Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

# Supporting Information

# Nickel-catalyzed synthesis of Zn(I)-Zn(I) bonded compounds

Shengjie Jiang,<sup>1</sup> Yanping Cai,<sup>1</sup> Ambre Carpentier,<sup>2</sup> Iker del Rosal,<sup>2</sup> Laurent Maron,<sup>2,\*</sup> and Xin Xu<sup>1,\*</sup>

<sup>1</sup>Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China. E-mail: xinxu@suda.edu.cn. <sup>2</sup>LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France. E-mail: laurent.maron@irsamc.ups-tlse.fr.

**General procedures**: All experiments were carried out under a dry Argon atmosphere using standard Schlenk techniques or in a glovebox. Solvents (including deuterated solvents used for NMR) were dried and distilled prior to use. NMR spectra were recorded on a Bruker 400 MHz spectrometer. Chemical shifts were reported as  $\delta$  units with reference to the residual solvent resonance or an external standard. The assignments of NMR data were supported by 1D and 2D NMR experiments. Elemental analysis data was recorded on a Carlo-Erba EA-1110 instrument. High resolution mass spectrometry was measured with a Bruker micrOTF-Q III. Fourier transform infrared spectroscopy were measured with a Bruker VERTEX70. EPR spectra were collected using X-band frequency on a Bruker Elexsys E500 spectrometer. 2-(Diisopropylphosphino)ethanamine<sup>[1]</sup>, zinc hydrides (**1a** and **1b**)<sup>[2]</sup>, and complex **6**<sup>[2]</sup> were synthesized following the literature procedures. Ni(CO)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>, Pd<sub>2</sub>(dba)<sub>3</sub>, (C<sub>3</sub>H<sub>5</sub>)PdCl, Ni(COD)<sub>2</sub>, and NiCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> were purchased from TCI.

## Preparation of HL<sup>c</sup>



#### Scheme S1.

2-((2,6-Diisopropylphenyl)imido)-2-penten-4-one (2.59 g, 10.0 mmol), 2-(diphenylphosphino)ethanamine (1.61 g, 10.0 mmol) and a catalytic amount of *p*-toluenesulfonic acid (0.17 g, 1.0 mmol) were mixed in toluene (40 mL) and heated at reflux for 60 h. The water produced during the reaction was removed using a Dean-Stark trap. After the reaction was complete, the volatiles were removed under vacuum and the residue was recrystallized in hexane at -30 °C to remove solid impurities. The solvent in the supernatant was removed under vacuum to afford **HL**<sup>c</sup> as a yellow oil (3.26 g, 81%).

**HRMS** (ESI) m/z calcd. for  $C_{25}H_{44}N_2P [M + H]^+$ : 403.3242; found: 403.3255.

<sup>1</sup>**H** NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K):  $\delta = 11.13$  (br s, 1H, NH), 7.20 (m, 2H, *m*-NA*r*), 7.11 (m, 1H, *p*-NA*r*), 4.71 (s, 1H, MeC(N)CH), 3.26 (m, 2H, NCH<sub>2</sub>), 3.18 (m, 2H, ArCHMe<sub>2</sub>), 1.71 (s, 3H, *Me*C), 1.68 (s, 3H, *Me*C), 1.49 (m, 2H, PCH<sub>2</sub>), 1.47 (m, 2H, PCHMe<sub>2</sub>), 1.26 (d, <sup>3</sup>*J*<sub>HH</sub> = 6.9 Hz, 6H, ArCHMe<sub>2</sub>), 1.23 (d, <sup>3</sup>*J*<sub>HH</sub> = 6.8 Hz, 6H, ArCHMe<sub>2</sub>), 0.91 (dd, <sup>3</sup>*J*<sub>PH</sub> = 14.0 Hz, <sup>3</sup>*J*<sub>HH</sub> = 7.1 Hz, 6H, PCHMe<sub>2</sub>), 0.89 (dd, <sup>3</sup>*J*<sub>PH</sub> = 10.9 Hz, <sup>3</sup>*J*<sub>HH</sub> = 6.9 Hz, 6H, PCHMe<sub>2</sub>).

<sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K):  $\delta = 166.6$  (MeC), 155.0 (MeC), 147.6 (*i*-NAr), 138.2 (*o*-NAr), 123.4 (*p*-NAr), 123.3 (*m*-NAr), 94.1 (MeC(N)CH), 43.1 (d,  ${}^{2}J_{PC} = 31.6$  Hz, NCH<sub>2</sub>), 28.6 (ArCHMe<sub>2</sub>), 24.4 (ArCHMe<sub>2</sub>), 24.3 (d,  ${}^{2}J_{PC} = 21.4$  Hz, PCH<sub>2</sub>), 23.6 (d,  ${}^{1}J_{PC} = 13.5$  Hz, PCHMe<sub>2</sub>), 23.1 (ArCHMe<sub>2</sub>), 21.8 (MeC), 20.1 (d,  ${}^{2}J_{PC} = 16.6$  Hz, PCHMe<sub>2</sub>), 19.3 (MeC), 18.7 (d,  ${}^{2}J_{PC} = 9.8$  Hz, PCHMe<sub>2</sub>).

<sup>31</sup>**P**{<sup>1</sup>**H**} **NMR** (162 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K):  $\delta$  = -1.5.



**S**3

## Preparation of complex L<sup>c</sup>ZnOAr



#### Scheme S2.

ZnEt<sub>2</sub> (2.6 mL, 1.0 M in n-hexane) was slowly added to a solution of **HL**<sup>c</sup> (1.01 g, 2.5 mmol) in 15 mL of toluene at -35 °C. After stirring at room temperature overnight, 2,6-di-*iso*-propylphenol (446 mg, 2.5 mmol) was added. The reaction mixture was stirred at room temperature for 8 h. The volatiles were removed under vacuum and then the residue was washed with hexane (3 \* 2 mL) to eventually give **L**<sup>c</sup>**ZnOAr** as a colorless solid (902 mg, 56%).

**Elemental Analysis**: calcd. for C<sub>37</sub>H<sub>59</sub>N<sub>2</sub>OPZn: C, 68.98; H, 9.23; N, 4.35%. Found: C, 69.10; H, 9.38; N, 4.12%.

<sup>1</sup>**H** NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K):  $\delta = 7.14$  (m, 1H, *p*-NA*r*), 7.13 (m, 2H, *m*-NA*r*), 7.12 (m, 2H, *m*-OA*r*), 6.84 (m, 1H, *p*-OA*r*), 4.58 (s, 1H, MeC(N)CH), 3.49 (m, 2H, NCH<sub>2</sub>), 3.34 (m, 2H, NArCHMe<sub>2</sub>), 3.33 (m, 2H, OArCHMe<sub>2</sub>), 1.62 (s, 3H, *Me*C), 1.59 (s, 3H, *Me*C), 1.58 (overlapped with *Me*C, 2H, PCHMe<sub>2</sub>), 1.24 (overlapped with ArCHMe<sub>2</sub>, 2H, PCH<sub>2</sub>)<sup>1</sup>, 1.21 (m, 12H, NArCHMe<sub>2</sub>), 1.20 (overlapped with NArCHMe<sub>2</sub>, 12H, OArCHMe<sub>2</sub>), 0.82 (dd, <sup>3</sup>J<sub>PH</sub> = 15.7 Hz, <sup>3</sup>J<sub>HH</sub> = 7.1 Hz, 6H, PCHMe<sub>2</sub>), 0.71 (dd, <sup>3</sup>J<sub>PH</sub> = 12.8 Hz, <sup>3</sup>J<sub>HH</sub> = 7.0 Hz, 6H, PCHMe<sub>2</sub>). [<sup>1</sup>from the <sup>1</sup>H, <sup>1</sup>H GCOSY experiment]

<sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K):  $\delta = 167.8$  (MeC), 166.4 (MeC), 161.3 (*i*-OAr), 145.7 (*i*-NAr), 142.5 (*o*-NAr), 137.4 (*o*-OAr), 125.8 (*p*-NAr), 124.0 (*m*-NAr), 122.7 (*m*-OAr), 115.2 (*p*-OAr), 95.1 (MeC(N)CH), 45.4 (NCH<sub>2</sub>), 28.4 (NArCHMe<sub>2</sub>), 27.1 (OArCHMe<sub>2</sub>), 24.6 (NArCHMe<sub>2</sub>), 24.3 (NArCHMe<sub>2</sub>), 24.2 (*Me*C), 24.1 (OArCHMe<sub>2</sub>), 21.8 (d, <sup>1</sup>*J*<sub>PC</sub> = 6.5 Hz, PCHMe<sub>2</sub>), 21.2 (*Me*C), 20.1 (d, <sup>1</sup>*J*<sub>PC</sub> = 14.7 Hz, PCH<sub>2</sub>), 18.9 (d, <sup>2</sup>*J*<sub>PC</sub> = 8.0 Hz, PCHMe<sub>2</sub>), 17.4 (d, <sup>2</sup>*J*<sub>PC</sub> = 1.7 Hz, PCHMe<sub>2</sub>).

<sup>31</sup>**P**{<sup>1</sup>**H**} **NMR** (162 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K):  $\delta$  = -11.6.

<sup>1</sup>**H**, <sup>1</sup>**H GCOSY** (400 MHz / 400 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) [selected traces]:  $\delta$  <sup>1</sup>H /  $\delta$  <sup>1</sup>H = 7.12 / 6.84 (*m*-OA*r* / *p*-OA*r*), 3.49 / 1.24 (NC*H*<sub>2</sub> / PC*H*<sub>2</sub>), 3.34, 3.33 / 1.21 (ArC*H*Me<sub>2</sub> / ArCHMe<sub>2</sub>), 1.58 / 0.82, 0.71 (PC*H*Me<sub>2</sub> / PCHMe<sub>2</sub>).

<sup>1</sup>**H**, <sup>13</sup>**C GHSQC** (400 MHz / 101 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K):  $\delta$  <sup>1</sup>H /  $\delta$  <sup>13</sup>C = 7.14 / 125.8 (*m*-NA*r*), 7.13 /124.0 (*p*-NA*r*), 7.12 / 122.7 (*m*-OA*r*), 6.84 / 115.2 (*p*-OA*r*), 4.58 / 95.1 (MeC(N)CH), 3.49 / 45.4 (NCH<sub>2</sub>), 3.34 / 28.4 (NArCHMe<sub>2</sub>), 3.33 / 27.1 (OArCHMe<sub>2</sub>), 1.62 / 21.2 (*Me*C), 1.59 / 24.2 (*Me*C), 1.58 / 21.8 (PCHMe<sub>2</sub>), 1.24 / 20.1 (PCH<sub>2</sub>), 1.21 / 24.6, 24.3, 24.1 (ArCHMe<sub>2</sub>), 0.82, 0.71 / 18.9, 17.4 (PCHMe<sub>2</sub>).

<sup>1</sup>**H**, <sup>13</sup>**C GHMBC** (400 MHz / 101 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) [selected traces]: δ <sup>1</sup>H / δ <sup>13</sup>C = 7.13 / 145.7 (m-NAr / *i*-NAr), 7.12 / 161.3 (*m*-OAr / *i*-OAr), 3.49 / 20.1 (NCH<sub>2</sub> / PCH<sub>2</sub>), 3.34 / 145.7, 142.5, 124.0, (NArCHMe<sub>2</sub>/*i*-NAr, *o*-NAr, *m*-NAr), 3.33 / 161.3, 137.4, 122.7 (OArCHMe<sub>2</sub> / *i*-OAr, *o*-OAr, *m*-OAr).







## **Preparation of complex 1c**



#### Scheme S3.

PhSiH<sub>3</sub> (119 mg, 1.1 mmol) was added to a solution of **L**<sup>c</sup>**ZnOAr** (644 mg, 1.0 mmol) in toluene (10 mL). The reaction mixture was stirred at room temperature for 4 h. The volatiles were removed under vacuum, and then the residue was washed with hexane (3 \* 2 mL) to eventually give **1c** as a colorless solid (327 mg, 70%). Crystals suitable for the X-ray crystal structure analysis were grown from a layered toluene/hexane (v/v: 1:2) solution at -30 °C.

**Elemental Analysis**: calcd. for C<sub>25</sub>H<sub>43</sub>N<sub>2</sub>PZn: C, 64.16; H, 9.26; N, 5.99%. Found: C, 64.66; H, 9.36; N, 5.84%.

<sup>1</sup>**H NMR** (400 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K):  $\delta = 7.16$  (m, 3H, *m*, *p*-NA*r*), 4.69 (s, 1H, MeC(N)CH), 4.39 (s, 1H, ZnH), 3.43 (m, 2H, NCH<sub>2</sub>), 3.43 (overlapped with NCH<sub>2</sub>, 2H, ArCHMe<sub>2</sub>), 1.74 (s, 3H, MeC), 1.66 (s, 3H, MeC), 1.62 (m, 2H, PCHMe<sub>2</sub>), 1.34 (d, <sup>3</sup>J<sub>HH</sub> = 6.9 Hz, 6H, ArCHMe<sub>2</sub>), 1.30 (m, 2H, PCH<sub>2</sub>), 1.22 (d, <sup>3</sup>J<sub>HH</sub> = 7.0 Hz, 6H, ArCHMe<sub>2</sub>), 0.92 (m, 12H, PCHMe<sub>2</sub>).

<sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K):  $\delta = 165.9$  (MeC), 165.8 (MeC), 146.4 (*i*-NAr), 142.5 (*o*-NAr), 125.4 (*p*-NAr), 123.8 (*m*-NAr), 95.1 (MeC(N)CH), 47.2 (d, <sup>2</sup>J<sub>PC</sub> = 9.2 Hz, NCH<sub>2</sub>), 28.1 (ArCHMe<sub>2</sub>), 25.2 (ArCHMe<sub>2</sub>), 23.9 (ArCHMe<sub>2</sub>), 23.7 (*MeC*), 22.6 (d, <sup>1</sup>J<sub>PC</sub> = 4.5 Hz, PCHMe<sub>2</sub>), 22.2 (br, PCH<sub>2</sub>), 20.9 (*MeC*), 19.4 (d, <sup>2</sup>J<sub>PC</sub> = 12.7 Hz, PCHMe<sub>2</sub>), 18.1 (d, <sup>2</sup>J<sub>PC</sub> = 4.1 Hz, PCHMe<sub>2</sub>).

<sup>31</sup>**P**{<sup>1</sup>**H**} **NMR** (162 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K):  $\delta$  = -14.6.

<sup>1</sup>**H**, <sup>1</sup>**H GCOSY** (400 MHz / 400 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) [selected traces]:  $\delta$  <sup>1</sup>H /  $\delta$  <sup>1</sup>H = 3.43 / 1.30 (NCH<sub>2</sub> / PCH<sub>2</sub>), 3.43 / 1.34, 1.22 (ArCHMe<sub>2</sub> / ArCHMe<sub>2</sub>), 1.62 / 0.92 (PCHMe<sub>2</sub> / PCHMe<sub>2</sub>).

<sup>1</sup>H, <sup>13</sup>C GHSQC (400 MHz / 101 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K):  $\delta$  <sup>1</sup>H /  $\delta$  <sup>13</sup>C = 7.16 / 125.4, 123.8 (*p*, *m*-NA*r*), 4.69 / 95.1 (MeC(N)*CH*), 3.43 /47.2 (N*CH*<sub>2</sub>), 3.43 / 28.1 (Ar*CH*Me<sub>2</sub>), 1.74 / 20.9 (*Me*C), 1.66 / 23.7 (*Me*C), 1.62 / 22.6 (*PCH*Me<sub>2</sub>), 1.34 / 25.2 (Ar*CHMe*<sub>2</sub>), 1.30 / 22.2 (*PCH*<sub>2</sub>), 1.22 / 23.9 (Ar*CHMe*<sub>2</sub>), 0.92 / 19.4, 18.1 (*PCHMe*<sub>2</sub>). <sup>1</sup>H, <sup>13</sup>C GHMBC (400 MHz / 101 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) [selected traces]:  $\delta$  <sup>1</sup>H /  $\delta$  <sup>13</sup>C = 4.69 / 146.4, 47.2 (MeC(N)*CH* / *i*-N*Ar*, N*C*H<sub>2</sub>), 3.43 / 25.2, 23.9 (Ar*CHMe*<sub>2</sub>), 1.34, 1.22 / 142.5 (Ar*CHMe*<sub>2</sub> / *o*-N*Ar*), 1.30 / 47.2 (*PCH*<sub>2</sub> / *NC*H<sub>2</sub>).







**Figure S9.** <sup>31</sup>**P**{<sup>1</sup>**H**} **NMR** (162 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K).

**X-ray crystal structure analysis of complex 1c:** formula C<sub>25</sub>H<sub>43</sub>N<sub>2</sub>PZn, M = 467.95 gmol<sup>-1</sup>, colorless,  $0.22 \times 0.15 \times 0.12$  mm, Monoclinic, space group  $P2_1/c$ , a = 17.8843(11), b = 10.2159(5), c = 15.6744(9) Å,  $\beta = 114.562(7)^{\circ}$ , V = 2604.6(3) Å<sup>3</sup>,  $\rho_{calc} = 1.193$  gcm<sup>-3</sup>,  $\mu = 1.017$  mm<sup>-1</sup>, empirical absorption correction (0.76993  $\leq T \leq 1.00000$ ), Z = 4,  $\lambda = 0.71073$  Å, T = 223 K, 17437 reflections collected (-24  $\leq h \leq 17$ , -14  $\leq k \leq 12$ , -14  $\leq 1 \leq 22$ ), 6825 independent ( $R_{int} = 0.0285$ ) and 5260 observed reflections [I>2 $\sigma$ (I)], 276 refined parameters, the final  $R_1$  was 0.0397 (I > 2 $\sigma$ (I)) and  $wR_2$  was 0.1073 (all data), max. (min.) residual electron density 0.35 (-0.25) e.Å<sup>-3</sup>,

hydrogen atoms except for hydrides were placed in calculated positions and refined using a riding model, the hydride atom in this structure was located in a Fourier difference map and was refined with isotropic displacement parameters.



Figure S10. Molecular structure of complex 1c.

## **Preparation of complex 2a**





Ni(CO)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (32 mg, 0.05 mmol) was added to a solution of complex **1a** (536 mg, 1.0 mmol) in 5 mL of toluene. After stirring at 60 °C for 24 h, the reaction mixture was filtered through Celite and the solvent was removed in vacuum. The residue was washed with hexane (3 \* 2 mL) to eventually give **2a** as a pale-yellow solid (455 mg, 85%). Crystals suitable for the X-ray crystal structure analysis were grown from a layered toluene/hexane (v/v: 1:2) solution at room temperature.

**Elemental Analysis**: calcd. for C<sub>62</sub>H<sub>76</sub>N<sub>4</sub>P<sub>2</sub>Zn<sub>2</sub>·C<sub>7</sub>H<sub>8</sub>: C, 71.31; H, 7.29; N, 4.82%. Found: C, 70.62; H, 7.46; N, 4.87%.

<sup>1</sup>**H NMR** (400 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K):  $\delta = 7.45$  (m, 8H, *o-Ph*<sub>2</sub>P), 7.17 (m, 8H, *m-Ph*<sub>2</sub>P), 7.09 (m, 4H, *p-Ph*<sub>2</sub>P), 7.04 (m, 2H, *p-NAr*), 7.02 (m, 4H, *m-NAr*), 4.84 (s, 2H, MeC(N)CH), 3.68 (m, 4H, NCH<sub>2</sub>), 3.10 (sp, <sup>3</sup>J<sub>HH</sub> = 6.9 Hz, 4H, ArCHMe<sub>2</sub>), 2.28 (m, 4H, PCH<sub>2</sub>), 1.76 (s, 6H, *Me*C), 1.59 (s, 6H, *Me*C), 1.09 (d, <sup>3</sup>J<sub>HH</sub> = 6.9 Hz, 12H, ArCHMe<sub>2</sub>), 0.84 (d, <sup>3</sup>J<sub>HH</sub> = 6.9 Hz, 12H, ArCHMe<sub>2</sub>).

<sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K):  $\delta = 166.8$  (MeC), 165.0 (MeC), 146.4 (*i*-NAr), 142.0 (*o*-NAr), 139.1 (d, <sup>1</sup>J<sub>PC</sub> = 14.3 Hz, *i*-Ph<sub>2</sub>P), 133.2 (d, <sup>2</sup>J<sub>PC</sub> = 18.6 Hz, *o*-Ph<sub>2</sub>P), 128.9 (d, <sup>3</sup>J<sub>PC</sub> = 6.5 Hz, *m*-Ph<sub>2</sub>P), 128.7 (*p*-Ph<sub>2</sub>P), 125.4 (*p*-NAr), 123.5 (*m*-NAr), 96.9 (MeC(N)CH), 49.2 (d, <sup>2</sup>J<sub>PC</sub> = 22.6 Hz, NCH<sub>2</sub>), 32.1 (d, <sup>1</sup>J<sub>PC</sub> = 16.0 Hz, PCH<sub>2</sub>), 28.1 (ArCHMe<sub>2</sub>), 25.0 (ArCHMe<sub>2</sub>), 24.0 (MeC), 23.5 (ArCHMe<sub>2</sub>), 21.5 (MeC).

<sup>31</sup>**P**{<sup>1</sup>**H**} **NMR** (162 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K):  $\delta$  = -20.5.

<sup>1</sup>**H**, <sup>1</sup>**H** GCOSY (400 MHz / 400 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) [selected traces]:  $\delta$  <sup>1</sup>H /  $\delta$  <sup>1</sup>H = 7.45 / 7.17 (*o*-*Ph*<sub>2</sub>P / *m*-*Ph*<sub>2</sub>P), 3.68 / 2.28 (NC*H*<sub>2</sub> / PC*H*<sub>2</sub>), 3.10 / 1.09, 0.84

 $(ArCHMe_2 / ArCHMe_2).$ 

<sup>1</sup>**H**, <sup>13</sup>**C GHSQC** (400 MHz / 101 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K):  $\delta$  <sup>1</sup>H /  $\delta$  <sup>13</sup>C = 7.45 / 133.2 (*o-Ph*<sub>2</sub>P), 7.17 / 128.9 (*m*-NA*r*), 7.09 / 128.7 (*p*-NA*r*), 7.04 / 125.4 (*p-Ph*<sub>2</sub>P), 7.02 / 123.5 (*m-Ph*<sub>2</sub>P), 4.84 / 96.9 (MeC(N)CH), 3.68 / 49.2 (NCH<sub>2</sub>), 3.10 / 28.1 (ArCHMe<sub>2</sub>), 2.28 / 32.1 (PCH<sub>2</sub>), 1.76 / 21.5 (MeC), 1.59 / 24.0 (MeC), 1.09 / 23.5 (ArCHMe<sub>2</sub>), 0.84 / 25.0 (ArCHMe<sub>2</sub>).

<sup>1</sup>H, <sup>13</sup>C GHMBC (400 MHz / 101 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) [selected traces]: δ <sup>1</sup>H / δ <sup>13</sup>C = 7.45 / 128.7 (o-*Ph*<sub>2</sub>P / *p*-*Ph*<sub>2</sub>P), 4.84 / 146.4, 49.2 (MeC(N)CH / *i*-NA*r*, NCH<sub>2</sub>), 3.68 / 32.1 (NCH<sub>2</sub> / PCH<sub>2</sub>), 3.10 / 25.0, 23.5 (ArCHMe<sub>2</sub>/ ArCHMe<sub>2</sub>), 2.36 / 139.1 (PCH<sub>2</sub> / *i*-*Ph*<sub>2</sub>P), 1.09, 0.84 / 142.0 (ArCHMe<sub>2</sub> / *o*-NA*r*).





Figure S13. <sup>31</sup>P{<sup>1</sup>H} NMR (162 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K).

EPR spectroscopic study of complex 2a:



**Figure S14**. X-band EPR spectrum of a solid sample of **2a** at 25 °C. (v = 9.839 GHz; P = 2.000 mW; modulation amplitude = 1.000 G)

**X-ray crystal structure analysis of complex 2a:** formula  $C_{62}H_{76}N_4P_2Zn_2 \cdot C_7H_8$ ,  $M = 1162.08 \text{ gmol}^{-1}$ , colorless,  $0.18 \times 0.15 \times 0.10 \text{ mm}$ , triclinic, space group P-1, a = 12.5584(5), b = 13.8088(5), c = 21.0026(9) Å, a = 103.7740(10),  $\beta = 93.3920(10)$ ,  $\gamma = 114.9870(10)^\circ$ , V = 3153.1(2) Å<sup>3</sup>,  $\rho_{calc} = 1.224 \text{ gcm}^{-3}$ ,  $\mu = 0.854 \text{ mm}^{-1}$ , empirical absorption correction ( $0.6533 \leq T \leq 0.7456$ ), Z = 2,  $\lambda = 0.71073$  Å, T = 120(2) K, 108875 reflections collected ( $-16 \leq h \leq 16$ ,  $-17 \leq k \leq 17$ ,  $-27 \leq 1 \leq 27$ ), 14487 independent ( $R_{int} = 0.0677$ ) and 11444 observed reflections [I>2 $\sigma$ (I)], 695 refined parameters, the final  $R_I$  was 0.0480 (I >  $2\sigma$ (I)) and  $wR_2$  was 0.1448 (all data), max. (min.) residual electron density 2.38 (-1.07) e.Å<sup>-3</sup>, hydrogen atoms were placed in calculated positions and refined using a riding model.



Figure S15. Molecular structure of complex 2a.

### **Preparation of complex 2b**



#### Scheme S5.

Following the procedure described for 2a, reaction of Ni(CO)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (10 mg, 0.015 mmol) with **1b** (165 mg, 0.30 mmol) for 13 h gave **2b** as a colorless solid (137 mg, 83%). Crystals suitable for the X-ray crystal structure analysis were grown from a layered toluene/hexane (v/v: 1:2) solution at room temperature.

**Elemental Analysis**: calcd. for C<sub>64</sub>H<sub>80</sub>N<sub>4</sub>P<sub>2</sub>Zn<sub>2</sub>: C, 70.00; H, 7.34; N, 5.10%. Found: C, 70.34; H, 7.24; N, 4.92%.

<sup>1</sup>**H NMR** (400 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K):  $\delta = 7.50$  (m, 8H, *o-Ph*<sub>2</sub>P), 7.14 (m, 8H, *m-Ph*<sub>2</sub>P), 7.12 (m, 6H, *m*, *p*-NA*r*), 7.08 (m, 4H, *p-Ph*<sub>2</sub>P), 4.74 (s, 2H, MeC(N)CH), 3.24 (sp, <sup>3</sup>*J*<sub>HH</sub> = 6.9 Hz, 4H, ArCHMe<sub>2</sub>), 3.02 (m, 4H, NCH<sub>2</sub>), 1.99 (m, 4H, PCH<sub>2</sub>), 1.78 (s, 6H, *Me*C), 1.67 (s, 6H, *Me*C), 1.51 (m, 4H, NCH<sub>2</sub>CH<sub>2</sub>), 1.19 (d, <sup>3</sup>*J*<sub>HH</sub> = 6.9 Hz, 12H, ArCHMe<sub>2</sub>), 1.15 (d, <sup>3</sup>*J*<sub>HH</sub> = 6.9 Hz, 12H, ArCHMe<sub>2</sub>).

<sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K):  $\delta = 166.6$  (MeC), 164.1 (MeC), 147.1 (*i*-NAr), 142.4 (*o*-NAr), 139.7 (d, <sup>1</sup>J<sub>PC</sub> = 14.0 Hz, *i*-Ph<sub>2</sub>P), 133.2 (d, <sup>2</sup>J<sub>PC</sub> = 18.3 Hz, *o*-Ph<sub>2</sub>P), 128.8 (d, <sup>3</sup>J<sub>PC</sub> = 6.5 Hz, *m*-Ph<sub>2</sub>P), 128.7 (*p*-Ph<sub>2</sub>P), 125.1 (*p*-NAr), 123.7 (*m*-NAr), 96.6 (MeC(N)CH), 51.9 (d, <sup>3</sup>J<sub>PC</sub> = 11.5 Hz, NCH<sub>2</sub>), 29.7 (d, <sup>2</sup>J<sub>PC</sub> = 14.7 Hz, NCH<sub>2</sub>CH<sub>2</sub>), 28.3 (ArCHMe<sub>2</sub>), 26.4 (d, <sup>1</sup>J<sub>PC</sub> = 11.9 Hz, PCH<sub>2</sub>), 25.1 (ArCHMe<sub>2</sub>), 23.7 (ArCHMe<sub>2</sub>), 23.6 (MeC), 21.4 (MeC).

<sup>31</sup>**P**{<sup>1</sup>**H**} **NMR** (162 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K):  $\delta$  = -16.9.

<sup>1</sup>**H**, <sup>1</sup>**H GCOSY** (400 MHz / 400 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) [selected traces]:  $\delta$  <sup>1</sup>H /  $\delta$  <sup>1</sup>H = 7.50 / 7.14 (*o-Ph*<sub>2</sub>P / *m-Ph*<sub>2</sub>P), 3.02 / 1.51 (NC*H*<sub>2</sub> / NCH<sub>2</sub>C*H*<sub>2</sub>), 1.99 / 1.51 (PC*H*<sub>2</sub> / NCH<sub>2</sub>C*H*<sub>2</sub>), 3.24 / 1.19, 1.15 (ArC*H*Me<sub>2</sub> / ArCH*M*e<sub>2</sub>).

<sup>1</sup>**H**, <sup>13</sup>**C GHSQC** (400 MHz / 101 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K):  $\delta$  <sup>1</sup>H /  $\delta$  <sup>13</sup>C = 7.50 / 133.2

(*o-Ph*<sub>2</sub>P), 7.14 / 128.7 (*m-Ph*<sub>2</sub>P), 7.12 / 125.1 (*p-NAr*), 7.12 / 123.7 (*m-NAr*), 7.08 / 128.7 (*p-Ph*<sub>2</sub>P), 4.74 / 96.6 (MeC(N)*CH*), 3.24 / 28.3 (Ar*CH*Me<sub>2</sub>,), 3.02 / 51.9 (N*CH*<sub>2</sub>), 1.99 / 26.4 (*PCH*<sub>2</sub>), 1.78 / 21.4 (*MeC*), 1.67 / 23.6 (*MeC*), 1.51 / 29.7 (NCH<sub>2</sub>*CH*<sub>2</sub>), 1.19 / 23.7 (ArCH*Me*<sub>2</sub>), 1.15 / 25.1 (ArCH*Me*<sub>2</sub>).

<sup>1</sup>**H**, <sup>13</sup>**C GHMBC** (400 MHz / 101 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) [selected traces]: δ <sup>1</sup>H / δ <sup>13</sup>C = 7.50 / 128.7 (o-*Ph*<sub>2</sub>P / *p*-*Ph*<sub>2</sub>P), 4.74 / 147.1, 51.9 (MeC(N)CH / *i*-NAr , NCH<sub>2</sub>), 3.02 / 29.7, 26.4 (NCH<sub>2</sub> / PCH<sub>2</sub>, NCH<sub>2</sub>CH<sub>2</sub>), 3.24 / 25.1, 23.7 (ArCHMe<sub>2</sub>/ ArCHMe<sub>2</sub>), 1.99 / 139.7 (PCH<sub>2</sub> / *i*-*Ph*<sub>2</sub>P), 1.19, 1.15 / 142.4 (ArCHMe<sub>2</sub> / *o*-NAr).



**Figure S16.** <sup>1</sup>**H NMR** (400 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K).





EPR spectroscopic study of complex 2b:



**Figure S19**. X-band EPR spectrum of a solid sample of **2b** at 25 °C. (v = 9.839 GHz; P = 2.000 mW; modulation amplitude = 1.000 G)

**X-ray crystal structure analysis of complex 2b:** formula C<sub>64</sub>H<sub>80</sub>N<sub>4</sub>P<sub>2</sub>Zn<sub>2</sub>,  $M = 1098.04 \text{ gmol}^{-1}$ , colorless,  $0.25 \times 0.18 \times 0.15 \text{ mm}$ , triclinic, space group *P*-1, a = 13.1045(13), b = 13.5153(12), c = 16.9765(16) Å, a = 95.494(3),  $\beta = 97.853(3)$ ,  $\gamma = 92.241(3)^{\circ}$ , V = 2960.7(5) Å<sup>3</sup>,  $\rho_{calc} = 1.229 \text{ gcm}^{-3}$ ,  $\mu = 0.905 \text{ mm}^{-1}$ , empirical absorption correction ( $0.6361 \le T \le 0.7456$ ), Z = 2,  $\lambda = 0.71073$  Å, T = 120(2) K, 133429 reflections collected ( $-17 \le h \le 17$ ,  $-17 \le k \le 17$ ,  $-22 \le 1 \le 22$ ), 13608 independent ( $R_{int} = 0.0729$ ) and 10228 observed reflections [I>2 $\sigma$ (I)], 640 refined parameters, the final  $R_I$  was 0.0476 (I > 2 $\sigma$ (I)) and  $wR_2$  was 0.1028 (all data), max. (min.) residual electron density 1.05 (-0.66) e.Å<sup>-3</sup>, hydrogen atoms were placed in calculated positions and refined using a riding model.



Figure S20. Molecular structure of complex 2b.

## **Preparation of complex 2c**



#### Scheme S6.

Following the procedure described for **2a**, reaction of Ni(CO)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (16 mg, 0.025 mmol) with **1c** (234 mg, 0.50 mmol) gave **2c** as a colorless crystalline solid (149 mg, 64%). Crystals suitable for the X-ray crystal structure analysis were grown from a layered toluene / hexane (v/v: 1:2) solution at -30 °C.

**Elemental Analysis**: calcd. for C<sub>50</sub>H<sub>84</sub>N<sub>4</sub>P<sub>2</sub>Zn<sub>2</sub>: C, 64.30; H, 9.07; N, 6.00%. Found: C, 64.66; H, 8.89; N, 5.86%.

<sup>1</sup>**H NMR** (400 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K):  $\delta = 7.10$  (m, 2H, *p*-NA*r*), 7.06 (m, 4H, *m*-NA*r*), 4.79 (s, 2H, MeC(N)CH), 3.83 (m, 4H, NCH<sub>2</sub>), 3.17 (sp, <sup>3</sup>J<sub>HH</sub> = 6.8 Hz, 4H, ArCHMe<sub>2</sub>), 1.98 (s, 6H, *Me*C), 1.74 (m, 4H, PCH<sub>2</sub>), 1.73 (overlapped with PCH<sub>2</sub>, 4H, PCHMe<sub>2</sub>), 1.61 (s, 6H, *Me*C), 1.17 (d, <sup>3</sup>J<sub>HH</sub> = 6.9 Hz, 12H, ArCHMe<sub>2</sub>), 1.11 (m, 24H, PCHMe<sub>2</sub>), 1.04 (d, <sup>3</sup>J<sub>HH</sub> = 6.9 Hz, 12H, ArCHMe<sub>2</sub>).

<sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K):  $\delta = 166.1$  (MeC), 164.5 (MeC), 146.5 (*i*-NAr), 142.1 (*o*-NAr), 125.3 (*p*-NAr), 123.5 (*m*-NAr), 96.8 (MeC(N)CH), 51.6 (d,  ${}^{2}J_{PC} = 29.1$  Hz, NCH<sub>2</sub>), 28.2 (ArCHMe<sub>2</sub>), 26.9 (d,  ${}^{1}J_{PC} = 22.1$  Hz, PCH<sub>2</sub>), 25.4 (ArCHMe<sub>2</sub>), 23.9 (d,  ${}^{1}J_{PC} = 4.0$  Hz, PCHMe<sub>2</sub>), 23.7 (MeC), 23.6 (ArCHMe<sub>2</sub>), 21.9 (MeC), 20.3 (d,  ${}^{2}J_{PC} = 16.5$  Hz, PCHMe<sub>2</sub>), 19.2 (d,  ${}^{2}J_{PC} = 10.1$  Hz, PCHMe<sub>2</sub>).

<sup>31</sup>**P**{<sup>1</sup>**H**} **NMR** (162 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K):  $\delta = 0.6$ .

<sup>1</sup>**H**, <sup>1</sup>**H GCOSY** (400 MHz / 400 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) [selected traces]:  $\delta$  <sup>1</sup>H /  $\delta$  <sup>1</sup>H = 3.83 / 1.74 (NCH<sub>2</sub> / PCH<sub>2</sub>), 3.17 / 1.17, 1.04 (ArCHMe<sub>2</sub> / ArCHMe<sub>2</sub>), 1.73 / 1.11 (PCHMe<sub>2</sub> / PCHMe<sub>2</sub>).

<sup>1</sup>H, <sup>13</sup>C GHSQC (400 MHz / 101 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K):  $\delta$  <sup>1</sup>H /  $\delta$  <sup>13</sup>C = 7.10 / 125.3 (*p*-NA*r*), 7.06 / 123.5 (*m*-NA*r*), 4.79 / 96.8 (MeC(N)*CH*), 3.83 / 51.6 (N*CH*<sub>2</sub>), 3.17 /

28.2 (Ar*CH*Me<sub>2</sub>), 1.98 / 21.9 (*Me*C), 1.74 / 26.9 (P*CH*<sub>2</sub>), 1.73 / 23.9 (P*CH*Me<sub>2</sub>), 1.61 / 23.7 (*Me*C), 1.17 / 23.6 (ArCH*Me*<sub>2</sub>), 1.11 / 20.3, 19.2 (PCH*Me*<sub>2</sub>), 1.04 / 25.4 (ArCH*Me*<sub>2</sub>).

<sup>1</sup>**H**, <sup>13</sup>**C GHMBC** (400 MHz / 101 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) [selected traces]: δ <sup>1</sup>H / δ <sup>13</sup>C = 4.74 / 146.5, 51.6 (MeC(N)CH / *i*-NAr, NCH<sub>2</sub>), 3.83 / 26.9 (NCH<sub>2</sub> / PCH<sub>2</sub>), 3.17 / 25.4, 23.6 (ArCHMe<sub>2</sub> / ArCHMe<sub>2</sub>), 1.17, 1.04 / 142.1 (ArCHMe<sub>2</sub> / *o*-NAr).





EPR spectroscopic study of complex 2c:



**Figure S24**. X-band EPR spectrum of a solid sample of **2c** at 25 °C. (v = 9.839 GHz; P = 2.000 mW; modulation amplitude = 1.000 G)

**X-ray crystal structure analysis of complex 2c:** formula C<sub>50</sub>H<sub>84</sub>N<sub>4</sub>P<sub>2</sub>Zn<sub>2</sub>,  $M = 933.89 \text{ gmol}^{-1}$ , colorless,  $0.12 \times 0.1 \times 0.08 \text{ mm}$ , monoclinic, space group  $P2_1/c$ , a = 12.8656(4), b = 9.8087(4), c = 41.6176(12) Å,  $\beta = 90.4880(10)^\circ$ , V = 5251.7(3) Å<sup>3</sup>,  $\rho_{calc} = 1.181 \text{ gcm}^{-3}$ ,  $\mu = 1.009 \text{ mm}^{-1}$ , empirical absorption correction ( $0.6354 \le T \le 0.7456$ ), Z = 4,  $\lambda = 0.71073$  Å, T = 120(2) K, 85103 reflections collected ( $-16 \le h \le 16, -12 \le k \le 12, -54 \le 1 \le 54$ ), 12021 independent ( $R_{int} = 0.0964$ ) and 8212 observed reflections [I>2 $\sigma$ (I)], 543 refined parameters, the final  $R_1$  was 0.0403 (I > 2 $\sigma$ (I)) and  $wR_2$  was 0.1023 (all data), max. (min.) residual electron density 0.65 (-0.47) e.Å<sup>-3</sup>, hydrogen atoms were placed in calculated positions and refined using a riding model.



Figure S25. Molecular structure of complex 2c.

**Preparation of complex 3** 



#### Scheme S7.

Ni(CO)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (128 mg, 0.20 mmol) was added to a solution of **1a** (107 mg, 0.20 mmol) in 3 mL of toluene. After stirring at room temperature for 3 days, the reaction solution was concentrated to approximately 1 mL under vacuum and then the residue was recrystallized in hexane at -30 °C to eventually afford **3** as a yellow crystalline solid (108 mg, 61%). Crystals suitable for the X-ray crystal structure analysis were grown from a layered toluene / hexane (v/v: 1:2) solution at room temperature.

**Elemental Analysis**: calcd. for C<sub>50</sub>H<sub>54</sub>N<sub>2</sub>NiOP<sub>2</sub>Zn: C, 67.86; H, 6.15; N, 3.17%. Found: C, 68.05; H, 6.09; N, 3.02%.

**FTIR** (KBr, cm<sup>-1</sup>): 1922 (CO).

<sup>1</sup>**H NMR** (400 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K): δ = 7.66 (m, 2H, *o*-*Ph*<sub>2</sub>P), 7.34 (m, 6H, *o*-*Ph*<sub>3</sub>P), 7.25 (m, 1H, *m*-NA*r*), 7.20 (m, 1H, *p*-NA*r*), 7.10 (m, 1H, *m*-NA*r*), 7.08 (m, 2H, *m*-*Ph*<sub>2</sub>P), 7.03 (m, 2H, *o*-*Ph*<sub>2</sub>P), 6.99 (m, 2H, *p*-*Ph*<sub>2</sub>P), 6.94 (m, 9H, *m*, *p*-*Ph*<sub>3</sub>P), 6.86 (m, 2H, *m*-*Ph*<sub>2</sub>P), 4.81 (s, 1H, MeC(N)CH), 3.44 (m, 2H, ArCHMe<sub>2</sub>), 3.39 (m, 2H, NCH<sub>2</sub>), 2.53 (m, 1H, PCH<sub>2</sub>), 2.11 (m, 1H, PCH<sub>2</sub>), 1.71 (s, 3H, *Me*C), 1.63 (s, 3H, *Me*C), 1.42 (d, <sup>3</sup>*J*<sub>HH</sub> = 6.9 Hz, 3H, ArCH*Me*<sub>2</sub>), 1.21 (d, <sup>3</sup>*J*<sub>HH</sub> = 6.9 Hz, 3H, ArCH*Me*<sub>2</sub>), 1.15 (d, <sup>3</sup>*J*<sub>HH</sub> = 6.9 Hz, 3H, ArCH*Me*<sub>2</sub>), 1.07 (d, <sup>3</sup>*J*<sub>HH</sub> = 6.8 Hz, 3H, ArCH*Me*<sub>2</sub>), -3.47 (dd, <sup>2</sup>*J*<sub>PH</sub> = 20.3 Hz, <sup>2</sup>*J*<sub>PH</sub> = 10.6 Hz, 1H, Zn*H*).

<sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K):  $\delta = 166.9$  (MeC), 166.5 (MeC), 145.5 (*i*-NAr), 143.1 (*o*-NAr), 142.6 (*o*-NAr), 139.6 (br, *i*-Ph<sub>2</sub>P), 139.3 (br, *i*-Ph<sub>2</sub>P), 133.9 (br, *o*-Ph<sub>3</sub>P), 133.8 (br, *o*-Ph<sub>2</sub>P), 132.1 (d, <sup>2</sup>J<sub>PC</sub> = 12.1 Hz, *o*-Ph<sub>2</sub>P), 129.0 (*m*-Ph<sub>2</sub>P), 128.5 (*p*-Ph<sub>2</sub>P), 128.2 (overlapped with solvent, *p*-Ph<sub>3</sub>P), 128.0 (overlapped with solvent, *m*-Ph<sub>3</sub>P), 125.9 (*p*-NAr), 124.1

(*m*-NA*r*), 123.9 (*m*-NA*r*), 96.0 (MeC(N)CH), 46.6 (NCH<sub>2</sub>), 37.0 (PCH<sub>2</sub>)<sup>1</sup>, 28.6 (ArCHMe<sub>2</sub>), 28.4 (ArCHMe<sub>2</sub>), 25.1 (ArCHMe<sub>2</sub>), 24.6 (ArCHMe<sub>2</sub>), 24.2 (ArCHMe<sub>2</sub>), 24.1 (ArCHMe<sub>2</sub>), 23.8 (*Me*C), 22.8 (*Me*C). [Signals of *i*-*Ph*<sub>3</sub>P and *C*O were not observed] [<sup>1</sup>from the <sup>1</sup>H, <sup>13</sup>C GHSQC experiment]

<sup>31</sup>P{<sup>1</sup>H} NMR (162 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K):  $\delta = 40.3$  (Ph<sub>3</sub>P), 17.4 (Ph<sub>2</sub>P).

<sup>1</sup>**H**, <sup>1</sup>**H GCOSY** (400 MHz / 400 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) [selected traces]:  $\delta$  <sup>1</sup>H /  $\delta$  <sup>1</sup>H = 7.66 / 7.08 (*o*-*Ph*<sub>2</sub>P / *m*-*Ph*<sub>2</sub>P), 7.34 / 6.94 (*o*-*Ph*<sub>3</sub>P / *m*-*Ph*<sub>3</sub>P), 3.39 / 2.53, 2.11 (NC*H*<sub>2</sub> / PC*H*<sub>2</sub>), 3.44 / 1.42, 1.21, 1.15, 1.07 (ArCHMe<sub>2</sub> / ArCHMe<sub>2</sub>).

<sup>1</sup>**H**, <sup>13</sup>**C GHSQC** (400 MHz / 101 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K): δ <sup>1</sup>H / δ <sup>13</sup>C = 7.66 / 133.8 (*o-Ph*<sub>2</sub>P), 7.34 / 133.9 (*o-Ph*<sub>3</sub>P), 7.25 / 124.1 (*m*-NA*r*), 7.20 / 125.9 (*p*-NA*r*), 7.10 / 123.9 (*m*-NA*r*), 7.08 / 129.0 (*m*-*Ph*<sub>2</sub>P), 7.03 / 132.1 (*o-Ph*<sub>2</sub>P), 6.99 / 128.5 (*p-Ph*<sub>2</sub>P), 6.94 / 128.2, 127.9 (*m*, *p-Ph*<sub>3</sub>P), 6.86 / 128.0 (*m-Ph*<sub>2</sub>P), 4.81 / 96.0 (MeC(N)CH), 3.44 / 28.6, 28.4 (ArCHMe<sub>2</sub>), 3.39 / 46.6 (NCH<sub>2</sub>), 2.53, 2.11 / 37.0 (PCH<sub>2</sub>), 1.71 / 23.8 (*Me*C), 1.63 / 22.8 (*Me*C), 1.42 / 25.1 (ArCH*Me*<sub>2</sub>), 1.21 / 24.1 (ArCH*Me*<sub>2</sub>), 1.15 / 24.2 (ArCH*Me*<sub>2</sub>), 1.07 / 24.6 (ArCH*Me*<sub>2</sub>).

<sup>1</sup>**H**, <sup>13</sup>**C GHMBC** (400 MHz / 101 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) [selected traces]:  $\delta$  <sup>1</sup>H /  $\delta$  <sup>13</sup>C = 7.66 / 128.5 (*o*-*Ph*<sub>2</sub>P / *p*-*Ph*<sub>2</sub>P), 7.34 / 128.2 (*o*-*Ph*<sub>3</sub>P / *p*-*Ph*<sub>3</sub>P), 4.81 / 145.5 (MeC(N)CH / *i*-NA*r*), 3.44 / 145.5, 143.1, 142.6 (ArCHMe<sub>2</sub> / *i*-NA*r*, *o*-NA*r*), 3.39 / 166.9 (NCH<sub>2</sub> / MeC).









**X-ray crystal structure analysis of complex 3:** formula  $C_{50}H_{54}N_2NiOP_2Zn$ ,  $M = 884.97 \text{ gmol}^{-1}$ , yellow,  $0.18 \times 0.15 \times 0.12 \text{ mm}$ , monoclinic, space group  $P2_1/c$ , a = 18.6425(15), b = 15.4043(13), c = 16.9677(14) Å,  $\beta = 113.062(2)$ , V = 4483.3(6) Å<sup>3</sup>,  $\rho_{calc} = 1.311 \text{ gcm}^{-3}$ ,  $\mu = 1.064 \text{ mm}^{-1}$ , empirical absorption correction ( $0.6260 \le T \le 0.7456$ ), Z = 4,  $\lambda = 0.71073$  Å, T = 193 K, 54079 reflections collected ( $-24 \le h \le 24$ ,  $-20 \le k \le 19$ ,  $-22 \le 1 \le 22$ ), 10276 independent ( $R_{int} = 0.1261$ ) and 6223 observed

reflections [I>2 $\sigma$ (I)], 524 refined parameters, the final  $R_1$  was 0.0487 (I > 2 $\sigma$ (I)) and  $wR_2$  was 0.1116 (all data), max. (min.) residual electron density 0.75 (-0.44) e.Å<sup>-3</sup>, hydrogen atoms except for hydrides were placed in calculated positions and refined using a riding model, the hydride atom in this structure was located in a Fourier difference map and was refined with isotropic displacement parameters.



Figure S29. Molecular structure of complex 3.

#### **Preparation of complex 4**



#### Scheme S8.

Ni(CO)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (128 mg, 0.20 mmol) was added to a solution of **1c** (94 mg, 0.20 mmol) in 3 mL of toluene. After stirring at room temperature for 10 h, the reaction solution was concentrated to approximately 1 mL under vacuum and then the residue was recrystallized in hexane at -30 °C to eventually afford **4** as a colorless crystalline solid (85 mg, 73%). Crystals suitable for the X-ray crystal structure analysis were grown from a layered toluene / hexane (v/v: 1:2) solution at room temperature.

**Elemental Analysis**: calcd. for C<sub>27</sub>H<sub>43</sub>N<sub>2</sub>NiO<sub>2</sub>PZn: C, 55.65; H, 7.44; N, 4.81%. Found: C, 56.14; H, 7.34; N, 4.71%.

**FTIR** (KBr, cm<sup>-1</sup>): 1997, 1927 (CO).

<sup>1</sup>**H NMR** (400 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K):  $\delta = 7.13$  (m, 3H, *m*, *p*-NA*r*), 4.77 (s, 1H, MeC(N)CH), 3.39 (m, 2H, NCH<sub>2</sub>), 3.21 (sp, <sup>3</sup>J<sub>HH</sub> = 6.9 Hz, 2H, ArCHMe<sub>2</sub>), 1.73 (s, 3H, *Me*C), 1.65 (s, 3H, *Me*C), 1.52 (m, 2H, PCHMe<sub>2</sub>), 1.37 (d, <sup>3</sup>J<sub>HH</sub> = 6.9 Hz, 6H, ArCHMe<sub>2</sub>), 1.18 (m, 2H, PCH<sub>2</sub>), 1.16 (d, <sup>3</sup>J<sub>HH</sub> = 6.9 Hz, 6H, ArCHMe<sub>2</sub>), 0.95 (dd, <sup>3</sup>J<sub>PH</sub> = 15.6 Hz, <sup>3</sup>J<sub>HH</sub> = 6.9 Hz, 6H, PCHMe<sub>2</sub>), 0.86 (dd, <sup>3</sup>J<sub>PH</sub> = 13.1 Hz, <sup>3</sup>J<sub>HH</sub> = 6.9 Hz, 6H, PCHMe<sub>2</sub>), -3.25 (d, <sup>2</sup>J<sub>PH</sub> = 17.7 Hz, 1H, ZnH).

<sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K):  $\delta = 201.4$  (d, <sup>2</sup>*J*<sub>PC</sub> = 3.3 Hz, CO), 167.3 (MeC), 166.8 (MeC), 144.5 (*i*-N*Ar*), 142.2 (*o*-N*Ar*), 126.3 (*p*-N*Ar*), 124.0 (*m*-N*Ar*), 96.2 (MeC(N)CH), 47.2 (d, <sup>2</sup>*J*<sub>PC</sub> = 5.0 Hz, NCH<sub>2</sub>), 28.4 (ArCHMe<sub>2</sub>), 26.8 (d, <sup>1</sup>*J*<sub>PC</sub> = 4.5 Hz, PCHMe<sub>2</sub>), 26.2 (d, <sup>2</sup>*J*<sub>PC</sub> = 14.1 Hz, PCH<sub>2</sub>), 25.0 (ArCH*Me*<sub>2</sub>), 23.7 (ArCH*Me*<sub>2</sub>), 23.6 (*Me*C), 22.9 (*Me*C), 18.7 (d, <sup>2</sup>*J*<sub>PC</sub> = 6.8 Hz, PCH*Me*<sub>2</sub>), 17.9 (d, <sup>2</sup>*J*<sub>PC</sub> = 2.6 Hz, PCH*Me*<sub>2</sub>).

<sup>31</sup>**P**{<sup>1</sup>**H**} **NMR** (162 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K):  $\delta$  = 38.2.

<sup>1</sup>**H**, <sup>1</sup>**H GCOSY** (400 MHz / 400 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) [selected traces]:  $\delta$  <sup>1</sup>H /  $\delta$  <sup>1</sup>H = 3.39 / 1.18 (NC*H*<sub>2</sub> / PC*H*<sub>2</sub>), 3.21 / 1.37, 1.16 (ArC*H*Me<sub>2</sub> / ArCH*M*e<sub>2</sub>), 1.52 / 0.95, 0.86 (PC*H*Me<sub>2</sub> / PCH*M*e<sub>2</sub>).

<sup>1</sup>**H**, <sup>13</sup>**C GHSQC** (400 MHz / 101 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K): δ <sup>1</sup>H / δ <sup>13</sup>C = 7.13 / 126.3, 124.0 (*m*, *p*-NA*r*), 4.77 / 96.2 (MeC(N)*CH*), 3.39 /47.7 (N*CH*<sub>2</sub>), 3.21 / 28.4 (Ar*CH*Me<sub>2</sub>), 1.73 / 23.6 (*Me*C), 1.65 / 22.9 (*Me*C), 1.52 / 26.8 (*PCH*Me<sub>2</sub>), 1.37 / 25.0 (Ar*CHMe*<sub>2</sub>),1.18 / 26.2 (*PCH*<sub>2</sub>), 1.16 / 23.7 (Ar*CHMe*<sub>2</sub>), 0.95 / 18.7 (*PCHMe*<sub>2</sub>), 0.86 / 17.9 (*PCHMe*<sub>2</sub>).

<sup>1</sup>H, <sup>13</sup>C GHMBC (400 MHz / 101 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) [selected traces]:  $\delta$  <sup>1</sup>H /  $\delta$  <sup>13</sup>C = 4.77 / 144.5, 47.7 (MeC(N)CH / *i*-NAr, NCH<sub>2</sub>), 3.21 / 25.0, 23.7 (ArCHMe<sub>2</sub>/ArCHMe<sub>2</sub>), 1.37, 1.16 / 142.2 (ArCHMe<sub>2</sub> / *o*-NAr), 1.18 / 47.7 (PCH<sub>2</sub> / NCH<sub>2</sub>).







Figure S32. <sup>31</sup>P{<sup>1</sup>H} NMR (162 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K).

**X-ray crystal structure analysis of complex 4:** formula C<sub>27</sub>H<sub>43</sub>N<sub>2</sub>NiO<sub>2</sub>PZn,  $M = 582.68 \text{ gmol}^{-1}$ , colorless,  $0.45 \times 0.25 \times 0.03 \text{ mm}$ , triclinic, space group *P*-1, a = 8.3843(8), b = 8.4994(8), c = 22.612(2) Å,  $\alpha = 95.649(3)^{\circ}$ ,  $\beta = 90.677(3)^{\circ}$ ,  $\gamma = 113.428(3)^{\circ}$ , V = 1469.0(2) Å<sup>3</sup>,  $\rho_{calc} = 1.317 \text{ gcm}^{-3}$ ,  $\mu = 1.536 \text{ mm}^{-1}$ , empirical absorption correction ( $0.5276 \le T \le 0.7456$ ), Z = 2,  $\lambda = 0.71073$  Å, T = 193 K, 31692 reflections collected ( $-10 \le h \le 10$ ,  $-11 \le k \le 10$ ,  $-29 \le 1 \le 29$ ), 6735 independent ( $R_{int} = 0.0746$ ) and 5387 observed reflections [I>2 $\sigma$ (I)], 321 refined parameters, the final  $R_1$  was 0.0643 (I > 2 $\sigma$ (I)) and  $wR_2$  was 0.2007 (all data), max. (min.) residual electron

density 1.31 (-1.39) e.Å<sup>-3</sup>, hydrogen atoms except for hydrides were placed in calculated positions and refined using a riding model, the hydride atom in this structure was located in a Fourier difference map and was refined with isotropic displacement parameters.



Figure S33. Molecular structure of complex 4.

#### **Preparation of complex 5**



#### Scheme S9.

Ni(CO)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (160 mg, 0.25 mmol) was added to a solution of **1b** (275 mg, 0.50 mmol) in 5 mL of toluene. After stirring at 60 °C for 4 h, the reaction mixture was filtered through Celite and the solvent was removed in vacuum. The residue was washed with hexane (5 \* 0.5 mL) to eventually give **5** as a colorless solid (203 mg, 67%). Crystals suitable for the X-ray crystal structure analysis were grown from a layered toluene / hexane (v/v: 1:2) solution at room temperature.

**Elemental Analysis**: calcd. for C<sub>66</sub>H<sub>80</sub>N<sub>4</sub>NiO<sub>2</sub>P<sub>2</sub>Zn<sub>2</sub>·C<sub>6</sub>H<sub>14</sub>: C, 66.58; H, 7.29; N, 4.31%. Found: C, 66.65; H, 6.86; N, 4.04%.

**FTIR** (KBr, cm<sup>-1</sup>): 1997, 1939 (CO).

<sup>1</sup>**H** NMR (400 MHz, Tol-*d*<sub>8</sub>, 243 K):  $\delta = 7.56$  (m, 4H, *o*-*Ph*<sub>2</sub>P), 7.30 (m, 4H, *o*-*Ph*<sub>2</sub>P), 7.01 (m, 2H, *p*-NA*r*), 6.98 (m, 2H, *p*-*Ph*<sub>2</sub>P), 6.97 (m, 4H, *m*-*Ph*<sub>2</sub>P), 6.92 (m, 2H, *p*-*Ph*<sub>2</sub>P), 6.91 (m, 4H, *m*-NA*r*), 6.89 (m, 4H, *m*-*Ph*<sub>2</sub>P), 4.73 (s, 2H, MeC(N)CH), 3.94 (m, 2H, NCH<sub>2</sub>), 3.61 (sp, <sup>3</sup>*J*<sub>HH</sub> = 6.8 Hz, 2H, ArCHMe<sub>2</sub>), 3.34 (m, 2H, NCH<sub>2</sub>), 2.77 (sp, <sup>3</sup>*J*<sub>HH</sub> = 6.8 Hz, 2H, ArCHMe<sub>2</sub>), 2.09 (overlapped with solvent, 2H, PCH<sub>2</sub>), 1.99 (m, 2H, NCH<sub>2</sub>CH<sub>2</sub>), 1.98 (m, 2H, PCH<sub>2</sub>), 1.61 (s, 6H, *Me*C), 1.56 (s, 6H, *Me*C), 1.49 (d, <sup>3</sup>*J*<sub>HH</sub> = 6.9 Hz, 6H, ArCHMe<sub>2</sub>), 1.41 (m, 2H, NCH<sub>2</sub>CH<sub>2</sub>), 1.25 (d, <sup>3</sup>*J*<sub>HH</sub> = 6.8 Hz, 6H, ArCHMe<sub>2</sub>), 1.09 (d, <sup>3</sup>*J*<sub>HH</sub> = 7.0 Hz, 6H, ArCHMe<sub>2</sub>), 0.37 (d, <sup>3</sup>*J*<sub>HH</sub> = 6.8 Hz, 6H, ArCHMe<sub>2</sub>).

<sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, Tol- $d_8$ , 243 K):  $\delta = 200.9$  (CO), 166.8 (MeC), 166.4 (MeC), 146.1 (*i*-NAr), 142.1 (*o*-NAr), 141.0 (*o*-NAr), 140.3 (d, <sup>1</sup>J<sub>PC</sub> = 35.7 Hz, *i*-Ph<sub>2</sub>P), 138.2 (d, <sup>1</sup>J<sub>PC</sub> = 30.7 Hz, *i*-Ph<sub>2</sub>P), 134.3 (*m*-Ph<sub>2</sub>P), 134.1 (*m*-Ph<sub>2</sub>P), 132.9 (br, *o*-Ph<sub>2</sub>P), 131.5 (br, *o*-Ph<sub>2</sub>P), 129.4 (*p*-Ph<sub>2</sub>P), 128.8 (*p*-Ph<sub>2</sub>P), 125.3 (*p*-NAr), 123.6

S33

(*m*-NA*r*), 123.3 (*m*-NA*r*), 97.4 (MeC(N)CH), 53.3 (d,  ${}^{3}J_{PC} = 16.7$  Hz, NCH<sub>2</sub>), 28.8 (br, NCH<sub>2</sub>CH<sub>2</sub>), 28.7 (ArCHMe<sub>2</sub>), 28.6 (br, PCH<sub>2</sub>), 27.7 (ArCHMe<sub>2</sub>), 25.1 (ArCHMe<sub>2</sub>), 24.7 (ArCHMe<sub>2</sub>), 24.6 (ArCHMe<sub>2</sub>), 24.0 (MeC), 22.5 (ArCHMe<sub>2</sub>), 21.2 (MeC) <sup>31</sup>P{<sup>1</sup>H} NMR (162 MHz, Tol- $d_{8}$ , 243 K):  $\delta = 22.0$ .

<sup>1</sup>**H**, <sup>1</sup>**H GCOSY** (400 MHz / 400 MHz, Tol- $d_8$ , 243 K) [selected traces]:  $\delta$  <sup>1</sup>H /  $\delta$  <sup>1</sup>H = 7.56 / 6.97 (*o*-*Ph*<sub>2</sub>P / *m*-*Ph*<sub>2</sub>P), 7.30 / 6.89 (*o*-*Ph*<sub>2</sub>P / *m*-*Ph*<sub>2</sub>P), 3.94 / 3.34, 1.98, 1.41 (NCH<sub>2</sub> / NCH<sub>2</sub>, PCH<sub>2</sub>), 3.61 / 1.49, 1.25 (ArCHMe<sub>2</sub> / ArCHMe<sub>2</sub>), 2.77 / 1.09, 0.37 (ArCHMe<sub>2</sub> / ArCHMe<sub>2</sub>).

<sup>1</sup>**H**, <sup>13</sup>**C GHSQC** (400 MHz / 101 MHz, Tol-*d*<sub>8</sub>, 243 K): δ <sup>1</sup>H / δ <sup>13</sup>C = 7.56 / 131.5 (*o-Ph*<sub>2</sub>**P**), 7.30 / 132.9 (*o-Ph*<sub>2</sub>**P**), 7.01 / 125.3 (*p*-NA*r*), 6.98 / 128.8 (*p-Ph*<sub>2</sub>**P**), 6.97 / 134.3 (*m-Ph*<sub>2</sub>**P**), 6.92 / 129.4 (*p-Ph*<sub>2</sub>**P**), 6.91 / 123.6, 123.3 (*m*-NA*r*), 6.89 / 134.1 (*m-Ph*<sub>2</sub>**P**), 4.73 / 97.4 (MeC(N)*CH*), 3.94, 3.34 / 53.3 (N*CH*<sub>2</sub>), 3.61 / 28.6 (Ar*CH*Me<sub>2</sub>), 2.77 / 27.7 (Ar*CH*Me<sub>2</sub>), 2.09, 1.98 / 28.6 (*PCH*<sub>2</sub>), 1.99, 1.41 / 28.8 (NCH<sub>2</sub>*CH*<sub>2</sub>), 1.61 / 21.2 (*Me*C), 1.56 / 24.0 (*Me*C), 1.49 / 25.1 (ArCH*Me*<sub>2</sub>), 1.25 / 24.6 (ArCH*Me*<sub>2</sub>), 1.09 / 22.5 (ArCH*Me*<sub>2</sub>), 0.37 / 24.7 (ArCH*Me*<sub>2</sub>).

<sup>1</sup>**H**, <sup>13</sup>**C GHMBC** (400 MHz / 101 MHz, Tol-*d*<sub>8</sub>, 243 K) [selected traces]: δ <sup>1</sup>H / δ <sup>13</sup>C = 7.56 / 129.4 (*o*-*Ph*<sub>2</sub>P / *p*-*Ph*<sub>2</sub>P), 7.30 / 128.8 (*o*-*Ph*<sub>2</sub>P / *p*-*Ph*<sub>2</sub>P), 6.91 / 146.1 (*m*-NAr / *i*-NAr), 4.73 / 146.1 (MeC(N)CH / *i*-NAr), 3.61 / 146.1, 141.0 (ArCHMe<sub>2</sub> / *i*-NAr, *o*-NAr), 2.77 / 146.1, 142.1 (ArCHMe<sub>2</sub> / *i*-NAr, *o*-NAr).







Figure S36. <sup>31</sup>P{<sup>1</sup>H} NMR (162 MHz, Tol-*d*<sub>8</sub>, 243 K).

EPR spectroscopic study of complex 5:



**Figure S37**. X-band EPR spectrum of a solid sample of **5** at 25 °C. (v = 9.839 GHz; P = 2.000 mW; modulation amplitude = 1.000 G)

**X-ray crystal structure analysis of complex 5:** formula C<sub>66</sub>H<sub>80</sub>N<sub>4</sub>NiO<sub>2</sub>P<sub>2</sub>Zn<sub>2</sub>,  $M = 1212.76 \text{ gmol}^{-1}$ , colorless,  $0.18 \times 0.12 \times 0.08 \text{ mm}$ , monoclinic, space group  $P2_1/n$ , a = 8.8752(4), b = 14.3633(6), c = 48.0556(19) Å,  $\beta = 90.0240(10)^\circ$ , V = 6126.0(4) Å<sup>3</sup>,  $\rho_{calc} = 1.315 \text{ gcm}^{-3}$ ,  $\mu = 1.179 \text{ mm}^{-1}$ , empirical absorption correction ( $0.6188 \le T \le 0.7456$ ), Z = 4,  $\lambda = 0.71073$  Å, T = 120(2) K, 127462 reflections collected ( $-10 \le h \le 11$ ,  $-18 \le k \le 18$ ,  $-62 \le 1 \le 62$ ), 14051 independent ( $R_{int} = 0.0841$ ) and 10765 observed reflections [I>2 $\sigma$ (I)], 706 refined parameters, the final  $R_1$  was 0.0366 (I > 2 $\sigma$ (I)) and  $wR_2$  was 0.0869 (all data), max. (min.) residual electron density 0.74 (-0.62) e.Å<sup>-3</sup>, hydrogen atoms were placed in calculated positions and refined using a riding model.



Figure S38. Molecular structure of complex 5.

#### Dehydrocoupling of 1a catalyzed by Zn/Ni heterometallic complex



#### Scheme S10.

- (a) Complex 3 (18 mg, 0.02 mmol) was added to a solution of 1a (107 mg, 0.20 mmol) in 5 mL of toluene. After stirring at 60 °C for 24 h, the reaction mixture was filtered through Celite. The solvent was removed under vacuum and the residue was recrystallized in hexane at -30 °C to afford 2a as a pale-yellow solid (87 mg, 81%).
- (*b*) Following the procedure described above, complex **4** (6 mg, 0.01 mmol) catalyzed the dehydrocoupling of **1a** (107 mg, 0.20 mmol) to give **2a** (91 mg, 85%).
- (c) Following the procedure described above, complex 5 (12 mg, 0.01 mmol) catalyzed the dehydrocoupling of 1a (107 mg, 0.20 mmol) to give 2a (86 mg, 80%).
- (d) An oven-dried Schlenk tube was charged with complex 6 (11 mg, 0.01 mmol) and 1a (107 mg, 0.20 mmol) in 5 mL of toluene. The mixture was degassed by a freeze-pump-thaw cycle and placed under 1 atm CO at room temperature. After stirring at 60 °C for 24 h, the reaction mixture was filtered through Celite. The solvent was removed under vacuum and the residue was recrystallized in hexane at -30 °C to afford 2a (76 mg, 71%).

# Experiments to investigate the role of carbon monoxide concentration on the catalytic reaction

In a glove box, a  $C_6D_6$  solution (1 mL) of **1a** (64.3 mg, 0.12 mmol),  $Ni(CO)_2(PPh_3)_2$  (3.8 mg, 0.006 mmol) and hexamethylbenzene (1.1 mg, 0.0067 mmol, as internal standard) was divided equally into two NMR tubes (Samples A and B).

(a) Sample A: The tube was sealed and removed from the glove box. After heating at 60 °C for 15 h, the aliquots were analyzed by <sup>1</sup>H NMR. The conversion of **1a** was

63%.

(b) Sample B: The J-Young tube was sealed and removed from the glove box. The mixture was degassed by a freeze-pump-thaw cycle and placed under 1 atm CO at room temperature. After heating at 60 °C for 15 h, the aliquots were analyzed by <sup>1</sup>H NMR. The conversion of **1a** was 72%.

#### **Details of kinetics**



Scheme S11.

In a glovebox, a C<sub>6</sub>D<sub>6</sub> solution (1.0 mL) of complex **1a** (160.8 mg, 0.30 mmol) was added to a C<sub>6</sub>D<sub>6</sub> solution (1.0 mL) of Ni(CO)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (19.2 mg, 0.03 mmol) and internal standard hexamethylbenzene (2.7 mg, 0.017 mmol) in a 25-mL Schlenk tube. The Schlenk tube was sealed, removed from the glovebox and heated at 60 °C. After the measured time interval, a 100  $\mu$ L aliquot was taken from the reaction mixture and added into an NMR tube containing 400  $\mu$ L C<sub>6</sub>D<sub>6</sub> in the glovebox. The aliquots were immediately analyzed by <sup>1</sup>H NMR. The dehydrocoupling of **1a-d** was also carried out and monitored under the exactly same conditions.



Figure S39. Plot of zinc hydride conversion versus time (min) for the dehydrocoupling of 1a (black squares) and 1a-d (red dots) catalyzed by Ni(CO)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>.



#### Scheme S12.

The dehydrocoupling of **1a** (0.30 mmol) with 5 - 15 mol% catalyst loading  $[Ni(CO)_2(PPh_3)_2, 0.015 - 0.045 \text{ mmol}]$  in C<sub>6</sub>D<sub>6</sub> (2.0 mL) at 60 °C was carried out and the reaction was monitored by <sup>1</sup>H NMR spectroscopy.



**Figure S40.** Plot of **1a** conversion versus time (min) for the dehydrocoupling reaction catalyzed by Ni(CO)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>. Initial conditions: **1a** (0.15 M), Ni(CO)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (0.0075 M).



**Figure S41.** Plot of **1a** conversion versus time (min) for the dehydrocoupling reaction catalyzed by  $Ni(CO)_2(PPh_3)_2$ . Initial conditions: **1a** (0.15 M),  $Ni(CO)_2(PPh_3)_2$  (0.01125 M).



**Figure S42.** Plot of **1a** conversion versus time (min) for the dehydrocoupling reaction catalyzed by Ni(CO)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>. Initial conditions: **1a** (0.15 M), Ni(CO)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (0.01875 M).



**Figure S43.** Plot of **1a** conversion versus time (min) for the dehydrocoupling reaction catalyzed by Ni(CO)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>. Initial conditions: **1a** (0.15 M), Ni(CO)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (0.0225 M).



Figure S44. Plot showing first order relationship for the dehydrocoupling of 1a at different catalyst loadings (5 mol%, 7.5 mol%, 10 mol%, 12.5 mol%, 15 mol%). Conditions: 0.3 mmol 1a, 2.0 mL C<sub>6</sub>D<sub>6</sub>, 60 °C.

# **Eyring analysis**



Scheme S13.

The dehydrocoupling of **1a** (0.30 mmol) with 10 mol% catalyst loading  $[Ni(CO)_2(PPh_3)_2, 0.03 \text{ mmol}]$  in C<sub>6</sub>D<sub>6</sub> (2.0 mL) at various reaction temperatures (50 - 70 °C) was carried out and monitored by <sup>1</sup>H NMR spectroscopy.



Figure S45. Plot of 1a conversion versus time (min) for the dehydrocoupling reaction catalyzed by  $Ni(CO)_2(PPh_3)_2$  at 50 °C.



Figure S46. Plot of 1a conversion versus time (min) for the dehydrocoupling reaction catalyzed by  $Ni(CO)_2(PPh_3)_2$  at 55 °C.



Figure S47. Plot of 1a conversion versus time (min) for the dehydrocoupling reaction catalyzed by  $Ni(CO)_2(PPh_3)_2$  at 65 °C.



**Figure S48.** Plot of **1a** conversion versus time (min) for the dehydrocoupling reaction catalyzed by  $Ni(CO)_2(PPh_3)_2$  at 70 °C.



**Figure S49.** Eyring equation plot for the dehydrocoupling of **1a** at various reaction temperatures (50 °C, 55 °C, 60 °C, 65 °C, 70 °C) catalyzed by  $Ni(CO)_2(PPh_3)_2$ . Conditions: 0.3 mmol **1a**, 2.0 mL of C<sub>6</sub>D<sub>6</sub>, 10 mol% catalyst loading.

# **Computational Details**

All DFT calculations were performed with Gaussian  $09^{[3]}$  Geometries were fully optimized in gas phase without symmetry constraints, employing the B3PW91 functional<sup>[4]</sup> and the Stuttgart effective core potential for Zn.<sup>[5]</sup> For the other elements (Si, P, N, C and H), Pople's double- $\zeta$  basis set 6-31G(d,p)<sup>[6]</sup> was used. Calculations of vibrational frequencies were systematically done in order to characterize the nature of stationary points. Analytical frequency calculations at 298.15 K and 1 atm were systematically done in order to characterize the nature of stationary points. IRC calculations were carried out in order to confirm the connectivity between reactant(s), transition state and product(s). Dispersion corrections were treated with the D3 version of Grimme's dispersion with Becke-Johnson damping.<sup>[7]</sup>



**Figure S50**. Computed Enthalpy energy profile (kcal.mol<sup>-1</sup>) of the non-catalyzed formation of **2c** from **1c**.

# **NBO Information 2a**

|                   | NBO             |      |                 |              |                        |                 |                               |                 |      |
|-------------------|-----------------|------|-----------------|--------------|------------------------|-----------------|-------------------------------|-----------------|------|
| Complexes Charges |                 | Pond | Occupanc        | Center       |                        | Hybridation     | WB                            | I               |      |
|                   |                 | Donu | у               | (contributio | on)                    | (contribution%) |                               |                 |      |
| 2a_Zn2            |                 |      | $Zn_1$ - $Zn_8$ | 1.97         | Zn <sub>1</sub> (50%); | Zn <sub>8</sub> | Zn <sub>1</sub> (s78 p21 d1); |                 |      |
|                   |                 |      |                 |              | (50%)                  |                 | Zn <sub>8</sub> (s78 p21 d1)  | $Zn_1$ - $Zn_8$ | 0.91 |
|                   | $Zn_1$          | 0.63 |                 | Second Order |                        | r               |                               |                 |      |
|                   | Zn <sub>8</sub> | 0.63 | Domon           | <b>A</b> and |                        |                 | <b>Total Energy</b>           | $Zn_1$          | 1.67 |
|                   |                 |      | Donor           | Acceptor     |                        |                 | (kcal.mol <sup>-1</sup> )     | $Zn_8$          | 1.66 |
|                   |                 |      | х               | 2            | X                      |                 | Х                             |                 |      |

# Orbitals and bond length



Atomic labels

LUMO (264)

HOMO (263)

HOMO-2 (261)



Figure S51. Metal-metal bonding interactions in complex 2a.

# 72

# 1c complex

| Zn | 5.23913 | 12.42859 | 4.33900  |
|----|---------|----------|----------|
| Р  | 7.15151 | 11.84587 | 2.75386  |
| Ν  | 4.68551 | 11.14923 | 5.75784  |
| Ν  | 4.33099 | 11.42092 | 2.82419  |
| С  | 5.09441 | 11.46668 | 7.08062  |
| Н  | 5.43324 | 13.97189 | 4.49255  |
| С  | 6.39175 | 11.10033 | 7.49655  |
| С  | 3.83770 | 10.14685 | 5.54543  |
| С  | 7.43622 | 10.10303 | 2.14755  |
| С  | 3.58641 | 10.34505 | 3.02096  |
| С  | 4.24420 | 12.20749 | 7.92525  |
| С  | 8.68449 | 12.88502 | 2.55942  |
| С  | 6.02289 | 12.57536 | 1.47387  |
| Н  | 5.88186 | 13.61707 | 1.78353  |
| Н  | 6.45899 | 12.58299 | 0.46980  |
| С  | 3.33305 | 9.78124  | 4.28666  |
| Н  | 2.66906 | 8.92514  | 4.28889  |
| С  | 5.95633 | 12.14311 | 9.64406  |
| Н  | 6.29001 | 12.40009 | 10.64547 |
| С  | 7.30765 | 10.34763 | 6.54896  |
| Н  | 7.11652 | 10.74866 | 5.54480  |
| С  | 3.34259 | 9.33777  | 6.72274  |
| Н  | 2.97046 | 8.36483  | 6.39692  |
| Н  | 2.52056 | 9.86354  | 7.22015  |
| Н  | 4.12602 | 9.19398  | 7.46956  |
| С  | 4.69631 | 12.53149 | 9.20673  |
| Н  | 4.05336 | 13.10542 | 9.86805  |
| С  | 6.79819 | 11.43992 | 8.78824  |
| Н  | 7.78918 | 11.15965 | 9.13052  |
| С  | 4.67627 | 11.83673 | 1.47408  |
| Н  | 3.90342 | 12.49763 | 1.05404  |
| Н  | 4.74953 | 10.97468 | 0.79981  |
| С  | 2.89945 | 12.71715 | 7.44271  |
| Н  | 2.64276 | 12.17644 | 6.52722  |
| С  | 8.79101 | 10.55206 | 6.85473  |
| Н  | 9.04061 | 11.61300 | 6.94787  |
| Н  | 9.40343 | 10.12828 | 6.05234  |
| Н  | 9.08845 | 10.04995 | 7.78194  |
| С  | 2.96825 | 9.63070  | 1.83888  |
| Н  | 2.43554 | 10.32735 | 1.18392  |
| Н  | 2.26783 | 8.86324  | 2.17031  |
| Н  | 3.73772 | 9.13860  | 1.23191  |

| С   | 6.97322       | 8.85112  | 6.50965  |
|-----|---------------|----------|----------|
| Η   | 7.03953       | 8.41444  | 7.51230  |
| Η   | 7.67509       | 8.31352  | 5.86224  |
| Η   | 5.96692       | 8.67673  | 6.12402  |
| С   | 1.77691       | 12.48216 | 8.45696  |
| Η   | 1.72233       | 11.43307 | 8.76510  |
| Η   | 0.81058       | 12.76299 | 8.02552  |
| Н   | 1.91600       | 13.08482 | 9.36080  |
| С   | 3.00725       | 14.20261 | 7.07452  |
| Η   | 3.27521       | 14.79898 | 7.95403  |
| Н   | 2.05213       | 14.57568 | 6.68803  |
| Н   | 3.77462       | 14.35910 | 6.31100  |
| С   | 7.59793       | 9.90188  | 0.64112  |
| Η   | 6.49996       | 9.61886  | 2.45906  |
| С   | 8.57822       | 9.44440  | 2.92227  |
| Η   | 8.25408       | 13.89673 | 2.57690  |
| С   | 9.47558       | 12.72119 | 1.26360  |
| С   | 9.57510       | 12.75000 | 3.79718  |
| Η   | 10.39426      | 13.47662 | 3.75851  |
| Н   | 10.02098      | 11.75348 | 3.86665  |
| Η   | 9.00401       | 12.92665 | 4.71234  |
| Н   | 9.98260       | 11.75210 | 1.22857  |
| Н   | 10.24965      | 13.49429 | 1.19327  |
| Н   | 8.84151       | 12.80445 | 0.37636  |
| Н   | 7.60894       | 8.83024  | 0.40952  |
| Н   | 8.53507       | 10.32640 | 0.27452  |
| Н   | 6.78110       | 10.35145 | 0.07091  |
| Н   | 8.60177       | 8.36746  | 2.72346  |
| Н   | 8.46845       | 9.58480  | 4.00022  |
| Н   | 9.54797       | 9.85420  | 2.62302  |
| 144 |               |          |          |
| H-H | coupling addu | ct       |          |
| С   | -1.34979      | 2.64232  | -3.33246 |
| С   | -0.13239      | 2.09980  | -2.85810 |
| С   | 0.84971       | 2.92351  | -2.27704 |
| С   | 0.59512       | 4.29333  | -2.16813 |
| С   | -0.59556      | 4.84158  | -2.62733 |
| С   | -1.55382      | 4.01757  | -3.21083 |
| Ν   | 0.02804       | 0.68940  | -2.84045 |
| С   | 0.15898       | -0.01176 | -3.96628 |
| С   | -0.06471      | -1.39240 | -4.04070 |
| С   | -0.64549      | -2.24004 | -3.06826 |
| С   | -1.07722      | -3.60263 | -3.55796 |
| С   | 2.18055       | 2.36435  | -1.82010 |
|     |               |          |          |

| С  | 3.30303  | 2.81997  | -2.76023 |
|----|----------|----------|----------|
| С  | -2.45370 | 1.75083  | -3.87932 |
| С  | -3.23146 | 2.39624  | -5.02791 |
| Zn | -0.16764 | -0.21078 | -1.10983 |
| Ν  | -0.83175 | -1.90029 | -1.80085 |
| С  | -1.59847 | -2.74125 | -0.88451 |
| С  | -2.55523 | -1.87640 | -0.06911 |
| Р  | -3.83287 | -2.86388 | 0.86854  |
| С  | -5.13628 | -1.53470 | 1.11262  |
| С  | -5.86467 | -1.27943 | -0.20878 |
| Zn | 0.82211  | -0.51439 | 1.70395  |
| Ν  | 2.80404  | -0.34033 | 1.59080  |
| С  | 3.47742  | -1.35705 | 0.80424  |
| С  | 3.38105  | -1.07122 | -0.69474 |
| Р  | 4.13000  | -2.44881 | -1.70456 |
| С  | 2.56203  | -3.29870 | -2.26639 |
| С  | 2.87003  | -4.33560 | -3.34426 |
| Ν  | 0.54966  | 1.02841  | 2.92221  |
| С  | 1.55563  | 1.79427  | 3.34680  |
| С  | 2.89471  | 1.63655  | 2.96621  |
| С  | 3.48341  | 0.63617  | 2.16473  |
| С  | 4.98680  | 0.71933  | 2.00265  |
| С  | -0.76466 | 1.27419  | 3.40748  |
| С  | -1.20059 | 0.62871  | 4.58332  |
| С  | -2.50975 | 0.84489  | 5.01915  |
| С  | -3.36336 | 1.70329  | 4.33382  |
| С  | -2.91791 | 2.33982  | 3.18173  |
| С  | -1.62639 | 2.13006  | 2.69233  |
| С  | -0.27326 | -0.28787 | 5.35855  |
| С  | -0.56962 | -1.75492 | 5.03199  |
| С  | -1.18193 | 2.81576  | 1.41564  |
| С  | -2.09180 | 2.44854  | 0.24518  |
| С  | 1.25792  | 2.89121  | 4.34046  |
| С  | -1.09496 | 4.33814  | 1.56064  |
| С  | -0.32458 | -0.03709 | 6.86779  |
| С  | -3.04196 | -2.95930 | 2.56313  |
| С  | -1.94704 | -4.02675 | 2.54211  |
| С  | -4.08972 | -3.27994 | 3.62789  |
| С  | 0.55036  | 0.71056  | -5.23109 |
| С  | 2.50388  | 2.71714  | -0.36929 |
| С  | -3.40184 | 1.31394  | -2.75654 |
| С  | -4.63573 | -0.23630 | 1.73499  |
| С  | 4.65283  | -1.51941 | -3.24991 |
| С  | 5.85092  | -0.62761 | -2.91572 |

| С | 3.54896  | -0.73674 | -3.95395 |
|---|----------|----------|----------|
| С | 1.86628  | -3.93742 | -1.06417 |
| Η | 0.98564  | 2.45486  | 5.30770  |
| Н | 0.40567  | 3.49693  | 4.02473  |
| Η | 2.12465  | 3.53736  | 4.48535  |
| Η | 3.58085  | 2.36544  | 3.37966  |
| Η | 5.28249  | 0.67368  | 0.94974  |
| Η | 5.48512  | -0.11037 | 2.51591  |
| Η | 5.36802  | 1.65053  | 2.42317  |
| Η | -3.58656 | 3.00584  | 2.64283  |
| Η | -4.37473 | 1.86950  | 4.69359  |
| Η | -2.86103 | 0.34530  | 5.91743  |
| Η | -0.18145 | 2.44653  | 1.17866  |
| Η | -2.07124 | 4.77007  | 1.80753  |
| Η | -0.75727 | 4.78239  | 0.61848  |
| Η | -0.39199 | 4.63111  | 2.34552  |
| Η | -2.15361 | 1.36178  | 0.13467  |
| Η | -1.70660 | 2.86904  | -0.68684 |
| Η | -3.11174 | 2.82211  | 0.38882  |
| Η | 0.74731  | -0.08187 | 5.02223  |
| Η | -0.16288 | 1.01914  | 7.10557  |
| Η | 0.44810  | -0.62415 | 7.37482  |
| Η | -1.28855 | -0.33092 | 7.29679  |
| Η | -1.59741 | -2.01262 | 5.31125  |
| Η | 0.10907  | -2.42039 | 5.57708  |
| Η | -0.44948 | -1.94601 | 3.96237  |
| Η | 2.99600  | -2.31673 | 1.02125  |
| Η | 4.53078  | -1.47715 | 1.07830  |
| Η | 3.89840  | -0.13231 | -0.91783 |
| Η | 2.33008  | -0.91685 | -0.97689 |
| Η | 5.01069  | -2.30949 | -3.92410 |
| Η | 3.10944  | 0.01313  | -3.29035 |
| Η | 2.73665  | -1.38293 | -4.29431 |
| Η | 3.94654  | -0.20761 | -4.82854 |
| Η | 6.25482  | -0.16810 | -3.82469 |
| Η | 6.65328  | -1.19399 | -2.43283 |
| Η | 5.56619  | 0.18869  | -2.24227 |
| Η | 1.89292  | -2.53850 | -2.68650 |
| Η | 0.99647  | -4.51700 | -1.39292 |
| Η | 1.50414  | -3.19076 | -0.35144 |
| Η | 2.53634  | -4.62223 | -0.53216 |
| Η | 3.58141  | -5.08537 | -2.98007 |
| Η | 3.29366  | -3.88022 | -4.24485 |
| Η | 1.95482  | -4.86127 | -3.64039 |

| Η | -0.28869 | 1.28568  | -5.63469 |
|---|----------|----------|----------|
| Η | 0.87997  | 0.00469  | -5.99501 |
| Η | 1.35575  | 1.42082  | -5.02682 |
| Η | 0.11278  | -1.84456 | -5.00886 |
| Η | -0.68277 | -3.79109 | -4.55694 |
| Η | -2.16959 | -3.66874 | -3.61177 |
| Η | -0.73266 | -4.39861 | -2.89284 |
| Η | -2.48555 | 4.45102  | -3.56040 |
| Η | -0.77880 | 5.90791  | -2.53291 |
| Η | 1.34720  | 4.93775  | -1.72174 |
| Η | -1.99991 | 0.83723  | -4.27148 |
| Η | -2.86193 | 0.76322  | -1.98265 |
| Η | -4.18937 | 0.66180  | -3.14952 |
| Η | -3.87491 | 2.17983  | -2.28274 |
| Η | -3.84418 | 3.23711  | -4.68643 |
| Η | -3.91069 | 1.66554  | -5.47822 |
| Η | -2.56038 | 2.76724  | -5.80915 |
| Η | 2.11404  | 1.27435  | -1.88756 |
| Η | 2.55822  | 3.79993  | -0.21624 |
| Η | 3.47118  | 2.29617  | -0.08146 |
| Η | 1.75693  | 2.31221  | 0.31504  |
| Η | 3.09335  | 2.54482  | -3.79820 |
| Η | 4.25619  | 2.36171  | -2.47553 |
| Η | 3.42784  | 3.90756  | -2.72197 |
| Η | -0.90723 | -3.26034 | -0.21151 |
| Η | -2.17320 | -3.50153 | -1.41936 |
| Η | -3.10609 | -1.23224 | -0.76422 |
| Η | -1.98945 | -1.23254 | 0.61705  |
| Η | -2.58216 | -1.98926 | 2.79069  |
| Η | -4.64295 | -4.19328 | 3.37864  |
| Η | -4.81339 | -2.47003 | 3.75613  |
| Η | -3.60346 | -3.44341 | 4.59636  |
| Η | -1.53278 | -4.16654 | 3.54678  |
| Η | -1.11716 | -3.73732 | 1.89202  |
| Η | -2.34265 | -4.99068 | 2.20297  |
| Η | -5.85521 | -2.00359 | 1.79790  |
| Η | -3.91949 | 0.27091  | 1.08274  |
| Η | -4.14250 | -0.39011 | 2.69692  |
| Η | -5.46633 | 0.46031  | 1.90174  |
| Η | -6.71667 | -0.60799 | -0.05256 |
| Η | -6.23712 | -2.20801 | -0.65251 |
| Η | -5.20785 | -0.79626 | -0.94109 |
| Η | 0.22547  | 0.52034  | 0.20013  |
| Η | 0.13931  | -1.91278 | 1.57998  |

144

H-H coupling TS

| C 0.53211 10.07114 22                                                  | 2.71689                                        |
|------------------------------------------------------------------------|------------------------------------------------|
| C 1.72392 9.63114 23                                                   | .33914                                         |
| C 2.55006 10.53956 24                                                  | 4.03717                                        |
| C 2.17279 11.88345 24                                                  | .08312                                         |
| C 1.01311 12.33188 23                                                  | 8.45980                                        |
| C 0.20375 11.42737 22                                                  | 2.78489                                        |
| N 2.02976 8.24646 23                                                   | 3.34701                                        |
| C 2.24231 7.61373 22                                                   | 2.18492                                        |
| C 2.06730 6.24080 21                                                   | .98762                                         |
| C 1.36722 5.33476 22                                                   | .82249                                         |
| C 0.92636 4.03861 22                                                   | 2.18137                                        |
| C 3.82515 10.06589 24                                                  | 4.70630                                        |
| C 4.91971 9.76002 23                                                   | 6.68016                                        |
| C -0.44594 9.10602 22                                                  | .06483                                         |
| C -0.98652 9.62216 20                                                  | .72839                                         |
| Zn 1.85966 7.19649 25                                                  | 5.03350                                        |
| N 1.08652 5.59966 24                                                   | 1.08051                                        |
| C 0.19233 4.77585 24                                                   | .87790                                         |
| C -0.90780 5.66793 25                                                  | .45349                                         |
| P -2.17655 4.77347 26                                                  | .48592                                         |
| C -3.63811 5.93746 26                                                  | .27889                                         |
| C -4.23506 5.76960 24                                                  | .87998                                         |
| Zn 3.18962 7.36448 27                                                  | .19960                                         |
| N 5.11164 7.68491 27                                                   | .01824                                         |
| C 5.91030 6.84654 26                                                   | 5.13185                                        |
| C 5.04001 6.11948 25                                                   | .11816                                         |
| P 5.90593 4.69674 24                                                   | .28490                                         |
| C 4.39965 3.79467 23                                                   | 63478                                          |
| C 4.81729 2.73569 22                                                   | 2.61468                                        |
| N 2.78660 8.60672 28                                                   | 3.65309                                        |
| C 3.73131 9.36942 29                                                   | .18853                                         |
| C 5.07371 9.36189 28                                                   | 3.77569                                        |
| C 5.71736 8.55950 27                                                   | .81234                                         |
| C 7.21232 8.74384 27                                                   | .68952                                         |
| C 1.48044 8.51965 29                                                   | .19910                                         |
| C 1.24708 7.73677 30                                                   | ).34841                                        |
| C -0.06982 7.59135 30                                                  | 70206                                          |
|                                                                        | . /9296                                        |
| C -1.12532 8.21453 30                                                  | .13658                                         |
| C -1.12532 8.21453 30<br>C -0.87614 8.99055 29                         | .13658<br>.00842                               |
| C-1.125328.2145330C-0.876148.9905529C0.420049.1452528                  | .19296<br>.13658<br>.00842<br>.51279           |
| C-1.125328.2145330C-0.876148.9905529C0.420049.1452528C2.380937.0610931 | .19296<br>.13658<br>.00842<br>.51279<br>.09795 |

| С | 0.69636  | 10.01120 | 27.29971 |
|---|----------|----------|----------|
| С | -0.35501 | 9.85349  | 26.20801 |
| С | 3.38479  | 10.28173 | 30.33995 |
| С | 0.85612  | 11.48278 | 27.69399 |
| С | 2.36749  | 7.42305  | 32.58702 |
| С | -1.56701 | 5.23415  | 28.19321 |
| С | -0.27895 | 4.47529  | 28.50255 |
| С | -2.63452 | 4.94922  | 29.24698 |
| С | 2.65499  | 8.41757  | 20.97218 |
| С | 4.34803  | 11.02443 | 25.77046 |
| С | -1.59354 | 8.78122  | 23.02738 |
| С | -3.36494 | 7.40615  | 26.59376 |
| С | 6.60161  | 5.48378  | 22.72648 |
| С | 7.70248  | 6.47735  | 23.10473 |
| С | 5.58935  | 6.12882  | 21.78599 |
| С | 3.64083  | 3.14880  | 24.79563 |
| Η | 3.62721  | 9.79529  | 31.29061 |
| Η | 2.32123  | 10.52490 | 30.35620 |
| Η | 3.96709  | 11.20426 | 30.28313 |
| Η | 5.71731  | 10.05786 | 29.30059 |
| Η | 7.48153  | 9.10747  | 26.69108 |
| Η | 7.74019  | 7.79630  | 27.83835 |
| Η | 7.57978  | 9.46134  | 28.42337 |
| Η | -1.70132 | 9.48393  | 28.50464 |
| Η | -2.14108 | 8.09490  | 30.50222 |
| Η | -0.26910 | 6.98318  | 31.67107 |
| Η | 1.65160  | 9.68081  | 26.87650 |
| Η | -0.05965 | 11.86141 | 28.16183 |
| Η | 1.06486  | 12.08923 | 26.80663 |
| Η | 1.67713  | 11.61849 | 28.40358 |
| Η | -0.46072 | 8.79953  | 25.93170 |
| Η | -0.06279 | 10.41303 | 25.31759 |
| Η | -1.34052 | 10.21548 | 26.51940 |
| Η | 3.32303  | 7.41805  | 30.67321 |
| Η | 2.34397  | 8.50644  | 32.73907 |
| Η | 3.25762  | 7.02436  | 33.08468 |
| Η | 1.49276  | 7.00074  | 33.09313 |
| Η | 1.43708  | 5.10861  | 31.31327 |
| Η | 3.20370  | 5.07772  | 31.42278 |
| Η | 2.42118  | 5.28730  | 29.84294 |
| Η | 6.46055  | 6.09643  | 26.72043 |
| Η | 6.66440  | 7.44377  | 25.60739 |
| Η | 4.60097  | 6.81856  | 24.39578 |
| Η | 4.21622  | 5.64660  | 25.66636 |

| Η | 7.07971  | 4.64144  | 22.20819 |
|---|----------|----------|----------|
| Η | 5.04406  | 6.93454  | 22.28487 |
| Н | 4.84589  | 5.41719  | 21.42084 |
| Н | 6.09717  | 6.56418  | 20.91664 |
| Н | 8.26883  | 6.78243  | 22.21767 |
| Н | 8.40597  | 6.05309  | 23.82839 |
| Н | 7.27276  | 7.38574  | 23.53977 |
| Н | 3.74479  | 4.52772  | 23.14923 |
| Н | 2.78291  | 2.58078  | 24.41789 |
| Н | 3.25366  | 3.88319  | 25.50735 |
| Н | 4.28226  | 2.45283  | 25.34739 |
| Н | 5.51846  | 2.01913  | 23.05787 |
| Η | 5.29677  | 3.17021  | 21.73249 |
| Η | 3.94204  | 2.17260  | 22.27023 |
| Η | 1.78725  | 8.66920  | 20.35452 |
| Η | 3.33804  | 7.82848  | 20.35508 |
| Н | 3.14032  | 9.35318  | 21.25514 |
| Η | 2.33260  | 5.87124  | 21.00396 |
| Η | 1.39568  | 3.91460  | 21.20449 |
| Н | -0.15938 | 4.02609  | 22.03490 |
| Η | 1.18519  | 3.17608  | 22.80146 |
| Η | -0.71322 | 11.77574 | 22.31908 |
| Н | 0.73866  | 13.38163 | 23.50861 |
| Η | 2.79642  | 12.59333 | 24.61479 |
| Н | 0.06806  | 8.16334  | 21.86607 |
| Н | -1.20996 | 8.32308  | 23.94097 |
| Н | -2.30100 | 8.08339  | 22.56569 |
| Н | -2.14082 | 9.68686  | 23.30981 |
| Н | -1.64080 | 10.49034 | 20.86016 |
| Н | -1.57762 | 8.84401  | 20.23483 |
| Н | -0.17753 | 9.91777  | 20.05300 |
| Н | 3.59238  | 9.11838  | 25.21278 |
| Н | 4.69715  | 11.96688 | 25.33338 |
| Н | 5.19012  | 10.57153 | 26.29549 |
| Н | 3.58464  | 11.25139 | 26.51937 |
| Н | 4.59261  | 9.00491  | 22.96316 |
| Н | 5.81515  | 9.38175  | 24.18514 |
| Η | 5.19778  | 10.66275 | 23.12476 |
| Н | 0.76372  | 4.31102  | 25.69146 |
| Η | -0.26255 | 3.96191  | 24.30545 |
| Η | -1.42465 | 6.14465  | 24.61444 |
| Η | -0.45228 | 6.47306  | 26.04812 |
| Η | -1.33649 | 6.30599  | 28.20433 |
| Η | -2.93479 | 3.89510  | 29.23352 |

| Η     | -3.53283      | 5.55753  | 29.10247 |
|-------|---------------|----------|----------|
| Н     | -2.24232      | 5.17303  | 30.24530 |
| Н     | 0.03918       | 4.69064  | 29.52604 |
| Н     | 0.54601       | 4.77647  | 27.85073 |
| Н     | -0.41740      | 3.39206  | 28.40796 |
| Н     | -4.37400      | 5.55469  | 26.99863 |
| Н     | -2.64063      | 7.83320  | 25.89378 |
| Н     | -2.96957      | 7.54640  | 27.60288 |
| Н     | -4.28589      | 7.99563  | 26.50773 |
| Н     | -5.16134      | 6.34758  | 24.78536 |
| Н     | -4.46138      | 4.72154  | 24.66106 |
| Н     | -3.54944      | 6.13417  | 24.10632 |
| Н     | 2.17074       | 6.26108  | 26.64540 |
| Н     | 2.72180       | 5.66539  | 27.59375 |
| 144   |               |          |          |
| H-H o | coupling prod | uct      |          |
| С     | -1.44007      | 2.48857  | -3.08415 |
| С     | -0.21568      | 2.00557  | -2.56204 |
| С     | 0.70811       | 2.89319  | -1.97365 |
| С     | 0.38988       | 4.25192  | -1.90860 |
| С     | -0.81161      | 4.73658  | -2.41000 |
| С     | -1.71324      | 3.85485  | -2.99664 |
| Ν     | 0.02643       | 0.60881  | -2.54561 |
| С     | 0.17631       | -0.05705 | -3.69250 |
| С     | -0.04286      | -1.43353 | -3.83238 |
| С     | -0.71019      | -2.28850 | -2.92184 |
| С     | -1.27006      | -3.56938 | -3.49875 |
| С     | 2.05961       | 2.41449  | -1.48776 |
| С     | 3.14710       | 2.76030  | -2.51159 |
| С     | -2.48558      | 1.55080  | -3.66580 |
| С     | -3.14233      | 2.10218  | -4.93354 |
| Zn    | -0.08522      | -0.36871 | -0.78646 |
| Ν     | -0.87171      | -1.99442 | -1.64676 |
| С     | -1.77254      | -2.73764 | -0.78165 |
| С     | -2.98910      | -1.86466 | -0.46317 |
| Р     | -4.16140      | -2.62975 | 0.76832  |
| С     | -5.76757      | -1.77762 | 0.29007  |
| С     | -6.27281      | -2.34887 | -1.03677 |
| Zn    | 1.04059       | 0.13527  | 1.19878  |
| Ν     | 3.03274       | -0.11664 | 1.43333  |
| С     | 3.71983       | -1.16065 | 0.67913  |
| С     | 3.01656       | -1.50111 | -0.62925 |
| Р     | 4.02470       | -2.66567 | -1.67922 |
| С     | 2.65216       | -3.52943 | -2.61062 |

| С | 3.23100  | -4.30016 | -3.79655 |
|---|----------|----------|----------|
| Ν | 0.82042  | 1.23688  | 2.83669  |
| С | 1.83996  | 1.89470  | 3.39080  |
| С | 3.18098  | 1.66753  | 3.06414  |
| С | 3.73718  | 0.66508  | 2.24022  |
| С | 5.24331  | 0.52806  | 2.31318  |
| С | -0.45737 | 1.26834  | 3.44866  |
| С | -0.64448 | 0.61761  | 4.68999  |
| С | -1.92134 | 0.62351  | 5.25561  |
| С | -2.99331 | 1.22865  | 4.60701  |
| С | -2.79924 | 1.83767  | 3.37226  |
| С | -1.53741 | 1.87368  | 2.77332  |
| С | 0.49350  | -0.14154 | 5.35500  |
| С | 0.55959  | -1.58029 | 4.82999  |
| С | -1.31988 | 2.58908  | 1.45503  |
| С | -2.54259 | 2.57028  | 0.54431  |
| С | 1.56857  | 2.93146  | 4.45846  |
| С | -0.82551 | 4.02223  | 1.67357  |
| С | 0.42661  | -0.12025 | 6.88237  |
| С | -3.66744 | -1.66007 | 2.28843  |
| С | -2.23280 | -1.99487 | 2.68468  |
| С | -4.63375 | -1.93490 | 3.43832  |
| С | 0.54818  | 0.70436  | -4.94358 |
| С | 2.42380  | 2.95943  | -0.10779 |
| С | -3.53671 | 1.20376  | -2.60814 |
| С | -5.73064 | -0.25121 | 0.25903  |
| С | 4.68198  | -1.46198 | -2.96802 |
| С | 5.61664  | -0.46416 | -2.28003 |
| С | 3.63017  | -0.73596 | -3.80271 |
| С | 1.90763  | -4.47306 | -1.66574 |
| Η | 1.53708  | 2.47796  | 5.45451  |
| Η | 0.60719  | 3.42340  | 4.29892  |
| Η | 2.36141  | 3.68258  | 4.46068  |
| Η | 3.89623  | 2.29077  | 3.58797  |
| Η | 5.70997  | 0.73870  | 1.34403  |
| Η | 5.53595  | -0.48749 | 2.59834  |
| Н | 5.65922  | 1.22030  | 3.04576  |
| Н | -3.64077 | 2.30268  | 2.86863  |
| Η | -3.97983 | 1.22051  | 5.06147  |
| Н | -2.08511 | 0.13495  | 6.21097  |
| Н | -0.52812 | 2.05046  | 0.92047  |
| Н | -1.55742 | 4.60114  | 2.24821  |
| Н | -0.66948 | 4.51651  | 0.70982  |
| Η | 0.12300  | 4.03684  | 2.21668  |
|   |          |          |          |

| H-2.269612.93998-0.447H-3.351563.206150.921H1.436710.328495.067H0.327790.900347.266H1.33707-0.557807.303H-0.41714-0.705307.263H-0.33723-2.142335.109H1.43134-2.100125.242H0.64109-1.594763.740H3.79663-2.074691.286H4.74881-0.868000.447H2.80012-0.58135-1.183H2.05142-1.97592-0.432H5.29206-2.08633-3.634H2.95732-0.14390-3.175H3.00956-1.42294-4.382H4.11174-0.04473-4.504H6.123900.16458-3.020H6.38144-0.96922-1.681H1.94705-2.77405-2.978H1.14910-5.03906-2.217H1.39301-3.93427-0.866H2.59162-5.19531-1.205H3.72208-3.64291-4.520H2.43628-4.83878-4.325H-0.342601.09490-5.446H1.188101.55760-4.709H0.14694-1.84305-4.817H-0.88999-3.73197-4.508H-2.654514.23428-3.382H-1.043985.79                                                                                                                                                                                                                                         | Η | -2.93713 | 1.55519  | 0.43658  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------|----------|----------|
| H-3.351563.206150.921H1.436710.328495.067H0.327790.900347.266H1.33707-0.557807.303H-0.41714-0.705307.263H1.43134-2.100125.242H0.64109-1.594763.740H3.79663-2.074691.286H4.74881-0.868000.447H2.80012-0.58135-1.183H2.05142-1.97592-0.432H5.29206-2.08633-3.634H2.95732-0.14390-3.175H3.00956-1.42294-4.382H4.11174-0.04473-4.504H6.123900.16458-3.020H6.38144-0.96922-1.681H1.94705-2.77405-2.978H1.14910-5.03906-2.217H1.39301-3.93427-0.866H2.59162-5.19531-1.205H3.72208-3.64291-4.520H1.066380.04825-5.646H1.08663-0.4825-5.646H1.188101.55760-4.709H0.14694-1.84305-4.817H-0.88999-3.73197-4.508H-2.654514.23428-3.382H-1.043985.79570-2.347H-1.043985.79570-2.347H-1.043985.7957                                                                                                                                                                                                                                         | Η | -2.26961 | 2.93998  | -0.44700 |
| H 1.43671 0.32849 5.067   H 0.32779 0.90034 7.266   H 1.33707 -0.55780 7.303   H -0.41714 -0.70530 7.263   H -0.33723 -2.14233 5.109   H 1.43134 -2.10012 5.242   H 0.64109 -1.59476 3.740   H 3.79663 -2.07469 1.286   H 4.74881 -0.86800 0.447   H 2.05142 -1.97592 -0.432   H 5.29206 -2.08633 -3.634   H 2.95732 -0.14390 -3.175   H 3.00956 -1.42294 -4.382   H 4.11174 -0.04473 -4.504   H 5.05568 0.20570 -1.618   H 1.94705 -2.77405 -2.978   H 1.14910 -5.03906 -2.217   H 1.39301 -3.93427 -0.8666   H 2.43628 -4.83878 -4.3205   H 3.72208 <th>Η</th> <th>-3.35156</th> <th>3.20615</th> <th>0.92150</th>                                                                                                                                                                                                                                                                                                           | Η | -3.35156 | 3.20615  | 0.92150  |
| H   0.32779   0.90034   7.266     H   1.33707   -0.55780   7.303     H   -0.41714   -0.70530   7.263     H   -0.33723   -2.14233   5.109     H   1.43134   -2.10012   5.242     H   0.64109   -1.59476   3.740     H   3.79663   -2.07469   1.286     H   4.74881   -0.86800   0.447     H   2.05142   -1.97592   -0.432     H   2.05142   -1.97592   -0.432     H   2.05142   -1.97592   -0.432     H   2.95732   -0.14390   -3.175     H   3.00956   -1.42294   -4.382     H   4.11174   -0.04473   -4.504     H   6.12390   0.16458   -3.020     H   6.38144   -0.96922   -1.681     H   1.94705   -2.77405   -2.978     H   1.14910   -5.03955   -3.4633                                                                                                                                                                                                                                                                   | Η | 1.43671  | 0.32849  | 5.06734  |
| H 1.33707 -0.55780 7.303   H -0.41714 -0.70530 7.263   H -0.33723 -2.14233 5.109   H 1.43134 -2.10012 5.242   H 0.64109 -1.59476 3.740   H 3.79663 -2.07469 1.286   H 4.74881 -0.86800 0.447   H 2.80012 -0.58135 -1.183   H 2.05142 -1.97592 -0.432   H 5.29206 -2.08633 -3.634   H 2.95732 -0.14390 -3.175   H 3.00956 -1.42294 -4.382   H 4.11174 -0.04473 -4.504   H 5.05568 0.20570 -1.618   H 1.94705 -2.77405 -2.978   H 1.14910 -5.03906 -2.217   H 1.39301 -3.93427 -0.866   H 2.43628 -4.83878 -4.325   H -0.34260 1.09490 -5.446   H 1.06638 </th <th>Η</th> <th>0.32779</th> <th>0.90034</th> <th>7.26607</th>                                                                                                                                                                                                                                                                                                     | Η | 0.32779  | 0.90034  | 7.26607  |
| H -0.41714 -0.70530 7.263   H -0.33723 -2.14233 5.109   H 1.43134 -2.10012 5.242   H 0.64109 -1.59476 3.740   H 3.79663 -2.07469 1.286   H 4.74881 -0.86800 0.447   H 2.80012 -0.58135 -1.183   H 2.05142 -1.97592 -0.432   H 5.29206 -2.08633 -3.634   H 2.95732 -0.14390 -3.175   H 3.00956 -1.42294 -4.382   H 4.11174 -0.04473 -4.504   H 6.12390 0.16458 -3.020   H 6.38144 -0.96922 -1.618   H 1.94705 -2.77405 -2.978   H 1.14910 -5.03906 -2.217   H 1.39301 -3.93427 -0.866   H 2.59162 -5.19531 -1.205   H 3.96855 -5.03955 -3.463   H 2.43628<                                                                                                                                                                                                                                                                                                                                                                      | Η | 1.33707  | -0.55780 | 7.30387  |
| H -0.33723 -2.14233 5.109   H 1.43134 -2.10012 5.242   H 0.64109 -1.59476 3.740   H 3.79663 -2.07469 1.286   H 4.74881 -0.86800 0.447   H 2.80012 -0.58135 -1.183   H 2.05142 -1.97592 -0.432   H 5.29206 -2.08633 -3.634   H 2.95732 -0.14390 -3.175   H 3.00956 -1.42294 -4.382   H 4.11174 -0.04473 -4.504   H 6.12390 0.16458 -3.020   H 6.12390 0.16458 -3.020   H 6.38144 -0.96922 -1.681   H 1.94705 -2.77405 -2.978   H 1.14910 -5.03906 -2.217   H 1.39301 -3.93427 -0.866   H 2.59162 -5.19531 -1.205   H 3.96855 -5.03955 -3.463   H -0.34260<                                                                                                                                                                                                                                                                                                                                                                      | Η | -0.41714 | -0.70530 | 7.26376  |
| H 1.43134 -2.10012 5.242   H 0.64109 -1.59476 3.740   H 3.79663 -2.07469 1.286   H 4.74881 -0.86800 0.447   H 2.80012 -0.58135 -1.183   H 2.05142 -1.97592 -0.432   H 5.29206 -2.08633 -3.634   H 2.95732 -0.14390 -3.175   H 3.00956 -1.42294 -4.382   H 4.11174 -0.04473 -4.504   H 6.12390 0.16458 -3.020   H 6.12390 0.16458 -3.020   H 6.12390 0.16458 -3.020   H 6.38144 -0.96922 -1.681   H 1.94705 -2.77405 -2.978   H 1.14910 -5.03906 -2.217   H 1.39301 -3.93427 -0.866   H 2.59162 -5.19531 -1.205   H 3.96855 -5.03955 -3.463   H 2.43628 <th>Η</th> <th>-0.33723</th> <th>-2.14233</th> <th>5.10975</th>                                                                                                                                                                                                                                                                                                         | Η | -0.33723 | -2.14233 | 5.10975  |
| H0.64109-1.594763.740H3.79663-2.074691.286H4.74881-0.868000.447H2.80012-0.58135-1.183H2.05142-1.97592-0.432H5.29206-2.08633-3.634H2.95732-0.14390-3.175H3.00956-1.42294-4.382H4.11174-0.04473-4.504H6.123900.16458-3.020H6.38144-0.96922-1.681H1.94705-2.77405-2.978H1.14910-5.03906-2.217H1.39301-3.93427-0.866H2.59162-5.19531-1.205H3.96855-5.03955-3.463H3.72208-3.64291-4.520H2.43628-4.83878-4.325H-0.342601.09490-5.446H1.066380.04825-5.646H1.188101.55760-4.709H0.14694-1.84305-4.817H-0.88999-3.73197-4.508H-2.654514.23428-3.382H-1.043985.79570-2.347H1.102244.94155-1.465H-1.043985.79570-2.347H1.102244.94155-1.465H-3.063410.73904-1.741H-4.064192.10035-2.265H-3.77224                                                                                                                                                                                                                                         | Η | 1.43134  | -2.10012 | 5.24224  |
| H 3.79663 -2.07469 1.286   H 4.74881 -0.86800 0.447   H 2.80012 -0.58135 -1.183   H 2.05142 -1.97592 -0.432   H 5.29206 -2.08633 -3.634   H 2.95732 -0.14390 -3.175   H 3.00956 -1.42294 -4.382   H 4.11174 -0.04473 -4.504   H 6.12390 0.16458 -3.020   H 6.12390 0.16458 -3.020   H 6.38144 -0.96922 -1.681   H 5.05568 0.20570 -1.618   H 1.94705 -2.77405 -2.978   H 1.14910 -5.03906 -2.217   H 1.39301 -3.93427 -0.866   H 2.59162 -5.19531 -1.205   H 3.96855 -5.03955 -3.463   H 2.43628 -4.83878 -4.325   H -0.34260 1.09490 -5.446   H 1.06638<                                                                                                                                                                                                                                                                                                                                                                      | Η | 0.64109  | -1.59476 | 3.74026  |
| H $4.74881$ $-0.86800$ $0.447$ H $2.80012$ $-0.58135$ $-1.183$ H $2.05142$ $-1.97592$ $-0.432$ H $5.29206$ $-2.08633$ $-3.634$ H $2.95732$ $-0.14390$ $-3.175$ H $3.00956$ $-1.42294$ $-4.382$ H $4.11174$ $-0.04473$ $-4.504$ H $6.12390$ $0.16458$ $-3.020$ H $6.38144$ $-0.96922$ $-1.681$ H $5.05568$ $0.20570$ $-1.618$ H $1.94705$ $-2.77405$ $-2.978$ H $1.14910$ $-5.03906$ $-2.217$ H $1.39301$ $-3.93427$ $-0.866$ H $2.59162$ $-5.19531$ $-1.205$ H $3.96855$ $-5.03955$ $-3.463$ H $2.43628$ $-4.83878$ $-4.325$ H $0.34260$ $1.09490$ $-5.446$ H $1.06638$ $0.04825$ $-5.646$ H $1.18810$ $1.55760$ $-4.709$ H $0.14694$ $-1.84305$ $-4.817$ H $-0.38999$ $-3.73197$ $-4.508$ H $-2.36323$ $-3.52223$ $-3.556$ H $-1.01038$ $-4.43806$ $-2.887$ H $-2.65451$ $4.23428$ $-3.382$ < | Η | 3.79663  | -2.07469 | 1.28684  |
| H2.80012-0.58135-1.183H2.05142-1.97592-0.432H5.29206-2.08633-3.634H2.95732-0.14390-3.175H3.00956-1.42294-4.382H4.11174-0.04473-4.504H6.123900.16458-3.020H6.38144-0.96922-1.681H5.055680.20570-1.618H1.94705-2.77405-2.978H1.14910-5.03906-2.217H1.39301-3.93427-0.866H2.59162-5.19531-1.205H3.96855-5.03955-3.463H3.72208-3.64291-4.520H2.43628-4.83878-4.325H-0.342601.09490-5.446H1.066380.04825-5.646H1.188101.55760-4.709H0.14694-1.84305-4.817H-0.88999-3.73197-4.508H-2.654514.23428-3.382H-1.01038-4.43806-2.887H-2.654514.23428-3.382H-1.043985.79570-2.347H1.102244.94155-1.465H-1.999070.61076-3.935H-3.063410.73904-1.741H-4.277240.50340-3.010H-4.064192.10035-2.265H-3.77224                                                                                                                                                                                                                                     | Η | 4.74881  | -0.86800 | 0.44790  |
| H 2.05142 -1.97592 -0.432   H 5.29206 -2.08633 -3.634   H 2.95732 -0.14390 -3.175   H 3.00956 -1.42294 -4.382   H 4.11174 -0.04473 -4.504   H 6.12390 0.16458 -3.020   H 6.38144 -0.96922 -1.681   H 5.05568 0.20570 -1.618   H 1.94705 -2.77405 -2.978   H 1.14910 -5.03906 -2.217   H 1.39301 -3.93427 -0.866   H 2.59162 -5.19531 -1.205   H 3.96855 -5.03955 -3.463   H 2.43628 -4.83878 -4.325   H -0.34260 1.09490 -5.446   H 1.06638 0.04825 -5.646   H 1.18810 1.55760 -4.709   H 0.14694 -1.84305 -4.817   H -0.88999 -3.73197 -4.508   H -2.654                                                                                                                                                                                                                                                                                                                                                                      | Η | 2.80012  | -0.58135 | -1.18352 |
| H5.29206-2.08633-3.634H2.95732-0.14390-3.175H3.00956-1.42294-4.382H4.11174-0.04473-4.504H6.123900.16458-3.020H6.38144-0.96922-1.681H5.055680.20570-1.618H1.94705-2.77405-2.978H1.14910-5.03906-2.217H1.39301-3.93427-0.866H2.59162-5.19531-1.205H3.96855-5.03955-3.463H3.72208-3.64291-4.520H2.43628-4.83878-4.325H-0.342601.09490-5.446H1.066380.04825-5.646H1.188101.55760-4.709H0.14694-1.84305-4.817H-0.88999-3.73197-4.508H-2.36323-3.52223-3.556H-1.01038-4.43806-2.887H-2.654514.23428-3.382H-1.043985.79570-2.347H1.102244.94155-1.465H-1.999070.61076-3.935H-3.063410.73904-1.741H-4.277240.50340-3.010H-4.064192.10035-2.265H-3.785081.34030-5.386                                                                                                                                                                                                                                                                   | Η | 2.05142  | -1.97592 | -0.43241 |
| H 2.95732 -0.14390 -3.175   H 3.00956 -1.42294 -4.382   H 4.11174 -0.04473 -4.504   H 6.12390 0.16458 -3.020   H 6.38144 -0.96922 -1.681   H 5.05568 0.20570 -1.618   H 1.94705 -2.77405 -2.978   H 1.14910 -5.03906 -2.217   H 1.39301 -3.93427 -0.866   H 2.59162 -5.19531 -1.205   H 3.96855 -5.03955 -3.463   H 3.72208 -3.64291 -4.520   H 2.43628 -4.83878 -4.325   H -0.34260 1.09490 -5.446   H 1.06638 0.04825 -5.646   H 1.18810 1.55760 -4.709   H 0.14694 -1.84305 -4.817   H -0.88999 -3.73197 -4.508   H -2.65451 4.23428 -3.382   H -1.010                                                                                                                                                                                                                                                                                                                                                                      | Η | 5.29206  | -2.08633 | -3.63424 |
| H3.00956-1.42294-4.382H4.11174-0.04473-4.504H6.123900.16458-3.020H6.38144-0.96922-1.681H5.055680.20570-1.618H1.94705-2.77405-2.978H1.14910-5.03906-2.217H1.39301-3.93427-0.866H2.59162-5.19531-1.205H3.96855-5.03955-3.463H3.72208-3.64291-4.520H2.43628-4.83878-4.325H-0.342601.09490-5.446H1.066380.04825-5.646H1.188101.55760-4.709H0.14694-1.84305-4.817H-0.88999-3.73197-4.508H-2.654514.23428-3.382H-1.01038-4.43806-2.887H-2.654514.23428-3.382H-1.043985.79570-2.347H1.102244.94155-1.465H-1.999070.61076-3.935H-3.063410.73904-1.741H-4.277240.50340-3.010H-4.064192.10035-2.265H-3.772242.97310-4.724H-3.785081.34030-5.386                                                                                                                                                                                                                                                                                          | Η | 2.95732  | -0.14390 | -3.17574 |
| H $4.11174$ $-0.04473$ $-4.504$ H $6.12390$ $0.16458$ $-3.020$ H $6.38144$ $-0.96922$ $-1.681$ H $5.05568$ $0.20570$ $-1.618$ H $1.94705$ $-2.77405$ $-2.978$ H $1.14910$ $-5.03906$ $-2.217$ H $1.39301$ $-3.93427$ $-0.866$ H $2.59162$ $-5.19531$ $-1.205$ H $3.96855$ $-5.03955$ $-3.463$ H $3.72208$ $-3.64291$ $-4.520$ H $2.43628$ $-4.83878$ $-4.325$ H $-0.34260$ $1.09490$ $-5.446$ H $1.06638$ $0.04825$ $-5.646$ H $1.08638$ $0.04825$ $-5.646$ H $1.08999$ $-3.73197$ $-4.508$ H $-2.36323$ $-3.52223$ $-3.556$ H $-1.01038$ $-4.43806$ $-2.887$ H $-2.65451$ $4.23428$ $-3.382$ H $-1.04398$ $5.79570$ $-2.347$ H $1.10224$ $4.94155$ $-1.465$ H $-1.99907$ $0.61076$ $-3.935$ H $-3.06341$ $0.73904$ $-1.741$ H $-4.27724$ $0.50340$ $-3.010$ H $-4.06419$ $2.10035$ $-2.265$ H $-3.778508$ $1.34030$ $-5.386$                                                                                                  | Η | 3.00956  | -1.42294 | -4.38276 |
| H $6.12390$ $0.16458$ $-3.020$ H $6.38144$ $-0.96922$ $-1.681$ H $5.05568$ $0.20570$ $-1.618$ H $1.94705$ $-2.77405$ $-2.978$ H $1.14910$ $-5.03906$ $-2.217$ H $1.39301$ $-3.93427$ $-0.866$ H $2.59162$ $-5.19531$ $-1.205$ H $3.96855$ $-5.03955$ $-3.463$ H $3.72208$ $-3.64291$ $-4.520$ H $2.43628$ $-4.83878$ $-4.325$ H $-0.34260$ $1.09490$ $-5.446$ H $1.06638$ $0.04825$ $-5.646$ H $1.08638$ $0.04825$ $-5.646$ H $1.0810$ $1.55760$ $-4.709$ H $0.14694$ $-1.84305$ $-4.817$ H $-0.88999$ $-3.73197$ $-4.508$ H $-2.36323$ $-3.52223$ $-3.556$ H $-1.01038$ $-4.43806$ $-2.887$ H $-2.65451$ $4.23428$ $-3.382$ H $-1.04398$ $5.79570$ $-2.347$ H $1.10224$ $4.94155$ $-1.465$ H $-1.99907$ $0.61076$ $-3.935$ H $-3.06341$ $0.73904$ $-1.741$ H $-4.27724$ $0.50340$ $-3.010$ H $-4.06419$ $2.10035$ $-2.265$ H $-3.77224$ $2.97310$ $-4.724$ H $-3.78508$ $1.34030$ $-5.386$                                    | Η | 4.11174  | -0.04473 | -4.50468 |
| H $6.38144$ $-0.96922$ $-1.681$ H $5.05568$ $0.20570$ $-1.618$ H $1.94705$ $-2.77405$ $-2.978$ H $1.14910$ $-5.03906$ $-2.217$ H $1.39301$ $-3.93427$ $-0.866$ H $2.59162$ $-5.19531$ $-1.205$ H $3.96855$ $-5.03955$ $-3.463$ H $3.72208$ $-3.64291$ $-4.520$ H $2.43628$ $-4.83878$ $-4.325$ H $-0.34260$ $1.09490$ $-5.446$ H $1.06638$ $0.04825$ $-5.646$ H $1.06638$ $0.04825$ $-5.646$ H $1.08632$ $-3.5760$ $-4.709$ H $0.14694$ $-1.84305$ $-4.817$ H $-0.88999$ $-3.73197$ $-4.508$ H $-2.36323$ $-3.52223$ $-3.556$ H $-1.01038$ $-4.43806$ $-2.887$ H $-2.65451$ $4.23428$ $-3.382$ H $-1.04398$ $5.79570$ $-2.347$ H $1.10224$ $4.94155$ $-1.465$ H $-1.99907$ $0.61076$ $-3.935$ H $-3.06341$ $0.73904$ $-1.741$ H $-4.27724$ $0.50340$ $-3.010$ H $-4.06419$ $2.10035$ $-2.265$ H $-3.77224$ $2.97310$ $-4.724$ H $-3.78508$ $1.34030$ $-5.386$                                                                  | Η | 6.12390  | 0.16458  | -3.02049 |
| H5.055680.20570-1.618H1.94705-2.77405-2.978H1.14910-5.03906-2.217H1.39301-3.93427-0.866H2.59162-5.19531-1.205H3.96855-5.03955-3.463H3.72208-3.64291-4.520H2.43628-4.83878-4.325H-0.342601.09490-5.446H1.066380.04825-5.646H1.188101.55760-4.709H0.14694-1.84305-4.817H-0.88999-3.73197-4.508H-2.36323-3.52223-3.556H-1.01038-4.43806-2.887H-2.654514.23428-3.382H-1.043985.79570-2.347H1.102244.94155-1.465H-1.999070.61076-3.935H-3.063410.73904-1.741H-4.277240.50340-3.010H-4.064192.10035-2.265H-3.772242.97310-4.724H-3.785081.34030-5.386                                                                                                                                                                                                                                                                                                                                                                                | Η | 6.38144  | -0.96922 | -1.68100 |
| H $1.94705$ $-2.77405$ $-2.978$ H $1.14910$ $-5.03906$ $-2.217$ H $1.39301$ $-3.93427$ $-0.866$ H $2.59162$ $-5.19531$ $-1.205$ H $3.96855$ $-5.03955$ $-3.463$ H $3.72208$ $-3.64291$ $-4.520$ H $2.43628$ $-4.83878$ $-4.325$ H $-0.34260$ $1.09490$ $-5.446$ H $1.06638$ $0.04825$ $-5.646$ H $1.08694$ $-1.84305$ $-4.817$ H $-0.88999$ $-3.73197$ $-4.508$ H $-2.36323$ $-3.52223$ $-3.556$ H $-1.01038$ $-4.43806$ $-2.887$ H $-2.65451$ $4.23428$ $-3.382$ H $-1.04398$ $5.79570$ $-2.347$ H $1.10224$ $4.94155$ $-1.465$ H $-1.99907$ $0.61076$ $-3.935$ H $-3.06341$ $0.73904$ $-1.741$ H $-4.27724$ $0.50340$ $-3.010$ H $-4.06419$ $2.10035$ $-2.265$ H $-3.77224$ $2.97310$ $-4.724$ H $-3.78508$ $1.34030$ $-5.386$                                                                                                                                                                                               | Η | 5.05568  | 0.20570  | -1.61861 |
| H 1.14910 -5.03906 -2.217   H 1.39301 -3.93427 -0.866   H 2.59162 -5.19531 -1.205   H 3.96855 -5.03955 -3.463   H 3.72208 -3.64291 -4.520   H 2.43628 -4.83878 -4.325   H -0.34260 1.09490 -5.446   H 1.06638 0.04825 -5.646   H 1.06638 0.04825 -5.646   H 1.06638 0.04825 -5.646   H 1.18810 1.55760 -4.709   H 0.14694 -1.84305 -4.817   H -0.88999 -3.73197 -4.508   H -2.36323 -3.52223 -3.556   H -1.01038 -4.43806 -2.887   H -2.65451 4.23428 -3.382   H -1.04398 5.79570 -2.347   H 1.10224 4.94155 -1.465   H -1.99907 0.61076 -3.9355   H -3.0                                                                                                                                                                                                                                                                                                                                                                      | Η | 1.94705  | -2.77405 | -2.97875 |
| H 1.39301 -3.93427 -0.866   H 2.59162 -5.19531 -1.205   H 3.96855 -5.03955 -3.463   H 3.72208 -3.64291 -4.520   H 2.43628 -4.83878 -4.325   H -0.34260 1.09490 -5.446   H 1.06638 0.04825 -5.646   H 1.08638 0.04825 -5.646   H 1.06638 0.04825 -5.646   H 1.18810 1.55760 -4.709   H 0.14694 -1.84305 -4.817   H -0.88999 -3.73197 -4.508   H -2.36323 -3.52223 -3.556   H -1.01038 -4.43806 -2.887   H -2.65451 4.23428 -3.382   H -1.04398 5.79570 -2.347   H 1.10224 4.94155 -1.465   H -1.99907 0.61076 -3.935   H -3.06341 0.73904 -1.741   H -4.27                                                                                                                                                                                                                                                                                                                                                                      | Η | 1.14910  | -5.03906 | -2.21790 |
| H 2.59162 -5.19531 -1.205   H 3.96855 -5.03955 -3.463   H 3.72208 -3.64291 -4.520   H 2.43628 -4.83878 -4.325   H -0.34260 1.09490 -5.446   H 1.06638 0.04825 -5.646   H 1.06638 0.04825 -5.646   H 1.18810 1.55760 -4.709   H 0.14694 -1.84305 -4.817   H -0.88999 -3.73197 -4.508   H -2.36323 -3.52223 -3.556   H -1.01038 -4.43806 -2.887   H -2.65451 4.23428 -3.382   H -1.04398 5.79570 -2.347   H 1.10224 4.94155 -1.465   H -1.99907 0.61076 -3.935   H -3.06341 0.73904 -1.741   H -4.27724 0.50340 -3.010   H -4.06419 2.10035 -2.265   H -3.7                                                                                                                                                                                                                                                                                                                                                                      | Η | 1.39301  | -3.93427 | -0.86604 |
| H3.96855-5.03955-3.463H3.72208-3.64291-4.520H2.43628-4.83878-4.325H-0.342601.09490-5.446H1.066380.04825-5.646H1.188101.55760-4.709H0.14694-1.84305-4.817H-0.88999-3.73197-4.508H-2.36323-3.52223-3.556H-1.01038-4.43806-2.887H-2.654514.23428-3.382H-1.043985.79570-2.347H1.102244.94155-1.465H-1.999070.61076-3.935H-3.063410.73904-1.741H-4.277240.50340-3.010H-4.064192.10035-2.265H-3.772242.97310-4.724H-3.785081.34030-5.386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Η | 2.59162  | -5.19531 | -1.20591 |
| H 3.72208 -3.64291 -4.520   H 2.43628 -4.83878 -4.325   H -0.34260 1.09490 -5.446   H 1.06638 0.04825 -5.646   H 1.18810 1.55760 -4.709   H 0.14694 -1.84305 -4.817   H -0.88999 -3.73197 -4.508   H -2.36323 -3.52223 -3.556   H -1.01038 -4.43806 -2.887   H -2.65451 4.23428 -3.382   H -1.04398 5.79570 -2.347   H 1.10224 4.94155 -1.465   H -1.99907 0.61076 -3.935   H -3.06341 0.73904 -1.741   H -4.27724 0.50340 -3.010   H -4.06419 2.10035 -2.265   H -3.77224 2.97310 -4.724   H -3.78508 1.34030 -5.386                                                                                                                                                                                                                                                                                                                                                                                                          | Η | 3.96855  | -5.03955 | -3.46325 |
| H2.43628-4.83878-4.325H-0.342601.09490-5.446H1.066380.04825-5.646H1.188101.55760-4.709H0.14694-1.84305-4.817H-0.88999-3.73197-4.508H-2.36323-3.52223-3.556H-1.01038-4.43806-2.887H-2.654514.23428-3.382H-1.043985.79570-2.347H1.102244.94155-1.465H-1.999070.61076-3.935H-3.063410.73904-1.741H-4.277240.50340-3.010H-4.064192.10035-2.265H-3.772242.97310-4.724H-3.785081.34030-5.386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Η | 3.72208  | -3.64291 | -4.52060 |
| H-0.342601.09490-5.446H1.066380.04825-5.646H1.188101.55760-4.709H0.14694-1.84305-4.817H-0.88999-3.73197-4.508H-2.36323-3.52223-3.556H-1.01038-4.43806-2.887H-2.654514.23428-3.382H-1.043985.79570-2.347H1.102244.94155-1.465H-3.063410.73904-1.741H-4.277240.50340-3.010H-4.064192.10035-2.265H-3.772242.97310-4.724H-3.785081.34030-5.386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Η | 2.43628  | -4.83878 | -4.32587 |
| H1.066380.04825-5.646H1.188101.55760-4.709H0.14694-1.84305-4.817H-0.88999-3.73197-4.508H-2.36323-3.52223-3.556H-1.01038-4.43806-2.887H-2.654514.23428-3.382H-1.043985.79570-2.347H1.102244.94155-1.465H-1.999070.61076-3.935H-3.063410.73904-1.741H-4.277240.50340-3.010H-4.064192.10035-2.265H-3.772242.97310-4.724H-3.785081.34030-5.386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Η | -0.34260 | 1.09490  | -5.44607 |
| H1.188101.55760-4.709H0.14694-1.84305-4.817H-0.88999-3.73197-4.508H-2.36323-3.52223-3.556H-1.01038-4.43806-2.887H-2.654514.23428-3.382H-1.043985.79570-2.347H1.102244.94155-1.465H-1.999070.61076-3.935H-3.063410.73904-1.741H-4.277240.50340-3.010H-4.064192.10035-2.265H-3.772242.97310-4.724H-3.785081.34030-5.386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Η | 1.06638  | 0.04825  | -5.64606 |
| H0.14694-1.84305-4.817H-0.88999-3.73197-4.508H-2.36323-3.52223-3.556H-1.01038-4.43806-2.887H-2.654514.23428-3.382H-1.043985.79570-2.347H1.102244.94155-1.465H-1.999070.61076-3.935H-3.063410.73904-1.741H-4.277240.50340-3.010H-4.064192.10035-2.265H-3.772242.97310-4.724H-3.785081.34030-5.386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Η | 1.18810  | 1.55760  | -4.70944 |
| H -0.88999 -3.73197 -4.508   H -2.36323 -3.52223 -3.556   H -1.01038 -4.43806 -2.887   H -2.65451 4.23428 -3.382   H -1.04398 5.79570 -2.347   H 1.10224 4.94155 -1.465   H -1.99907 0.61076 -3.935   H -3.06341 0.73904 -1.741   H -4.27724 0.50340 -3.010   H -4.06419 2.10035 -2.2655   H -3.77224 2.97310 -4.724   H -3.78508 1.34030 -5.386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Η | 0.14694  | -1.84305 | -4.81787 |
| H-2.36323-3.52223-3.556H-1.01038-4.43806-2.887H-2.654514.23428-3.382H-1.043985.79570-2.347H1.102244.94155-1.465H-1.999070.61076-3.935H-3.063410.73904-1.741H-4.277240.50340-3.010H-4.064192.10035-2.265H-3.772242.97310-4.724H-3.785081.34030-5.386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Η | -0.88999 | -3.73197 | -4.50822 |
| H-1.01038-4.43806-2.887H-2.654514.23428-3.382H-1.043985.79570-2.347H1.102244.94155-1.465H-1.999070.61076-3.935H-3.063410.73904-1.741H-4.277240.50340-3.010H-4.064192.10035-2.265H-3.772242.97310-4.724H-3.785081.34030-5.386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Η | -2.36323 | -3.52223 | -3.55696 |
| H-2.654514.23428-3.382H-1.043985.79570-2.347H1.102244.94155-1.465H-1.999070.61076-3.935H-3.063410.73904-1.741H-4.277240.50340-3.010H-4.064192.10035-2.265H-3.772242.97310-4.724H-3.785081.34030-5.386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Η | -1.01038 | -4.43806 | -2.88785 |
| H-1.043985.79570-2.347H1.102244.94155-1.465H-1.999070.61076-3.935H-3.063410.73904-1.741H-4.277240.50340-3.010H-4.064192.10035-2.265H-3.772242.97310-4.724H-3.785081.34030-5.386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Η | -2.65451 | 4.23428  | -3.38298 |
| H1.102244.94155-1.465H-1.999070.61076-3.935H-3.063410.73904-1.741H-4.277240.50340-3.010H-4.064192.10035-2.265H-3.772242.97310-4.724H-3.785081.34030-5.386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Η | -1.04398 | 5.79570  | -2.34750 |
| H-1.999070.61076-3.935H-3.063410.73904-1.741H-4.277240.50340-3.010H-4.064192.10035-2.265H-3.772242.97310-4.724H-3.785081.34030-5.386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Η | 1.10224  | 4.94155  | -1.46518 |
| H-3.063410.73904-1.741H-4.277240.50340-3.010H-4.064192.10035-2.265H-3.772242.97310-4.724H-3.785081.34030-5.386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Η | -1.99907 | 0.61076  | -3.93573 |
| H-4.277240.50340-3.010H-4.064192.10035-2.265H-3.772242.97310-4.724H-3.785081.34030-5.386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Η | -3.06341 | 0.73904  | -1.74109 |
| H-4.064192.10035-2.265H-3.772242.97310-4.724H-3.785081.34030-5.386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Η | -4.27724 | 0.50340  | -3.01082 |
| H -3.77224 2.97310 -4.724<br>H -3.78508 1.34030 -5.386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Η | -4.06419 | 2.10035  | -2.26540 |
| Н -3.78508 1.34030 -5.386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Η | -3.77224 | 2.97310  | -4.72451 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Η | -3.78508 | 1.34030  | -5.38637 |

| Н     | -2.39475 | 2.40337  | -5.67427 |
|-------|----------|----------|----------|
| Н     | 2.00500  | 1.32356  | -1.41093 |
| Н     | 2.56312  | 4.04559  | -0.12235 |
| Н     | 3.35474  | 2.51196  | 0.24777  |
| Н     | 1.64836  | 2.73706  | 0.63044  |
| Н     | 2.92520  | 2.33003  | -3.49195 |
| Н     | 4.12140  | 2.37820  | -2.18952 |
| Н     | 3.23109  | 3.84582  | -2.63377 |
| Н     | -1.23852 | -2.98142 | 0.14426  |
| Н     | -2.10443 | -3.68603 | -1.21452 |
| Н     | -3.52480 | -1.66464 | -1.39675 |
| Н     | -2.64370 | -0.89200 | -0.08434 |
| Н     | -3.69665 | -0.59007 | 2.04767  |
| Н     | -4.65457 | -3.00171 | 3.68819  |
| Н     | -5.65722 | -1.62573 | 3.20235  |
| Н     | -4.31717 | -1.38413 | 4.33034  |
| Н     | -1.98069 | -1.46731 | 3.60652  |
| Н     | -1.51433 | -1.66699 | 1.92711  |
| Н     | -2.09647 | -3.06985 | 2.85080  |
| Н     | -6.47009 | -2.09471 | 1.07277  |
| Н     | -5.00974 | 0.11436  | -0.47838 |
| Н     | -5.46235 | 0.17647  | 1.22876  |
| Н     | -6.71251 | 0.15105  | -0.01834 |
| Н     | -7.27626 | -1.97073 | -1.26245 |
| Н     | -6.31624 | -3.44222 | -1.01416 |
| Н     | -5.62403 | -2.05626 | -1.87055 |
| Н     | 0.96919  | -2.78269 | 1.52286  |
| Н     | 1.27043  | -3.41588 | 1.77884  |
| 142   |          |          |          |
| 2c co | mplex    |          |          |
| Zn    | 2.57115  | 5.91136  | 25.67926 |
| Р     | 6.23842  | 3.86435  | 28.71796 |
| Ν     | 1.64578  | 5.57957  | 23.94962 |
| С     | 0.89858  | 4.22625  | 22.04071 |
| Н     | 1.25436  | 3.36310  | 21.47541 |
| Н     | 0.92373  | 5.11287  | 21.40402 |
| Н     | -0.15320 | 4.05492  | 22.29617 |
| Zn    | 3.10175  | 7.77364  | 26.98227 |
| Р     | 7.42826  | 7.67777  | 24.18899 |
| N     | 3.13839  | 4.01167  | 25.94041 |
| С     | 1.70708  | 4.41346  | 23.30385 |
| Ν     | 2.12127  | 8.94859  | 28.24875 |
| С     | 2.44713  | 3.30687  | 23.74108 |
| Н     | 2.45069  | 2.45702  | 23.06912 |

| Ν | 4.88691  | 8.61445 | 27.30382 |
|---|----------|---------|----------|
| С | 3.09068  | 3.10309 | 24.97893 |
| С | 3.71536  | 1.73931 | 25.18281 |
| Н | 3.16670  | 1.16318 | 25.93603 |
| Η | 4.75137  | 1.81829 | 25.52579 |
| Η | 3.70574  | 1.16920 | 24.25309 |
| С | 0.77250  | 6.58710 | 23.45425 |
| С | -0.59868 | 6.53308 | 23.77863 |
| С | -1.44911 | 7.50298 | 23.24575 |
| Η | -2.50880 | 7.47117 | 23.47910 |
| С | -0.95944 | 8.50788 | 22.41704 |
| Η | -1.63623 | 9.24712 | 21.99798 |
| С | 0.40270  | 8.58087 | 22.15225 |
| Η | 0.78289  | 9.38746 | 21.53317 |
| С | 1.29178  | 7.63996 | 22.67866 |
| С | -1.10828 | 5.48799 | 24.75089 |
| Η | -0.45204 | 4.61482 | 24.67952 |
| С | -2.53391 | 5.01861 | 24.46144 |
| Η | -3.26760 | 5.81282 | 24.63633 |
| Η | -2.79683 | 4.18749 | 25.12355 |
| Η | -2.64536 | 4.67920 | 23.42642 |
| С | -0.99284 | 6.03745 | 26.17705 |
| Η | 0.02565  | 6.37433 | 26.39917 |
| Η | -1.26966 | 5.28077 | 26.91818 |
| Η | -1.64407 | 6.90489 | 26.31352 |
| С | 2.77957  | 7.73960 | 22.40616 |
| Η | 3.28480  | 7.19207 | 23.20969 |
| С | 3.15207  | 7.06293 | 21.08223 |
| Η | 2.91960  | 5.99537 | 21.10166 |
| Η | 4.22287  | 7.16713 | 20.87636 |
| Η | 2.60286  | 7.51597 | 20.24939 |
| С | 3.28238  | 9.18276 | 22.44134 |
| Η | 2.87864  | 9.77981 | 21.61692 |
| Η | 4.37078  | 9.20641 | 22.34733 |
| Η | 3.01035  | 9.67192 | 23.38043 |
| С | 3.79398  | 3.71440 | 27.20690 |
| Η | 3.80362  | 2.64293 | 27.43451 |
| Η | 3.20579  | 4.19302 | 27.99487 |
| С | 5.21255  | 4.27733 | 27.22078 |
| Η | 5.14835  | 5.36116 | 27.07894 |
| Η | 5.75437  | 3.87783 | 26.35733 |
| С | 5.32104  | 4.74780 | 30.10426 |
| Н | 6.10625  | 4.92514 | 30.85150 |
| С | 4.70567  | 6.09407 | 29.73555 |

| Η | 3.90008  | 5.98066  | 29.00282 |
|---|----------|----------|----------|
| Η | 5.43224  | 6.78751  | 29.30635 |
| Η | 4.27367  | 6.57907  | 30.61848 |
| С | 4.29959  | 3.80367  | 30.74374 |
| Η | 3.81775  | 4.28141  | 31.60518 |
| Η | 4.77399  | 2.87923  | 31.08559 |
| Η | 3.50912  | 3.52621  | 30.03999 |
| С | 7.65167  | 5.06896  | 28.44125 |
| Н | 7.24130  | 6.08715  | 28.43366 |
| С | 8.32905  | 4.81626  | 27.09432 |
| Η | 9.21128  | 5.45643  | 26.98631 |
| Н | 7.67284  | 5.04471  | 26.25168 |
| Η | 8.65772  | 3.77390  | 27.00607 |
| С | 8.66343  | 4.95087  | 29.58192 |
| Η | 9.08354  | 3.94013  | 29.62594 |
| Η | 8.22137  | 5.17076  | 30.55851 |
| Η | 9.49180  | 5.65260  | 29.43080 |
| С | 1.87483  | 10.67013 | 29.97369 |
| Η | 2.49514  | 11.31875 | 30.59366 |
| Η | 1.29877  | 10.00166 | 30.61993 |
| Η | 1.14503  | 11.28825 | 29.44068 |
| С | 2.71545  | 9.87632  | 29.00211 |
| С | 4.08200  | 10.18006 | 28.95161 |
| Η | 4.40578  | 10.96798 | 29.62074 |
| С | 5.09408  | 9.60461  | 28.15872 |
| С | 6.48752  | 10.16375 | 28.35566 |
| Н | 6.46209  | 11.04753 | 28.99408 |
| Н | 6.94907  | 10.44244 | 27.40352 |
| Н | 7.14328  | 9.42508  | 28.83057 |
| С | 0.70931  | 8.79058  | 28.34562 |
| С | -0.13049 | 9.63203  | 27.58563 |
| С | -1.51217 | 9.47074  | 27.69282 |
| Η | -2.17088 | 10.11421 | 27.11823 |
| С | -2.06063 | 8.49757  | 28.52372 |
| Η | -3.13898 | 8.38970  | 28.59890 |
| С | -1.22227 | 7.65468  | 29.24073 |
| Η | -1.64977 | 6.88235  | 29.87467 |
| С | 0.16749  | 7.78203  | 29.16252 |
| С | 0.46976  | 10.64410 | 26.63021 |
| Η | 1.43971  | 10.95161 | 27.03483 |
| С | 0.72582  | 9.97239  | 25.27751 |
| Η | 1.38457  | 9.10329  | 25.37718 |
| Η | 1.18649  | 10.67241 | 24.57252 |
| Η | -0.20788 | 9.61160  | 24.83769 |

| С  | -0.37765 | 11.90473 | 26.45764 |
|----|----------|----------|----------|
| Н  | -1.31514 | 11.69680 | 25.93082 |
| Н  | 0.16801  | 12.64307 | 25.86148 |
| Н  | -0.62621 | 12.36029 | 27.42176 |
| С  | 1.05801  | 6.83536  | 29.93930 |
| Н  | 2.08985  | 7.15366  | 29.77313 |
| С  | 0.91756  | 5.40480  | 29.41093 |
| Н  | -0.11196 | 5.04465  | 29.51076 |
| Н  | 1.56830  | 4.72253  | 29.96636 |
| Н  | 1.18478  | 5.35273  | 28.35094 |
| С  | 0.79325  | 6.89293  | 31.44618 |
| Н  | 0.90085  | 7.91176  | 31.83078 |
| Н  | 1.49967  | 6.25025  | 31.98270 |
| Н  | -0.21784 | 6.54967  | 31.69015 |
| С  | 5.99259  | 8.04833  | 26.55117 |
| Н  | 5.83130  | 6.96792  | 26.48890 |
| Н  | 6.95556  | 8.17410  | 27.05766 |
| С  | 6.09093  | 8.59081  | 25.12728 |
| Н  | 6.31383  | 9.66303  | 25.15010 |
| Н  | 5.12021  | 8.47991  | 24.62987 |
| С  | 6.36719  | 6.71220  | 22.98731 |
| Н  | 5.65106  | 7.40635  | 22.53316 |
| С  | 7.22108  | 6.08673  | 21.88683 |
| Н  | 7.99605  | 5.44019  | 22.31403 |
| Н  | 7.71717  | 6.84070  | 21.26773 |
| Н  | 6.60022  | 5.47114  | 21.22580 |
| С  | 5.58326  | 5.64359  | 23.74731 |
| Н  | 4.89807  | 5.10556  | 23.08343 |
| Н  | 4.97970  | 6.07317  | 24.55347 |
| Н  | 6.25850  | 4.90912  | 24.19917 |
| С  | 8.12623  | 9.04370  | 23.10814 |
| Н  | 8.83201  | 8.52277  | 22.44724 |
| С  | 7.11634  | 9.79758  | 22.24778 |
| Н  | 6.37460  | 10.31109 | 22.86869 |
| Н  | 6.58027  | 9.13203  | 21.56490 |
| Н  | 7.61820  | 10.55964 | 21.63949 |
| С  | 8.93861  | 9.99989  | 23.98509 |
| Н  | 9.45121  | 10.74776 | 23.36983 |
| Н  | 9.69118  | 9.46511  | 24.57253 |
| Н  | 8.29347  | 10.54419 | 24.68437 |
| 2  |          |          |          |
| H2 |          |          |          |
| Н  | -3.34787 | 2.03779  | -1.26145 |
| Η  | -3.43148 | 2.75279  | -1.44740 |
|    |          |          |          |

| 146 |              |              |              |
|-----|--------------|--------------|--------------|
| Zn  | 1.245614000  | 2.709692000  | 4.109369000  |
| Р   | 1.073005000  | 2.544011000  | 9.622250000  |
| Ν   | 2.564444000  | 3.632732000  | 2.895636000  |
| С   | 4.757530000  | 4.548971000  | 2.263750000  |
| Н   | 5.773095000  | 4.611865000  | 2.658070000  |
| Н   | 4.412337000  | 5.562190000  | 2.034677000  |
| Н   | 4.779700000  | 4.008605000  | 1.313261000  |
| Zn  | -0.912383000 | 1.691201000  | 3.965891000  |
| Р   | 1.809703000  | -2.870017000 | 5.286340000  |
| Ν   | 2.495991000  | 2.638528000  | 5.703707000  |
| С   | 3.827939000  | 3.879241000  | 3.252367000  |
| Ν   | -2.872573000 | 2.168792000  | 3.866039000  |
| С   | 4.378721000  | 3.569939000  | 4.506560000  |
| Η   | 5.425174000  | 3.826742000  | 4.621718000  |
| Ν   | -1.233496000 | -0.311582000 | 4.059946000  |
| С   | 3.770659000  | 3.010762000  | 5.648867000  |
| С   | 4.682580000  | 2.822511000  | 6.846957000  |
| Н   | 5.663914000  | 3.260058000  | 6.658229000  |
| Н   | 4.827634000  | 1.758520000  | 7.067021000  |
| Н   | 4.275272000  | 3.282246000  | 7.752107000  |
| С   | 1.960387000  | 2.104247000  | 6.952885000  |
| Н   | 2.706129000  | 1.508624000  | 7.494773000  |
| Н   | 1.149493000  | 1.415179000  | 6.694473000  |
| С   | 1.395957000  | 3.189455000  | 7.877933000  |
| Н   | 0.505883000  | 3.654615000  | 7.442463000  |
| Н   | 2.130193000  | 3.991762000  | 8.013690000  |
| С   | 0.336324000  | 4.083554000  | 10.374771000 |
| С   | 1.238042000  | 5.039653000  | 10.863593000 |
| Η   | 2.308241000  | 4.852671000  | 10.798942000 |
| С   | 0.780781000  | 6.222084000  | 11.440974000 |
| Η   | 1.494075000  | 6.954797000  | 11.809131000 |
| С   | -0.588888000 | 6.455957000  | 11.560138000 |
| Η   | -0.948425000 | 7.372848000  | 12.019105000 |
| С   | -1.493891000 | 5.502691000  | 11.096423000 |
| Η   | -2.562731000 | 5.674952000  | 11.193512000 |
| С   | -1.036270000 | 4.324901000  | 10.505140000 |
| Η   | -1.750433000 | 3.587740000  | 10.149732000 |
| С   | -0.420790000 | 1.455129000  | 9.412012000  |
| С   | -0.703916000 | 0.573369000  | 10.466109000 |
| Η   | -0.066730000 | 0.573971000  | 11.347900000 |
| С   | -1.787049000 | -0.300584000 | 10.397061000 |
| Η   | -1.993649000 | -0.971936000 | 11.226275000 |

2a\_Zn2

| С | -2.594069000 | -0.322094000 | 9.259721000  |
|---|--------------|--------------|--------------|
| Н | -3.431366000 | -1.011997000 | 9.197975000  |
| С | -2.319466000 | 0.540300000  | 8.199041000  |
| Н | -2.937435000 | 0.522350000  | 7.304821000  |
| С | -1.244205000 | 1.427201000  | 8.278942000  |
| Н | -1.052339000 | 2.096352000  | 7.445227000  |
| С | 2.119028000  | 4.044061000  | 1.599507000  |
| С | 2.155266000  | 3.134093000  | 0.518219000  |
| С | 1.668607000  | 3.551094000  | -0.725070000 |
| Н | 1.694698000  | 2.858913000  | -1.563126000 |
| С | 1.153665000  | 4.828078000  | -0.910370000 |
| Н | 0.780688000  | 5.132615000  | -1.884638000 |
| С | 1.118997000  | 5.712538000  | 0.161352000  |
| Н | 0.711196000  | 6.709633000  | 0.017223000  |
| С | 1.597434000  | 5.347160000  | 1.422717000  |
| С | 2.702743000  | 1.722207000  | 0.663842000  |
| Н | 3.089990000  | 1.617254000  | 1.682009000  |
| С | 1.596826000  | 0.672859000  | 0.482755000  |
| Н | 1.994330000  | -0.335274000 | 0.642927000  |
| Н | 1.172252000  | 0.712385000  | -0.526882000 |
| Н | 0.780216000  | 0.836026000  | 1.193059000  |
| С | 3.862681000  | 1.448177000  | -0.304142000 |
| Н | 4.270282000  | 0.446682000  | -0.130895000 |
| Н | 4.675723000  | 2.170675000  | -0.179519000 |
| Н | 3.536784000  | 1.496310000  | -1.349116000 |
| С | 1.518805000  | 6.343620000  | 2.570248000  |
| Н | 2.112109000  | 5.944502000  | 3.398839000  |
| С | 0.073315000  | 6.484906000  | 3.066931000  |
| Н | 0.022291000  | 7.163029000  | 3.926339000  |
| Н | -0.342646000 | 5.519124000  | 3.369164000  |
| Н | -0.576674000 | 6.886006000  | 2.281956000  |
| С | 2.102653000  | 7.715728000  | 2.206907000  |
| Н | 2.114875000  | 8.367103000  | 3.087665000  |
| Н | 1.508740000  | 8.221638000  | 1.437866000  |
| Н | 3.128620000  | 7.636422000  | 1.832567000  |
| С | -5.286910000 | 1.714630000  | 4.022134000  |
| Н | -5.954735000 | 0.917728000  | 4.353650000  |
| Н | -5.565980000 | 1.994072000  | 3.001114000  |
| Н | -5.454134000 | 2.599450000  | 4.641575000  |
| С | -3.841246000 | 1.269834000  | 4.074466000  |
| С | -3.626889000 | -0.095957000 | 4.313998000  |
| Н | -4.525983000 | -0.677480000 | 4.480880000  |
| С | -2.433409000 | -0.847027000 | 4.239448000  |
| С | -2.607577000 | -2.351485000 | 4.333438000  |

| Η | -3.626533000 | -2.603389000 | 4.631183000  |
|---|--------------|--------------|--------------|
| Η | -1.920278000 | -2.808846000 | 5.050579000  |
| Η | -2.420346000 | -2.823715000 | 3.361916000  |
| С | -0.065764000 | -1.185490000 | 3.963499000  |
| Η | 0.668490000  | -0.697333000 | 3.314681000  |
| Η | -0.315719000 | -2.138373000 | 3.479845000  |
| С | 0.581399000  | -1.441457000 | 5.329887000  |
| Η | -0.190107000 | -1.724326000 | 6.054562000  |
| Η | 1.054716000  | -0.526218000 | 5.699429000  |
| С | 3.120589000  | -2.198202000 | 4.140494000  |
| С | 3.754527000  | -0.963550000 | 4.338107000  |
| Η | 3.484461000  | -0.346667000 | 5.190523000  |
| С | 4.737326000  | -0.521365000 | 3.456045000  |
| Η | 5.211877000  | 0.442432000  | 3.619700000  |
| С | 5.106605000  | -1.314592000 | 2.366878000  |
| Η | 5.881402000  | -0.974559000 | 1.685017000  |
| С | 4.482870000  | -2.542808000 | 2.158948000  |
| Η | 4.767803000  | -3.164098000 | 1.313967000  |
| С | 3.492928000  | -2.980302000 | 3.041339000  |
| Η | 3.008303000  | -3.940518000 | 2.880945000  |
| С | 2.667234000  | -2.644120000 | 6.925783000  |
| С | 3.937703000  | -3.215740000 | 7.096185000  |
| Η | 4.423715000  | -3.707293000 | 6.256804000  |
| С | 4.592036000  | -3.148446000 | 8.322764000  |
| Η | 5.579129000  | -3.590572000 | 8.430673000  |
| С | 3.985015000  | -2.516400000 | 9.408786000  |
| Η | 4.495341000  | -2.462880000 | 10.366509000 |
| С | 2.719551000  | -1.955771000 | 9.255515000  |
| Η | 2.235421000  | -1.458826000 | 10.091661000 |
| С | 2.063650000  | -2.020275000 | 8.024949000  |
| Η | 1.078890000  | -1.572041000 | 7.936521000  |
| С | -3.243714000 | 3.490121000  | 3.458135000  |
| С | -3.368344000 | 4.525616000  | 4.411668000  |
| С | -3.700220000 | 5.810479000  | 3.969029000  |
| Η | -3.803924000 | 6.611369000  | 4.697064000  |
| С | -3.902262000 | 6.082904000  | 2.622011000  |
| Η | -4.160577000 | 7.087751000  | 2.298604000  |
| С | -3.770043000 | 5.058738000  | 1.691637000  |
| Η | -3.921287000 | 5.273063000  | 0.636737000  |
| С | -3.446358000 | 3.756670000  | 2.082619000  |
| С | -3.155213000 | 4.289438000  | 5.898862000  |
| Η | -2.933387000 | 3.225444000  | 6.032266000  |
| С | -1.954561000 | 5.090264000  | 6.420749000  |
| Η | -1.784374000 | 4.890399000  | 7.484341000  |

| Η | -2.117874000 | 6.168113000 | 6.311249000  |
|---|--------------|-------------|--------------|
| Н | -1.043197000 | 4.838118000 | 5.869803000  |
| С | -4.409379000 | 4.611744000 | 6.724948000  |
| Н | -4.242123000 | 4.374289000 | 7.781209000  |
| Н | -5.279764000 | 4.040970000 | 6.386583000  |
| Н | -4.667381000 | 5.674718000 | 6.662214000  |
| С | -3.297511000 | 2.676380000 | 1.020903000  |
| Н | -3.203284000 | 1.714514000 | 1.534084000  |
| С | -2.015774000 | 2.889918000 | 0.203705000  |
| Н | -1.883804000 | 2.084285000 | -0.527425000 |
| Н | -1.128907000 | 2.917401000 | 0.843602000  |
| Н | -2.049937000 | 3.838015000 | -0.343862000 |
| С | -4.518288000 | 2.585700000 | 0.094443000  |
| Н | -4.408585000 | 1.741457000 | -0.595060000 |
| Η | -4.635677000 | 3.489157000 | -0.513980000 |
| Η | -5.447420000 | 2.443042000 | 0.655799000  |
|   |              |             |              |

#### References

[1] W. Jia, X. Chen, R. Guo, C. Sui-Seng, D. Amoroso, A. J. Lough, K. Abdur-Rashid, Aminophosphine ligands  $R_2P(CH_2)_nNH_2$  and ruthenium hydrogenation catalysts  $RuCl_2(R_2P(CH_2)_nNH_2)_2$ . *Dalton Trans.* **2009**, 8301-8307.

[2] M. Chen, S. Jiang, L. Maron, X. Xu, Transition metal-induced dehydrogenative coupling of zinc hydrides. *Dalton Trans.* **2019**, *48*, 1931-1935.

[3] Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

[4] (a) A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem.

*Phys.* **1993**, *98*, 5648-5652, and references cited therein; (b) K. Burke, J. P. Perdew, W. Yang, Electronic Density Functional Theory: Recent Progress and New Directions. (Plenum, New York, 1998).

[5] M. Dolg, U. Wedig, H. Stoll, H. Preuss, Energy-adjusted *ab initio* pseudopotentials for the first row transition elements. *J. Chem. Phys.* **1987**, *86*, 866-872.

[6] (a) P. C. Hariharan, J. A. Pople, The influence of polarization functions on molecular orbital hydrogenation energies. *Theor. Chem. Acc.* **1973**, *28*, 213-222; (b) W. J. Hehre, R. Ditchfield, J. A. Pople, Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. **1972**, *56*, 2257-2261.

[7] S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. *J. Comp. Chem.* **2011**, *32*, 1456-1465.