Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2021

Radical-induced Denitration of *N*-(*p*-nitrophenyl)propiolamides Coupled With Dearomatization: Access to Phosphonylated/Trifluoromethylated Azaspiro[4.5]trienones

Kangdong Mo,^a Xiaocong Zhou,^a Ju Wu,^{*,a,b} and Yufen Zhao^{*,a,b}

^aInstitute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, China

E-mail: wuju@nbu.edu.cn, wuduanyazhici@163.com

^bQian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang, China

E-mail: <u>zhaoyufen@nbu.edu.cn</u>

Table of Contents

1. General information:	2
2. Optimization of Reaction B	3
3. Reaction in the presence of 3.0 equiv TEMPO	4
4. ¹⁸ O-Labeling Experiment	7
5. Spectral Data	9
6. ¹ H and ¹³ C NMR spectra	27

1. General information:

All reactions were carried out under air. Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) spectra were measured on Bruker AVIII 500M spectrometers with CDCl₃ as solvent and the residual protonated solvent as internal standard or 85% H₃PO₄ as external standard for ³¹P NMR (202 MHz). Chemical shifts were reported in units (ppm) by assigning the residual protonated solvent of CDCl₃ resonance in the ¹H spectrum as 7.26 ppm and CDCl₃ resonance in the ¹³C spectrum as 77.16 ppm. All coupling constants (*J* values) were reported in Hertz (Hz). Chemical shifts of common trace ¹H NMR impurities (ppm): H₂O: 1.56, CHCl₃: 7.26. Column chromatography was performed on silica gel 300-400 mesh. The unknown products were further characterized by HRMS-ESI.

General experimental procedure A:

An oven-dried Schlenk tube with a magnetic stir bar was charged with 1 (0.20 mmol, 1.0 equiv) and $Cu(OTf)_2$ (0.02 mmol, 0.1 equiv), then 2 (0.60 mmol, 3.0 equiv) and 2.0 mL CH₃CN were added into the tube, the mixture was stirred under air at 80 °C for 2 min. TBHP (70% aqueous solution, 0.6 mmol, 3 equiv) was sequentially added to the mixture. The consumption of the starting material 1 was checked by TLC (20% to 30% AcOEt/petroleum ether). The reaction solution was concentrated in *vacuo* and then added 15 mL saturated sodium bicarbonate solution and extracted with EtOAc (3×10 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated in *vacuo*. The residue was purified by silica gel column chromatography using 50% to 80% AcOEt/petroleum ether as the eluent to give the corresponding products.

General experimental procedure B:

An oven-dried Schlenk tube with a magnetic stir bar was charged with **1** (0.20 mmol, 1.0 equiv), sodium trifluoromethanesulfinate (1.0 mmol, 5 equiv) and $Cu(OTf)_2$ (0.02 mmol, 0.1 equiv), then 2.0 mL CH₃CN was added into the tube, the mixture was stirred under air at 80 °C for 2 min. TBHP (70% aqueous solution, 1.6 mmol, 8 equiv) was sequentially added to the mixture. The complete consumption of the starting material **1** was checked by TLC (10% to 25% AcOEt/petroleum ether). The reaction solution was concentrated in *vacuo* and then added 15 mL saturated sodium bicarbonate solution and extracted with EtOAc (3×10 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated in *vacuo*. The residue was purified by silica gel column chromatography using 10% to 25% AcOEt/petroleum ether as the eluent to give the corresponding products.

2. Optimization of Reaction B^a

entry	NaSO ₂ CF ₃ (equiv)	TBHP (equiv)	T (°C)	Solvent	Additives	Conversion %	Yield (%) ^{b}
1	2.0	3.0	60	CH ₃ CN (2.0 mL)	_	40	16
2	2.0	3.0	60	CH ₃ CN/H ₂ O (1.8 mL/0.2 mL)	—	43	18
3 ^c	2.0	3.0	60	CH ₃ CN (2.0 mL)	—	41	17
4	2.0	3.0	rt	CH ₃ CN (2.0 mL)		0	nr
5	2.0	3.0	60	CH ₃ CN (2.0 mL)	NaOH (2.0 equv)	45	18
6	2.0	3.0	60	CH ₃ CN (2.0 mL)	NaOAc (2.0 equv)	37	22
7^d	1.0	3.0	60	CH ₃ CN (2.0 mL)		35	< 10
8	2.0	3.0	80	CH ₃ CN (2.0 mL)		57	37
9	2.0	3.0	100	CH ₃ CN (2.0 mL)		55	30
10^{e}	2.0	DTBP	80	CH ₃ CN (2.0 mL)		20	< 10
11f	2.0	3.0	80	CH ₃ CN (2.0 mL)		43	31
12^{g}	2.0	3.0	80	CH ₃ CN (2.0 mL)		65	34
13^{h}	2.0	3.0	80	CH ₃ CN (2.0 mL)	_	70	36
14^i	2.0	3.0	80	CH ₃ CN (2.0 mL)	_	68	39
15^{i}	2.0	5.0	80	CH ₃ CN (2.0 mL)		77	44
16 ^{<i>i</i>}	2.0	8.0	80	CH ₃ CN (2.0 mL)		>80	47
17^{i}	4.0	8.0	80	CH ₃ CN (2.0 mL)		>80	52
18^{i}	5.0	8.0	80	CH ₃ CN (2.0 mL)	_	>80	56
19 ^{g,i}	2.5	7.0	60	CH ₃ CN/H ₂ O (1.0 mL/0.5 mL)	MnO ₂ (3.0 equv) NaOAc (2.0 equv)	>80	28

^{*a*}Reaction conditions: **1a** (0.2 mmol), NaSO₂CF₃ and Cu(OTf)₂ (10 mol%) in solvent (2.0 mL) was stirred for 16 h under Ar. ^{*b*}Yields of isolated products. ^{*c*}3.0 equiv of TBHP (5.0 M in decane solution) was used. ^{*d*}2 equiv of **1a** was added. ^{*e*}3.0 equiv of DTBP was used. ^{*f*}FeCl₃ (10 mol%) was used instead of Cu(OTf)₂. ^{*g*}CuI (10 mol%) was used instead of Cu(OTf)₂. ^{*h*}Cu(OAc)₂·H₂O (10 mol%) was used instead of Cu(OTf)₂. ^{*i*} under air.

3. Reaction in the presence of 3.0 equiv TEMPO

An oven-dried Schlenk tube with a magnetic stir bar was charged with **1a** (0.20 mmol, 1.0 equiv), $Cu(OTf)_2$ (0.02 mmol, 0.1 equiv), and TEMPO (2,2,6,6-tetramethylpiperidine oxide) (0.60 mmol, 3.0 equiv), then **2a** (0.60 mmol, 3.0 equiv) and 2.0 mL CH₃CN were added into the tube, the mixture was stirred under air at 80 °C for 2 min. TBHP (70% aqueous solution, 0.6 mmol, 3 equiv) was sequentially added to the mixture. The reaction was run for 3 hours at 80 °C, the reaction solution was concentrated in *vacuo* and then added 15 mL saturated sodium bicarbonate solution and extracted with EtOAc (3×10 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated in *vacuo*. The residue was analyzed by HRMS.

Compound 5: Calcd for $C_{13}H_{29}NO_4P^+[M+H]^+294.1829$, found 294.1827. Calcd for $C_{13}H_{28}NNaO_4P^+[M+Na]^+316.1648$, found 316.1638.

Compound 6 or 7: Calcd for $C_{29}H_{41}N_3O_7P^+[M+H]^+574.2677$, found 574.2676.

An oven-dried Schlenk tube with a magnetic stir bar was charged with **1a** (0.20 mmol, 1.0 equiv) and Cu(OTf)₂ (0.02 mmol, 0.1 equiv), then **2a** (0.60 mmol, 3.0 equiv) and 2.0 mL CH₃CN were added into the tube, the mixture was stirred under air at 80 °C for 2 min. TBHP (70% aqueous solution, 0.6 mmol, 3 equiv) was sequentially added to the mixture. The reaction was run for 3 hours at 80 °C, the reaction solution was concentrated in *vacuo* and then added 15 mL saturated sodium bicarbonate solution and extracted with EtOAc (3×10 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated in *vacuo*. The residue was analyzed by HRMS.

Compound 8 or 9: Calcd. for $C_{24}H_{32}N_2O_8P^+$ [M+H]⁺ 507.1891, found 507.1871.

Calcd. for $C_{24}H_{31}N_2NaO_8P^+$ [M+Na]⁺ 529.1710, found 529.1736.

4. ¹⁸O-Labeling Experiment

(1) Standard contitions: The reaction was performed under the optimized conditions and the residue was purified by silica gel column chromatography.

¹⁶**O-3a**: Calcd for $C_{20}H_{23}NO_4^{16}OP^+[M+H]^+$ 388.1308, found 388.1305.

 $^{18}\text{O-3a:}$ Calcd for $C_{20}H_{23}NO_4{}^{18}OP^+\,[M+H]^+\,390.1351,$ found 390.1362.

	m/z	Intensity	Relative Intensity (%)
1, ¹⁶ O-3a	388.1305	12488403.0	100
2	389.1338	3232801.0	25.89
3, ¹⁸ O-3a	390.1362	257062.6	2.06
4	391.2834	257878.5	2.06

(2) In presence of 0.1mL $H_2^{18}O$ (28 equivalents of $H_2^{18}O$)

The reaction was performed under in presence of 0.1 mL $H_2^{18}O$ (28 equivalents of $H_2^{18}O$) and the residue was purified by silica gel column chromatography.

¹⁶**O-3a**: Calcd for $C_{20}H_{23}NO_4^{16}OP^+[M+H]^+$ 388.1308, found 388.1306 ¹⁸**O-3a**: Calcd for $C_{20}H_{23}NO_4^{18}OP^+[M+H]^+$ 390.1351, found 390.1348

There is a significant increase in terms of the amount of $^{18}\mathrm{O}\xspace$ labeled product when $\mathrm{H_2}^{18}\mathrm{O}$ was added.

5. Spectral Data

Diethyl (1-methyl-2,8-dioxo-4-phenyl-1-azaspiro[4.5]deca-3,6,9-trien-3-yl)phosphonate (3a)

Compound **3a** was prepared from *N*-methyl-*N*-(4-nitrophenyl)-3-phenylpropiolamide **1a** (58 mg, 0.2 mmol), diethyl phosphonate **2a** (82.8 mg, 0.6 mmol), the solution was stirred for 3 hours at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 70% to 80% AcOEt/petroleum ether as the eluent to give **3a** (48 mg, 0.124 mmol, 62%) as colorless solid.

Note: Compound **3a** was prepared from *N*-methyl-*N*,3-diphenylpropiolamide **1w** (47 mg, 0.2 mmol), diethyl phosphonate **2a** (82.8 mg, 0.6 mmol), the solution was stirred for 3 hours at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 70% to 80% AcOEt/petroleum ether as the eluent to give **3a** (19 mg, 0.05 mmol, 25%) as colorless solid.

Compound **3a** was prepared from *N*-(4-fluorophenyl)-*N*-methyl-3-phenylpropiolamide **1x** (50.6 mg, 0.2 mmol), diethyl phosphonate **2a** (82.8 mg, 0.6 mmol), the solution was stirred for 3 hours at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 70% to 80% AcOEt/petroleum ether as the eluent to give **3a** (25 mg, 0.064 mmol, 32%) as colorless solid.

Compound **3a** was prepared from *N*-(4-methoxyphenyl)-*N*-methyl-3-phenylpropiolamide **1y** (53 mg, 0.2 mmol), diethyl phosphonate **2a** (82.8 mg, 0.6 mmol), the solution was stirred for 3 hours at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 70% to 80% AcOEt/petroleum ether as the eluent to give **3a** (17 mg, 0.044 mmol, 22%) as colorless solid.

¹**H NMR (500 MHz, CDCl₃):** δ (ppm) 7.37-7.33 (m, 1H), 7.32-7.27 (m, 2H), 7.22 (d, *J* = 7.3 Hz, 2H), 6.49 (d, *J* = 10.2 Hz, 2H), 6.42 (d, *J* = 10.2 Hz, 2H), 4.11-3.95 (m, 4H), 2.86 (s, 3H), 1.08 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (125 MHz, CDCl₃): δ (ppm) 183.6, 167.8 (d, J = 17.8 Hz), 165.5 (d, J = 7.8 Hz), 143.7, 133.8, 131.0 (d, J = 3.5 Hz), 130.0, 128.8 (d, J = 202.2 Hz), 128.03, 128.00, 69.4 (d, J = 15.7 Hz), 63.0 (d, J = 6.1 Hz), 26.2, 16.1 (d, J = 6.6 Hz).

³¹P NMR (162 MHz, CDCl₃): δ (ppm) 7.5

HRMS-ESI: Calcd. for C₂₀H₂₃NO₅P⁺ [M+H]⁺ 388.1308, found 388.1293.

Diethyl (1-methyl-2,8-dioxo-4-(p-tolyl)-1-azaspiro[4.5]deca-3,6,9-trien-3-yl)phosphonate (3b)

Compound **3b** was prepared from *N*-methyl-*N*-(4-nitrophenyl)-3-(p-tolyl)propiolamide **1b** (58.8 mg, 0.2 mmol), diethyl phosphonate **2a** (82.8 mg, 0.6 mmol), the solution was stirred for 3 hours at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 70% to 80% AcOEt/petroleum ether as the eluent to give **3b** (48 mg, 0.120 mmol, 60%) as colorless solid.

¹**H NMR (500 MHz, CDCl₃):** δ (ppm) 7.10 (t, *J* = 8.8 Hz, 4H), 6.48 (d, *J* = 10.0 Hz, 2H), 6.42 (d, *J* = 10.0 Hz, 2H), 4.12-3.98 (m, 4H), 2.85 (s, 3H), 2.31 (s, 3H), 1.10 (t, *J* = 7.0 Hz, 6H).

¹³C NMR (125 MHz, CDCl₃): δ (ppm) 183.8, 168.0 (d, *J* = 17.5 Hz), 166.0 (d, *J* = 8.3 Hz), 143.9, 140.4, 133.7, 128.8, 128.2 (d, *J* = 202.3 Hz), 128.06, 128.00, 69.4 (d, *J* = 15.7 Hz), 63.0 (d, *J* = 6.1 Hz), 26.1, 21.4, 16.1 (d, *J* = 6.5 Hz).

³¹P NMR (162 MHz, CDCl₃): δ (ppm) 7.7 HRMS-ESI: Calcd. for C₂₁H₂₅NO₅P⁺ [M+H]⁺ 402.1465, found 402.1455.

Diethyl(4-(4-ethylphenyl)-1-methyl-2,8-dioxo-1-azaspiro[4.5]deca-3,6,9-trien-3-yl)phosphonate (3c)

Compound **3c** was prepared from 3-(4-ethylphenyl)-*N*-methyl-*N*-(4-nitrophenyl)propiolamide **1c** (61.9 mg, 0.2 mmol), diethyl phosphonate **2a** (82.8 mg, 0.6 mmol), the solution was stirred for 3 hours at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 70% to 80% AcOEt/petroleum ether as the eluent to give **3c** (54 mg, 0.130 mmol, 65%) as colorless solid.

¹**H NMR (500 MHz, CDCl₃):** δ (ppm) 7.16-7.12 (m, 4H), 6.49 (d, *J* = 9.5 Hz, 2H), 6.44 (d, *J* = 9.8 Hz, 2H), 4.11-3.99 (m, 4H), 2.86 (s, 3H), 2.62 (q, *J* = 7.7 Hz, 2H), 1.19 (t, *J* = 7.6 Hz, 3H), 1.09 (t, *J* = 7.0 Hz, 6H).

¹³C NMR (125 MHz, CDCl₃): δ (ppm) 183.8, 168.0 (d, J = 18.0 Hz), 165.9 (d, J = 8.0 Hz), 146.7, 144.0, 133.8, 128.35 (d, J = 202.2 Hz), 128.33 (d, J = 3.3 Hz), 128.1, 127.6, 69.4 (d, J = 15.6 Hz), 63.0 (d, J = 5.8 Hz), 28.8, 26.2, 16.2 (d, J = 6.6 Hz), 15.3.

³¹P NMR (162 MHz, CDCl₃): δ (ppm) 7.7

HRMS-ESI: Calcd. for C₂₂H₂₇NO₅ P⁺ [M+H]⁺ 416.1621, found 416.1620.

Diethyl(4-(4-butylphenyl)-1-methyl-2,8-dioxo-1-azaspiro[4.5]deca-3,6,9-trien-3-yl)phosphonate (3d)

Compound 3d was prepared from 3-(4-butylphenyl)-N-methyl-N-(4-nitrophenyl)propiolamide 1d

(67.2 mg, 0.2 mmol), diethyl phosphonate **2a** (82.8 mg, 0.6 mmol), the solution was stirred for 3 hours at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 70% to 80% AcOEt/petroleum ether as the eluent to give **3d** (54 mg, 0.122 mmol, 61%) as yellow oil.

¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.13 (d, J = 8.3 Hz, 2H), 7.09 (d, J = 8.3 Hz, 2H), 6.48 (d, J = 10.2 Hz, 2H), 6.42 (d, J = 10.2 Hz, 2H), 4.10-3.95 (m, 4H), 2.84 (s, 3H), 2.56 (t, J = 7.7 Hz, 2H), 1.56-1.50 (m, 2H), 1.32-1.26 (m, 2H), 1.08 (t, J = 7.0 Hz, 6H), 0.88 (t, J = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 183.8, 168.0 (d, J = 17.5 Hz), 165.9 (d, J = 8.2 Hz), 145.4, 143.9, 133.7, 128.3 (d, J = 3.4 Hz), 128.2 (d, J = 202.3 Hz), 128.1, 128.0, 69.3 (d, J = 15.8 Hz), 63.0 (d, J = 6.0 Hz), 35.5, 33.3, 26.1, 22.4, 16.1 (d, J = 7.1 Hz), 14.0. ³¹P NMR (162 MHz, CDCl₃): δ (ppm) 7.8 HRMS-ESI: Calcd. for C₂₄H₃₁NO₅P⁺ [M+H]⁺ 444.1934, found 444.1929.

Diethyl(4-(4-fluorophenyl)-1-methyl-2,8-dioxo-1-azaspiro[4.5]deca-3,6,9-trien-3-yl)phosphonate (3e)

Compound **3e** was prepared from 3-(4-fluorophenyl)-*N*-methyl-*N*-(4-nitrophenyl)propiolamide **1e** (59.6 mg, 0.2 mmol), diethyl phosphonate **2a** (82.8 mg, 0.6 mmol), the solution was stirred for 3 hours at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 70% to 80% AcOEt/petroleum ether as the eluent to give **3e** (42 mg, 0.104 mmol, 52%) as yellow oil.

¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.25-7.22 (m, 2H), 7.02 (t, J = 8.7 Hz, 2H), 6.48 (d, J = 10.5 Hz, 2H), 6.45 (d, J = 10.4 Hz, 2H), 4.13-4.03 (m, 4H), 2.87 (s, 3H), 1.14 (t, J = 7.0 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 183.5, 167.7 (d, J = 17.4 Hz), 164.4 (d, J = 7.9 Hz), 163.7 (d, J = 250.2 Hz), 143.6, 134.0, 130.3 (d, J = 8.3 Hz), 129.3 (d, J = 202.2 Hz), 127.0 (t, J = 3.2 Hz), 115.4 (d, J = 21.8 Hz), 69.4 (d, J = 15.5 Hz), 63.2 (d, J = 6.2 Hz), 26.2, 16.2 (d, J = 6.6 Hz). ³¹P NMR (162 MHz, CDCl₃): δ (ppm) 7.3 ¹⁹F NMR (470 MHz, CDCl₃): δ (ppm) -109.8 HRMS-ESI: Calcd. for C₂₀H₂₂FNO₅P⁺ [M+H]⁺ 406.1214, found 406.1210.

Diethyl(4-(4-chlorophenyl)-1-methyl-2,8-dioxo-1-azaspiro[4.5]deca-3,6,9-trien-3-yl)phosphonate (3f)

Compound **3f** was prepared from 3-(4-chlorophenyl)-*N*-methyl-*N*-(4-nitrophenyl)propiolamide **1f** (62.8 mg, 0.2 mmol), diethyl phosphonate **2a** (82.8 mg, 0.6 mmol), the solution was stirred for 3 hours at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 70% to 80% AcOEt/petroleum ether as the eluent to give **3f** (45 mg, 0.106 mmol, 53%) as white solid.

¹**H NMR (500 MHz, CDCl₃):** δ (ppm) 7.30 (d, *J* = 8.3 Hz, 2H), 7.16 (d, *J* = 8.5 Hz, 2H), 6.45 (d, *J* = 10.4 Hz, 2H), 6.44 (d, *J* = 10.4 Hz, 2H), 4.14-4.02 (m, 4H), 2.86 (s, 3H), 1.14 (t, *J* = 7.0 Hz, 6H).

¹³C NMR (125 MHz, CDCl₃): δ (ppm) 183.4, 167.6 (d, J = 17.4 Hz), 164.3 (d, J = 8.0 Hz), 143.5, 136.5, 134.0, 129.5, 129.41 (d, J = 202.3 Hz), 129.40 (d, J = 3.5 Hz), 128.4, 69.3 (d, J = 15.5 Hz), 63.2 (d, J = 6.2 Hz), 26.3, 16.2 (d, J = 6.6 Hz). ³¹P NMR (162 MHz, CDCl₃): δ (ppm) 7.1 HRMS-ESI: Calcd. for C₂₀H₂₂ClNO₅P⁺ [M+H]⁺ 422.0919, found 422.0911.

Diethyl(4-(4-methoxyphenyl)-1-methyl-2,8-dioxo-1-azaspiro[4.5]deca-3,6,9-trien-3-yl)phosphonate (3g)

Compound **3g** was prepared from 3-(4-methoxyphenyl)-*N*-methyl-*N*-(4-nitrophenyl)propiolamide **1g** (62 mg, 0.2 mmol), diethyl phosphonate **2a** (82.8 mg, 0.6 mmol), the solution was stirred for 3 hours at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 70% to 80% AcOEt/petroleum ether as the eluent to give **3g** (50 mg, 0.120 mmol, 60%) as yellow oil.

¹**H NMR (500 MHz, CDCl₃):** δ (ppm) 7.24 (d, *J* = 8.6 Hz, 2H), 6.81 (d, *J* = 8.7 Hz, 2H), 6.48 (d, *J* = 10.5 Hz, 2H), 6.44 (d, *J* = 10.4 Hz, 2H), 4.13-4.02 (m, 4H), 3.78 (s, 3H), 2.83 (s, 3H), 1.13 (t, *J* = 7.0 Hz, 6H).

¹³C NMR (125 MHz, CDCl₃): δ (ppm) 183.8, 168.1 (d, *J* = 17.6 Hz), 165.6 (d, *J* = 8.2 Hz), 161.2, 144.2, 133.6, 129.8, 127.4 (d, *J* = 202.4 Hz), 123.3 (d, *J* = 3.5 Hz), 113.6, 69.2 (d, *J* = 15.7 Hz), 63.0 (d, *J* = 6.2 Hz), 55.4, 26.1, 16.3 (d, *J* = 6.6 Hz).

³¹P NMR (162 MHz, CDCl₃): δ (ppm) 8.0

HRMS-ESI: Calcd. for $C_{21}H_{25}NO_6P^+$ [M+H]⁺ 418.1414, found 418.1408.

Diethyl(1-methyl-4-(naphthalen-2-yl)-2,8-dioxo-1-azaspiro[4.5]deca-3,6,9-trien-3-yl)phosphonate (3h)

Compound **3h** was prepared from *N*-methyl-3-(naphthalen-2-yl)-*N*-(4-nitrophenyl)propiolamide **1h** (66 mg, 0.2 mmol), diethyl phosphonate **2a** (82.8 mg, 0.6 mmol), the solution was stirred for 3 hours at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 70% to 80% AcOEt/petroleum ether as the eluent to give **3h** (45 mg, 0.102 mmol, 51%) as colorless solid.

¹**H NMR (500 MHz, CDCl₃):** δ (ppm) 7.82-7.74 (m, 4H), 7.53-7.48 (m, 2H), 7.30 (d, *J* = 8.2 Hz, 1H), 6.58 (d, *J* = 9.9 Hz, 2H), 6.44 (d, *J* = 9.7 Hz, 2H), 4.10-3.94 (m, 4H), 2.90 (s, 3H), 1.00 (t, *J* = 6.9 Hz, 6H).

¹³C NMR (125 MHz, CDCl₃): δ (ppm) 183.6, 168.1 (d, J = 17.5 Hz), 165.6 (d, J = 7.1 Hz), 143.8, 133.9, 133.6, 132.3, 129.0 (d, J = 203.2 Hz), 128.6, 128,5, 128.1, 127.83, 127.81, 127.6, 127.0, 125.1, 69.5 (d, J = 15.2 Hz), 63.1 (d, J = 5.3 Hz), 26.2, 16.1 (d, J = 6.0 Hz).

³¹P NMR (162 MHz, CDCl₃): δ (ppm) 7.6

HRMS-ESI: Calcd. for $C_{24}H_{25}NO_5P^+$ [M+H]⁺ 438.1465, found 438.1458.

Diethyl (1-benzyl-2,8-dioxo-4-phenyl-1-azaspiro[4.5]deca-3,6,9-trien-3-yl)phosphonate (3i)

Compound **3i** was prepared from *N*-benzyl-*N*-(4-nitrophenyl)-3-phenylpropiolamide **1i** (71.2 mg, 0.2 mmol), diethyl phosphonate **2a** (82.8 mg, 0.6 mmol), the solution was stirred for 3 hours at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 70% to 80% AcOEt/petroleum ether as the eluent to give **3i** (50 mg, 0.108 mmol, 54%) as yellow solid.

¹**H NMR (500 MHz, CDCl₃):** δ (ppm) 7.32 (t, *J* = 7.3 Hz, 1H), 7.25 (t, *J* = 7.4 Hz, 3H), 7.23-7.19 (m, 4H), 7.10 (dd, *J* = 7.7 Hz, *J* = 1.3 Hz, 2H), 6.30 (d, *J* = 10.0 Hz, 2H), 6.18 (d, *J* = 10.0 Hz, 2H), 4.51 (s, 2H), 4.12-4.05 (m, 2H), 4.04-3.96 (m, 2H), 1.08 (t, *J* = 6.9 Hz, 6H).

¹³C NMR (125 MHz, CDCl₃): δ (ppm) 183.8, 168.0 (d, *J* = 17.7 Hz), 165.7 (d, *J* = 7.9 Hz), 143.9, 137.1, 132.9, 130.7 (d, *J* = 3.4 Hz), 129.9, 129.0, 128.7 (d, *J* = 203.4 Hz), 128.6, 128.06, 128.03, 127.9, 69.7 (d, *J* = 15.6 Hz), 63.0 (d, *J* = 6.0 Hz), 44.9, 16.1 (d, *J* = 6.6 Hz).

³¹P NMR (162 MHz, CDCl₃): δ (ppm) 7.5

HRMS-ESI: Calcd. for C₂₆H₂₇NO₅P⁺ [M+H]⁺ 464.1621, found 464.1615.

Diethyl (1-acetyl-2,8-dioxo-4-phenyl-1-azaspiro[4.5]deca-3,6,9-trien-3-yl)phosphonate (3j)

Compound **3j** was prepared from *N*-acetyl-*N*-(4-nitrophenyl)-3-phenylpropiolamide **1j** (61.6 mg, 0.2 mmol), diethyl phosphonate **2a** (82.8 mg, 0.6 mmol), the solution was stirred for 3 hours at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 70% to 80% AcOEt/petroleum ether as the eluent to give **3j** (47 mg, 0.114 mmol, 57%) as colorless solid.

¹**H NMR (500 MHz, CDCl₃):** δ (ppm) 7.38 (t, J = 7.4 Hz, 1H), 7.31 (t, J = 7.4 Hz, 2H), 7.10 (dd, J = 7.6 Hz, J = 1.3 Hz, 2H), 6.54 (d, J = 10.1 Hz, 2H), 6.34 (d, J = 10.0 Hz, 2H), 4.11-4.03 (m, 2H), 3.98-3.90 (m, 2H), 2.61 (s, 3H), 1.09 (t, J = 7.0 Hz, 6H).

¹³C NMR (125 MHz, CDCl₃): δ (ppm) 183.7, 169.1, 168.5 (d, *J* = 7.2 Hz), 166.7 (d, *J* = 18.7 Hz), 142.8, 132.9, 130.3, 129.5 (d, *J* = 2.9 Hz), 129.0 (d, *J* = 202.3 Hz), 128.4, 127.8, 69.4 (d, *J* = 14.2 Hz), 63.2 (d, *J* = 6.0 Hz), 25.8, 16.2 (d, *J* = 6.7 Hz).

³¹P NMR (162 MHz, CDCl₃): δ (ppm) 5.8

HRMS-ESI: Calcd. for $C_{21}H_{23}NO_6P^+$ [M+H]⁺ 416.1258, found 416.1252.

Diethyl (2,8-dioxo-4-phenyl-1-tosyl-1-azaspiro[4.5]deca-3,6,9-trien-3-yl)phosphonate (3k)

Compound **3k** was prepared from *N*-(4-nitrophenyl)-3-phenyl-*N*-tosylpropiolamide **1k** (84 mg, 0.2 mmol), diethyl phosphonate **2a** (82.8 mg, 0.6 mmol), the solution was stirred for 3 hours at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 70% to 80% AcOEt/petroleum ether as the eluent to give **3k** (56 mg, 0.106 mmol, 53%) as colorless solid.

¹**H NMR (500 MHz, CDCl₃):** δ (ppm) 7.97 (d, *J* = 8.0 Hz, 2H), 7.37-7.33 (m, 3H), 7.28 (d, *J* = 7.6 Hz, 2H), 7.05 (d, *J* = 7.9 Hz, 2H), 6.63 (d, *J* = 9.8 Hz, 2H), 6.39 (d, *J* = 9.8 Hz, 2H), 4.05-3.97 (m, 2H), 3.92-3.85 (m, 2H), 2.46 (s, 3H), 1.03 (t, *J* = 7.0 Hz, 6H).

¹³**C NMR (125 MHz, CDCl₃):** δ (ppm) 183.5, 168.1 (d, *J* = 8.0 Hz), 165.1 (d, *J* = 19.3 Hz), 146.1, 142.1, 135.4, 132.9, 130.3, 130.0, 129.5 (d, *J* = 3.1 Hz), 128.8, 128.3 (d, *J* = 203.4 Hz), 128.2, 127.9, 70.8 (d, *J* = 14.0 Hz), 63.4 (d, *J* = 6.4 Hz), 21.9, 16.1 (d, *J* = 6.6 Hz).

³¹P NMR (162 MHz, CDCl₃): δ (ppm) 5.4

HRMS-ESI: Calcd. for $C_{26}H_{27}NO_7PS^+$ [M+H]⁺ 528.1240, found 528.1229.

Diethyl(1-acetyl-2,8-dioxo-4-(thiophen-2-yl)-1-azaspiro[4.5]deca-3,6,9-trien-3-yl)phosphonate (3l)

Compound **31** was prepared from *N*-acetyl-*N*-(4-nitrophenyl)-3-(thiophen-2-yl)propiolamide **11** (62.8 mg, 0.2 mmol), diethyl phosphonate **2a** (82.8 mg, 0.6 mmol), the solution was stirred for 3 hours at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 70% to 80% AcOEt/petroleum ether as the eluent to give **31** (42 mg, 0.100 mmol, 50%) as white solid.

¹**H NMR (500 MHz, CDCl₃):** δ (ppm) 7.56 (dd, *J* = 3.6 Hz, *J* = 1.0 Hz, 1H), 7.51 (dd, *J* = 5.0 Hz, *J* = 0.8 Hz, 1H), 7.09 (dd, *J* = 5.1 Hz, *J* = 3.8 Hz, 1H), 6.49 (s, 4H), 4.19-4.06 (m, 4H), 2.58 (s, 3H), 1.19 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (125 MHz, CDCl₃): δ (ppm) 184.2, 169.0, 166.5 (d, J = 18.2 Hz), 161.7 (d, J = 6.6 Hz), 142.5, 134.3, 133.7, 131.7, 129.1 (d, J = 3.6 Hz), 127.6, 125.9 (d, J = 203.2 Hz), 68.0 (d, J = 13.6 Hz), 63.6 (d, J = 6.2 Hz), 26.0, 16.3 (d, J = 6.7 Hz).

³¹P NMR (162 MHz, CDCl₃): δ (ppm) 6.3

HRMS-ESI: Calcd. for $C_{19}H_{21}NO_6PS^+$ [M+H]⁺ 422.0822, found 422.0822.

Diethyl(4-cyclopropyl-1-methyl-2,8-dioxo-1-azaspiro[4.5]deca-3,6,9-trien-3-yl)phosphonate (3n)

Compound **3n** was prepared from 3-cyclopropyl-*N*-methyl-*N*-(4-nitrophenyl)propiolamide **1n** (48.8 mg, 0.2 mmol), diethyl phosphonate **2a** (82.8 mg, 0.6 mmol), the solution was stirred for 6 hours at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 70% to 80% AcOEt/petroleum ether as the eluent to give **3n** (34 mg, 0.096 mmol, 48%) as yellow oil.

¹**H NMR (500 MHz, CDCl₃):** δ (ppm) 6.53 (d, *J* = 8.3 Hz, 2H), 6.41 (d, *J* = 8.3 Hz, 2H), 4.27-4.21 (m, 4H), 2.70 (s, 3H), 2.47-2.41 (m, 1H), 1.38 (t, *J* = 7.1 Hz, 6H), 1.18-1.15 (m, 2H), 1.06-1.01 (m, 2H).

¹³C NMR (125 MHz, CDCl₃): δ (ppm) 183.9, 172.9 (d, J = 11.8 Hz), 168.1 (d, J = 16.4 Hz), 144.7, 132.9, 125.0 (d, J = 200.6 Hz), 67.4 (d, J = 16.4 Hz), 63.1 (d, J = 6.2 Hz), 25.2, 16.5 (d, J = 6.4 Hz), 12.8 (d, J = 2.9 Hz), 11.0.

³¹P NMR (162 MHz, CDCl₃): δ (ppm) 8.9

HRMS-ESI: Calcd. for C₁₇H₂₃NO₅P⁺ [M+H]⁺ 352.1308, found 352.1305.

Diethyl(1-methyl-2,8-dioxo-4-(trimethylsilyl)-1-azaspiro[4.5]deca-3,6,9-trien-3-

yl)phosphonate (3o)

Compound **30** was prepared from *N*-methyl-*N*-(4-nitrophenyl)-3-(trimethylsilyl)propiolamide **10** (55.2 mg, 0.2 mmol), diethyl phosphonate **2a** (82.8 mg, 0.6 mmol), the solution was stirred for 6 hours at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 50% to 70% AcOEt/petroleum ether as the eluent to give **30** (36 mg, 0.094 mmol, 47%) as yellow foam.

¹**H NMR (500 MHz, CDCl₃):** δ (ppm) 6.56 (d, *J* = 10.0 Hz, 2H), 6.29 (d, *J* = 10.0 Hz, 2H), 4.29-4.19 (m, 4H), 2.73 (s, 3H), 1.38 (t, *J* = 7.0 Hz, 6H), 0.30 (s, 9H).

¹³C NMR (125 MHz, CDCl₃): δ (ppm) 184.1, 173.0 (d, *J* = 19.5 Hz), 168.1 (d, *J* = 19.6 Hz), 144.1, 141.3 (d, *J* = 200.2 Hz), 133.5, 70.3 (d, *J* = 20.5 Hz), 63.1 (d, *J* = 5.8 Hz), 25.5, 16.6 (d, *J* = 6.1 Hz), 0.7.

³¹P NMR (162 MHz, CDCl₃): δ (ppm) 8.8

HRMS-ESI: Calcd. for C₁₇H₂₇NO₅PSi⁺ [M+H]⁺ 384.1391, found 384.1387.

Diethyl(6-chloro-1-methyl-2,8-dioxo-4-phenyl-1-azaspiro[4.5]deca-3,6,9-trien-3-yl)phosphonate (3p)

Compound **3p** was prepared from *N*-(2-chloro-4-nitrophenyl)-*N*-methyl-3-phenylpropiolamide **1p** (62.8 mg, 0.2 mmol), diethyl phosphonate **2a** (82.8 mg, 0.6 mmol), the solution was stirred for 3 hours at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 70% to 80% AcOEt/petroleum ether as the eluent to give **3p** (45 mg, 0.106 mmol, 53%) as yellow oil.

¹**H NMR (500 MHz, CDCl₃):** δ (ppm) 7.39 (t, J = 7.4 Hz, 1H), 7.33 (t, J = 7.7 Hz, 2H), 7.22 (d, J = 7.2 Hz, 2H), 6.63 (d, J = 1.6 Hz, 1H), 6.57 (d, J = 9.9 Hz, 1H), 6.45 (d, J = 9.9 Hz, 1H), 4.16-3.92 (m, 4H), 2.84 (s, 3H), 1.17 (t, J = 7.1 Hz, 3H), 1.06 (t, J = 7.1Hz, 3H).

¹³C NMR (125 MHz, CDCl₃): δ (ppm) 182.6, 168.1 (d, J = 17.3 Hz), 164.1 (d, J = 8.4 Hz), 149.6, 143.0, 133.3, 132.8, 130.37, 130.32 (d, J = 201.2 Hz), 130.22 (d, J = 3.7 Hz), 128.2, 127.9, 72.5 (d, J = 15.6 Hz), 63.2 (d, J = 5.8 Hz), 62.9 (d, J = 6.2 Hz), 25.8, 16.3 (d, J = 6.6 Hz), 16.1 (d, J = 6.5 Hz).

³¹P NMR (162 MHz, CDCl₃): δ (ppm) 6.6

HRMS-ESI: Calcd. for C₂₀H₂₂ClNO₅P⁺ [M+H]⁺ 422.0919, found 422.0911.

Diethyl (3,9-dioxo-1-phenyl-5,6,7,9-tetrahydro-3H-pyrrolo[2,1-j]quinolin-2-yl)phosphonate

(3q)

Compound **3q** was prepared from 1-(6-nitro-3,4-dihydroquinolin-1(2H)-yl)-3-phenylprop-2-yn-1one **1q** (61.2 mg, 0.2 mmol), diethyl phosphonate **2a** (82.8 mg, 0.6 mmol), the solution was stirred for 3 hours at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 70% to 80% AcOEt/petroleum ether as the eluent to give **3q** (36 mg, 0.088 mmol, 44%) as white solid.

¹**H NMR (500 MHz, CDCl₃):** δ (ppm) 7.33 (t, J = 7.4 Hz, 1H), 7.28 (d, J = 7.8 Hz, 2H), 7.01 (dd, J = 7.8 Hz, J = 1.4 Hz, 2H), 6.56 (d, J = 9.7 Hz, 1H), 6.27 (t, J = 1.3 Hz, 1H), 6.22 (dd, J = 9.9 Hz, J = 1.5 Hz, 1H), 4.19 (dd, J = 13.8 Hz, J = 8.7 Hz, 1H), 4.11-3.93 (m, 4H), 2.81-2.75 (m, 1H), 2.53-2.42 (m, 2H), 2.10-2.04 (m, 1H), 1.87-1.79 (m, 1H), 1.11-1.06 (m, 6H).

¹³C NMR (125 MHz, CDCl₃): δ (ppm) 184.1, 171.8 (d, J = 17.7 Hz), 167.0 (d, J = 8.5 Hz), 157.2, 145.0, 132.8, 130.1 (d, J = 3.1 Hz), 129.7,129.3, 129.25 (d, J = 200.3 Hz), 128.2, 127.6, 73.3 (d, J = 15.6 Hz), 63.0 (d, J = 6.0 Hz), 62.8 (d, J = 6.0 Hz), 36.5, 26.8, 26.3, 16.1 (d, J = 6.9 Hz), 16.0 (d, J = 6.5 Hz).

³¹P NMR (162 MHz, CDCl₃): δ (ppm) 7.3

HRMS-ESI: Calcd. for C₂₂H₂₅NO₅P⁺ [M+H]⁺ 414.1465, found 414.1454.

Dimethyl (1-methyl-2,8-dioxo-4-phenyl-1-azaspiro[4.5]deca-3,6,9-trien-3-yl)phosphonate (3r)

Compound **3r** was prepared from *N*-methyl-*N*-(4-nitrophenyl)-3-phenylpropiolamide **1a** (58 mg, 0.2 mmol), diethyl phosphonate **2r** (66 mg, 0.6 mmol), the solution was stirred for 3 hours at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 70% to 80% AcOEt/petroleum ether as the eluent to give **3r** (32 mg, 0.092 mmol, 46%) as yellow oil.

¹**H NMR (500 MHz, CDCl₃):** δ (ppm) 7.37 (t, *J* = 7.3 Hz, 1H), 7.31(t, *J* = 7.4 Hz, 2H), 7.20 (d, *J* = 7.3 Hz, 2H), 6.50 (d, *J* = 10.2 Hz, 2H), 6.43 (d, *J* = 10.2 Hz, 2H), 3.62 (s, 3H), 3.60 (s, 3H), 2.96 (s, 3H).

¹³C NMR (125 MHz, CDCl₃): δ (ppm) 183.5, 167.7 (d, *J* = 17.6 Hz), 166.2 (d, *J* = 8.3 Hz), 143.5, 133.9, 130.7 (d, *J* = 3.5 Hz), 130.2, 128.4 (d, *J* = 203.2 Hz), 128.1, 127.9, 69.5 (d, *J* = 15.7 Hz), 53.4 (d, *J* = 5.8 Hz), 26.2.

³¹P NMR (162 MHz, CDCl₃): δ (ppm) 10.2
HRMS-ESI: Calcd. for C₁₈H₁₉NO₅P⁺ [M+H]⁺ 360.0995, found 360.0994.

Diisopropyl(1-methyl-2,8-dioxo-4-phenyl-1-azaspiro[4.5]deca-3,6,9-trien-3-yl)phosphonate (3s)

Compound **3s** was prepared from *N*-methyl-*N*-(4-nitrophenyl)-3-phenylpropiolamide **1a** (58 mg, 0.2 mmol), diisopropyl phosphonate **2s** (99.7 mg, 0.6 mmol), the solution was stirred for 3 hours at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 70% to 80% AcOEt/petroleum ether as the eluent to give **3s** (50 mg, 0.120 mmol, 60%) as colorless oil.

¹**H NMR (500 MHz, CDCl₃):** δ (ppm) 7.35 (t, *J* = 7.3 Hz, 1H), 7.29 (t, *J* = 7.2 Hz, 2H), 7.18 (d, *J* = 8.1 Hz, 2H), 6.49 (d, *J* = 10.0 Hz, 2H), 6.42 (d, *J* = 10.0 Hz, 2H), 4.81-4.75 (m, 2H), 2.87 (s, 3H), 1.21 (d, *J* = 6.1 Hz, 6H), 1.08 (d, *J* = 6.1 Hz, 6H).

¹³C NMR (125 MHz, CDCl₃): δ (ppm) 183.8, 167.9 (d, J = 18.0 Hz), 165.0 (d, J = 7.6 Hz), 144.0, 133.8, 131.4 (d, J = 3.3 Hz), 129.9, 129.6 (d, J = 204.2 Hz), 128.2, 128.0, 72.1 (d, J = 6.2 Hz), 69.4 (d, J = 15.3 Hz), 26.2, 24.3 (d, J = 3.3 Hz), 23.6 (d, J = 6.2 Hz).

³¹P NMR (162 MHz, CDCl₃): δ (ppm) 5.3

HRMS-ESI: Calcd. for C₂₂H₂₇NO₅P⁺ [M+H]⁺ 416.1621, found 416.1617.

Dibutyl (1-methyl-2,8-dioxo-4-phenyl-1-azaspiro[4.5]deca-3,6,9-trien-3-yl)phosphonate (3t)

Compound **3t** was prepared from *N*-methyl-*N*-(4-nitrophenyl)-3-phenylpropiolamide **1a** (58 mg, 0.2 mmol), dibutyl phosphonate **2t** (116.4 mg, 0.6 mmol), the solution was stirred for 3 hours at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 70% to 80% AcOEt/petroleum ether as the eluent to give **3t** (52 mg, 0.118 mmol, 59%) as colorless oil.

¹**H** NMR (500 MHz, CDCl₃): δ (ppm) 7.36 (t, J = 7.3 Hz, 1H), 7.30 (t, J = 7.4 Hz, 2H), 7.20 (d, J = 7.5 Hz, 2H), 6.49 (d, J = 10.2 Hz, 2H), 6.42 (d, J = 10.1 Hz, 2H), 4.05-3.99 (m, 2H), 3.96-3.89 (m, 2H), 2.86 (s, 3H), 1.43-1.37 (m, 4H), 1.24-1.17 (m, 4H), 0.82 (t, J = 7.4 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 183.7, 167.9 (d, J = 17.4 Hz), 165.3 (d, J = 7.8 Hz), 143.8, 133.8, 131.1 (d, J = 3.5 Hz), 130.0, 129.8 (d, J = 208.2 Hz), 129.7, 128.1, 69.5 (d, J = 15.5 Hz), 66.8 (d, J = 6.5 Hz), 32.4 (d, J = 6.4 Hz), 26.2, 18.7, 13.7. ³¹P NMR (162 MHz, CDCl₃): δ (ppm) 7.7 HRMS-ESI: Calcd. for $C_{24}H_{31}NO_5P^+$ [M+H]⁺ 444.1934, found 444.1928.

Dibenzyl (1-methyl-2,8-dioxo-4-phenyl-1-azaspiro[4.5]deca-3,6,9-trien-3-yl)phosphonate (3u)

Compound **3u** was prepared from *N*-methyl-*N*-(4-nitrophenyl)-3-phenylpropiolamide **1a** (58 mg, 0.2 mmol), dibenzyl phosphonate **2u** (157.2 mg, 0.6 mmol), the solution was stirred for 3 hours at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 70% to 80% AcOEt/petroleum ether as the eluent to give **3u** (68 mg, 0.132 mmol, 66%) as colorless oil.

¹**H** NMR (500 MHz, CDCl₃): δ (ppm) 7.33-7.23 (m, 9H), 7.16-7.13 (m, 6H), 6.43-6.38 (m, 4H), 5.04 (dd, J = 12.0 Hz, J = 8.5 Hz, 2H), 4.91 (dd, J = 11.7 Hz, J = 9.0 Hz, 2H), 2.86 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 183.6, 167.8 (d, J = 17.8 Hz), 166.0 (d, J = 8.3 Hz), 143.6, 136.0 (d, J = 6.4 Hz), 133.8, 130.8 (d, J = 3.5 Hz), 130.2, 128.8, 128.6 (d, J = 202.4 Hz), 128.5, 128.2, 128.1, 128.0, 69.5 (d, J = 16.1 Hz), 68.5 (d, J = 6.0 Hz), 26.2. ³¹P NMR (162 MHz, CDCl₃): δ (ppm) 8.3 HRMS-ESI: Calcd. for C₃₀H₂₇NO₅P⁺ [M+H]⁺ 512.1621, found 512.1615.

3-(Diphenylphosphoryl)-1-methyl-4-phenyl-1-azaspiro[4.5]deca-3,6,9-triene-2,8-dione (3v)

Compound **3v** was prepared from *N*-methyl-*N*-(4-nitrophenyl)-3-phenylpropiolamide **1a** (58 mg, 0.2 mmol), diphenylphosphine oxide **2v** (121.2 mg, 0.6 mmol), the solution was stirred for 3 hours at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 50% to 70% AcOEt/petroleum ether as the eluent to give **3v** (40 mg, 0.088 mmol, 44%) as white solid.

¹**H NMR (500 MHz, CDCl₃):** δ (ppm) 7.78 (d, J = 7.3 Hz, 2H), 7.75 (d, J = 7.4 Hz, 2H), 7.48 (td, J = 7.4 Hz, J = 1.3 Hz, 2H), 7.39 (td, J = 7.8 Hz, J = 3.0 Hz, 4H), 7.24 (t, J = 7.4 Hz, 1H), 7.13 (t, J = 7.4 Hz, 2H), 7.07 (d, J = 7.8 Hz, 2H), 6.51 (d, J = 10.0 Hz, 2H), 6.42 (d, J = 10.0 Hz, 2H), 2.83 (s, 3H).

¹³C NMR (125 MHz, CDCl₃): δ (ppm) 183.6, 168.9 (d, *J* = 4.6 Hz), 168.3 (d, *J* = 14.3 Hz), 143.8, 133.8, 132.18, 132.16, 131.7, 131.62, 131.61 (d, *J* = 110.2 Hz), 131.4 (d, *J* = 100.2Hz), 130.21, 130.19, 130.0, 128.5, 128.4, 128.2, 127.8, 69.8 (d, *J* = 10.7 Hz), 26.3.

³¹**P NMR (162 MHz, CDCl₃):** δ (ppm) 18.4.

HRMS-ESI: Calcd. for $C_{28}H_{23}NO_3P^+$ [M+H]⁺ 452.1410, found 452.1405.

1-Methyl-4-phenyl-3-(trifluoromethyl)-1-azaspiro[4.5]deca-3,6,9-triene-2,8-dione (4a)

Compound **4a** was prepared from *N*-methyl-*N*-(4-nitrophenyl)-3-phenylpropiolamide **1a** (58 mg, 0.2 mmol), sodium trifluoromethanesulfinate (155 mg, 1.0 mmol), the solution was stirred for 40 minutes at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 20% to 30% AcOEt/petroleum ether as the eluent to give **4a** (36 mg, 0.112 mmol, 56%) as colorless solid.

¹**H** NMR (500 MHz, CDCl₃): δ (ppm) 7.38 (t, J = 7.4 Hz, 1H), 7.32 (t, J = 7.4 Hz, 2H), 7.10 (d, J = 7.4 Hz, 2H), 6.52 (d, J = 10.2 Hz, 2H), 6.44 (d, J = 10.2 Hz, 2H), 2.88 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 183.3, 164.6, 159.6 (q, J = 3.6 Hz), 142.7, 134.2, 130.4, 128.8, 128.3, 127.6, 126.5 (q, J = 33.6 Hz), 120.4 (q, J = 270.2 Hz), 68.0, 26.2. ¹⁹F NMR (470 MHz, CDCl₃): δ (ppm) -60.7 HRMS-ESI: Calcd. for C₁₇H₁₃F₃NO₂⁺ [M+H]⁺ 320.0893, found 320.0889.

1-Methyl-4-(p-tolyl)-3-(trifluoromethyl)-1-azaspiro[4.5]deca-3,6,9-triene-2,8-dione (4b)

Compound **4b** was prepared from 3-(4-fluorophenyl)-*N*-methyl-*N*-(4-nitrophenyl)propiolamide **1b** (58.8 mg, 0.2 mmol), sodium trifluoromethanesulfinate (155 mg, 1.0 mmol), the solution was stirred for 40 minutes at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 20% to 30% AcOEt/petroleum ether as the eluent to give **4b** (31 mg, 0.094 mmol, 47%) as yellow oil.

¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.14 (d, J = 7.9 Hz, 2H), 7.01 (d, J = 8.0 Hz, 2H), 6.49 (d, J = 10.5 Hz, 2H), 6.46 (d, J = 10.4 Hz, 2H), 2.89 (s, 3H), 2.34 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 183.5, 164.8, 159.8 (q, J = 3.4 Hz), 143.0, 140.9, 134.2, 129.2, 127.6, 126.2 (q, J = 33.9 Hz), 126.0, 120.6 (q, J = 272.0 Hz), 68.0, 26.3, 21.5. ¹⁹F NMR (470 MHz, CDCl₃): δ (ppm) -60.6 HRMS-ESI: Calcd. for C₁₈H₁₅F₃NO₂⁺ [M+H]⁺ 334.1049, found 334.1043.

4-(4-Ethylphenyl)-1-methyl-3-(trifluoromethyl)-1-azaspiro[4.5]deca-3,6,9-triene-2,8-dione (4c)

Compound **4c** was prepared from 3-(4-ethylphenyl)-*N*-methyl-*N*-(4-nitrophenyl)propiolamide **1c** (62 mg, 0.2 mmol), sodium trifluoromethanesulfinate (155 mg, 1.0 mmol), the solution was stirred for 40 minutes at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 20% to 30% AcOEt/petroleum ether as the eluent to give **4c** (32 mg, 0.092 mmol, 46%) as colorless solid.

¹**H NMR (500 MHz, CDCl₃):** δ (ppm) 7.16 (d, *J* = 8.3 Hz, 2H), 7.04 (d, *J* = 8.2 Hz, 2H), 6.50 (d, *J* = 10.8 Hz, 2H), 6.47 (d, *J* = 10.5 Hz, 2H), 2.90 (s, 3H), 2.64 (q, *J* = 7.6 Hz, 2H), 1.22 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃): δ (ppm) 183.5, 164.9, 159.9 (q, J = 3.0 Hz), 147.0, 143.0, 134.2, 128.0, 127.6, 126.22 (q, J = 33.4 Hz), 126.19, 120.6 (q, J = 272.6 Hz), 68.0, 28.7, 26.3, 15.0. ¹⁹F NMR (470 MHz, CDCl₃): δ (ppm) -60.6

HRMS-ESI: Calcd. for $C_{19}H_{17}F_3NO_2^+$ [M+H]⁺ 348.1206, found 348.1202.

4-(4-Butylphenyl)-1-methyl-3-(trifluoromethyl)-1-azaspiro[4.5]deca-3,6,9-triene-2,8-dione (4d)

Compound **4d** was prepared from 3-(4-butylphenyl)-*N*-methyl-*N*-(4-nitrophenyl)propiolamide **1d** (67.2 mg, 0.2 mmol), sodium trifluoromethanesulfinate (155 mg, 1.0 mmol), the solution was stirred for 20 minutes at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 20% to 30% AcOEt/petroleum ether as the eluent to give **4d** (33 mg, 0.088 mmol, 44%) as colorless solid.

¹**H NMR (500 MHz, CDCl₃):** δ (ppm) 7.14 (d, *J* = 8.0 Hz, 2H), 7.03 (d, *J* = 8.0 Hz, 2H), 6.50 (d, *J* = 11.0 Hz, 2H), 6.47 (d, *J* = 10.6 Hz, 2H), 2.89 (s, 3H), 2.59 (t, *J* = 7.7 Hz, 2H), 1.60-1.54 (m, 2H), 1.35-1.30 (m, 2H), 0.91 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃): δ (ppm) 183.5, 164.9, 159.9 (q, *J* = 3.4 Hz), 145.8, 143.0, 134.2, 128.5, 127.6, 126.20 (q, *J* = 33.4 Hz), 126.05, 120.5 (q, *J* = 273.3 Hz), 68.0, 35.5, 33.2, 26.2, 22.5, 14.0.

¹⁹F NMR (470 MHz, CDCl₃): δ (ppm) -60.6

HRMS-ESI: Calcd. for $C_{21}H_{21}F_3NO_2^+$ [M+H]⁺ 376.1519, found 376.1510.

4-(4-Fluorophenyl)-1-methyl-3-(trifluoromethyl)-1-azaspiro[4.5]deca-3,6,9-triene-2,8-dione (4e)

Compound **4e** was prepared from 3-(4-fluorophenyl)-*N*-methyl-*N*-(4-nitrophenyl)propiolamide **1e** (59.6 mg, 0.2 mmol), sodium trifluoromethanesulfinate (155 mg, 1.0 mmol), the solution was stirred for 40 minutes at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 20% to 30% AcOEt/petroleum ether as the eluent to give **4e** (31 mg, 0.092 mmol, 46%) as yellow oil.

¹**H NMR (500 MHz, CDCl₃):** δ (ppm) 7.13 (dd, *J* = 8.6 Hz, *J* = 5.2 Hz, 2H), 7.06 (t, *J* = 8.5 Hz, 2H), 6.49 (t, *J* = 10.5 Hz, 4H), 2.91 (s, 3H).

¹³C NMR (125 MHz, CDCl₃): δ (ppm) 183.1, 164.9, 163.7 (d, *J* = 252.4 Hz), 158.5 (q, *J* = 3.5 Hz), 142.6, 134.5, 129.9 (d, *J* = 9.2 Hz), 127.2 (q, *J* = 33.6 Hz), 124.9 (d, *J* = 3.6 Hz), 120.4 (q, *J* = 272.8 Hz), 116.0 (d, *J* = 22.1 Hz), 68.0, 26.4.

¹⁹F NMR (470 MHz, CDCl₃): δ (ppm) -60.7, -108.9

HRMS-ESI: Calcd. for C₁₇H₁₂F₄NO₂⁺ [M+H]⁺ 338.0799, found 338.0792.

4-(3-Fluorophenyl)-1-methyl-3-(trifluoromethyl)-1-azaspiro[4.5]deca-3,6,9-triene-2,8-dione (4f)

Compound **4f** was prepared from 3-(3-fluorophenyl)-*N*-methyl-*N*-(4-nitrophenyl)propiolamide **1ff** (59.6 mg, 0.2 mmol), sodium trifluoromethanesulfinate (155 mg, 1.0 mmol), the solution was stirred for 40 minutes at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 20% to 30% AcOEt/petroleum ether as the eluent to give **4f** (37 mg, 0.110 mmol, 55%) as yellow oil.

¹**H NMR (500 MHz, CDCl₃):** δ (ppm) 7.37-7.32 (m, 1H), 7.13 (td, *J* = 8.5 Hz, *J* = 2.4 Hz, 1H), 6.90 (d, *J* = 7.8 Hz, 1H), 6.83 (dt, *J* = 8.9 Hz, *J* = 1.9 Hz, 1H), 6.50 (s, 4H), 2.92 (s, 3H).

¹³C NMR (125 MHz, CDCl₃): δ (ppm) 183.1, 164.3, 162.1 (d, *J* = 253.2 Hz), 157.9, 142.3, 134.6, 130.7 (d, *J* = 8.0 Hz), 130.4 (d, *J* = 8.5 Hz), 127.4 (d, *J* = 34.9 Hz), 123.6, 120.3 (q, *J* = 270.0 Hz), 117.7 (d, *J* = 20.6 Hz), 115.1 (d, *J* = 22.6 Hz), 67.9, 26.4.

¹⁹F NMR (470 MHz, CDCl₃): δ (ppm) -60.8, -111.0

HRMS-ESI: Calcd. for $C_{17}H_{12}F_4NO_2^+$ [M+H]⁺ 338.0799, found 338.0798.

4-(4-Methoxyphenyl)-1-methyl-3-(trifluoromethyl)-1-azaspiro[4.5]deca-3,6,9-triene-2,8-dione (4g)

Compound 4g was prepared from 3-(4-methoxyphenyl)-*N*-methyl-*N*-(4-nitrophenyl)propiolamide 1g (62 mg, 0.2 mmol), sodium trifluoromethanesulfinate (155 mg, 1.0 mmol), the solution was stirred for 40 minutes at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 20% to 30% AcOEt/petroleum ether as the eluent to give 4g (35 mg, 0.1 mmol, 50%) as colorless solid.

¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.11 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 8.8 Hz, 2H), 6.50 (d, J = 10.6 Hz, 2H), 6.48 (d, J = 10.8 Hz, 2H), 3.80 (s, 3H), 2.89 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 183.5, 165.0, 161.4, 159.5 (q, J = 3.2 Hz), 143.2, 134.2, 129.3, 125.8 (q, J = 34.0 Hz), 121.1, 120.6 (q, J = 273.2 Hz), 114.1, 67.9, 55.5, 26.2. ¹⁹F NMR (470 MHz, CDCl₃): δ (ppm) -60.5 HRMS-ESI: Calcd. for C₁₈H₁₅F₃NO₃⁺ [M+H]⁺ 350.0999, found 350.0992.

4-([1,1'-Biphenyl]-4-yl)-1-methyl-3-(trifluoromethyl)-1-azaspiro[4.5]deca-3,6,9-triene-2,8-dione (4h)

Compound **4h** was prepared from 3-([1,1'-biphenyl]-4-yl)-*N*-methyl-*N*-(4nitrophenyl)propiolamide **1hh** (71.2 mg, 0.2 mmol), sodium trifluoromethanesulfinate (155 mg, 1.0 mmol), the solution was stirred for 40 minutes at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 20% to 30% AcOEt/petroleum ether as the eluent to give **4h** (36 mg, 0.090 mmol, 45%) as colorless solid.

¹**H NMR (500 MHz, CDCl₃):** δ (ppm) 7.58-7.55 (m, 4H), 7.45 (t, *J* = 7.9 Hz, 2H), 7.38 (t, *J* = 7.0 Hz, 1H), 7.21 (d, *J* = 8.3 Hz, 2H), 6.52 (s, 4H), 2.92 (s, 3H).

¹³C NMR (125 MHz, CDCl₃): δ (ppm) 183.4, 164.7, 159.3 (q, *J* = 3.5 Hz), 143.5, 142.8, 139.7, 134.4, 129.1, 128.3, 128.2, 127.8, 127.3, 127.1, 126.6 (d, *J* = 33.9 Hz), 120.6 (q, *J* = 273.7 Hz), 68.0, 26.3.

¹⁹F NMR (470 MHz, CDCl₃): δ (ppm) -60.5

HRMS-ESI: Calcd. for $C_{23}H_{17}F_3NO_2^+$ [M+H]⁺ 396.1206, found 396.1206.

1-Methyl-4-pentyl-3-(trifluoromethyl)-1-azaspiro[4.5]deca-3,6,9-triene-2,8-dione (4i)

Compound **4i** was prepared from *N*-methyl-*N*-(4-nitrophenyl)oct-2-ynamide **1ii** (54.8 mg, 0.2 mmol), sodium trifluoromethanesulfinate (155 mg, 1.0 mmol), the solution was stirred for 40 minutes at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 20% to 30% AcOEt/petroleum ether as the eluent to give **4i** (29 mg, 0.092 mmol, 46%) as colorless solid.

¹H NMR (500 MHz, CDCl₃): δ (ppm) 6.61 (d, J = 10.0 Hz, 2H), 6.36 (d, J = 10.0 Hz, 2H), 2.85 (s, 3H), 2.24 (t, J = 8.0 Hz, 2H), 1.46-1.40 (m, 2H), 1.30-1.23 (m, 4H), 0.86 (t, J = 6.5 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 183.6, 165.2 (d, J = 1.8 Hz), 161.8 (q, J = 3.3 Hz), 143.6, 134.2, 125.7 (q, J = 34.2 Hz), 121.2 (q, J = 267.3 Hz), 68.0, 32.0, 30.3, 26.5, 26.2, 22.0, 13.8. ¹⁹F NMR (470 MHz, CDCl₃): δ (ppm) -61.8 HRMS-ESI: Calcd. for C₁₆H₁₉F₃NO₂⁺ [M+H]⁺ 314.1362, found 314.1362.

4-Cyclopropyl-1-methyl-3-(trifluoromethyl)-1-azaspiro[4.5]deca-3,6,9-triene-2,8-dione (4j)

Compound **4j** was prepared from 3-cyclopropyl-*N*-methyl-*N*-(4-nitrophenyl)propiolamide **1n** (48.8 mg, 0.2 mmol), sodium trifluoromethanesulfinate (155 mg, 1.0 mmol), the solution was stirred for 40 minutes at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 20% to 30% AcOEt/petroleum ether as the eluent to give **4j** (23 mg, 0.082 mmol, 41%) as colorless oil.

¹**H NMR (500 MHz, CDCl₃):** δ (ppm) 6.58 (d, *J* = 10.1 Hz, 2H), 6.41 (d, *J* = 10.0 Hz, 2H), 2.75 (s, 3H), 1.79-1.69 (m, 1H), 1.05-0.97 (m, 4H).

¹³**C NMR (125 MHz, CDCl₃):** δ (ppm) 183.7, 165.1, 163.3 (q, *J* = 3.3 Hz), 144.0, 133.5, 124.7 (q, *J* = 33.4 Hz), 121.3 (q, *J* = 272.6 Hz), 66.6, 25.4, 10.5, 9.71, 9.69.

¹⁹F NMR (470 MHz, CDCl₃): δ (ppm) -59.6

HRMS-ESI: Calcd. for $C_{14}H_{13}F_3NO_2^+$ [M+H]⁺ 284.0893, found 284.0892.

1-Methyl-3-(trifluoromethyl)-4-(trimethylsilyl)-1-azaspiro[4.5]deca-3,6,9-triene-2,8-dione (4k)

Compound **4k** was prepared from *N*-methyl-*N*-(4-nitrophenyl)-3-(trimethylsilyl)propiolamide **10** (55.2 mg, 0.2 mmol), sodium trifluoromethanesulfinate (155 mg, 1.0 mmol), the solution was stirred for 40 minutes at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 20% to 30% AcOEt/petroleum ether as the eluent to give **4k** (22 mg, 0.070 mmol, 35%) as brown oil.

¹**H NMR (500 MHz, CDCl₃):** δ (ppm) 6.58 (d, *J* = 10.0 Hz, 2H), 6.30 (d, *J* = 10.0 Hz, 2H), 2.76 (s, 3H), 0.23 (s, 9H).

¹³C NMR (125 MHz, CDCl₃): δ (ppm) 183.7, 164.9, 162.6 (q, J = 3.5 Hz), 143.3, 139.1 (q, J = 34.1 Hz), 133.8, 121.3 (q, J = 267.5 Hz), 68.4, 25.6, 0.004 (q, J = 2.2 Hz). ¹⁹F NMR (470 MHz, CDCl₃): δ (ppm) -60.2

HRMS-ESI: Calcd. for $C_{14}H_{17}F_3NO_2Si^+$ [M+H]⁺ 316.0975, found 316.0971.

6-Chloro-1-methyl-4-phenyl-3-(trifluoromethyl)-1-azaspiro[4.5]deca-3,6,9-triene-2,8-dione (4l)

Compound **41** was prepared from *N*-(2-chloro-4-nitrophenyl)-*N*-methyl-3-phenylpropiolamide **1p** (62.8 mg, 0.2 mmol), sodium trifluoromethanesulfinate (155 mg, 1.0 mmol), the solution was stirred for 40 minutes at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 70% to 80% AcOEt/petroleum ether as the eluent to give **4l** (38 mg, 0.106 mmol, 53%) as colorless oil.

¹**H NMR (500 MHz, CDCl₃):** δ (ppm) 7.43 (t, *J* = 7.6 Hz, 1H), 7.36 (t, *J* = 7.6 Hz, 2H), 7.14 (d, *J* = 8.0 Hz, 2H), 6.64 (d, *J* = 1.4 Hz, 1H), 6.59 (d, *J* = 9.9 Hz, 1H), 6.51 (dd, *J* = 9.9 Hz, *J* = 1.3 Hz, 1H), 2.87 (s, 3H).

¹³C NMR (125 MHz, CDCl₃): δ (ppm) 182.3, 164.9 (d, *J* = 1.8 Hz), 158.1 (q, *J* = 3.6 Hz), 148.8, 141.9, 133.6, 133.3, 130.7, 128.5, 128.2 (q, *J* = 34.3 Hz), 128.0, 127.5, 120.2 (q, *J* = 273.1 Hz), 71.2, 26.0.

¹⁹F NMR (470 MHz, CDCl₃): δ (ppm) -60.8

HRMS-ESI: Calcd. for C₁₇H₁₂ClF₃NO₂⁺ [M+H]⁺ 354.0503, found 354.0499.

1-Acetyl-4-phenyl-3-(trifluoromethyl)-1-azaspiro[4.5]deca-3,6,9-triene-2,8-dione (4m)

Ac

Compound **4m** was prepared from *N*-acetyl-*N*-(4-nitrophenyl)-3-phenylpropiolamide **1j** (61.6 mg, 0.2 mmol), sodium trifluoromethanesulfinate (155 mg, 1.0 mmol), the solution was stirred for 40 minutes at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using

20% to 30% AcOEt/petroleum ether as the eluent to give **4m** (29 mg, 0.084 mmol, 42%) as colorless solid.

¹**H NMR (500 MHz, CDCl₃):** δ (ppm) 7.43 (t, *J* = 7.6 Hz, 1H), 7.35 (t, *J* = 7.5 Hz, 2H), 7.04 (dd, *J* = 8.1 Hz, *J* = 1.2 Hz, 2H), 6.54 (dd, *J* = 9.8 Hz, *J* = 2.4 Hz, 2H), 6.39 (dd, *J* = 9.9 Hz, *J* = 2.9 Hz, 2H), 2.64 (s, 3H).

¹³C NMR (125 MHz, CDCl₃): δ (ppm) 183.4, 168.8, 163.4 (d, J = 1.7 Hz), 163.2 (q, J = 2.7 Hz), 141.8, 133.3, 130.8, 128.2, 127.9, 127.2, 126.2 (q, J = 34.3 Hz), 119.7 (q, J = 273.2 Hz), 67.9, 25.9. ¹⁹F NMR (470 MHz, CDCl₃): δ (ppm) -60.8

HRMS-ESI: Calcd. for $C_{18}H_{13}F_3NO_3^+$ [M+H]⁺ 348.0842, found 348.0838.

4-phenyl-1-tosyl-3-(trifluoromethyl)-1-azaspiro[4.5]deca-3,6,9-triene-2,8-dione (4n)

Compound **4n** was prepared from *N*-(4-nitrophenyl)-3-phenyl-*N*-tosylpropiolamide **1k** (84 mg, 0.2 mmol), sodium trifluoromethanesulfinate (155 mg, 1.0 mmol), the solution was stirred for 40 minutes at 80 °C, followed by aqueous work-up, purified by silica gel column chromatography using 20% to 30% AcOEt/petroleum ether as the eluent to give **4n** (43 mg, 0.094 mmol, 47%) as colorless solid.

¹**H NMR (500 MHz, CDCl₃):** δ (ppm) 8.01 (d, J = 8.3 Hz, 2H), 7.44-7.38 (m, 3H), 7.33 (t, J = 7.5 Hz, 2H), 6.99 (d, J = 7.4 Hz, 2H), 6.66 (d, J = 9.9 Hz, 2H), 6.45 (d, J = 9.9 Hz, 2H), 2.48 (s, 3H). ¹³**C NMR (125 MHz, CDCl₃):** δ (ppm) 183.2, 163.0 (q, J = 2.8 Hz), 162.0, 146.5, 141.2, 135.1, 133.5, 130.9, 130.1, 128.9, 128.3, 127.8, 127.2, 125.7 (d, J = 34.8 Hz), 119.7 (q, J = 272.6 Hz), 69.5, 21.9.

¹⁹F NMR (162 MHz, CDCl₃): δ (ppm) -60.5 HRMS-ESI: Calcd. for C₂₃H₁₇F₃NO₄S⁺ [M+H]⁺ 460.0825, found 460.0815.

6. ¹H and ¹³C NMR spectra

¹H NMR (<u>CDCl₃, 300 K</u>), **3a**

 							- · · · T
100	50	0	-50	-100	-150	-200	ppm

29

80 70

60 50

40 30

20 10

ppm

200 190 180 170 160 150 140 130 120 110 100 90

³¹P NMR (<u>CDCl₃, 300 K</u>) **3b**

100 5	0 0 -50	-100 -150	-200 ppm

¹H NMR (<u>CDCl₃, 300 K</u>), **3c**

¹H NMR (<u>CDCl₃, 300 K</u>), **3d**

³¹P NMR (<u>CDCl₃, 300 K</u>) **3d**

----7.80

100 50 0 -50 -100 -150 -200 ppm

¹H NMR (<u>CDCl₃, 300 K</u>), **3e**

³¹P NMR (<u>CDCl₃, 300 K</u>) **3f**

1	1	1	1	1	1		1	
	100	50	0	-50	-100	-150	-200	ppm

¹H NMR (<u>CDCl₃, 300 K</u>), **3g**

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

¹H NMR (<u>CDCl₃, 300 K</u>), **3i**

³¹P NMR (<u>CDCl₃, 300 K</u>) **3i**

1	1	1	1	1	1	1	1
100	50	0	-50	-100	-150	-200	ppm

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

¹H NMR (<u>CDCl₃, 300 K</u>), **3k**

----5.41

100 50 0 -50 -100 -150 -200 ppm

¹H NMR (<u>CDCl₃, 300 K</u>), **3n**

³¹P NMR (<u>CDCl₃, 300 K</u>) **3n**

1	1	1	1	1	1		
100	50	0	-50	-100	-150	-200	ppm

³¹P NMR (<u>CDCl₃, 300 K</u>) **30**

100	50) 0	-50	-100	-150	-200	ppm

¹H NMR (<u>CDCl₃, 300 K</u>), **3p**

¹H NMR (<u>CDCl₃, 300 K</u>), **3q**

7.25

Pho Pho P-OEt OEt

u. Lantuu na auta	dellars allo association	launa karakku almari u	t dit midde de scheidite states.	a. 11.11 . 11.1 11.1.1.1.1.1.1.1.1.1.	ku sa bilan saka nin, wa bula men	สมสะสะสะบงให้เราะสาวการการการการการการการการการการการการการก	at have states at the second	161 al Ladaka datembre.
l	אין איזעריין איזעריין איזעריין 100		O Antipitati patlala attination Antipitati patlala attination Anti	יזקריני ייזי אין אין אין אין אין איזערעע -50	-100	יייגיוויניקאיינין איז אוייניקאיי 150-	-200	maa

¹H NMR (<u>CDCl₃, 300 K</u>), **3r**

¹³C NMR (<u>CDCl₃, 300 K</u>), **3r**

Ь	0041-	0000410700			
LC)	- C - I - 00	N @ L L U U H Q Q N	- 0000	00 00	0
•			4 4 9 9 4	ব' ব'	2
e	rr 0 0	~~~~~~~~~~		• •	•
œ	0000	すうううこうこうこ	rr 6 6 6	നന	9
-				ഗവ	0
	NK		$\forall \forall$	Y	

³¹P NMR (<u>CDCl₃, 300 K</u>) **3r**

100	50	0	-50	-100	-150	-200	ppm

61

³¹P NMR (<u>CDCl₃, 300 K</u>) **3s**

٦				1			_	-		T				1									T						-	_		1						1
			1	00					5	0				0				-5	0			-	10)0			15	50			-	20	0			pp	m	I

¹H NMR (<u>CDCl₃, 300 K</u>), **3t**

³¹P NMR (<u>CDCl₃, 300 K</u>) **3t**

100	50	0	-50	-100	-150	-200	ppm

¹H NMR (<u>CDCl₃, 300 K</u>), **3u**

¹H NMR (<u>CDCl₃, 300 K</u>), **3v**

77

¹⁹F NMR (<u>CDCl₃, 300 K</u>) **4e**

0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	ppm

¹H NMR (<u>CDCl₃, 300 K</u>), 4f

79

¹⁹F NMR (<u>CDCl₃, 300 K</u>) **4f**

0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 ppm

¹H NMR (<u>CDCl₃, 300 K</u>), **4h**

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

¹⁹F NMR (<u>CDCl₃, 300 K</u>) **4h**

المحلبة المعتمر المري	in table with the states of states	hand selects a section of the late	فالعر وتشريحه بالمطلوب أقتمه	a cashe , dan da la shikumun	فالاشتقاد ولاحل والتروسا	ومراجعهم ومعارضه ومراجع	المراجع أحرفهم والأفر والمراجع المراجع	. Likelin and statistics at the	and the state of the last of the last of the state of the last of the state of the last of	وسأفسخص والسطاب	والمتعدية والمتعادية والمعادية	ulu, aluaraa
		. Bu	an a		and design that a serie of a	and a sublimity of the literature of the	10	والمرابعة والمرابعة والمرابعة	1 1 y 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	al militari anti anti anti anti anti anti	وحرابه ومراجع والتريية	a share at mine
1 .	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	ppm

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

¹⁹F NMR (<u>CDCl₃, 300 K</u>) **4**k

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

¹⁹F NMR (<u>CDCl₃, 300 K</u>) **4**I

-60.78

0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 ppm

		 		L	 	 	 	 		 			
· · ·	, , , , , , , , , , , , , , , , , , ,	 		 		-	-	-	,			,	

0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 ppm