in the ³¹P{¹H} NMR (NS 256), but too small to determine the yield in the quantitative ³¹P{¹H} NMR (NS 1).

 	+ xs. x = F, Cl, B	+ xs. TDAE	UV-LEDs acetone/be N ₂ atmosp - [TDAE]	(365 nm) nzene, bhere, I Cl ₂ ↓	Ph I⊕ Ph Ph Ph + Ph	Ph <mark>P</mark> Ph I Ph
Entry	Aryl halide	Full conv. of P ₄?	Conv. to [Ph₄P]X / %	Conv. to Ph₃P / %	Conv. to Ph₄P₂ / %	Conv. to Int1 / %
1	Fluorobenzene	Х	0	0	0	0
2	Chlorobenzene ^[a]	\checkmark	53	9	1	0
3	Bromobenzene	\checkmark	43	10	0[~]	4
4	Iodobenzene	\checkmark	14	10	0[~]	4

Table S3. Photochemical functionalization of P4 to [Ph4P]Cl and Ph3P: screening of aryl halides.^[a]

[a] For the general procedure, see section S2. [\sim] Signal in the ³¹P{¹H} NMR (NS 256), but too small to determine the yield in the quantitative ³¹P{¹H} NMR (NS 1).

Table S4. Photochemical functionalization of P4 to [Ph4P]Cl and Ph3P: screening of solvents.^[a]

 	+ xs.	+ xs. TD.	AE Solvent /b N ₂ atmos - [TDA	(365 nm) enzene, sphere, E]Cl ₂ \downarrow	Ph I⊕ Ph″Ph + Ph Ph	Ph <mark>P</mark> Ph I Ph
Entry	Solvent	Full conv. of P ₄?	Conv. to [Ph₄P]Cl / %	Conv. to Ph₃P / %	Conv. to Ph₄P₂ / %	Conv. to Int1 / %
1	Acetone ^[a]	\checkmark	53	9	1	0
2	Acetone ^[b]	\checkmark	47	4	0[~]	0
3	Acetone ^[c]	\checkmark	41	10	0[~]	0[~]
4	Acetone ^[d]	\checkmark	31	13	0[~]	0[~]
5	Benzene	\checkmark	27	11	0[~]	5
6	Acetonitrile	\checkmark	31	11	2	0
7	THF	\checkmark	0[~]	2	11	0
8	Toluene	\checkmark	19	7	0[~]	2
9	DMSO	\checkmark	6	0	0	0
10	DMF	\checkmark	11	11	0[~]	0
11	Chlorobenzene	\checkmark	23	12	0[~]	7

[a] The general procedure (section S2) was modified to use the solvent system indicated (identical solvent volume). [b] 0.25 mL solvent volume. [c] 1.0 mL solvent volume. [d] 2.0 mL solvent volume. [\sim] Signal in the ³¹P{¹H} NMR (NS 256), but too small to determine the yield in the quantitative ³¹P{¹H} NMR (NS 1).

 	+ xs.	+ xs.TDAE	VUV-LEDs (acetone/ber N ₂ atmosp - [TDAE]	(365 nm) nzene, here, F $ Cl_2\downarrow$	Ph I⊕ Ph Ph Ph + Ph	Ph P I Ph
Entry	Stoichiometry ^[b] TDAE:PhCl	Full conv. of P ₄?	Conv. to [Ph₄P]Cl / %	Conv. to Ph₃P / %	Conv. to Ph₄P₂ / %	Conv. to Int1 / %
1	8:16	\checkmark	8	17	0	8
2	12:24	\checkmark	23	16	0[~]	6
3	16:16	\checkmark	40	12	3	0[~]
4	16:16 ^[c]	\checkmark	12	14	1	10
5	16:16 ^[d]	\checkmark	19	16	0[~]	11
6	16:16 ^[e]	\checkmark	11	14	0	9
7	16:16 ^[f]	\checkmark	11	12	0	13
8	16:16 ^[g]	\checkmark	8	10	0[~]	12
9	32:16	\checkmark	3	9	0	7
10	20:20	\checkmark	12	14	0[~]	11
11	20:40 ^[a]	\checkmark	53	9	1	0
12	20:40 ^[c]	\checkmark	48	10	0[~]	0
13	(2 · 20):40 ^[h]	\checkmark	50	8	0[~]	0
14	20:40 ^[i]	\checkmark	42	11	0	0[~]
15	20:40 ^[j]	\checkmark	43	9	0[~]	0[~]
16	40:20	\checkmark	5	10	0[~]	9
17	40:20 ^[c]	\checkmark	4	9	0[~]	8
18	40:40	\checkmark	26	12	5	0[~]
19	40:40 ^[d]	\checkmark	30	15	0[~]	1

Table S5. Photochemical functionalization of P4 to [Ph4P]Cl and Ph3P: screening of stoichiometry.^{[a][b]}

[a] For the general procedure, see section S2. [b] Listed equivalents are defined per P₄ molecule. [c] 0.25 mL solvent volume. [d] Cooling with cryostat to 0 °C. [e] Cooling with cryostat to -5 °C. [f] 400 nm LED. [g] 420 nm LED. [h] To a reaction with standard conditions (Entry 10, 20:40, UV, 20h) another 20 equiv. TDAE were added and irradiated for additional 20h. [i] modified P₄ concentration (0.005 mmol). [j] modified P₄ concentration (0.02 mmol). [~] Signal in the ³¹P{¹H} NMR (NS 256), but too small to determine the yield in the quantitative ³¹P{¹H} NMR (NS 1).

 		xs.	+ xs. TDAE	UV-LEDs acetone/be N ₂ atmos - [TDAE	$(365 \text{ nm}) \rightarrow$	Ph I⊕ ∕ ^P "Ph Ph	Ph P I Ph
Entry	Time	Full conv. of P ₄?	Conv. to [Ph₄P]Cl / %	Conv. to Ph₃P / %	Conv. to Ph₂PH / %	Conv. to Ph₄P₂ / %	Conv. to Int1 / %
1	5 min	х	0[~]	0[~]	0[~]	0[~]	0[~]
2	10 min	\checkmark	0[~]	0[~]	0[~]	0[~]	0[~]
3	30 min	\checkmark	0[~]	2	2	2	2
4	1 h	\checkmark	17	19	0	0[~]	11
5	3 h	\checkmark	30	11	0	0	8
6	5 h	\checkmark	35	11	0	0	6
7	7 h	\checkmark	34	10	0	0	8
8	20 h ^[a]	\checkmark	53	9	0	1	0
9	40 h	\checkmark	48	8	0	1	0

Table S6. Photochemical functionalization of P4 to [Ph4P]Cl and Ph3P: kinetic investigations.^[a]

[a] For the general procedure, see section S2. [~] Signal in the ${}^{31}P{}^{1}H$ NMR (NS 256), but too small to determine the yield in the quantitative ${}^{31}P{}^{1}H$ NMR (NS 1).

Figure S3. Illustration of the equipment setup used for slow addition via syringe pump for the photochemical reactions at 0.04 mmol scale. Standard reaction conditions: Chlorobenzene (0.4 mmol), TDAE (0.2 mmol) and P₄ (0.01 mmol) in acetone (0.5 mL). Reaction 1: slow addition of a P₄/PhCl mixture in acetone to TDAE/acetone solution (A). Reaction 2: slow addition of TDAE in acetone to a P₄/PhCl/acetone mixture (B). Syringe pump conditions: injected syringe volume 250 μ L (syringe dead volume 100 μ L), injection rate 20 μ L/hour, injection period 12.5 hours, irradiation period 20h.

P - F	+ xs. B		Axs. TDAE	UV-LEDs (365 acetone/benze N ₂ atmospher - [TDAE]Cl ₂	ōnm) ne, Ph ↓	Ph P I⊕ P Ph ⁺ Ph	h Pr I Ph
Entry	Schlenk	Slow addition	Full conv. of P ₄?	Conv. to [Ph₄P]Cl / %	Conv. to Ph₃P / %	Conv. to Ph₄P₂ / %	Conv. to Int1 / %
1	A (TDAE)	P ₄ /PhCl	Х	11	6	0[~]	2
2	B (P4 + PhCl)	TDAE	\checkmark	37	0[~]	0[~]	0[~]

Table S7. Photochemical functionalization of P₄ to [Ph₄P]Cl and Ph₃P: slow addition via syringe pump.^[a]

[a] For the general procedure, see section S2. [~] Signal in the ³¹P{¹H} NMR (NS 256), but too small to determine the yield in the quantitative ³¹P{¹H} NMR (NS 1).

S4. Characterization of optimized 0.04 mmol scale reactions

🍟 UV-LEDs (365 nm)ູ Ð + xs. + xs. TDAE acetone/benzene, R R =-Ŕ N₂ atmosphere, - [TDAE]Cl₂↓ . R' or alkyl or CI-alkyl CI CI CI CI CI CI CI CI .OMe ÓМе ĊΝ 1 2 3 5 6 7 8 4 CI CI C CI CI CI CI CI F ĊF₃ 10 11 14 16 13 15 9 12

Table S8. Substrate scope for photochemical P4 functionalization.

Substrate ^[a]	R′	Conv. to [R₄P]Cl / %	Conv. to R₃P / %
1	R' = H	53	9
2	R' = 2-Me	0	10
3	R' = 3-Me	39	16
4	R' = 4-Me	35	10
5	R' = 2-0Me	0	3
6	R' = 4-0Me	20	6
7	3-PyrCl	27	7
8	R' = 4-CN	0	7
9	R' = 4-F	9	11
10	R' = 3,5-F	0	8
11	R' = 4-CF ₃	0	9
12	$R' = 4^{-t}Bu$	17	14
13	R' = 4-Et	24	9
14	BnCl	0	27
15	^t BuCl	0	5
16	(2-chloroethyl) benzene	0	75

[a] The general procedure for reactions at 0.04 mmol scale (section S2) was modified by replacing chlorobenzene (Entry 1) with chlorobenzene derivatives.

The conversions were determined by quantitative ${}^{31}P{}^{1}H$ (zgig) NMR experiments (161.98 MHz, 300 K, C₆D₆) as mentioned in the text (Ph₃PO (0.02 mmol) as internal standard, see S1 for further information).

Figure S4. Quantitative single scan ${}^{31}P{}^{1}H{}(zgig)$ NMR spectrum for the photochemical functionalization of P₄ using chlorobenzene (Table S8, Entry 1). * marks the internal standard Ph₃PO (0.02 mmol).

S4.2. Tri(o-tolyl)phosphine

Figure S5. Quantitative single scan ${}^{31}P{}^{1}H{}$ (zgig) NMR spectrum for the photochemical functionalization of P₄ using 2-chlorotoluene (Table S8, Entry 2). * marks the internal standard Ph₃PO (0.02 mmol). # marks the signals of unknown by-products.

S4.3. Tetra(*m*-tolyl)phosphonium chloride & Tri(*m*-tolyl)phosphine

Figure S6. Quantitative single scan ${}^{31}P{}^{1}H{}$ (zgig) NMR spectrum for the photochemical functionalization of P₄ using 3-chlorotoluene(Table S8, Entry 3). * marks the internal standard Ph₃PO (0.02 mmol). # marks the signal of an unknown by-product.

S4.4. Tetra(p-tolyl)phosphonium chloride & Tri(p-tolyl)phosphine

Figure S7. Quantitative single scan ${}^{31}P{}^{1}H{}$ (zgig) NMR spectrum for the photochemical functionalization of P₄ using 4-chlorotoluene (Table S8, Entry 4). * marks the internal standard Ph₃PO (0.02 mmol).

S4.5. Tris(2-methoxyphenyl)phosphine

Figure S8. Quantitative single scan ${}^{31}P{}^{1}H{}$ (zgig) NMR spectrum for the photochemical functionalization of P₄ using 2-chloroanisole (Table S8, Entry 5). * marks the internal standard Ph₃PO (0.02 mmol). # marks the signals of unknown by-products.

S4.6. Tetrakis(4-methoxyphenyl)phosphonium chloride & Tris(4-methoxyphenyl)phosphine

Figure S9. Quantitative single scan ${}^{31}P{}^{1}H{}$ (zgig) NMR spectrum for the photochemical functionalization of P₄ using 4-chloroanisole (Table S8, Entry 6). * marks the internal standard Ph₃PO (0.02 mmol). # marks the signal of an unknown by-product.

S4.7. Tetrakis(pyridin-3-yl)phosphonium chloride & Tris(pyridine-3-yl)phosphine

Figure S10. Quantitative single scan ${}^{31}P{}^{1}H$ (zgig) NMR spectrum for the photochemical functionalization of P₄ using 3-chloropyridine (Table S8, Entry 7). * marks the internal standard Ph₃PO (0.02 mmol).

S4.8. Tris(4-benzonitrile)phosphine

Figure S11. Quantitative single scan ${}^{31}P{}^{1}H$ (zgig) NMR spectrum for the photochemical functionalization of P₄ using 4-chlorobenzonitrile (Table S8, Entry 8). * marks the internal standard Ph₃PO (0.02 mmol). # marks the signal of an unknown by-product.

S4.9. Tetrakis(4-fluorophenyl)phosphonium chloride & Tris(4-fluorophenyl)phosphine

Figure S12. Quantitative single scan ${}^{31}P{}^{1}H$ (zgig) NMR spectrum for the photochemical functionalization of P₄ using 1-chloro-4-fluorobenzene (Table S8, Entry 9). * marks the internal standard Ph₃PO (0.02 mmol). # marks the signal of an unknown by-product.

S4.10. Tris(3,5-difluorophenyl)phosphine

Figure S13. Quantitative single scan ${}^{31}P{}^{1}H$ (zgig) NMR spectrum for the photochemical functionalization of P₄ using 1-chloro-3,5-difluorobenzene (Table S8, Entry 10). * marks the internal standard Ph₃PO (0.02 mmol). # marks the signal of an unknown by-product.

S4.11. Tris(4-(trifluoromethyl)phenyl)phosphine

Figure S14. Quantitative single scan ${}^{31}P{}^{1}H$ (zgig) NMR spectrum for the photochemical functionalization of P₄ using 1-chloro-4-(trifluoromethyl)benzene (Table S8, Entry 11). * marks the internal standard Ph₃PO (0.02 mmol). # marks the signals of unknown by-product.

S4.12. Tetrakis(4-(tert-butyl)phenyl)phosphonium chloride & Tris(4-(tert-butyl)phenyl)phosphine

Figure S15. Quantitative single scan ${}^{31}P{}^{1}H$ (zgig) NMR spectrum for the photochemical functionalization of P₄ using 1-(*tert*-butyl)-4-chlorobenzene (Table S8, Entry 12). * marks the internal standard Ph₃PO (0.02 mmol). # marks the signals of unknown by-products.

S4.13. Tetrakis(4-ethylphenyl)phosphonium chloride & Tris(4-ethylphenyl)phosphine

Figure S16. Quantitative single scan ${}^{31}P{}^{1}H$ (zgig) NMR spectrum for the photochemical functionalization of P₄ using 1-chloro-4-ethylbenzene (Table S8, Entry 13). * marks the internal standard Ph₃PO (0.02 mmol). # marks the signal of an unknown by-product.

Figure S17. Quantitative single scan ${}^{31}P{}^{1}H$ (zgig) NMR spectrum for the photochemical functionalization of P₄ using benzyl chloride (Table S8, Entry 14). * marks the internal standard Ph₃PO (0.02 mmol). # marks the signals of unknown by-products.

S4.15. Tri(tert-butyl)phosphine

Figure S18. Quantitative single scan ${}^{31}P{}^{1}H$ (zgig) NMR spectrum for the photochemical functionalization of P₄ using tert-butyl chloride (Table S8, Entry 15). * marks the internal standard Ph₃PO (0.02 mmol). # marks the signal of an unknown by-product.

S4.16. Tris(phenylethyl)phosphine

Figure S19. Quantitative single scan ${}^{31}P{}^{1}H$ (zgig) NMR spectrum for the photochemical functionalization of P₄ using (2-chloroethyl)benzene (Table S8, Entry 16). * marks the internal standard Ph₃PO (0.02 mmol).

S4.17 Reactivity of 1,4-hetero-halogenated benzene derivatives

S4.17.1 Tetrakis(4-chlorophenyl)phosphonium iodide & Tris(4-chlorophenyl)phosphine^[2]

Figure S20. Quantitative single scan ³¹P{¹H} (zgig) NMR spectrum for the photochemical functionalization of P₄ using 1-chloro-4-iodobenzene. * marks the internal standard Ph₃PO (0.02 mmol). The signals were assigned to the stated products based on the chemical shifts found in the literature.^[2]

S4.17.2 Mixed activation of the C-X bonds by using 1-bromo-4-chlorobenzene

Figure S21. Quantitative single scan ${}^{31}P{}^{1}H$ (zgig) NMR spectrum for the photochemical functionalization of P₄ using 1-bromo-4-chlorobenzene. * marks the internal standard Ph₃PO (0.02 mmol).

S4.18. Unsuccessful substrate scope

Figure S22. Further substrate scope for photochemical P₄ functionalization. These substrates were not able to generate the corresponding phosphonium salts and phosphines. The reactions with the substrates highlighted with a red sign did not show full conversion of P₄ by ³¹P{¹H} NMR. Substrates **17**, **19**, **20** and **22-25** showed no signal beside the internal standard PPh₃O and P₄ (see red signs above, no P₄ in the reactions with **17** and **19**). Using substrates **18**, **21**, **26** and **27** (P₄ still left) the ³¹P{¹H} NMR showed very unselective reactions with a lot of unknown side-products, but no product formation.

S5. Isolation and characterization of selected products (reactions at 0.8 mmol scale)

Figure S23. Illustration of the equipment setup used for photochemical reactions at 0.8 mmol scale.

S5.1. Photochemical preparation of tetraphenylphosphonium chloride from P₄ (0.8 mmol scale)

To a 100 mL stoppered tube equipped with a stirring bar were added chlorobenzene (8.0 mmol, 10 equiv. based on the phosphorus atom), organic photoreductant $TDAE^{[1]}$ (4.0 mmol, 5 equiv. based on the phosphorus atom), and P₄ (0.2 mmol, 1 equiv., as a stock solution in 1.426 mL benzene). The mixture was dissolved in acetone (5 mL). The tube was sealed, placed in a water-cooled block (to ensure a near-ambient temperature was maintained, Figure S21), and irradiated with UV light (365 nm, 14 V, 700 mA, Osram OSLON SSL 80) for 20 h. Quantitative ³¹P{¹H} (zgig) NMR spectroscopy (Ph₃PO as internal standard) showed 54% tetraphenylphosphonium chloride and 8% triphenylphosphine (see Figure S24).

The reaction mixture was filtered to remove the side product [TDAE]Cl₂ which was formed during the reaction. The solvent was evaporated *in vacuo* and the red orange waxy residue was washed with diethyl ether (4 x 3 mL) to separate the unreacted chlorobenzene, TDAE and the intermediate triphenylphosphine (Ph₃P) and tetraphenyldiphosphine (Ph₄P₂) from the tetraphenylphosphonium chloride. The residue was dissolved in H₂O (8 mL) and filtered. Subsequently, aqueous HCl (1 M, 10 mL) was added to the filtrate, and the solution was extracted with DCM (3 x 15 mL). The combined organic phases were dried over anhydrous Na₂SO₄, and the solvent was removed under reduced pressure. Subsequently, the light yellow residue was redissolved in DCM. Addition of *n*-hexane to the DCM solution afforded NMR-spectroscopically pure tetraphenylphosphonium chloride as a white solid after filtration (57.2 mg, 19%).

The characterization data of the product are consistent with the data found in the literature.^[3] **¹H NMR** (400 MHz, CDCl₃): δ [ppm]: 7.94-7.90 (m, 4H), 7.81 (dt, *J* = 7.8, 3.5 Hz, 8H), 7.64 (dd, *J* = 12.9, 7.6 Hz, 8H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ[ppm]: 135.8 (d, J = 3.0 Hz), 134.5 (d, J = 10.3 Hz), 130.9 (d, J = 12.9 Hz), 117.5 (d, J = 89.5 Hz).

 ${}^{31}P{}^{1}H} NMR (162 \text{ MHz, CDCl}_{3}): \delta[ppm]: 23.8$

Figure S24. Quantitative single scan ${}^{31}P{}^{1}H{}$ (zgig) NMR spectrum for the scale-up photochemical functionalization of P₄ using chlorobenzene. * marks the internal standard Ph₃PO. # marks the intermediate Ph₄P₂.

94 93	92 91	6	8 8	83	82	81	80	79	67	66	65	64	62	62	26
<u>~ ~ ~</u>	<u> </u>	<u>г</u> , г		2	Ņ.	2	5	5	2	5	2	2	2	5	5

Figure S25. ¹H NMR spectrum of tetraphenylphosphonium chloride prepared photochemically from P₄ at 0.8 mmol scale. * marks CDCl₃. # marks adventitious H₂O.

0.8 mmol scale. * marks CDCl₃.

Figure S27. ³¹P{¹H} NMR spectrum of tetraphenylphosphonium chloride prepared photochemically from P_4 at 0.8 mmol scale.

S5.2. Photochemical preparation of tris(phenylethyl)phosphine from P₄ (0.8 mmol scale)

All operations were carried out under inert gas atmosphere. To a 100 mL stoppered tube equipped with a stirring bar were added (2-chloroethyl)benzene (8.0 mmol, 10 equiv. based on the phosphorus atom), organic photoreductant TDAE^[1] (4.0 mmol, 5 equiv. based on the phosphorus atom), and P₄ (0.2 mmol, 1 equiv., as a stock solution in 1.426 mL benzene). The mixture was dissolved in acetone (5 mL). The tube was sealed, placed in a water-cooled block (to ensure a near-ambient temperature was maintained, Figure S21), and irradiated with UV light (365 nm, 14 V, 700 mA, Osram OSLON SSL 80) for 20 h. The reaction mixture was filtered to remove the side product [TDAE]Cl₂. The solvent, unreacted (2-chloroethyl)benzene and TDAE were evaporated *in vacuo* at 80°C (ca. $2 \cdot 10^{-2}$ mbar). The side product 1,4-diphenylbutane was removed by distillation at low pressure (ca $1 \cdot 10^{-2}$ mbar) by warming the flask with a heat gun. The product tris(phenylethyl)phosphine was distilled from the remaining orange oil on a high vacuum pump (1·10⁻⁵ mbar) while heating with a heat gun to 300°C (40.1 mg, 14%).

The characterization data of the product are consistent with the data found in the literature.^[4] ¹H NMR (400 MHz, C_6D_6): δ [ppm]: 7.19-7.05 (m, 15H & C_6D_6), 2.66-2.60 (m, 6H), 1.59-1.55 (m, 6H). ¹³C{¹H} NMR (100 MHz, C_6D_6): δ [ppm]: 142.9 (d, *J* = 10.1 Hz), 128.4 (s), 128.2 (s), 125.9 (s), 32.4 (d, *J* = 15.2 Hz), 29.3 (d, *J* = 15.9 Hz).

³¹P{¹H} NMR (162 MHz, C₆D₆): δ[ppm]: -27.7.

Figure S28. ¹H NMR spectrum of tris(phenylethyl)phosphine prepared photochemically from P_4 at 0.8 mmol scale. * marks C_6D_6 .

Figure S29. ¹³C NMR spectrum of tris(phenylethyl)phosphine prepared photochemically from P_4 at 0.8 mmol scale. * marks C_6D_6 .

---27.7 ----31.3

Figure S30. ³¹P{¹H} NMR spectrum of tris(phenylethyl)phosphine prepared photochemically from P₄ at 0.8 mmol scale. # marks an unknown impurity.

S6. In situ NMR experiments

The apparatus used for *in situ* NMR reaction monitoring with *in situ* illumination has been reported previously.^[5] The insert and the NMR tube were connected with the screw cap of a recently published UVNMR-illumination device to enable measurements under inert conditions.^[6] Two FEP (fluorinated ethylene propylene) coated rubber septa increased the attachment between the insert and the tube. (Figure S31). The same illumination apparatus was used for *in situ* NMR reaction monitoring with *in situ* illumination that was used in previous investigations of the light-driven arylation of P₄.^[7]

Figure S31. Schematic representation showing connection between the ambered NMR tube and illuminating insert used for *in situ* NMR reaction monitoring.

A 365 nm LED (LEUVA66 from Lasercomponents) was employed for sample illumination inside the NMR spectrometer. The spectra were recorded at 298 K and processed with Bruker TopSpin 4.0.3. In order to cover the full chemical shift range of the ³¹P-NMR signals occurring during the reaction monitoring within a single spectrum, the spectra were recorded with broadband excitation using the broadband pulse shapes "xyBEBOP" (excitation window of 500 kHz with a pulse duration of 500 ms) kindly provided to us by Prof. Dr. Burkhard Luy.^[8]

The spectra were recorded with ¹H-decoupling (power gated decoupling) to increase the signal-tonoise ratio of potential intermediates. Therefore, the reaction monitoring gives no quantitative but qualitative information about the kind and sequence of phosphorus species. For integration, these spectra were processed with magnitude calculation (*mc*) and the baseline was corrected automatically with the command *absn*.

Measurements were conducted on a Bruker Avance NEO 600 MHz spectrometer equipped with a double resonance broad band probe (BBO). NMR frequencies were referenced externally and are given in parts per million (ppm). ¹H and ¹³C frequencies are referenced to TMS (tetramethylsilane) and ³¹P to H_3PO_4 (85 wt. % in H_2O). ¹H-NMR spectra were calibrated on the solvent residual peak of

acetone-d₆ (2.05 ppm). In case non-deuterated acetone was used as solvent, the ¹H-NMR of acetone was calibrated to 2.08 ppm (due to isotopic shift between acetone-d₂ to acetone-d₁ and probably further to acetone-d₀ of 10 Hz each on the 600 MHz spectrometer; see Figure S32). Heteronuclear spectra (¹³C and ³¹P) were then calibrated using the unified scaling procedure recommended by IUPAC.^[9]

S6.1. Procedure for ³¹P and ¹H monitoring of the model reaction

The reaction mixture was prepared in accordance with the general procedure for photochemical functionalization of P_4 in a 0.01 mmol scale (section S2) using chlorobenzene as the substrate, with the exception that deuterated acetone-d₆ (CD₃)₂CO was used as solvent. A 300 µL aliquot of this reaction mixture was then taken for NMR reaction monitoring. The reaction mixture was prepared under inert atmosphere (N₂) in an ambered NMR-tube. The *in situ* illumination device was inserted into the tube and fastened with the screw cap.

Figure 32. In situ ³¹P{¹H} NMR monitoring of the model reaction (time = 42 h). Deuterium incorporation of deuterated acetone-d₆ into the arylated HPPh₂ forming a mixture of deuterated and non-deuterated intermediates.

Figure S33. *In situ* ¹H NMR monitoring of the model reaction showed that monodeuterated acetone is generated indicating the presence of H/D exchange processes during the reaction.

S6.2 NMR Investigations of the Intermediate Int1

Figure S34. 2D ¹H-³¹P-HMQC experiment recorded of the model reaction after irradiation for one hour. ³¹P{¹H}-NMR experiments indicated only small couplings between ¹H and ³¹P for the intermediate **Int1.**

Figure S35. 2D ¹H-³¹P-HMQC experiment recorded of the model reaction after irradiation for one hour.

Figure S36. Left: Proposed structural core of the intermediate **Int1** based on combination of its ³¹P chemical shift, ¹H-³¹P-HMQC, ¹H-¹³C-HSQC and -HMBC, ¹H-¹H-COSY experiments and comparison with literature data.^[10] Right: Proposed structure fitting to the chemical context of the here investigated reactions.

S7. Photochemical phenylation of PhPH₂, Ph₂PH, Ph₄P₂ and Ph₃P

Ph、 P I H	+ xs.	+ xs. TDAE	♀UV-LEDs (365 n acetone, N ₂ atmosphere, - [TDAE]Cl ₂ ↓	Ph I⊕ Ph Ph Ph Ph	Ph <mark>P</mark> Ph + I Ph
Entry	Conditions ^{[a][b]} TDAE:PhCl	Conv. to [Ph₄P]Cl / %	Conv. to Ph₃P / %	Intermediates	Consumption of PhPH ₂ / %
1	3:6	52	24	Ph ₄ P ₂ (4), Int1 (5)	100
2	TDAE (3 equiv.) no PhCl	-	-	unselective	92
3	5:10	68%	9	-	100

Table S9. Photochemical functionalization of PhPH₂ to [Ph₄P]Cl.^{[a][b]}

[a] The general procedure for reactions at 0.04 mmol scale (section S2) was modified by replacing P₄ with PhPH₂ (4.4 μL, 0.04 mmol). [b] Listed equivalents are defined per P atom.

100

Ph、 <mark>P</mark> I H	-Ph + xs.	+ xs. TDAE	VV-LEDs (365 nm) acetone, N₂ atmosphere, - [TDAE]Cl₂↓	Ph I P Ph Ph Ph Ph	Ph、 <mark>P</mark> 、Ph + I Ph
Entry	Conditions ^{[a][b]} TDAE:PhCl	Conv. to [Ph₄P]Cl / %	Conv. to Ph₃P / %	Intermediates	Consumption of Ph₂PH/ %
1	3:6	76	15	Int1 (16)	100
2	TDAE (3 equiv.)	0	5	P ₂ Ph ₄ (40)	78

41

Table S10. Photochemical functionalization of Ph₂PH to [Ph₄P]Cl.^{[a][b]}

no PhCl

5:10

3

[a] The general procedure for reactions at 0.04 mmol scale (section S2) was modified by replacing P₄ with Ph₂PH (7.0 μ L, 0.04 mmol). [b] Listed equivalents are defined per P atom.

4

3

Ph Ph	P Ph + xs.	+ xs. TDAE	VV-LEDs (365 acetone, N ₂ atmospher - [TDAE]Cl ₂	^{5 nm)} → Ph I⊕ e, Ph YPh ↓ Ph	Ph Ph + I Ph
Entry	Conditions ^{[a][b]} TDAE:PhCl	Conv. to [Ph₄P]Cl / %	Conv. to Ph₃P / %	Intermediates	Consumption of Ph 4 P 2/ %
1	1.5:3	55	28	Int1 (8)	100
2	TDAE (2 equiv.) no PhCl	0	6	PPh ₂ H (6)	68
3	3:3	39	28	Int1 (8), PPh ₂ H (3)	100
4	3:6	55	5	Int1	100
5	5:10	44	6	Int1	100

Table S11. Photochemical functionalization of Ph₄P₂ to [Ph₄P]Cl.^{[a][b]}

[a] The general procedure for reactions at 0.04 mmol scale (section S2) was modified by replacing P_4 with Ph_4P_2 (7.4 mg, 0.02 mmol). [b] Listed equivalents are defined per P atom.

Table S12. Photochemical functionalization of Ph₃P to [Ph₄P]Cl.^{[a][b]}

	Ph Ph + xs. Cl I + xs.	+ xs. TDAE ⁻	VV-LEDs (365 nm) acetone, N ₂ atmosphere, - [TDAE]Cl ₂ ↓	Ph I⊕ Ph Ph Ph
Entry	Conditions ^{[a][b]} TDAE:PhCl	Conv. to [Ph₄P]Cl / %	Leftover Ph₃P / %	Consumption of PPh₃ / %
1	1.5:3	36	5	95
2	TDAE (1.5 equiv.) no PhCl	-	92	8
3	3:6	55	O ^[~]	100
4	5:10	43	0[~]	100

[a] The general procedure for reactions at 0.04 mmol scale (section S2) was modified by replacing P₄ with Ph₃P (10.5 mg, 0.04 mmol). [b] Listed equivalents are defined per P atom.). [\sim] Signal in the ³¹P{¹H} NMR (NS 256), but too small to determine the yield in the quantitative ³¹P{¹H} NMR (NS 1).

Table S13. Stability test of phosphonium salt [Ph₄P]Cl toward photochemical conditions.^{[a][b]}

Pł	Ph I + xs. Ph Ph	+ xs. TDAE volume for the second secon	(365 nm) eCN, here, Cl ₂ ↓ Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph
Entry	Conditions ^{[a][b]} TDAE:PhCl	Leftover [Ph₄P]Cl / %	Decomposition ^[c] of [Ph₄P]Cl / %
1	1.5:3	56	44 ^[c]
2	TDAE (1.5 equiv) no PhCl	80	12 (8) ^[d]
3	5:10	37	63 ^[c]

[a] The general procedure for reactions at 0.04 mmol scale (section S2) was modified by replacing P_4 with [Ph₄P]Cl (15.0 mg, 0.04 mmol) for stability check of the phosphonium salt under the photochemical conditions. For better solubility of the phosphonium salt a mixture of acetone (0.5 mL) and MeCN (0.2 mL) was used. [b] Listed equivalents are defined per P atom. [c] No decomposition or other signals appear in the ³¹P{¹H} NMR. [d] Decomposition to the triphenylphosphine Ph₃P.

S8. Side product [TDAE]Cl₂

The side product $[TDAE]Cl_2^{[11]}$ can be recovered by simple filtration of the reaction mixture and recrystallization by slow diffusion of acetone into a DMSO solution which resulted in colorless crystals.

S9. References

- F. Glaser, C. B. Larsen, C. Kerzig and O. S. Wenger, *Photochem. Photobiol. Sci.*, 2020, 19, 1035–1041.
- 2. Q. Zhang, S. Zhang and S. Li, *Macromolecules*, 2012, **45**, 2981–2988.
- 3. D. Marcoux and A. B. Charrette, J. Org. Chem., 2008, 73, 590–593.
- a) T. Bartik, B. Bartik, B. E. Hanson, I. Guo and I. Tóth, *Organometallics*, 1992, 12, 164–170; b)
 L. Brandsma, S. Arbuzova, R. J. De Lang, N. Gusarova and B. Trofimov, *Phosphorus, Sulfur and Silicon*, 1997, 126, 125–128.
- 5. C. Feldmeier, H. Bartling, E. Riedle and R. M. Gschwind, J. Magn. Reson., 2013, 232, 39–44.
- 6. A. Seegerer, P. Nitschke, and R. M. Gschwind, *Angew. Chem. Int. Ed.*, 2018, **57**, 7493–7497.
- a) U. Lennert, P. B. Arockiam, V. Streitferdt, D. J. Scott, C. Rödl, R. M. Gschwind and R. Wolf, *Nat. Catal.*, 2019, **2**, 1101–1106, b) R. Rothfelder, V. Streitferdt, U. Lennert, J. Cammarata, D. J. Scott, K. Zeitler, R. M. Gschwind and R. Wolf, *Angew. Chem. Int. Ed.*, 2021, **60**, 24650–24658.
- 8. C. Koch, NMR Spectroscopic Investigations on Copper-Catalyzed Reactions and Zintl Anions, University of Regensburg, 2015.
- 9. IUPAC, Pure and Applied Chemistry, **73**, 1795–1818.
- 10. E. G. Bowes, D. D. Beattie and J. A. Love, Inorg. Chem., 2019, 58, 5, 2925–2929.
- 11. C. Knopf, U. Herzog, G. Roewer, E. Brendler. G. Rheinwald and H. Lang, *J. Organomet. Chem.*, 2002, **662**, 14–22.