Transborylation of alkenylboranes with diboranes

Paula Dominguez-Molano,^[a] Gerard Bru,^[a] Oriol Salvado,^[a] Ricardo J. Maza,^[a] Jorge J. Carbó*^[a] and Elena Fernández*^[a] Department Química Física i Inorgánica. University Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain

Contents:

- General Information
- General procedure for the preparation of chiral diboron compound (22b).
- General procedure for the preparation of E-alkenyl pinacolboranes
- General procedure for the preparation of Z-alkenyl pinacolboranes
- General procedure for the preparation of 1,1-diborylalkenes
- General procedure for transborylation of alkenylboranes with diboron reagents
- Characterization data for alkenyl pinacolboranes
- Characterization data for transborylated alkenylboranes
- ¹H, ¹³C, ¹¹B Spectra for alkenyl pinacolboranes
- ¹H, ¹³C, ¹¹B Spectra for transborylated alkenylboranes
- Evolution by ¹¹B NMR spectra along the reaction between **16** and B₂hex₂
- Mass spectra from the MS analysis for mixed diboron and *gem*diborylalkanes formed along the transborylation
- Computational Details
- References

General Information

Solvents and reagents: Solvents and reagents were obtained from commercial suppliers and dried and/or purified (if needed) by standard procedures. Tetrahydrofuran was dried by distillation from sodium benzophenone ketyl. Lithium 2,2,6,6-tetramethylpiperidide and vinyl boranes 16, 18 and 20, were purchased from Sigma-Aldrich Inc. Diboron reagents were purchased from Ally Chem and used without further purification. All reactions were conducted in oven and flame-dried glassware under an inert atmosphere of argon, using Schlenk-type techniques. *Flash* chromatography was performed on standard silica gel (Merck Kieselgel 60 F254 400-630 mesh). Thin layer chromatography was performed on Merck Kieselgel 60 F254 which was developed using standard visualizing agents: UV fluorescence (254 and 366 nm) or potassium permanganate/Δ. NMR spectra were recorded at a Varian Goku 400 or a Varian Mercury 400 spectrometer. ¹H NMR and ¹³C{¹H} NMR chemical shifts (δ) are reported in ppm with the solvent resonance as the internal standard (CHCl₃: 7.26 ppm (1 H)) and (CDCl₃: 77.16 ppm (13 C). 11 B{ 1 H} NMR chemical shifts (δ) are reported in ppm relative to (CH₃)₂O···BF₃. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, hept = heptuplet, br = broad, m = multiplet), coupling constants (Hz) and integration. High resolution mass spectra (HRMS) were recorded using a 6210 Time of Flight (TOF) mass spectrometer from Agilent Technologies (Waldbronn, Germany) with an ESI interface and it was performed at the Servei de Recursos Científics i Tècnics (Universitat Rovira i Virgili, Tarragona) or using a BIOTOF II Time of Flight (TOF) mass spectrometer from Bruker with an APCI interface or EI interface and it was performed at the Unidade de Espectrometría de Masas e Proteómica (Universidade de Santiago de Compostela, Santiago de Compostela). GC-MS analyses were performed on a HP6890 gas chromatograph and an Agilent Technologies 5973 Mass selective detector (Waldbronn, Germany) equipped with an achiral capillary column HP-5 (30m, 0.25mm i. d., 0.25µm thickness) using He as the carrier gas.

General Procedure for the preparation of chiral diboron compound (22b).

This procedure was adapted from a previous methodology described by W. Tang et al.^[1] An ovendried Schlenk flask with a magnetic stirring bar was charged with activated molecular sieves (4 Å), tetrahydroxy diboron (1 equiv, 1 mmol) and (S,S)-(-)-Hydrobenzoin (2 equiv, 2 mmol) in THF (2 mL). The reaction mixture was stirring at 70°C for 16h and the crude mixture was filtered through a pad of Celite®. The solvents were removed under vacuum to obtain a white solid that was crystallized in ethyl acetate. The white solid was filtered and washed with cold ethyl acetate to obtain the product (**22b**) (54%, 240 mg).

General procedure for the preparation of *E*-alkenyl pinacolboranes

A Schlenk-tube equipped with a magnetic stir bar was charged with bis(pinacolboryl)methane (0.5 mmol, 1 equiv) and LiTMP (0.6 mmol, 1.2 equiv) in dry THF as solvent (2 mL). The mixture was stirred during 30 min at 0 °C. Then, the aldehyde (0.8 mmol, 1.6 equiv) was added. The reaction was stirred during 10 min at 0 °C, followed by 16 h at room temperature. The solvent was gently concentrated at the rotary evaporator and the NMR yield was calculated by comparison to an internal standard (naphthalene). The crude residue was purified by silica gel flash chromatography to afford the desired product.

General procedure for the preparation of Z-alkenyl pinacolboranes

A Schlenk-tube equipped with a magnetic stir bar was charged with $HC(SiMe_3)(Bpin)_2$ (0.5 mmol, 1 equiv) and LiTMP (0.6 mmol, 1.2 equiv) in dry THF as solvent (2 mL). The mixture was stirred during 30 min at 0 °C. Then, the aldehyde (0.8 mmol, 1.6 equiv) was added. The reaction was stirred during 10 min at 0 °C, followed by 16 h at room temperature. The solvent was gently concentrated at the Schlenk line. Next, a solution of 3 mL of dichloromethane containing CF₃COOH (3 mmol, 8 equiv) was added and the reaction was stirred for 16 h at room temperature. The solvent was gently concentrated at the rotary evaporator and the NMR yield was calculated by comparison to an internal standard (naphthalene). The crude residue was purified by silica gel flash chromatography to afford the desired product.

General procedure for the preparation of 1,1-diborylalkenes

A Schlenk-tube equipped with a magnetic stir bar was charged with $Cu(OAc)_2$ (10 mol%, 36 mg, 0.2 mmol), KF (1 equiv, 116 mg, 2 mmol) in dry toluene as solvent (2.5 mL). Then, PⁿBu₃ (81 mg, 99 µL, 0.4 mmol), arylacetylene (204 mg, 0.22 mL, 2 mmol), and HBpin (512 mg, 0.58 mL, 4 mmol) were added in this order. The mixture was stirred during 15 min at 40°C. The reaction mixture was then diluted with Et₂O and filtered through a plug of celite in air with copious washing (Et₂O). The solvent was gently concentrated at the rotary evaporator and the NMR yield was calculated through comparison to an internal standard (naphthalene). The crude residue was purified by silica gel flash chromatography to afford the desired product.

General procedure for transborylation of alkenylboranes with diboron reagents

A Schlenk-tube equipped with a magnetic stir bar was charged with alkenylborane (0.3 mmol, 1 equiv), diboron reagent (0.6 mmol, 2 equiv) in dry MeOH as solvent (2 mL). The mixture was stirred during 16 h at 90 °C. The solvent was gently concentrated at the rotary evaporator and the NMR yield was calculated by comparison to an internal standard (naphthalene). The crude residue was purified by silica gel flash chromatography to afford the desired product.

Characterizarion data for alkenyl pinacolboranes

(E)-4,4,5,5-Tetramethyl-2-(3-phenylprop-1-en-1-yl)-1,3,2-dioxaborolane (E-1)^[2]

Purified by flash column chromatography (hexane:diethyl ether = 100:1) yielded *E*-**1** (61%, 75 mg) as a pale yellowish oil.

¹H NMR (CDCl₃, 400 MHz) δ 7.24 – 7.13 (m, 2H), 7.15 – 7.04 (m, 3H), 6.68 (dt, J = 17.8, 6.3 Hz, 1H), 5.37 (dt, J = 17.8, 1.7 Hz, 1H), 3.39 (dd, J = 6.3, 1.7 Hz, 2H), 1.16 (s, 12H). ¹³C NMR (CDCl₃, 100 MHz) δ 152.47, 139.10, 128.95, 128.46, 126.18, 83.12, 42.30, 24.82. ¹¹B NMR (CDCl₃, 128.3 MHz) δ 29.58.

HRMS (ESI) for C₁₅H₂₅NBO₂ [M+NH₄⁺]⁺: calculated: 262.1979, found: 262.1978.

(E)-2-(3,3-Diphenylprop-1-en-1-yl)-4,4,6-trimethyl-1,3,2-dioxaborinane (E-3)

Purified by flash column chromatography (hexane:diethyl ether = 100:1) yielded *E*-**3** (94%, 151 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.33 – 7.25 (m, 5H), 7.23 – 7.16 (m, 5H), 7.05 (dd, J = 17.9, 6.9 Hz, 1H), 5.40 (dd, J = 17.9, 1.5 Hz, 1H), 4.80 (dd, J = 6.9, 1.5 Hz, 1H), 1.26 (s, 12H).

¹³**C NMR** (CDCl₃, 100 MHz) δ 154.58, 142.65, 130.07, 128.80, 128.40, 126.42, 83.20, 56.86, 24.82.

¹¹**B NMR** (CDCl₃, 128.3 MHz) δ 30.23.

HRMS (ESI) for C₂₁H₂₉NBO₂ [M+NH₄⁺]⁺: calculated: 338.2291, found: 338.2299.

(Z)-4,4,5,5-Tetramethyl-2-(3-phenylprop-1-en-1-yl)-1,3,2-dioxaborolane (Z-1)

Purified by flash column chromatography (hexane:diethyl ether = 100:1) yielded *Z*-1 (36%, 44 mg) as a pale yellowish oil.

¹H NMR (CDCl₃, 400 MHz) δ 7.33 – 7.25 (m, 2H), 7.26 – 7.13 (m, 3H), 6.55 (dt, J = 14.3, 7.5 Hz, 1H), 5.43 (dt, J = 13.3, 1.4 Hz, 1H), 3.76 (dt, J = 7.6, 0.9 Hz, 2H), 1.30 (s, 12H). ¹³C NMR (CDCl₃, 100 MHz) δ 152.69, 140.67, 128.64, 128.42, 125.92, 83.03, 38.67, 24.88. ¹¹B NMR (CDCl₃, 128.3 MHz) δ 30.01.

HRMS (ESI) for C₁₅H₂₅NBO₂ [M+NH₄+]⁺: calculated: 262.1979, found: 262.1978.

(Z)-2-(3,3-Diphenylprop-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (Z-3)

Purified by flash column chromatography (hexane:diethyl ether = 100:1) yielded *Z*-**3** (71%, 114 mg) as a pale yellowish oil.

¹H NMR (CDCl₃, 400 MHz) δ 7.34 – 7.25 (m, 5H), 7.25 – 7.17 (m, 5H), 6.85 (dd, J = 13.2, 10.4 Hz, 1H), 5.65 (dd, J = 10.3, 0.6 Hz, 1H), 5.52 (dd, J = 13.2, 0.6 Hz, 1H), 1.28 (s, 12H). ¹³C NMR (CDCl₃, 100 MHz) δ 155.14, 144.26, 128.42, 128.39, 126.15, 83.12, 51.99, 30.93, 24.90. ¹¹B NMR (CDCl₃, 128.3 MHz) δ 30.09.

HRMS (ESI) for C₂₁H₂₉NBO₂ [M+NH₄⁺]⁺: calculated: 338.2302, found: 338.2291.

(E)-4,4,5,5-Tetramethyl-2-(2-phenylethenyl)-1,3,2-dioxaborolane (5)

Purified by flash column chromatography (hexane:diethyl ether = 100:1) yielded **5** (68%, 79 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.52 – 7.45 (m, 2H), 7.40 (d, J = 18.5 Hz, 1H), 7.38 – 7.26 (m, 3H), 6.17 (d, J = 18.4 Hz, 1H), 1.32 (s, 12H).

¹³C NMR (CDCl₃, 100 MHz) δ 149.52, 128.90, 128.58, 127.07, 83.37, 24.83.

¹¹**B NMR** (CDCl₃, 128.3 MHz) δ 30.16.

HRMS (ESI) for C₁₄H₂₀BO₂ [M+H⁺]⁺: calculated: 231.1556, found: 231.1555.

Purified by flash column chromatography (hexane:diethyl ether = 100:1) yielded **6** (73%, 95 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.40 – 7.34 (m, 2H), 7.28 (d, J = 18.4 Hz, 1H), 6.83 – 6.77 (m, 2H), 5.94 (d, J = 18.4 Hz, 1H), 3.75 (s, 3H), 1.24 (s, 12H).

 $^{13}\textbf{C}$ NMR (CDCl₃, 100 MHz) δ 160.30, 149.07, 130.42, 128.48, 113.98, 113.33, 83.23, 55.30, 24.82.

¹¹**B NMR** (CDCl₃, 128.3 MHz) δ 30.21.

HRMS (ESI) for C15H22BO3 [M+H+]+: calculated: 261.1662, found: 261.1667.

(E)-2-(2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)pyridine (7)^[3]

Purified by flash column chromatography (hexane:diethyl ether = 100:1) yielded **7** (40%, 47 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 8.60 (dd, J = 4.8, 1.8 Hz, 1H), 7.65 (dt, J = 7.7, 1.8 Hz, 1H), 7.45 (d, J = 18.3 Hz, 1H), 7.40 (dt, J = 7.9, 1.1 Hz, 1H), 7.17 (dd, J = 7.5, 4.8 Hz, 1H), 6.63 (d, J = 18.3 Hz, 1H), 1.31 (s, 12H).

¹³C NMR (CDCl₃, 100 MHz) δ 155.47, 149.76, 148.79, 136.45, 123.08, 122.23, 83.48, 24.80.
 ¹¹B NMR (CDCl₃, 128.3 MHz) δ 29.97.

HRMS (ESI) for C₁₃H₁₉BNO₂ [M+H⁺]⁺: calculated: 230.1467, found: 230.1472.

2-(2,2-Diphenylvinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (14)

Purified by flash column chromatography (hexane:diethyl ether = 100:1) yielded **14** (61%, 94 mg) as a pale yellowish oil.

¹H NMR (CDCl₃, 400 MHz) δ 7.33 – 7.24 (m, 10H), 5.99 (s, 1H), 1.15 (s, 12H). ¹³C NMR (CDCl₃, 100 MHz) δ 129.85, 128.29, 128.02, 127.99, 127.60, 127.54, 83.16, 24.62. ¹¹B NMR (CDCl₃, 128.3 MHz) δ 29.66.

HRMS (ESI) for C₂₀H₂₄BO₂ [M+H⁺]⁺: calculated: 307.1869, found: 307.1877.

2,2'-(2-phenylethene-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (38)

Purified by flash column chromatography (pentane:ethyl ether = 10:1) yielded **38** (58%, 68 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.71 (s, 1H), 7.51 – 7.44 (m, 2H), 7.34 – 7.27 (m, 3H), 1.31 (s, 12H), 1.28 (s, 12H).

¹³C NMR (CDCl₃, 100 MHz) δ 155.18, 139.60, 128.45, 128.18, 128.12, 83.63, 83.22, 24.89, 24.66. ¹¹B NMR (CDCl₃, 128.3 MHz) δ 30.84.

HRMS (ESI) for C₂₀H₃₀B₂O₄ [M+H]⁺: calculated: 371.2568, found: 371.2567.

2,2'-(2-(4-fluorophenyl)ethene-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (39)

Purified by flash column chromatography (pentane:ethyl ether = 10:1) yielded **39** (44%, 56 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.66 (s, 1H), 7.49 – 7.43 (m, 2H), 6.98 (t, *J* = 8.7 Hz, 2H), 1.31 (s, 12H), 1.27 (s, 12H).

¹³C NMR (CDCl₃, 100 MHz) δ 153.84, 129.96, 129.88, 115.20, 114.99, 83.69, 83.27, 24.87, 24.66.
 ¹¹B NMR (CDCl₃, 128.3 MHz) δ 30.86.

HRMS (ESI) for C₂₀H₂₉B₂FO₄ [M+H]⁺: calculated: 375.2210, found: 375.2215.

Characterization data for transborylated alkenylboranes

(E)-4,4,6-Trimethyl-2-(3-phenylprop-1-en-1-yl)-1,3,2-dioxaborinane (E-2)

Purified by flash column chromatography (hexane:diethyl ether = 100:1) yielded *E*-**2** (89%, 65 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.26 – 7.17 (m, 2H), 7.11 (dt, J = 6.4, 1.2 Hz, 3H), 6.57 (dt, J = 17.6, 6.4 Hz, 1H), 5.30 (d, J = 17.6 Hz, 1H), 4.18 – 4.05 (m, 1H), 3.37 (d, J = 6.4 Hz, 2H), 1.69 (dd, J = 13.9, 3.0 Hz, 1H), 1.41 (dd, J = 13.9, 11.6 Hz, 1H), 1.20 (s, 6H), 1.17 (d, J = 6.2 Hz, 3H). ¹³**C NMR** (CDCl₃, 100 MHz) δ 149.01, 139.77, 128.96, 128.40, 126.01, 70.68, 64.65, 45.97, 42.07, 31.25, 28.12, 23.17.

¹¹**B NMR** (CDCl₃, 128.3 MHz) δ 26.18.

HRMS (ESI) for C₁₅H₂₅NBO₂ [M+NH₄+]⁺: calculated: 262.1978, found: 262.1998.

(E)-2-(3,3-Diphenylprop-1-en-1-yl)-4,4,6-trimethyl-1,3,2-dioxaborinane (E-4)

Purified by flash column chromatography (hexane:diethyl ether = 100:1) yielded *E*-4 (77%, 74 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.39 – 7.29 (m, 4H), 7.25 (m, 6H), 7.01 (dd, J = 17.6, 6.8 Hz, 1H), 5.37 (dd, J = 17.7, 1.5 Hz, 1H), 4.83 (dd, J = 6.9, 1.5 Hz, 1H), 4.26 (m, 1H), 1.82 (dd, J = 13.9, 2.9 Hz, 1H), 1.66 – 1.48 (m, 1H), 1.34 (s, 6H), 1.20 (d, J = 2.2 Hz, 3H).

¹³**C NMR** (CDCl₃, 100 MHz) δ 151.43, 143.17, 132.43, 130.08, 128.86, 128.35, 128.30, 126.27, 70.71, 64.67, 56.62, 45.98, 31.25, 28.16.

¹¹**B NMR** (CDCl₃, 128.3 MHz) δ 25.79.

HRMS (ESI) for $C_{21}H_{26}BO_2$ [M+H⁺]⁺: calculated: 320.7415, found: 320.7442.

(Z)-4,4,6-Trimethyl-2-(3-phenylprop-1-en-1-yl)-1,3,2-dioxaborinane (Z-2)

Purified by flash column chromatography (hexane:diethyl ether = 100:1) yielded **Z-2** (69%, 51 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.25 – 7.15 (m, 4H), 7.15 – 7.07 (m, 1H), 6.33 (dt, J = 13.5, 7.6 Hz, 1H), 5.25 (d, J = 13.5 Hz, 1H), 4.20 (m, 1H), 3.68 (d, J = 7.6, 2H), 1.74 (dd, J = 13.9, 2.9 Hz, 1H), 1.53 – 1.42 (m, 1H), 1.26 (d, 6H), 1.22 (d, J = 2.2 Hz, 3H).

¹³**C NMR** (CDCl₃, 100 MHz) δ 149.70, 141.38, 128.67, 128.34, 125.73, 70.88, 64.78, 45.96, 37.98, 31.36, 28.25, 24.88, 23.25.

¹¹**B NMR** (CDCl₃, 128.3 MHz) δ 26.23.

HRMS (ESI) for C₁₅H₂₅NBO₂ [M+NH₄⁺]⁺: calculated: 262.1978, found: 262.1998.

(S,Z)-2-(3,3-Diphenylprop-1-en-1-yl)-4,4,6-trimethyl-1,3,2-dioxaborinane (Z-4)

Purified by flash column chromatography (hexane:diethyl ether = 100:1) yielded *Z*-4 (32%, 31 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.35 – 7.27 (m, 5H), 7.27 – 7.16 (m, 4H), 6.74 (dd, J = 13.4, 10.2 Hz, 1H), 5.76 (d, J = 10.2 Hz, 1H), 5.44 (d, J = 13.4 Hz, 1H), 4.27 (m, 1H), 1.81 (dd, J = 13.9, 2.9 Hz, 1H), 1.57 – 1.48 (m, 1H), 1.34 (s, 3H), 1.31 (d, J = 6.2 Hz, 3H).

¹³**C NMR** (CDCl₃, 100 MHz) δ 152.24, 128.33, 125.98, 70.97, 64.82, 51.18, 45.85, 31.35, 30.94, 28.25, 23.23.

¹¹**B NMR** (CDCl₃, 128.3 MHz) δ 26.29.

HRMS (ESI) for C₂₁H₂₉NBO₂ [M+NH₄⁺]⁺: calculated: 338.2302, found: 338.2291.

(E)-4,4,6-Trimethyl-2-(2-phenylethenyl)-1,3,2-dioxaborinane (8)^[4]

Purified by flash column chromatography (hexane:diethyl ether = 100:1) yielded **8** (62%, 43 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.50 – 7.43 (m, 2H), 7.33 – 7.20 (m, 4H), 6.09 (d, J = 18.2 Hz, 1H), 4.26 (m, 1H), 1.80 (dd, J = 13.9, 2.9 Hz, 1H), 1.54 (dd, J = 12.7, 12.6 Hz, 1H), 1.33 (s, 3H), 1.32 (s, 3H), 1.30 (d, J = 6.2 Hz, 3H).

¹³**C NMR** (CDCl₃, 100 MHz) δ 146.49, 138.02, 128.45, 128.29, 126.97, 70.90, 64.85, 46.03, 31.29, 28.17, 23.21.

¹¹**B NMR** (CDCl₃, 128.3 MHz) δ 26.24.

HRMS (ESI) for C₁₄H₂₀BO₂ [M+H⁺]⁺: calculated: 231.1556, found: 231.1569.

(E)-2-(4-Methoxystyryl)-4,4,6-trimethyl-1,3,2-dioxaborinane (9)

Purified by flash column chromatography (hexane:diethyl ether = 100:1) yielded **9** (80%, 62 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.48 – 7.38 (m, 2H), 7.31 – 7.21 (d, J = 18.2 Hz, 1H), 6.88 – 6.81 (m, 2H), 5.95 (d, J = 18.2 Hz, 1H), 4.27 (m, 1H), 3.81 (s, 3H), 1.82 (dd, J = 13.9, 2.9 Hz, 1H), 1.60 – 1.49 (m, 2H), 1.34 (s, 3H), 1.33 (s, 3H), 1.31 (d, J = 6.2 Hz, 3H).

¹³**C NMR** (CDCl₃, 100 MHz) δ 159.83, 146.04, 130.93, 128.29, 113.85, 70.83, 64.80, 55.28, 46.02, 31.31, 28.17, 23.24.

¹¹**B NMR** (CDCl₃, 128.3 MHz) δ 26.25.

HRMS (ESI) for C15H22BO3 [M+H]*: calculated:261.1662, found:261.1658.

(E)-2-(2-(4,4,6-Trimethyl-1,3,2-dioxaborinan-2-yl)vinyl)pyridine (10)

Purified by flash column chromatography (hexane:diethyl ether = 100:1) yielded **10** (56%, 39 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 8.57 (dd, J = 4.8, 1.8 Hz, 1H), 7.63 (t, J = 7.7, 1.9 Hz, 1H), 7.47 (dd, J = 8.0, 1.1 Hz, 1H), 7.39 (d, J = 18.2 Hz, 1H), 7.13 (ddd, J = 7.5, 4.8, 1.2 Hz, 1H), 6.48 (d, J = 18.2 Hz, 1H), 4.28 (m, 1H), 1.82 (dd, J = 13.9, 3.0 Hz, 1H), 1.55 (dd, J = 13.9, 11.6 Hz, 1H), 1.33 (s, 6H), 1.30 (d, J = 6.2 Hz, 3H).

¹³**C NMR** (CDCl₃, 100 MHz) δ 156.35, 149.53, 146.37, 136.27, 122.55, 121.19, 70.97, 64.92, 45.99, 31.23, 28.14, 23.16.

¹¹**B NMR** (CDCl₃, 128.3 MHz) δ 26.47.

HRMS (ESI) for C₁₃H₁₉NBO₂ [M+H⁺]⁺: calculated: 230.1467, found: 230.1474.

(E)-5,5-Dimethyl-2-(2-phenylethenyl)-1,3,2-dioxaborinane (11)

Purified by flash column chromatography (hexane:diethyl ether = 100:1) yielded **11** (68%, 44 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.52 – 7.46 (m, 2H), 7.38 – 7.23 (m, 4H), 6.11 (d, J = 18.3 Hz, 1H), 3.70 (s, 4H), 1.01 (s, 6H).

¹³C NMR (CDCl₃, 100 MHz) δ 147.13, 137.80, 128.52, 127.01, 72.22, 31.87, 21.89.
 ¹¹B NMR (CDCl₃, 128.3 MHz) δ 26.48.

HRMS (ESI) for C₂₆H₃₅B₂O₄ [2M+H⁺]⁺: calculated: 432.2817, found: 432.2643.

(E)-2-(4-Methoxystyryl)-5,5-dimethyl-1,3,2-dioxaborinane (12)

Purified by flash column chromatography (hexane:diethyl ether = 100:1) yielded **12** (64%, 47 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.47 – 7.39 (m, 2H), 7.28 (d, J = 17.3 Hz, 1H), 6.92 – 6.80 (m, 2H), 5.95 (d, J = 18.2 Hz, 1H), 3.81 (s, 3H), 3.69 (s, 4H), 0.98 (s, 6H).

¹³**C NMR** (CDCl₃, 100 MHz) δ 160.01, 146.66, 130.69, 128.36, 113.92, 72.20, 55.30, 31.88, 24.83, 21.90.

¹¹**B NMR** (CDCl₃, 128.3 MHz) δ 25.98.

HRMS (ESI) for C₁₄H₂₀BO₃ [M+H]⁺: calculated: 247.1506, found: 247.1507.

(E)-5,5-Dimethyl-2-(3-phenylprop-1-en-1-yl)-1,3,2-dioxaborinane (13)

Purified by flash column chromatography (hexane:diethyl ether = 100:1) yielded **13** (48%, 33 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.31 – 7.25 (m, 2H), 7.19 (t, J = 7.5 Hz, 3H), 6.67 (dt, J = 17.6, 6.4 Hz, 1H), 5.39 (dt, J = 17.6, 1.6 Hz, 1H), 3.62 (s, 4H), 3.46 (dd, J = 6.5, 1.6 Hz, 2H), 0.96 (s, 6H). ¹³**C NMR** (CDCl₃, 100 MHz) δ 149.74, 139.59, 128.86, 128.42, 126.05, 72.08, 42.07, 31.77, 21.87. ¹¹**B NMR** (CDCl₃, 128.3 MHz) δ 25.82.

HRMS (ESI) for C₁₄H₂₃NBO₂ [M+NH₄+]⁺: calculated: 262.1978, found: 262.1978.

2-(2,2-diphenylvinyl)-4,4,6-trimethyl-1,3,2-dioxaborinane (15)

Purified by flash column chromatography (hexane:diethyl ether = 100:1) yielded **15** (92%, 84 mg) as a pale yellowish oil.

¹H NMR (CDCl₃, 400 MHz) δ 7.35 – 7.20 (m, 10H), 6.00 (s, 1H), 4.09 (m, 1H), 1.69 (dd, J = 13.9, 3.0 Hz, 1H), 1.47 – 1.33 (m, 1H), 1.17 (s, 3H), 1.08 (s, 4H), 1.06 (d, J = 6.2 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 157.10, 143.37, 142.60, 129.72, 127.88, 127.84, 127.61, 127.43, 127.05, 70.87, 64.83, 45.77, 30.89, 27.80, 22.89.

¹¹**B NMR** (CDCl₃, 128.3 MHz) δ 26.14.

HRMS (ESI) for **C**₂₀**H**₂₇**NBO**₂ **[M+NH**₄⁺]⁺: calculated: 472.2830, found: 472.2834.

4,4,6-Trimethyl-2-(1-phenylvinyl)-1,3,2-dioxaborinane (17)

Purified by flash column chromatography (hexane:diethyl ether = 100:1) yielded **17** (80%, 55 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.52 – 7.40 (m, 2H), 7.35 – 7.25 (m, 2H), 7.26 – 7.17 (m, 1H), 5.98 (d, J = 3.5 Hz, 1H), 5.90 (d, J = 3.5 Hz, 1H), 4.29 (m, 1H), 1.84 (dd, J = 13.9, 3.0 Hz, 1H), 1.62 – 1.54 (m, 1H), 1.33 (s, 6H), 1.30 (d, J = 6.2 Hz, 3H).

¹³**C NMR** (CDCl₃, 100 MHz) δ 142.64, 128.79, 127.83, 127.58, 126.44, 71.19, 65.13, 45.91, 31.23, 28.13, 23.16.

¹¹**B NMR** (CDCl₃, 128.3 MHz) δ 26.39.

HRMS (ESI) for C₁₄H₂₃NBO₂ [M+NH₄⁺]⁺: calculated: 248.1822, found: 248.1831.

4,4,6-Trimethyl-2-(prop-1-en-2-yl)-1,3,2-dioxaborinane (19)

Purified by flash column chromatography (hexane:diethyl ether = 100:1) yielded **19** (15%, 8 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 5.65 (m, 1H), 5.52 – 5.46 (m, 1H), 4.21 (m, 1H), 1.77 (d, J = 17.1 Hz, 1H), 1.70 (s, 3H), 1.53 – 1.42 (m, 1H), 1.29 (s, 6H), 1.26 (d, J = 6.2 Hz, 3H). ¹³**C NMR** (CDCl₃, 100 MHz) δ 126.70, 70.60, 64.67, 45.89, 31.26, 28.13, 24.79, 23.18, 20.92. ¹¹**B NMR** (CDCl₃, 128.3 MHz) δ 26.01.

4,4,6-Trimethyl-2-vinyl-1,3,2-dioxaborinane (21)

Purified by flash column chromatography (hexane:diethyl ether = 100:1) yielded **21** (30%,14 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 6.04 (dd, J = 18.7, 5.1 Hz, 1H), 5.86 (dd, J = 13.4, 5.0 Hz, 1H), 5.77 (dd, J = 18.8, 13.4 Hz, 1H), 4.22 (m, 1H), 1.79 (dd, J = 13.9, 3.0 Hz, 1H), 1.58 – 1.49 (m, 1H), 1.30 (s, 6H), 1.27 (d, J = 6.2 Hz, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ 133.76, 70.76, 64.71, 45.96, 31.21, 28.10, 23.13. ¹¹B NMR (CDCl₃, 128.3 MHz) δ 25.84.

(3a*R*,4*S*,6*S*,7a*R*)-3a,5,5-Trimethyl-2-((*E*)-styryl)hexahydro-4,6methanobenzo[*d*][1,3,2] dioxaborole (23)

Purified by flash column chromatography (hexane:diethyl ether = 100:1) yielded **23** (88%, 74 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.53 – 7.46 (m, 2H), 7.41 (d, J = 18.5 Hz, 1H), 7.39 – 7.25 (m, 3H), 6.20 (d, J = 18.4 Hz, 1H), 4.38 (dd, J = 8.7, 1.9 Hz, 1H), 2.45 – 2.33 (m, 1H), 2.30 – 2.19 (m, 1H), 2.12 (t, J = 6.0, 4.8 Hz, 1H), 1.98 – 1.90 (m, 2H), 1.46 (s, 3H), 1.31 (s, 3H), 1.21 (d, J = 10.9 Hz, 1H), 0.88 (s, 3H).

 $^{13}\textbf{C}$ NMR (CDCl₃, 100 MHz) δ 149.61, 137.65, 129.02, 128.71, 128.10, 127.19, 85.96, 78.00, 51.55, 39.68, 38.33, 35.68, 28.81, 27.25, 26.60, 24.18.

¹¹**B NMR** (CDCl₃, 128.3 MHz) δ 29.25.

HRMS (ESI) for C₃₆H₄₆B₂O₄ [2M⁺]⁺: calculated: 564.3582, found: 564.3583.

(3a*S*,4*S*,6*S*,7a*R*)-2-((*E*)-4-Methoxystyryl)-3a,5,5-trimethylhexahydro-4,6methanobenzo[*d*][1,3,2]dioxaborole (24)

Purified by flash column chromatography (hexane:diethyl ether = 100:1) yielded **24** (72%, 68 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.48 – 7.40 (m, 2H), 7.36 (d, J = 18.4 Hz, 1H), 6.90 – 6.83 (m, 2H), 6.03 (d, J = 18.4 Hz, 1H), 4.36 (dd, J = 8.7, 1.9 Hz, 1H), 3.82 (s, 3H), 2.39 (m, 1H), 2.30 – 2.17 (m, 1H), 2.11 (dd, J = 6.1, 4.9 Hz, 1H), 1.98 – 1.86 (m, 2H), 1.45 (s, 3H), 1.31 (s, 3H), 1.26 – 1.16 (m, 1H), 0.87 (s, 3H).

 $^{13}\textbf{C}$ NMR (CDCl₃, 100 MHz) δ 160.29, 149.01, 130.47, 130.30, 128.46, 113.98, 85.70, 77.80, 65.86, 55.30, 51.45, 39.57, 38.20, 35.59, 28.69, 27.12, 26.47, 24.04, 15.29.

¹¹**B NMR** (CDCl₃, 128.3 MHz) δ 29.88.

HRMS (ESI) for $C_{19}H_{26}BO_3$ [M+H⁺]⁺: calculated: 313.1975, found: 313.1987.

(3a*S*,4*S*,6*S*,7*aR*)-3a,5,5-Trimethyl-2-((*E*)-3-phenylprop-1-en-1-yl)hexahydro-4,6methanobenzo[*d*][1,3,2]dioxaborole (25)

Purified by flash column chromatography (hexane:diethyl ether = 100:1) yielded **25** (80%, 71 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.40 – 7.31 (m, 2H), 7.31 – 7.22 (m, 3H), 6.84 (dt, J = 17.8, 6.4 Hz, 1H), 5.55 (dt, J = 17.8, 1.6 Hz, 1H), 4.36 (dd, J = 8.7, 1.9 Hz, 1H), 3.56 (m, 2H), 2.41 (ddt, J = 14.0, 8.7, 2.2 Hz, 1H), 2.35 – 2.22 (m, 1H), 2.12 (dd, J = 6.1, 4.9 Hz, 1H), 2.01 – 1.89 (m, 2H), 1.46 (s, 3H), 1.36 (s, 3H), 1.22 (d, J = 10.9 Hz, 1H), 0.92 (s, 3H).

¹³**C NMR** (CDCl₃, 100 MHz) δ 152.33, 139.14, 128.91, 128.45, 126.16, 85.59, 77.70, 51.37, 42.31, 39.52, 38.15, 35.48, 28.64, 27.10, 26.44, 24.01.

¹¹**B NMR** (CDCl₃, 128.3 MHz) δ 29.57.

HRMS (ESI) for C₁₉H₂₉NBO₂ [M+NH₄⁺]⁺: calculated: 314.2291, found: 314.2302.

(3a*S*,7a*R*)-3a,5,5-trimethyl-2-((*Z*)-3-phenylprop-1-en-1-yl)hexahydro-4,6methanobenzo[d][1,3,2]dioxaborole (26)

Purified by flash column chromatography (hexane:diethyl ether = 100:1) yielded **26** (80%, 71 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.36 – 7.24 (m, 3H), 7.24 – 7.15 (m, 3H), 6.57 (dt, J = 13.3, 7.6 Hz, 1H), 5.47 (dt, J = 13.3, 1.4 Hz, 1H), 4.35 (dd, J = 8.7, 1.8 Hz, 1H), 3.84 – 3.70 (m, 2H), 2.44 – 2.31 (m, 1H), 2.30 – 2.19 (m, 1H), 2.10 (dd, J = 6.1, 4.8 Hz, 1H), 1.98 – 1.87 (m, 2H), 1.31 (s, 3H), 1.25 – 1.18 (m, 1H), 0.87 (s, 3H).

¹³**C NMR** (CDCl₃, 100 MHz) δ 152.60, 140.64, 128.64, 128.43, 125.92, 85.43, 77.58, 51.40, 39.61, 38.70, 38.14, 35.62, 28.72, 27.11, 26.53, 24.03.

¹¹**B NMR** (CDCl₃, 128.3 MHz) δ 29.48.

HRMS (ESI) for C₁₉H₂₉NBO₂ [M+NH₄+]+: calculated: 314.2289, found: 314.2294.

(3a*S*,7a*R*)-2-((*Z*)-3,3-diphenylprop-1-en-1-yl)-3a,5,5-trimethylhexahydro-4,6methanobenzo[d][1,3,2]dioxaborole (27)

Purified by flash column chromatography (hexane:diethyl ether = 100:1) yielded **27** (74%, 83 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.13 – 7.06 (m, 4H), 7.06 – 6.96 (m, 6H), 6.67 (dd, *J* = 13.2, 10.3 Hz, 1H), 5.45 (d, *J* = 10.3 Hz, 1H), 5.36 (d, *J* = 13.2 Hz, 1H), 4.14 (dd, *J* = 8.6, 1.8 Hz, 1H), 2.22 – 2.11 (m, 1H), 2.06 – 1.95 (m, 1H), 1.90 (dd, *J* = 6.1, 4.9 Hz, 1H), 1.76 – 1.65 (m, 2H), 1.23 (s, 3H), 1.11 (s, 3H), 0.95 (d, *J* = 10.9 Hz, 1H), 0.67 (s, 3H).

¹³**C NMR** (CDCl₃, 100 MHz) δ 155.09, 144.26, 144.20, 128.44, 128.41, 126.17, 85.53, 77.63, 52.10, 51.39, 39.60, 38.14, 35.60, 28.69, 27.12, 26.50, 24.91, 24.04.

¹¹**B NMR** (CDCl₃, 128.3 MHz) δ 28.79.

HRMS (ESI) for C₂₅H₃₀BO₂ [M+H⁺]⁺: calculated: 373.3210, found: 373.3204.

(3aS,4S,6S,7a*R*)-2-(2,2-diphenylvinyl)-3a,5,5-trimethylhexahydro-4,6methanobenzo[*d*][1,3,2]dioxaborole (28)

Purified by flash column chromatography (hexane:diethyl ether = 100:1) yielded **28** (78%, 84 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.36 – 7.20 (m, 10H), 6.01 (s, 1H), 4.15 (dd, *J* = 8.7, 2.0 Hz, 1H), 2.24 – 2.09 (m, 2H), 1.95 (t, *J* = 5.5 Hz, 1H), 1.83 (tt, J = 5.9, 3.1 Hz, 1H), 1.63 (ddd, *J* = 14.5, 3.4, 2.1 Hz, 1H), 1.26 (s, 3H), 1.23 (s, 3H), 1.10 (d, *J* = 10.7 Hz, 1H), 0.77 (s, 3H).

¹³**C NMR** (CDCl₃, 100 MHz) δ 159.96, 143.09, 141.92, 132.42, 129.83, 128.08, 128.03, 127.96, 127.63, 127.57, 85.44, 77.73, 65.87, 51.25, 39.47, 38.13, 35.22, 28.44, 27.08, 26.51, 24.00, 15.30.

¹¹**B NMR** (CDCl₃, 128.3 MHz) δ 29.89.

HRMS (ESI) for C₂₄H₂₈BO₂ [M+H⁺]⁺: calculated: 359.2191, found: 259.2182.

(3aS,7aR)-3a,5,5-trimethyl-2-vinylhexahydro-4,6 methanobenzo[d][1,3,2]dioxaborole(29)

Purified by flash column chromatography (pentane:diethyl ether = 200:1) yielded **29** (51%, 32 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 6.16 (dd, *J* = 19.4, 4.2 Hz, 1H), 6.03 (dd, *J* = 13.6, 4.3 Hz, 1H), 5.89 (dd, *J* = 19.4, 13.7 Hz, 1H), 4.32 (dd, *J* = 8.8, 1.9 Hz, 1H), 2.40 – 2.31 (m, 1H), 2.28 – 2.16 (m, 1H), 2.10 – 2.03 (m, 1H), 1.95 – 1.85 (m, 2H), 1.41 (s, 3H), 1.29 (s, 3H), 1.15 (d, *J* = 11.0 Hz, 1H), 0.85 (s, 3H).

¹³**C NMR** (CDCl₃, 100 MHz) δ 137.13, 85.92, 77.95, 53.56, 51.48, 39.66, 38.31, 35.60, 28.75, 27.24, 26.56, 24.16.

¹¹**B NMR** (CDCl₃, 128.3 MHz) δ 29.35.

(3aS,7aR)-3a,5,5-trimethyl-2-(prop-1-en-2-yl)hexahydro-4,6-methanobenzo[d] [1,3,2]dioxaborole (30)

Purified by flash column chromatography (pentane:diethyl ether = 200:1) yielded **30** (71%, 47 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 5.78 – 5.72 (m, 1H), 5.67 – 5.60 (m, 1H), 4.32 (dd, *J* = 8.7, 1.9 Hz, 1H), 2.40 – 2.30 (m, 1H), 2.27 – 2.16 (m, 1H), 2.11 – 2.03 (m, 1H), 1.94 – 1.85 (m, 2H), 1.84 (t, *J* = 1.5 Hz, 3H), 1.41 (s, 2H), 1.29 (s, 2H), 0.85 (s, 3H).

¹³**C NMR** (CDCl₃, 100 MHz) δ 130.08, 86.03, 78.13, 51.50, 39.66, 38.30, 35.70, 28.81, 27.24, 26.59, 24.94, 24.16, 21.44.

¹¹**B NMR** (CDCl₃, 128.3 MHz) δ 29.52.

(3aS,7aR)-3a,5,5-trimethyl-2-(1-phenylvinyl)hexahydro-4,6-methanobenzo[d] [1,3,2]dioxaborole (31)

Purified by flash column chromatography (pentane:diethyl ether = 200:1) yielded **31** (93%, 79 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.53 – 7.45 (m, 2H), 7.37 – 7.29 (m, 2H), 7.28 – 7.20 (m, 2H), 6.08 (d, *J* = 2.0 Hz, 2H), 4.41 (dd, *J* = 8.8, 1.9 Hz, 1H), 2.44 – 2.34 (m, 1H), 2.32 – 2.21 (m, 1H), 2.16 – 2.09 (m, 1H), 2.01 – 1.90 (m, 2H), 1.46 (s, 3H), 1.31 (s, 3H), 1.25 (d, *J* = 10.9 Hz, 1H), 0.88 (s, 3H).

¹³**C NMR** (CDCl₃, 100 MHz) δ 141.67, 131.11, 128.33, 127.32, 127.16, 86.34, 78.38, 51.52, 39.69, 38.32, 35.70, 28.83, 27.25, 26.74, 24.18.

¹¹**B NMR** (CDCl₃, 128.3 MHz) δ 30.04.

HRMS (ESI) for C₁₈H₂₄BO₂ [M+H⁺]⁺: calculated: 283.1869; found: 283.1854.

(4R,5R)-4,5-diphenyl-2-((E)-3-phenylprop-1-en-1-yl)-1,3,2-dioxaborolane (E-32)

Purified by flash column chromatography (hexane:diethyl ether = 100:1) yielded *E*-32 (76%, 78 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.39 – 7.23 (m, 12H), 7.24 – 7.14 (m, 3H), 6.96 (dtd, J = 17.9, 6.5, 1.3 Hz, 1H), 5.63 (dq, J = 17.8, 1.6 Hz, 1H), 5.13 (s, 2H), 3.54 (dd, J = 6.4, 1.6 Hz, 2H). ¹³**C NMR** (CDCl₃, 100 MHz) δ 154.15, 140.32, 138.93, 128.92, 128.77, 128.55, 128.32, 126.30, 125.85, 86.42, 42.40.

¹¹**B NMR** (CDCl₃, 128.3 MHz) δ 29.37.

HRMS (ESI) for $C_{23}H_{25}NBO_2$ [M+NH₄+]+: calculated: 358.1978, found: 358.1997.

(4R,5R)-4,5-diphenyl-2-((Z)-3-phenylprop-1-en-1-yl)-1,3,2-dioxaborolane (Z-32)

Purified by flash column chromatography (hexane:diethyl ether =100:1) yielded **Z-32** (74%, 76 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.45 – 7.24 (m, 15H), 7.24 – 7.17 (m, 1H), 6.76 (dt, J = 13.3, 7.6 Hz, 1H), 5.67 (dt, J = 13.3, 1.4 Hz, 1H), 5.24 (s, 2H), 3.89 (dd, J = 7.6, 1.4 Hz, 2H). ¹³**C NMR** (CDCl₃, 100 MHz) δ 154.54, 140.43, 140.32, 128.80, 128.65, 128.50, 128.33, 126.05, 125.80, 86.28, 38.89. ¹¹**B NMR** (CDCl₃, 128.3 MHz) δ 30.84.

HRMS (ESI) for $C_{23}H_{25}NBO_2$ [M+NH₄+]+: calculated: 358.1978, found: 358.1955.

(4R,5R)-4,5-diphenyl-2-((E)-styryl)-1,3,2-dioxaborolane (33)

Purified by flash column chromatography (hexane:diethyl ether = 100:1) yielded **33** (65%, 64 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.63 (d, *J* = 18.5 Hz, 1H), 7.56 (dd, *J* = 8.2, 1.5 Hz, 2H), 7.44 – 7.32 (m, 13H), 6.37 (d, *J* = 18.4 Hz, 1H), 5.26 (s, 2H).

¹³**C NMR** (CDCl₃, 100 MHz) δ 151.07, 149.53, 140.32, 137.32, 129.25, 128.83, 128.69, 128.40, 127.26, 125.87, 86.59, 83.37, 65.87.

¹¹**B NMR** (CDCl₃, 128.3 MHz) δ 30.55.

HRMS (ESI) for C₂₂H₂₄NBO₂ [M+NH₄⁺]⁺: calculated: 324.2215, found: 324.2221.

(4R,5R)-2-((Z)-3,3-diphenylprop-1-en-1-yl)-4,5-diphenyl-1,3,2-dioxaborolane (34)

Purified by flash column chromatography (hexane:diethyl ether = 100:1) yielded **34** (80%, 101 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.39 – 7.13 (m, 21H), 7.03 (dd, *J* = 13.3, 10.4 Hz, 1H), 5.78 – 5.70 (m, 2H), 5.18 (s, 2H).

¹³C NMR (CDCl₃, 100 MHz) δ 198.56, 196.78, 156.97, 144.10, 144.05, 132.45, 130.11, 129.71, 128.82, 128.56, 128.54, 128.52, 128.42, 128.35, 128.32, 128.04, 126.35, 125.81, 86.37, 52.43.
¹¹B NMR (CDCl₃, 128.3 MHz) δ 30.08.

HRMS (ESI) for C₂₉H₂₅BO₂Na [M+Na⁺]⁺: calculated: 439.1845, found: 439.1853.

(4S,5S)-4,5-diphenyl-2-(1-phenylvinyl)-1,3,2-dioxaborolane (35)

Purified by flash column chromatography (pentane:diethyl ether = 100:1) yielded **35** (47%, 46 mg) as a white solid.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.67 – 7.61 (m, 2H), 7.44 – 7.34 (m, 12H), 7.32 – 7.26 (m, 1H), 6.36 (d, *J* = 2.8 Hz, 1H), 6.28 (d, *J* = 2.9 Hz, 1H), 5.31 (s, 2H).

¹³**C NMR** (CDCl₃, 100 MHz) δ 141.24, 140.40, 133.08, 128.96, 128.53, 128.46, 127.40, 127.37, 125.98, 87.07.

¹¹**B NMR** (CDCl₃, 128.3 MHz) δ 31.76.

HRMS (ESI) for C₂₂H₂₃NBO₂ [M+NH₄⁺]⁺: calculated: 344.1822; found: 344.1834.

(*Z*)-4,4,6-trimethyl-2-(2-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)vinyl)-1,3,2-dioxaborinane (40)

Purified by flash column chromatography (hexane:diethyl ether = 100:1) yielded **40** (65%, 48 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.66 (s, 1H), 7.53 – 7.41 (m, 2H), 7.32 – 7.19 (m, 3H), 4.26 (m, 1H), 1.76 (dd, *J* = 13.8, 3.0 Hz, 1H), 1.53 (dd, *J* = 13.9, 4.6 Hz, 1H), 1.31 (s, 12H), 1.30 (s, 6H), 1.27 – 1.24 (d, *J* = 11.3, 3H).

¹³**C NMR** (CDCl₃, 100 MHz) δ 152.57, 140.16, 128.09, 128.02, 127.91, 83.39, 70.85, 64.86, 45.86, 31.28, 28.19, 24.86, 24.74, 23.11.

¹¹**B NMR** (CDCl₃, 128.3 MHz) δ 26.11.

HRMS (ESI) for $C_{20}H_{30}B_2O_4$ [M+H]⁺: calculated: 357.2409, found: 357.2410.

(*Z*)-2-(2-(4-fluorophenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)-4,4,6-trimethyl-1,3,2-dioxaborinane (41)

Purified by flash column chromatography (hexane:diethyl ether = 100:1) yielded **41** (64%, 57 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.61 (s, 1H), 7.47 – 7.40 (m, 2H), 6.97 (m, 2H), 4.24 (m, 1H), 1.76 (dd, J = 13.9, 3.0 Hz, 1H), 1.55 – 1.48 (m, 2H), 1.31 (s, 12H), 1.30 (s, 6H), 1.28 – 1.24 (m, 3H). ¹³**C NMR** (CDCl₃, 100 MHz) δ 151.21, 129.78, 129.70, 115.05, 114.83, 83.46, 70.90, 64.89, 45.85, 31.26, 28.18, 24.85, 24.74, 23.09.

¹¹**B NMR** (CDCl₃, 128.3 MHz) δ 26.10.

HRMS (ESI) for C₂₀H₂₉B₂FO₄ [M+H]⁺: calculated: 375.2313, found: 375.2316.

(Z)-5,5-dimethyl-2-(2-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)-1,3,2-dioxaborinane (42)

Purified by flash column chromatography (hexane:diethyl ether = 100:1) yielded **42** (22%, 10 mg) as a pale yellowish oil.

¹**H NMR** (CDCl₃, 400 MHz) δ 7.67 (s, 1H), 7.51 – 7.46 (m, 2H), 7.33 – 7.22 (m, 3H), 3.67 (s, 4H), 1.30 (s, 12H), 0.98 (s, 6H).

¹³**C NMR** (CDCl₃, 100 MHz) δ 155.19, 152.97, 139.89, 128.14, 128.07, 83.49, 72.26, 31.81, 24.72, 21.99.

¹¹**B NMR** (CDCl₃, 128.3 MHz) δ 26.52.

HRMS (ESI) for C₁₉H₂₈B₂O₄ [M+H]⁺: calculated: 343.2261, found: 343.2270.

¹H, ¹³C, ¹¹B Spectra for alkenyl pinacolboranes

¹H, ¹³C, ¹¹B Spectra for transborylated alkenylboranes

-0.96

2.01J 2.97-E 3.34 3.18H 1.00<u>1</u> 2.13H 1.02 1.02 2.06 1 .0 2.0 7.5 7.0 6.0 5.0 4.5 4.0 f1 (ppm 3.5 1.5 1.0 0.5 6.5 5.5 3.0 2.5

^{50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 1} f1 (ppm

Hyvellow and the providence of the second and a second and a second of the second of t 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 f1 (ppm)

han

HAN

-26.10

Evolution by ¹¹B NMR spectra along the reaction between 16 and B₂hex₂

The evolution of the ¹¹B NMR spectra along the reaction between 4,4,5,5-tetramethyl-2-(1-phenylvinyl)-1,3,2-dioxaborolane (16) and B_2hex_2

Mass spectra from the MS analysis for mixed diboron and *gem*-diborylalkanes formed along the transborylation

Figure S1. Mass spectra from the MS analysis for pinB–Bhex.

Figure S2. Mass spectra from the MS analysis for pinB–Bneo.

Figure S3. Mass spectra from the MS analysis for Bpin–Bpai.

Figure S4. Mass spectra from the MS analysis for hexB–Bdan.

Computational details

Geometry optimizations and transition state searches were performed with Gaussian 16 package,⁵ within the framework of Density Functional Theory (DFT)⁶ by using the ω B97X-D functional⁷ and 6-31G(d,p) basis set.⁸ To check our methodology, we have reevaluated the thermodynamics of the overall transborylation reaction between *E*-1 and B₂neo₂ using a larger basis set, 6-311++G(d,p). At this level, the computed, reaction free energy gives the same value, -0.8 kcal·mol⁻¹, further supporting the selected methodology. Solvent effects were included in geometry optimizations and energy calculations using the IEF-PCM implicit solvation model⁹ as implemented in Gaussian16. The dielectric constants were 32.613 for methanol (MeOH), 26.726 for 2,2,2-trifluoroethanol (TFE) and 19.264 for 2-propanol (iPrOH). All minima were characterized by the lack of imaginary frequencies whereas only one imaginary frequency was identified for transition-state structures, which is associated to the normal mode of vibration connecting reactants and products. Free energy corrections were calculated at a concentration of 1 M and a temperature of 298.15 K. A data set collection of computational results is available in the ioChem-BD repository¹⁰ and can be accessed via <u>https://doi.org/10.19061/iochem-bd-2-57</u>.

Figure S4: Free-energy profile in kcal·mol⁻¹ for the transborylation of *E*-**1** with Bneo-Bneo via direct B-B/C-B metathesis with the unactivated diboron (left), and via methoxide coordination to the boron atom of the alkenylborane (right).

Figure S5: Suggested mechanism for the transborylation of E-**1** with Bneo-Bneo in the presence of CF₃CH₂OH (TFE). Relative free energies and barriers in kcal·mol⁻¹.

Figure S6. Suggested mechanism for the transborylation of E-**1** with Bneo-Bneo in the presence of ^{*i*}PrOH. Relative free energies and barriers in kcal·mol⁻¹.

Figure S7. Free-energy profile (kcal·mol⁻¹) of two possible paths for the regioselective transborylation of vinylboronic ester **13** with Bpin-Bdan in MeOH.

Cartesian coordinates and electronic energies in a.u. of computed structures

Calculations in MeOH

E -1			
Ele	ctronic Ener	gy: -759.451	.277
С	-0.536910	-0.339162	0.125553
Н	-1.215369	0.502286	-0.010994
С	-1.054876	-1.570077	0.215772
Н	-0.378896	-2.414252	0.355591
С	-2.512553	-1.950584	0.145455
Н	-2.634117	-2.676108	-0.669249
С	2.977783	1.003961	0.090287
С	3.191158	-0.457558	0.616552
В	0.988341	-0.084544	0.213170
0	1.545730	1.170022	0.216961
0	1.927127	-1.085232	0.299043
С	3.355800	-0.531085	2.135200
Н	3.297409	-1.576852	2.447199
Н	4.322587	-0.130404	2.450803
Н	2.564347	0.023118	2.647645
С	4.311611	-1.224362	-0.070054
Н	5.268103	-0.714735	0.079754
Н	4.389875	-2.226642	0.359262
Н	4.132640	-1.323786	-1.141865
С	3.313781	1.163222	-1.393049
Н	2.956420	2.137866	-1.734723
Н	4.392132	1.111890	-1.564347
Н	2.827508	0.390473	-1.995081
С	3.676336	2.082186	0.905475
Н	4.758688	1.922308	0.898246
Н	3.475013	3.063922	0.468833
Н	3.331196	2.090178	1.940631
Н	-2.764682	-2.498217	1.062658
С	-3.462033	-0.794197	-0.044974
С	-3.797710	-0.351386	-1.326747
С	-3.992512	-0.118189	1.056396
С	-4.647604	0.736872	-1.505534
Н	-3.388600	-0.865860	-2.192353
С	-4.843065	0.970561	0.882983
Н	-3.736306	-0.449710	2.059270
С	-5.173519	1.401201	-0.399832
Н	-4.900671	1.065058	-2.508915
Н	-5.249228	1.481733	1.750319
Н	-5.838079	2.248293	-0.537093

MeO⁻

Electronic Energy: -115.145738				
0	-2.745245	0.113637	-0.000042	
С	-1.415051	0.113713	-0.000027	
Н	-0.901459	-0.364183	0.899599	
Н	-0.901581	-0.425732	-0.863995	
Н	-0.901222	1.131508	-0.035536	

Α

Electronic Energy: -858.925288 B 1.170694 0.438704 -1.058760

В	-0.004123	-0.837886	-0.805971
0	0.658960	1.719434	-0.476890
0	2.416322	0.010247	-0.363632
0	-0.179439	-1.840857	-1.752079
0	-0.686875	-0.932537	0.401225
С	-1.524527	-2.036247	0.701301
С	-1.010406	-2.962253	-1.502489
С	-1.087548	-3.316042	-0.015332
С	3.393476	1.007034	-0.274975
С	1.625336	2.726006	-0.414934
н	-2.559804	-1.795316	0.419656
н	-1.505805	-2.184966	1.788267
н	-2.021982	-2.757667	-1.881852
н	-0.610015	-3.809146	-2.073726
н	3.784264	1.273167	-1.274138
н	4.245051	0.621053	0.310458
С	-2.131538	-4.412154	0.201736
н	-1.848196	-5.327696	-0.328078
н	-2.222188	-4.655475	1.265609
Н	-3.117891	-4.102602	-0.160213
С	0.280641	-3.781221	0.499904
Н	0.227272	-4.016705	1.568021
н	0.603220	-4.683077	-0.030920
Н	1.049020	-3.015655	0.361853
0	1.545064	0.648788	-2.490675
С	0.534029	1.154574	-3.295759
н	0.851651	1.137035	-4.348739
н	-0.398377	0.564606	-3.222558
н	0.266072	2.196182	-3.047718
С	2.868695	2.295339	0.385953
н	1.183345	3.620978	0.055132
н	1.958203	3.025533	-1.426946
С	2.477220	2.017014	1.839193
н	3.340075	1.666455	2.418416
н	2.093712	2.924351	2.321576
Н	1.699331	1.251914	1.876099
С	3.937907	3.384748	0.321953
Н	3.576165	4.318007	0.769531
Н	4.840993	3.083070	0.865807
Н	4.226314	3.599103	-0.713878

Bneo-OMe

Electronic Energy: -487.006650 C -2.406233 2.214421 -1.861062 C -1.897074 3.390852 0.242047 C -2.518479 3.565805 -1.147158 H -2.930848 2.246791 -2.821444 H -1.350937 1.986947 -2.061515

н	-1.350937	1.986947	-2.061515
Н	-2.051306	4.290232	0.846626
Н	-0.815784	3.226878	0.149716
В	-2.952857	1.222627	0.262322
0	-2.970678	1.149651	-1.104782
0	-2.464930	2.297384	0.955690
С	-3.986918	3.995833	-1.031533
Н	-4.587409	3.269120	-0.477723
Н	-4.063177	4.957171	-0.513903
Н	-4.430577	4.108248	-2.025714

С	-1.723929	4.616140	-1.926388
Н	-2.137502	4.743413	-2.931718
Н	-1.768583	5.585919	-1.420941
Н	-0.671193	4.331774	-2.024953
0	-3.480274	0.151304	0.919729
С	-3.544680	0.106815	2.334512
Н	-4.587878	-0.012320	2.640594
Н	-2.975536	-0.756082	2.691893
Н	-3.140822	1.013646	2.790299

B₂neop₂

Electronic Energy:743.714845				
В	0.880307	0.411191	0.541993	
В	-0.082877	-1.004295	0.374077	
0	0.663262	1.466659	-0.303430	
0	1.855471	0.440696	1.503145	
0	-1.142652	-0.987361	-0.493230	
0	0.245826	-2.121050	1.095653	
С	-0.523915	-3.313633	0.965138	
С	-1.949953	-2.149453	-0.664727	
С	-1.171625	-3.444961	-0.416607	
С	2.679185	1.593780	1.656441	
С	1.456397	2.646401	-0.198858	
С	2.860136	2.362754	0.344331	
С	3.671276	1.533844	-0.660380	
Н	3.788632	2.082058	-1.600426	
Н	4.668939	1.322350	-0.262914	
Н	3.191976	0.577707	-0.887951	
С	3.572318	3.687361	0.626455	
Н	4.570490	3.508151	1.038495	
Н	3.689664	4.265971	-0.295335	
Н	3.013231	4.298266	1.342758	
Н	-1.298285	-3.316907	1.742733	
Н	0.147142	-4.157702	1.155421	
Н	-2.802547	-2.087826	0.023472	
Н	-2.340935	-2.127155	-1.687262	
Н	3.647634	1.254516	2.038473	
Н	2.228412	2.247553	2.413883	
С	-2.142779	-4.627422	-0.411489	
Н	-2.635702	-4.725537	-1.383930	
Н	-1.610579	-5.562558	-0.210148	
Н	-2.917995	-4.505946	0.352158	
С	-0.102067	-3.648338	-1.497887	
Н	0.459309	-4.569099	-1.310664	
Н	-0.568112	-3.728640	-2.485001	
Н	0.612605	-2.821393	-1.531379	
Н	1.514787	3.090091	-1.198211	
Н	0.939006	3.358701	0.456314	

TSA

Ele	ctronic Ener	gy: -1618.35	6769
С	-0.788241	-2.893226	-0.407548
С	-0.552666	-2.363855	-1.867961
В	-0.347949	-0.603365	-0.369570
0	-0.647182	-0.953959	-1.712373
0	-0.321681	-1.828705	0.414889

С	2.937204	2.516091	0.257650
С	0.680087	2.953073	-0.585787
С	2.025663	3.624396	-0.282216
Н	3.957083	2.900951	0.401277
н	2.561502	2.191852	1.239859
н	-0.021201	3.688812	-1.005961
н	0.244239	2.595218	0.358537
В	1.808205	0.922922	-1.255670
0	3.016572	1.411667	-0.609670
0	0.806062	1 903350	-1 505621
c	2 619894	4 240516	-1 552087
н	2.010004	3 477276	-2 31890/
н	1 952272	5 008110	-1 960115
 	2 596614	J.000110	1 220716
	3.300014	4.711410	-1.339/10
	1.830472	4.090925	0.790376
н	2.794816	5.154987	1.059902
н	1.174845	5.493801	0.432855
н	1.396001	4.275831	1./01160
С	-1.245364	0.545492	0.272346
н	-1.010565	0.888880	1.282387
С	-2.348597	1.032118	-0.299837
С	-3.313034	1.996813	0.339492
Н	-2.892047	2.347833	1.290844
Н	-3.447145	2.885106	-0.291114
С	-4.674669	1.375191	0.596788
С	-4.771886	0.134176	1.235557
С	-5.853022	2.017964	0.213374
С	-6.011506	-0.443612	1.489822
н	-3.859169	-0.381598	1.521552
С	-7.098023	1.442485	0.463759
н	-5.796351	2.980132	-0.289575
С	-7.181620	0.209470	1.104120
H	-6 065774	-1 407620	1 986950
н	-8 002377	1 957950	0 154567
н	-8 149613	-0 241978	1 298041
c	2 0/15371	-0.456956	2 727958
c	2.043371	-2 153740	1 222260
C R	1 586107	-2.153740	0.215124
	1.380197	-0.382704	1 505909
0	1.450600	0.149501	1.595696
0	2.467506	-1.440/35	0.123601
0	2.083281	0.199349	-2.444823
C	3.34/53/	-0.360240	-2.654973
н	4.129129	0.40/123	-2.758285
н	3.641187	-1.034560	-1.842289
н	3.314701	-0.939223	-3.586064
С	-0.020582	-4.166171	-0.066240
Н	-0.227353	-4.455739	0.969048
Н	-0.323579	-4.993405	-0.717174
Н	1.054547	-4.011883	-0.170446
С	-2.276176	-3.087285	-0.081486
Н	-2.714059	-3.927493	-0.629545
Н	-2.377765	-3.286237	0.989694
Н	-2.843106	-2.180631	-0.311129
С	-1.618157	-2.808096	-2.869385
Н	-1.378764	-2.408224	-3.859502
Н	-1.653700	-3.900139	-2.945907
н	-2.608928	-2.445234	-2.587818

С	0.830001	-2.724404	-2.419713
Н	0.904560	-3.797472	-2.628096
Н	0.987776	-2.175244	-3.351033
Н	1.612597	-2.428881	-1.720398
С	3.325356	-1.230748	2.403027
Н	3.870592	-2.700052	0.903528
Н	2.231815	-2.894434	1.559388
Н	1.314273	-1.141570	3.181978
Н	2.257709	0.333406	3.459290
С	4.455735	-0.275534	2.003289
Н	4.662528	0.436228	2.810419
Н	5.375522	-0.837904	1.805974
Н	4.195045	0.283575	1.101607
С	3.736764	-2.063335	3.618065
Н	4.641217	-2.642033	3.402109
Н	3.950720	-1.417166	4.476362
Н	2.947450	-2.764454	3.910718
Н	-2.619256	0.689939	-1.300122

В

Ele	ctronic Ener	gy: -1131.37	1170
С	3.413844	-0.573439	0.943277
С	3.748197	-0.664244	-0.583677
В	1.480034	-0.091402	-0.310460
0	2.709549	0.081167	-1.172247
0	2.013177	-0.682556	0.964724
С	0.380201	-1.101898	-0.970398
Н	0.110775	-0.941242	-2.025072
С	-0.329475	-2.041589	-0.334114
Н	-0.123115	-2.228870	0.722552
С	-1.457738	-2.859720	-0.925661
Н	-1.447592	-2.755144	-2.016906
Н	-1.317421	-3.925060	-0.700278
С	-2.806237	-2.418516	-0.393393
С	-3.510585	-1.385712	-1.019408
С	-3.349559	-2.983973	0.762952
С	-4.720571	-0.927988	-0.506405
Н	-3.097131	-0.929750	-1.915501
С	-4.559429	-2.528549	1.283135
Н	-2.817167	-3.790067	1.261959
С	-5.249629	-1.497498	0.650366
Н	-5.249208	-0.123283	-1.008735
Н	-4.964310	-2.981436	2.183291
Н	-6.192951	-1.142262	1.053241
С	-0.561936	3.329706	-1.071902
С	-0.828605	2.819936	1.303986
В	0.601338	1.402868	-0.094637
0	0.316106	2.222072	-1.183663
0	0.049652	1.719395	1.142154
С	-1.610142	3.137376	0.026829
Н	0.020871	4.239218	-0.865044
Н	-1.052413	3.467885	-2.043881
Н	-1.520047	2.579526	2.121541
Н	-0.252946	3.706014	1.609467
С	-2.406863	4.428914	0.213705
Н	-2.949321	4.685414	-0.702428
Н	-3.142013	4.317300	1.017699

Н	-1.752800	5.270327	0.467047
С	-2.551251	1.978637	-0.323696
Н	-2.010116	1.037626	-0.451799
Н	-3.292097	1.828031	0.468695
Н	-3.090027	2.186225	-1.254705
С	4.023080	-1.688658	1.793280
Н	5.116057	-1.700103	1.712441
Н	3.764826	-1.538851	2.847166
Н	3.641639	-2.666126	1.489144
С	3.827131	0.788061	1.530357
Н	3.375900	0.893553	2.521996
Н	4.912900	0.890279	1.634249
Н	3.456724	1.600008	0.898232
С	3.694560	-2.117482	-1.087551
Н	3.723245	-2.111500	-2.182192
Н	4.538064	-2.717268	-0.727850
Н	2.760186	-2.589283	-0.773639
С	5.093593	-0.051016	-0.972537
Н	5.919828	-0.532007	-0.436480
Н	5.268709	-0.180604	-2.046044
Н	5.114700	1.019414	-0.755295

TSB

Ele	Electronic Energy: -1131.338495				
С	3.878626	-0.494556	0.799160		
С	3.846544	-0.465735	-0.767511		
В	1.985352	0.632601	0.052030		
0	2.923163	0.583304	-1.036746		
0	2.572907	-0.071953	1.164285		
С	0.380717	-0.388657	-0.531881		
Н	0.327805	-0.550885	-1.616504		
С	-0.296263	-1.238160	0.243283		
Н	-0.279226	-1.076267	1.324578		
С	-1.136802	-2.411061	-0.214026		
Н	-0.912288	-2.636672	-1.262036		
Н	-0.872829	-3.303142	0.370914		
С	-2.622094	-2.147078	-0.065869		
С	-3.461981	-2.123276	-1.180107		
С	-3.179000	-1.881758	1.189865		
С	-4.818905	-1.832987	-1.050828		
Н	-3.046249	-2.323830	-2.164115		
С	-4.531440	-1.585549	1.324765		
Н	-2.542683	-1.898819	2.070876		
С	-5.358376	-1.557832	0.202313		
Н	-5.453018	-1.816747	-1.932172		
Н	-4.942552	-1.377681	2.308115		
Н	-6.413992	-1.327135	0.306077		
С	-0.951136	3.122844	-0.750002		
С	-1.554364	1.751502	1.230873		
В	0.597452	1.494894	0.084096		
0	0.123117	2.266416	-1.037572		
0	-0.146295	1.673348	1.289681		
С	-2.117555	2.403117	-0.062902		
Н	-0.625252	3.958749	-0.105488		
Н	-1.300760	3.563664	-1.694489		
Н	-1.988036	0.745424	1.340624		
Н	-1.873702	2.340522	2.102144		

С	-3.208761	3.416513	0.294874
Н	-3.632961	3.873779	-0.606439
Н	-4.026826	2.928623	0.836836
Н	-2.815973	4.218240	0.930601
С	-2.701339	1.342020	-1.001967
Н	-1.943728	0.606262	-1.276799
Н	-3.522647	0.802631	-0.517539
Н	-3.089972	1.806976	-1.916472
С	4.152456	-1.871995	1.399039
Н	5.121769	-2.260944	1.068355
Н	4.171231	-1.803496	2.491320
Н	3.375798	-2.586556	1.118269
С	4.874378	0.518585	1.381827
Н	4.710221	0.591894	2.461101
Н	5.915233	0.225164	1.211702
Н	4.713183	1.508589	0.945708
С	3.313945	-1.772127	-1.373168
Н	3.139307	-1.616411	-2.442208
Н	4.027416	-2.594419	-1.258441
Н	2.364468	-2.055421	-0.914028
С	5.184317	-0.126404	-1.420376
Н	5.950505	-0.860210	-1.147804
Н	5.078414	-0.138275	-2.509719
Н	5.532390	0.865565	-1.124958

С

Ele	ctronic Ener	gy: -1131.37	7597
С	4.048800	-0.820106	0.822528
С	3.998282	-1.027112	-0.724705
В	2.153282	0.162740	-0.042095
0	2.997877	-0.074530	-1.126440
0	2.710668	-0.380559	1.113309
С	-0.383121	-0.422945	-0.639779
Н	-0.420782	-0.657411	-1.713916
С	-1.101530	-1.229969	0.148713
Н	-1.111773	-1.032437	1.223966
С	-2.015452	-2.336676	-0.310400
Н	-1.828001	-2.540575	-1.373331
Н	-1.812561	-3.271694	0.228088
С	-3.484812	-1.987476	-0.130731
С	-3.959154	-0.719571	-0.484822
С	-4.395668	-2.917235	0.375304
С	-5.304515	-0.393868	-0.343731
Н	-3.253818	0.017090	-0.861146
С	-5.744356	-2.595521	0.520867
Н	-4.044900	-3.905677	0.662054
С	-6.204236	-1.331695	0.161190
Н	-5.651524	0.596452	-0.624284
Н	-6.434668	-3.332772	0.919956
Н	-7.253305	-1.077470	0.276769
С	-0.740277	2.530745	-1.260837
С	-1.130957	2.001906	1.125703
В	0.561308	0.831563	-0.158243
0	0.511994	1.920411	-1.190145
0	0.108034	1.356559	1.170145
С	-1.182266	3.137840	0.084906
Н	-1.944251	1.292152	0.886686

Н	-1.351479	2.418527	2.123201
С	-0.228711	4.265662	0.485858
Н	-0.235160	5.069634	-0.260293
Н	-0.518528	4.699313	1.450633
Н	0.790789	3.883901	0.571418
С	-2.612020	3.665573	-0.029071
Н	-3.307137	2.868068	-0.318565
Н	-2.956660	4.079476	0.925926
Н	-2.680631	4.460819	-0.780802
С	4.348224	-2.078845	1.626932
Н	5.326080	-2.488154	1.353509
Н	4.367400	-1.840395	2.694165
Н	3.590605	-2.847569	1.463904
С	4.998789	0.303933	1.245206
Н	4.830222	0.531356	2.301294
Н	6.046635	0.017304	1.117505
Н	4.811594	1.213352	0.667304
С	3.481790	-2.412861	-1.123627
Н	3.285072	-2.420929	-2.199119
Н	4.210321	-3.197513	-0.900410
Н	2.546230	-2.644353	-0.605934
С	5.301890	-0.729854	-1.453779
Н	6.100524	-1.389482	-1.099413
Н	5.173471	-0.899544	-2.526568
Н	5.615543	0.305521	-1.308121
Н	-1.521942	1.809297	-1.576569
Н	-0.713102	3.325598	-2.025518

TSC

Electronic Energy: -1618.365905 C 0.391735 -3.210969 0.120683 C -0.228222 -3.593710 -1.228426 C -0.058816 -2.370080 -2.138639 H 1.479273 -3.102618 0.004228 H 0.208752 -4.004145 0.859541 H 1.012084 -2.190759 -2.308148 H -0.521316 -2.566270 -3.116427 B -0.370255 -0.903482 -0.253904 O -0.658083 -1.221405 -1.599521 O -0.143988 -2.015584 0.637432 C 2.563077 2.787467 -0.208630 C 0.173539 2.810128 -0.755127 C 1.418853 3.702118 -0.663477 H 3.520066 3.326432 -0.257662 H 2.390058 2.502361 0.838344 H -0.690339 3.401940 -1.090121 H -0.064341 2.422201 0.246643 B 1.501525 0.947793 -1.474171 O 2.686457 1.628296 -0.998196 0 0.352310 1.754977 -1.661254 C 1.733820 4.324987 -2.026593 H 1.917710 3.548878 -2.773152 H 0.897728 4.942400 -2.374684 H 2.623043 4.962820 -1.965822 C 1.196590 4.794431 0.382522 H 2.097568 5.405266 0.509316 H 0.380992 5.461576 0.082193

Н	0.940363	4.365003	1.357594
С	-1.366669	0.143710	0.406853
Н	-1.170807	0.463897	1.433279
С	-2.461025	0.623404	-0.187114
Н	-2.682531	0.316639	-1.210368
С	-3.454050	1.568214	0.436090
Н	-3.105413	1.844477	1.440142
Н	-3.504096	2.500713	-0.141544
С	-4.854051	0.989206	0.536834
С	-5.047785	-0.323922	0.977343
С	-5.977813	1.751098	0.209261
С	-6.327623	-0.857620	1.094176
Н	-4.178805	-0.929942	1.219152
С	-7.261804	1.221407	0.323217
H	-5.846121	2.771622	-0.141771
C	-7.441454	-0.085892	0.767256
H	-6.456559	-1.879712	1.437746
н	-8 121730	1 830193	0.060375
н	-8 440279	-0 502122	0.853993
C	2 423782	-0 199045	2 419172
c c	3 396739	-0.972065	1 /62/58
R	1 561372	-0.372003	0 265703
0	1 518880	0.200008	1 505804
0	2 615/02	-1 12701 <i>/</i>	0.260800
c c	2.013493	-1.12/914	1 961274
с ц	3.808104 4.461020	2.333430	1.901274
п	4.401959	-2.029105	1.224405
п	2 020646	2.279131	2.304337
п С	2.959040	-2.99/59/	2.111950
	4.044692	-0.170701	1.065474
	5.307731	-0.021043	1.940942
	3.190454	-0.722157	0.510145
	4.305795	0.797185	0.002503
C	3.094246	0.867007	3.279424
н	2.338026	1.3/980/	3.880996
н	3.820294	0.413584	3.962261
Н	3.608230	1.613398	2.670895
C	1.585162	-1.120667	3.308869
н	2.200773	-1.641081	4.048578
н	0.847995	-0.513824	3.843/34
H	1.043999	-1.846611	2.698698
0	1./45156	0.155588	-2.622248
C	2.990510	-0.461266	-2.792293
Н	3.819753	0.256320	-2.726711
Н	3.164323	-1.239007	-2.037899
Н	3.012003	-0.923647	-3.786310
С	0.527863	-4.783846	-1.818126
Н	0.461183	-5.656021	-1.158063
Н	0.111113	-5.068599	-2.790628
Н	1.588635	-4.548815	-1.960787
С	-1.712719	-3.932126	-1.059866
Н	-2.168328	-4.174779	-2.026743
Н	-1.841418	-4.796651	-0.398652
н	-2.256196	-3.087089	-0.629580

[BpinBneop-OMe]⁻

Electronic Energy: -898.247459 B 0.911091 0.402384 1.066072

В	-0.121195	-0.902719	0.529511
0	0.486673	1.657675	0.377596
0	2.312876	0.056709	0.716301
0	-0.738379	-0.990325	-0.716083
0	-0.401798	-2.049057	1.270093
С	-1.411054	-2.810875	0.585240
С	-1.246699	-2.324886	-0.890277
С	3.219175	1.111387	0.873726
С	1.373758	2.721711	0.559912
С	2.801765	2.375564	0.099231
С	2.808497	2.094291	-1.405323
Н	2.491296	2.979114	-1.970445
Н	3.812929	1.817956	-1.748122
Н	2.125583	1.274423	-1.636659
С	3.751929	3.525563	0.429455
Н	4.779731	3.285406	0.132683
Н	3.458688	4.441228	-0.097465
Н	3.755166	3.743350	1.503948
Н	4.211278	0.782598	0.521885
Н	3.331444	1.387532	1.938143
Н	1.009887	3.594304	-0.008111
Н	1.421513	3.027099	1.622254
С	-2.539516	-2.270730	-1.694015
Н	-2.330155	-1.921422	-2.709070
Н	-2.991354	-3.265412	-1.764176
Н	-3.263905	-1.590271	-1.242654
С	-0.186930	-3.113230	-1.665213
Н	-0.524777	-4.127947	-1.894463
Н	0.018998	-2.597715	-2.607086
Н	0.747248	-3.174350	-1.099848
С	-2.760676	-2.423484	1.196614
Н	-3.581176	-3.007925	0.770373
Н	-2.727404	-2.610388	2.273419
Н	-2.969503	-1.360961	1.042482
С	-1.154650	-4.296867	0.801885
Н	-1.291412	-4.545868	1.858049
Н	-1.858423	-4.898495	0.217743
Н	-0.138475	-4.574303	0.515807
0	0.883974	0.593307	2.548190
С	-0.340587	0.989728	3.068934
Н	-0.285858	1.022602	4.166628
Н	-0.652123	1.988632	2.719347
Н	-1.158608	0.294004	2.801125

Ele	ctronic Energ	gy: -720.133	3445
С	-0.928180	3.535981	0.931596
С	-2.007587	3.903582	-0.091285
С	-2.125670	2.720503	-1.057311
Н	-1.278786	2.709616	1.563313
Н	-0.712427	4.389075	1.583148
Н	-2.540294	1.850030	-0.532843
Н	-2.799892	2.967509	-1.883885
В	0.283913	2.571273	-0.925538
0	-0.872391	2.354903	-1.626201
0	0.295629	3.151592	0.315019
С	1.632433	2.156559	-1.587674

Н	1.615520	1.705827	-2.580144
С	2.816697	2.332672	-0.990893
Н	2.839454	2.782606	0.002167
С	4.175882	1.973699	-1.539400
Н	4.793983	2.880830	-1.537145
Н	4.659873	1.290149	-0.829784
С	4.163398	1.362165	-2.918202
С	4.227236	2.169542	-4.056545
С	4.048081	-0.020040	-3.084951
С	4.183373	1.610763	-5.331122
Н	4.313009	3.246917	-3.941216
С	4.003631	-0.583994	-4.357326
Н	3.993327	-0.659638	-2.207870
С	4.071596	0.230809	-5.485110
Н	4.238229	2.253251	-6.204490
Н	3.917610	-1.660536	-4.468016
Н	4.039484	-0.206983	-6.477779
С	-3.341981	4.103232	0.630437
Н	-3.274012	4.930749	1.343644
Н	-4.134889	4.342336	-0.085237
Н	-3.639350	3.204111	1.179964
С	-1.622427	5.181990	-0.847724
Н	-2.391694	5.435700	-1.583822
Н	-1.526094	6.022078	-0.152774
Н	-0.672614	5.076828	-1.379219

A'

Ele	ctronic Energ	gy: -874.665	462
С	0.989509	0.864128	-0.160877
Н	1.169576	1.931270	-0.352545
С	1.894344	0.261029	0.614718
Н	1.776602	-0.806053	0.814785
С	3.141887	0.886333	1.188928
Н	3.136091	1.964229	0.980185
Н	3.169240	0.776090	2.280955
С	4.403878	0.271476	0.610089
С	4.583034	0.215702	-0.776710
С	5.402202	-0.259118	1.428476
С	5.728163	-0.348553	-1.328189
Н	3.803003	0.610711	-1.422264
С	6.551602	-0.828930	0.881261
Н	5.278336	-0.229391	2.508200
С	6.718777	-0.875359	-0.499419
Н	5.847946	-0.382158	-2.407039
Н	7.314383	-1.239187	1.536348
Н	7.611140	-1.320720	-0.928153
С	-0.430641	-0.952257	-2.957444
С	0.041592	-1.985365	-1.877322
В	-0.273395	0.117042	-0.875147
0	-0.132746	0.286061	-2.352375
0	-0.278802	-1.343713	-0.662892
С	1.559073	-2.224153	-1.937772
Н	1.861688	-2.785765	-1.048130
Н	1.855089	-2.797748	-2.822824
Н	2.095302	-1.272404	-1.929687
С	-0.676235	-3.333810	-1.940136
Н	-0.533362	-3.814392	-2.914589

Н	-0.277160	-4.004694	-1.172065
Н	-1.747917	-3.218098	-1.763332
С	-1.943547	-1.043817	-3.218962
Н	-2.245562	-0.181854	-3.822981
Н	-2.219842	-1.954614	-3.761370
Н	-2.492648	-1.003630	-2.275787
С	0.310041	-1.054772	-4.290962
Н	0.191261	-2.049443	-4.735544
Н	-0.090923	-0.320406	-4.997617
Н	1.376891	-0.855224	-4.166269
0	-1.578732	0.617802	-0.372368
С	-1.817196	1.976522	-0.551921
Н	-2.856497	2.208608	-0.280126
Н	-1.167774	2.617447	0.071436
н	-1.668633	2.293312	-1.597877

Bpin-OMe

Ele	ctronic Ener	gy: -526.323	704
С	-2.363054	-3.237113	-1.116638
С	-1.627300	-3.322142	0.268288
В	-0.306449	-2.322410	-1.266394
0	-1.554009	-2.279613	-1.838375
0	-0.254785	-3.040787	-0.096256
0	0.752369	-1.697821	-1.836595
С	2.008207	-1.727793	-1.172261
Н	2.689376	-1.077781	-1.723412
Н	1.922225	-1.366875	-0.143098
Н	2.418996	-2.741918	-1.155800
С	-2.063487	-2.229707	1.244856
Н	-1.378916	-2.221864	2.096654
Н	-2.036426	-1.242824	0.774099
Н	-3.075302	-2.409817	1.616876
С	-1.690972	-4.685698	0.939135
Н	-1.160769	-4.652434	1.894491
Н	-2.730483	-4.963604	1.136709
Н	-1.233827	-5.459052	0.319746
С	-3.792634	-2.722210	-1.043952
Н	-3.834961	-1.712351	-0.632765
Н	-4.229732	-2.703506	-2.045721
Н	-4.402779	-3.381262	-0.419226
С	-2.312619	-4.549557	-1.899737
Н	-2.957603	-5.307645	-1.448173
Н	-2.657823	-4.366309	-2.920267
Н	-1.293557	-4.943926	-1.948693

TSA'

Ele	Electronic Energy: -1618.347513				
В	0.100137	-1.093421	-0.908529		
С	-0.047646	4.195279	0.079038		
С	-1.612350	3.806194	-1.762882		
С	-0.185484	4.261378	-1.443065		
Н	0.981589	4.430189	0.377292		
Н	-0.705443	4.945930	0.541037		
Н	-1.735561	3.689968	-2.847241		
Н	-2.324230	4.575162	-1.429937		
В	-1.294243	2.096740	-0.036831		

0	-0.364530	2.913750	0.592789
0	-1.951945	2.570300	-1.157502
С	0.843107	3.341908	-2.114181
Н	0.713401	2.294193	-1.825242
н	0.750610	3.404803	-3.204347
н	1.859561	3.651260	-1.845608
С	0.008983	5.703498	-1.914528
H	1.021025	6.052211	-1.683346
н	-0 130516	5 778154	-2 998192
н	-0 702402	6 383720	-1 433663
c	-0 1/0753	-0.464194	0 780912
ц	0.200225	1 200917	1 /60720
C II	-0.309325	0 257222	1 102700
	1 222221	1 110062	1.102790
	1.223221	1.110962	0.479030
C 	1.878391	0.010880	2.261909
Н	1.685980	-0.988761	2.670078
C	-3.261998	-1.21/503	0.607516
С	-3.364868	0.567463	2.318628
В	-1.654605	0.539863	0.644308
0	-2.713162	-0.130249	-0.086850
0	-1.982113	0.571003	2.097704
С	-4.024011	-0.756736	1.874994
Н	-3.945344	-1.756977	-0.064161
Н	-2.472091	-1.927583	0.886628
Н	-3.552945	0.729623	3.390541
н	-3.850693	1.401280	1.780159
С	-5.502086	-0.505302	1.567339
н	-6.021754	-1.441669	1.334306
н	-6.013324	-0.040924	2.419389
н	-5.604464	0.163481	0.705628
С	-3.879434	-1.821675	2.964793
н	-2.833100	-1.902282	3.278125
н	-4.483189	-1.575036	3.845956
н	-4.200855	-2.805354	2.601678
н	1 613494	0 724717	3 054953
c	3 347272	0 168107	1 926334
c	3 874743	-0 441418	0 782033
c	1 100585	0.906664	2 7/9/87
c	5 226020	0.200004	0 476240
с ц	2 200505	1 006054	0.470349
с С	5.209595	1 022525	0.131377
	2.222012	1.052525	2.445124
н	3.800486	1.389531	3.03/900
с 	6.071849	0.421974	1.306213
н	5.623594	-0.789080	-0.415939
н	6.201653	1.611245	3.096411
н	7.125809	0.520769	1.065162
0	1.382057	-1.810432	-0.806874
0	-0.878723	-2.108330	-1.219671
0	0.137192	0.027837	-1.808636
С	-0.867579	0.136768	-2.781957
Н	-0.769607	-0.637991	-3.559323
Н	-1.865847	0.064793	-2.341462
Н	-0.771422	1.116872	-3.263287
С	1.236140	-3.062718	-1.448632
С	-0.271232	-3.388078	-1.182355
С	2.221293	-4.054560	-0.836379
Н	3.246294	-3.757807	-1.081289

Н	2.128910	-4.081400	0.251375
Н	2.058834	-5.064698	-1.227547
С	1.545801	-2.901414	-2.944191
Н	2.545586	-2.469399	-3.050152
Н	1.526897	-3.858787	-3.474882
Н	0.831943	-2.223005	-3.418559
С	-0.495009	-4.014014	0.200644
Н	-1.567116	-4.016762	0.417925
Н	-0.131496	-5.045690	0.244989
Н	0.007537	-3.432179	0.977300
С	-0.924458	-4.271581	-2.242479
Н	-0.413943	-5.237676	-2.318778
Н	-1.968890	-4.460480	-1.975006
Н	-0.908354	-3.789600	-3.222247

B'

Ele	ctronic Energ	gy: -1092.04	9743
С	0.787215	2.538085	1.363774
С	0.528052	2.922145	-1.036342
С	1.573659	2.726076	0.063797
Н	1.468846	2.273776	2.182257
Н	0.300256	3.486494	1.634232
Н	1.016937	2.983397	-2.016967
Н	-0.001695	3.872218	-0.872725
В	-0.755162	1.143201	0.054541
0	-0.194266	1.518921	1.272289
0	-0.409765	1.860161	-1.086482
С	2.438757	1.496007	-0.236496
Н	1.842010	0.586686	-0.342327
Н	2.997069	1.639213	-1.167853
Н	3.164357	1.321242	0.564929
С	2.451617	3.973686	0.172123
Н	3.184693	3.861853	0.978116
Н	3.002530	4.140840	-0.759526
Н	1.854939	4.868970	0.378453
С	-0.614682	-1.563416	-0.147070
Н	-0.778833	-2.342096	-0.907751
С	0.488612	-1.710852	0.595475
Н	0.723351	-0.951233	1.345713
С	1.517979	-2.812348	0.480144
Н	1.206357	-3.525871	-0.291766
С	-3.689525	-1.115539	-1.120051
С	-3.775274	0.088531	1.036218
В	-1.691776	-0.327763	-0.046897
0	-2.569375	-0.301026	-1.273852
0	-2.561649	-0.581872	1.159637
С	-4.665779	-0.547808	-0.061398
Н	-4.214497	-1.206550	-2.085368
Н	-3.404826	-2.141614	-0.819060
Н	-4.310872	0.065705	1.999698
Н	-3.613997	1.156390	0.788043
С	-5.568448	0.522830	-0.676793
Н	-6.277644	0.085518	-1.389590
Н	-6.147933	1.045665	0.094188
Н	-4.963999	1.265746	-1.208293
С	-5.505778	-1.687710	0.518142
Н	-4.866770	-2.382932	1.073568

Н	-6.273369	-1.308875	1.203173
Н	-6.012767	-2.252101	-0.274296
Н	1.591023	-3.367914	1.424769
С	2.879705	-2.243403	0.140233
С	3.219921	-1.964418	-1.186475
С	3.792661	-1.910937	1.143295
С	4.438183	-1.372105	-1.503753
Н	2.513222	-2.207047	-1.976219
С	5.012224	-1.312699	0.832556
Н	3.543190	-2.120365	2.180654
С	5.339388	-1.041074	-0.493213
Н	4.684639	-1.165629	-2.541018
Н	5.708276	-1.061340	1.627353
Н	6.289706	-0.577119	-0.738337

TSB'

Ele	ctronic Ener	gy: -1618.34	2293
В	-2.147566	-0.290290	0.842155
С	-1.090867	3.303371	1.125583
С	-1.177994	2.966273	-1.304346
С	-0.629397	3.889893	-0.210256
Н	-0.658816	3.874499	1.956757
Н	-2.185896	3.378229	1.197858
Н	-0.717554	3.213395	-2.269364
Н	-2.259291	3.139659	-1.400838
В	-0.895517	1.070636	0.223654
0	-0.716764	1.950191	1.287394
0	-0.970742	1.587430	-1.066314
С	0.900045	3.969468	-0.253120
Н	1.350118	2.996643	-0.050560
Н	1.244110	4.313819	-1.234773
Н	1.265157	4.676871	0.499938
С	-1.227765	5.286453	-0.395249
Н	-0.864012	5.968917	0.380214
Н	-0.943271	5.703980	-1.367267
Н	-2.321728	5.265392	-0.342783
С	1.581698	0.458155	-0.217814
Н	1.542964	1.031763	-1.146082
С	2.664575	0.610065	0.551310
Н	2.739434	0.040091	1.478116
С	3.839391	1.496208	0.231676
Н	3.984537	2.235454	1.030201
С	0.733079	-2.544846	-1.221663
С	0.111512	-2.704033	1.196076
В	0.414132	-0.617400	0.047341
0	0.033485	-1.330631	-1.133308
0	0.710284	-1.427263	1.168307
С	0.377942	-3.530832	-0.090627
Н	0.504112	-3.005103	-2.192378
Н	1.822320	-2.358813	-1.202718
Н	0.518539	-3.236725	2.066125
Н	-0.966229	-2.597273	1.343194
С	-0.896642	-4.302516	-0.445448
Н	-0.741196	-4.941317	-1.323134
Н	-1.209502	-4.946268	0.385963
Н	-1.701326	-3.590314	-0.648732
С	1.552142	-4.495000	0.105456

Н	2.440338	-3.958026	0.457326
н	1.307180	-5.266409	0.844050
н	1.812522	-5.000470	-0.832422
Н	3.622336	2.064871	-0.682160
С	5.134924	0.727039	0.042570
С	6.328808	1.171167	0.614870
С	5.161249	-0.438212	-0.730198
С	7.520429	0.475894	0.417635
Н	6.325862	2.072081	1.223322
С	6.348437	-1.135695	-0.931151
Н	4.234984	-0.800067	-1.168599
С	7.534452	-0.680667	-0.357213
Н	8.437402	0.837266	0.873334
Н	6.347973	-2.038562	-1.534528
Н	8.460713	-1.225605	-0.510262
0	-2.580229	-1.441848	0.106992
0	-3.165854	0.744249	0.599717
0	-1.840456	-0.544931	2.216470
С	-2.880859	-1.085826	2.979814
Н	-3.701933	-0.368050	3.133013
Н	-3.310933	-1.985761	2.515438
Н	-2.489708	-1.365118	3.965568
С	-3.546576	-1.081381	-0.859692
С	-4.179042	0.234230	-0.259711
С	-4.538443	-2.236371	-1.004087
Н	-4.024672	-3.104723	-1.428250
Н	-4.958931	-2.530395	-0.039975
Н	-5.360295	-1.968753	-1.676867
С	-2.854425	-0.862557	-2.210033
Н	-2.321344	-1.779250	-2.474016
Н	-3.580928	-0.635747	-2.998201
Н	-2.118051	-0.061979	-2.140475
С	-5.412007	-0.036785	0.612198
Н	-5.687385	0.887857	1.128540
Н	-6.270260	-0.367207	0.018556
Н	-5.197836	-0.794779	1.369131
С	-4.536317	1.287226	-1.305634
Η	-5.309326	0.916871	-1.987615
Η	-4.922621	2.183289	-0.809127
Н	-3.660691	1.569124	-1.891003

[BneopBpin-OMe]⁻

Ele	Electronic Energy: -898.243857				
В	0.432781	0.602582	1.024417		
В	-1.019900	-0.374519	0.931553		
0	0.373783	1.963513	0.737438		
0	1.680868	0.014074	1.202064		
0	-1.362305	-0.606352	-0.506940		
0	-0.786525	-1.747960	1.472924		
С	-1.322907	-2.679055	0.561996		
С	-1.127818	-1.960955	-0.815985		
С	2.881830	0.742931	1.014675		
С	1.546966	2.736172	0.549320		
С	2.717341	1.900011	0.026626		
С	2.411443	1.368634	-1.379899		
н	2.286901	2.198968	-2.083101		
Н	3.233446	0.740153	-1.738931		

Н	1.497046	0.769439	-1.398533
С	3.990516	2.746506	0.004910
н	4.844391	2.153452	-0.339314
Н	3.878272	3.597511	-0.675143
н	4.228647	3.137310	1.000090
н	3.645631	0.042262	0.654325
н	3.225502	1.136177	1.982509
Н	1.309100	3.540502	-0.158414
н	1.831932	3.208316	1.500833
С	-2.104184	-2.412191	-1.902636
Н	-1.892953	-1.884489	-2.838756
н	-2.014118	-3.487530	-2.094786
Н	-3.136691	-2.195564	-1.619243
С	0.310913	-2.108380	-1.341100
Н	0.539115	-3.129860	-1.664699
Н	0.438814	-1.442606	-2.201401
Н	1.024266	-1.806584	-0.569747
С	-2.809058	-2.918571	0.881862
Н	-3.252589	-3.700699	0.255550
Н	-2.893203	-3.230995	1.928115
Н	-3.375080	-1.992471	0.760132
С	-0.570153	-4.003621	0.692116
Н	-0.776324	-4.455889	1.668121
Н	-0.880446	-4.715922	-0.081113
Н	0.508755	-3.852292	0.612204
0	-2.218563	0.272194	1.531648
С	-2.101073	0.581588	2.879413
Н	-3.002687	1.108738	3.222714
Н	-1.979991	-0.313791	3.513820
Н	-1.234673	1.235931	3.094452

Calculations in ⁱPrOH

$E-1_{iPr}$

Ele	Electronic Energy: -759.450973				
С	-0.536896	-0.338331	0.124271		
Н	-1.215325	0.503064	-0.012537		
С	-1.054467	-1.569313	0.215161		
Н	-0.378066	-2.413109	0.355293		
С	-2.512096	-1.950249	0.145242		
Н	-2.633804	-2.676008	-0.669257		
С	2.977931	1.004121	0.090791		
С	3.190706	-0.457797	0.616284		
В	0.988336	-0.083916	0.212176		
0	1.546125	1.170452	0.216778		
0	1.926948	-1.084887	0.297963		
С	3.354813	-0.532076	2.135001		
Н	3.295731	-1.577959	2.446459		
Н	4.321608	-0.131912	2.451314		
Н	2.563304	0.022165	2.647310		
С	4.311416	-1.224412	-0.070204		
Н	5.267995	-0.715090	0.080331		
Н	4.389187	-2.226997	0.358467		
Н	4.132864	-1.323237	-1.142129		
С	3.314809	1.164187	-1.392282		
Н	2.957602	2.139028	-1.733497		

Н	4.393244	1.112762	-1.563186
Н	2.828592	0.391916	-1.994958
С	3.676389	2.081655	0.907015
Н	4.758748	1.921563	0.900252
Н	3.475384	3.063715	0.470989
Н	3.330649	2.089095	1.941965
Н	-2.763938	-2.497754	1.062633
С	-3.461923	-0.794182	-0.045182
С	-3.800660	-0.353819	-1.326959
С	-3.989588	-0.115969	1.056105
С	-4.650856	0.734115	-1.505781
Н	-3.393509	-0.869920	-2.192518
С	-4.840385	0.972540	0.882661
Н	-3.730748	-0.445409	2.058986
С	-5.173991	1.400634	-0.400117
Н	-4.906291	1.060454	-2.509166
Н	-5.244245	1.485516	1.750010
Н	-5.838736	2.247574	-0.537431

'PrO⁻

Ele	Electronic Energy: -193.764169				
С	0.329502	-2.083099	-1.994816		
Н	0.291964	-3.182971	-2.308871		
С	1.729114	-1.615732	-2.493916		
Н	2.558124	-2.250951	-2.148637		
Н	1.740231	-1.602389	-3.590474		
Н	1.915708	-0.588437	-2.150601		
С	0.380874	-2.156280	-0.439679		
Н	-0.577060	-2.531457	-0.059750		
Н	1.182171	-2.802610	-0.052176		
Н	0.524176	-1.146342	-0.030403		
0	-0.673742	-1.333005	-2.455889		

A_{iPr}

Ele	Electronic Energy: -937.544014			
В	1.285127	0.255472	-1.034443	
В	0.247157	-1.117505	-0.736896	
0	0.815726	1.419048	-0.223480	
0	2.693812	-0.077761	-0.698676	
0	0.665022	-2.393692	-1.097511	
0	-1.032035	-0.958911	-0.213494	
С	-1.927769	-2.049970	-0.090250	
С	-0.191510	-3.516811	-0.994462	
С	-1.211041	-3.382820	0.139279	
С	3.558956	1.018617	-0.760415	
С	1.666685	2.525801	-0.266414	
Н	-2.539894	-2.118319	-1.001858	
Н	-2.605687	-1.835133	0.745308	
Н	-0.723900	-3.654292	-1.947252	
Н	0.434662	-4.404179	-0.837649	
Н	3.636784	1.407931	-1.791376	
Н	4.569238	0.693794	-0.458936	
С	-2.219241	-4.530322	0.064402	
Н	-1.718502	-5.495344	0.196282	
Н	-2.974391	-4.434867	0.851808	
Н	-2.736447	-4.546205	-0.901036	
С	-0.506744	-3.389411	1.501432	

Н	-1.235551	-3.275361	2.310796
Н	0.024782	-4.334719	1.653578
Н	0.219694	-2.576913	1.584848
0	1.303460	0.620427	-2.498401
С	0.179975	1.226725	-3.063247
Н	-0.344276	1.830035	-2.303776
С	3.108964	2.178218	0.147703
Н	1.273926	3.305588	0.408162
Н	1.700384	2.968373	-1.280016
С	3.140525	1.736775	1.612840
Н	4.157431	1.459975	1.916735
Н	2.798836	2.542799	2.273584
Н	2.489704	0.872059	1.756732
С	4.017990	3.388191	-0.061749
Н	3.696415	4.234475	0.556971
Н	5.054596	3.153740	0.208091
Н	4.009551	3.715408	-1.108164
С	0.645184	2.164317	-4.177314
С	-0.811814	0.188382	-3.605763
Н	-0.312450	-0.461968	-4.333002
Н	-1.196896	-0.434671	-2.793320
Н	-1.665195	0.668070	-4.099009
Н	-0.195543	2.690762	-4.642608
Н	1.342449	2.907709	-3.778271
Н	1.166521	1.594648	-4.955573

Bneo-OⁱPr in ⁱPrOH

Electronic Energy: -565.629402 C -2.256315 2.233144 -1.834002 C -1.999793 3.449162 0.291427 C -2.611121 3.536627 -1.110205 H -2.757482 2.189130 -2.806448 H -1.173626 2.189883 -2.011284 H -2.309470 4.305611 0.898855 H -0.904319 3.461700 0.223045 B -2.692583 1.139495 0.265828 O -2.649466 1.078849 -1.101394 O -2.402480 2.271378 0.981801 C -4.133370 3.710652 -1.023284 H -4.614127 2.885017 -0.491319 H -4.381569 4.637383 -0.496448 H -4.569591 3.761521 -2.025742 C -1.989424 4.716444 -1.860388 H -2.395503 4.784847 -2.874465 H -2.209444 5.658030 -1.347623 H -0.901706 4.616066 -1.935617 O -3.066756 -0.004357 0.905785 C -3.243824 -0.025107 2.325777 H -2.468535 0.596599 2.788724 C -4.612769 0.541752 2.679356 H -5.401170 -0.051897 2.205974 H -4.767233 0.523463 3.762112 H -4.698299 1.576510 2.337026 C -3.074418 -1.465520 2.780678 H -3.178961 -1.536209 3.866862 H -3.834577 -2.102371 2.317390 H -2.087676 -1.843995 2.501638

B₂neop₂ in ⁱPrOH

Electronic Energy: -743.714372				
В	0.975280	0.353728	0.488245	
В	-0.059650	-0.986315	0.184939	
0	1.318490	0.648549	1.780867	
0	1.418994	1.102910	-0.568842	
0	-0.402854	-1.281296	-1.107650	
0	-0.503377	-1.735360	1.242116	
С	-1.359222	-2.853379	1.022022	
С	-1.256292	-2.387034	-1.390259	
С	-1.136199	-3.502360	-0.347340	
С	2.275093	2.220690	-0.348510	
С	2.171648	1.754429	2.063765	
С	2.051815	2.869725	1.020779	
С	0.666432	3.525875	1.088196	
Н	0.505926	3.977944	2.072018	
Н	0.580416	4.313879	0.333421	
Н	-0.138745	2.806709	0.914738	
С	3.139541	3.916761	1.269807	
Н	3.087582	4.712403	0.519802	
Н	3.013294	4.376872	2.255005	
Н	4.140054	3.473955	1.227020	
Н	-2.400730	-2.519315	1.112274	
Н	-1.167164	-3.574449	1.823390	
Н	-2.291993	-2.026710	-1.434737	
Н	-0.987906	-2.761181	-2.383738	
Н	2.083483	2.941800	-1.149948	
Н	3.316542	1.886345	-0.438420	
С	-2.223934	-4.549434	-0.596169	
Н	-2.097751	-5.009663	-1.581318	
Н	-2.171916	-5.344984	0.153930	
Н	-3.224448	-4.106632	-0.553361	
С	0.249197	-4.158450	-0.415062	
Н	0.335338	-4.946570	0.339577	
Н	0.409588	-4.610358	-1.398977	
Н	1.054373	-3.439284	-0.241600	
Н	1.902819	2.128571	3.057127	
Н	3.207375	1.394239	2.108670	

TSA_{iPr}

Electronic Energy: -1696.973260					
С	0.388852	-2.151290	-1.973807		
С	0.765214	-2.865756	-0.624971		
В	0.472308	-0.577410	-0.273391		
0	0.503869	-1.875366	0.361591		
0	0.590164	-0.775244	-1.671111		
С	-0.445549	3.040564	0.013648		
С	-2.625672	2.574230	1.017796		
С	-1.746810	3.707908	0.476992		
н	0.240657	3.796861	-0.395848		
Н	0.052031	2.592341	0.887549		
н	-3.624883	2.958160	1.271111		
н	-2.167540	2.197544	1.944136		
В	-1.666249	1.077275	-0.723478		
0	-0.677906	2.081865	-0.978985		

0	-2.792060	1.521133	0.102890
С	-2.433798	4.416196	-0.693684
Н	-2.644807	3.711608	-1.501690
Н	-3.379338	4.869325	-0.374036
Н	-1.795244	5.212213	-1.094042
С	-1.451334	4.701589	1.600206
н	-0.815481	5.518242	1.240625
н	-2.376394	5.144501	1.986582
н	-0.935468	4.215639	2.436119
C	1.453926	0.483158	0.390496
H	1.337164	0.713645	1.451702
c	2 496995	1 018092	-0 246563
н	2.490555	0 785529	-1 302596
C	2.044343	1 900/07	0.376788
ц	2 25/002	2 1200907	1 /1028/
C II	2 169767	1 905609	1 512055
c	-3.100702	-1.803038	2.050424
	1 421245	-0.343343	0.664252
в	-1.421245	-0.319277	0.664253
0	-2.358918	-1.325248	0.464990
0	-1.12/9/3	0.078802	1.970286
C	-2.480289	-1./66//8	2.8/9923
Н	-4.092899	-1.207591	1.555412
Н	-3.457881	-2.836621	1.269484
н	-1.339359	-0.277851	3.966775
Н	-2.784720	0.351992	3.157824
С	-3.506976	-2.055688	3.976715
Н	-3.930268	-3.058666	3.854816
Н	-3.930268	-3.058666	3.854816
Н	-3.039832	-2.009210	4.966458
Н	-4.332345	-1.335354	3.957327
С	-1.338052	-2.786729	2.940694
Н	-0.592948	-2.586972	2.167350
Н	-0.850036	-2.752472	3.921868
Н	-1.725903	-3.801510	2.793382
С	1.296734	-2.519490	-3.146483
Н	1.247845	-3.593284	-3.357225
н	0.969137	-1.984842	-4.043070
Н	2.336635	-2.249375	-2.951238
С	-1.068787	-2.380942	-2.383318
H	-1.299329	-1.734852	-3.233125
н	-1.233029	-3.424048	-2.676367
н	-1 746627	-2 106228	-1 574876
c	2 258721	-3 205194	-0 526572
н	2 478044	-3 529741	0 495069
н	2 546805	-4 008677	-1 211962
н	2.540005	-7 373/101	-0 740060
\hat{c}	-0.067881	-2.323431	-0.2126/2
с ц	0.007881	4.105558	1 102600
п	0.055904	4.656550	-1.102009
	0.206909	-4.551124	0.027045
	2 100240	-2.020908	-0.205235
U C	-2.100340	0.464/51	-1.933013
	-3.395648	0.0/8389	-2.432669
н	-3.//25/8	1.65839/	-2.102417
H	3.606648	2.860650	-0.151/1/
Ċ	4.924674	1.262324	0.3/7961
C	5.089031	-0.062193	0.797396
С	6.055139	1.974262	-0.027665
С	6.347672	-0.654627	0.817530
---	-----------	-----------	-----------
Н	4.213176	-0.630172	1.099285
С	7.318332	1.385029	-0.011158
Н	5.945538	3.002537	-0.363289
С	7.469275	0.067681	0.412404
Н	6.453887	-1.684156	1.146440
Н	8.183955	1.955908	-0.333751
Н	8.451434	-0.394615	0.423399
С	-3.314976	0.681006	-3.956673
С	-4.365854	-0.389600	-1.929817
Н	-4.030845	-1.380352	-2.254691
Н	-4.387579	-0.379776	-0.839324
Н	-5.376586	-0.216008	-2.317514
Н	-4.297057	0.864692	-4.405591
Н	-2.948291	-0.287043	-4.315747
Н	-2.624059	1.455843	-4.301631

\mathbf{B}_{iPr}

Electronic Energy: -1131.368766

С	3.355511	-0.662538	0.955815
С	3.691410	-0.793108	-0.568078
В	1.447101	-0.125686	-0.320408
0	2.690265	-0.011649	-1.173890
0	1.951355	-0.699071	0.974511
С	0.329964	-1.123627	-0.969380
Н	0.056274	-0.958455	-2.022046
С	-0.383158	-2.059614	-0.331502
н	-0.171091	-2.251858	0.722980
С	-1.523112	-2.862289	-0.919880
н	-1.515347	-2.750294	-2.010914
н	-1.396004	-3.931049	-0.703920
С	-2.867812	-2.410856	-0.384105
С	-3.442916	-1.223845	-0.850204
С	-3.540503	-3.126546	0.607765
С	-4.653368	-0.764959	-0.342527
н	-2.923443	-0.650437	-1.613866
С	-4.753771	-2.670869	1.122909
Н	-3.109349	-4.051632	0.982475
С	-5.314819	-1.488366	0.649515
н	-5.079849	0.160312	-0.718756
н	-5.260360	-3.242300	1.895051
Н	-6.259423	-1.132202	1.048652
С	-0.559404	3.283922	-1.205771
С	-0.521773	3.074086	1.229481
В	0.635818	1.414464	-0.155246
0	0.238186	2.115851	-1.291460
0	0.267768	1.905414	1.092129
С	-1.454293	3.295116	0.036134
Н	0.090588	4.171288	-1.193678
н	-1.172511	3.338789	-2.114447
Н	-1.105659	2.977355	2.153662
н	0.135692	3.948218	1.345513
С	-2.145840	4.653018	0.161949
Н	-2.797973	4.837032	-0.698482
н	-2.764699	4.690290	1.064718
н	-1.418036	5.469922	0.216172
С	-2.497727	2.173907	-0.038523

Н	-2.032077	1.186879	-0.092926
н	-3.142826	2.188149	0.846501
Н	-3.133301	2.294847	-0.922688
С	3.904705	-1.795909	1.823026
н	4.995969	-1.864750	1.745586
н	3.652306	-1.618689	2.874025
н	3.473788	-2.756408	1.530761
С	3.835916	0.684200	1.526050
н	3.383931	0.828145	2.512592
н	4.925041	0.731570	1.635389
Н	3.510545	1.504778	0.880733
С	3.576606	-2.250885	-1.049284
Н	3.604573	-2.262111	-2.143979
н	4.395215	-2.878970	-0.680203
Н	2.623598	-2.679308	-0.729252
С	5.064692	-0.246735	-0.959968
н	5.866560	-0.756293	-0.413224
Н	5.237460	-0.400497	-2.030602
Н	5.133379	0.824824	-0.758408

TSB_{iPr}

Ele	Electronic Energy: -1131.336089				
С	3.876840	-0.493973	0.800802		
С	3.848046	-0.467652	-0.765906		
В	1.986675	0.633490	0.048086		
0	2.926427	0.581393	-1.038938		
0	2.570877	-0.070967	1.162196		
С	0.380886	-0.388806	-0.536822		
Н	0.327918	-0.549254	-1.621712		
С	-0.296512	-1.238355	0.237891		
Н	-0.278347	-1.077602	1.319334		
С	-1.138504	-2.410077	-0.220065		
Н	-0.916438	-2.633354	-1.269112		
Н	-0.873441	-3.303670	0.362190		
С	-2.623447	-2.146557	-0.067927		
С	-3.466395	-2.122207	-1.179828		
С	-3.177198	-1.882015	1.189364		
С	-4.822996	-1.832247	-1.046827		
Н	-3.053081	-2.321674	-2.165070		
С	-4.529278	-1.586091	1.328008		
Н	-2.538430	-1.898929	2.068575		
С	-5.359232	-1.557926	0.207841		
Н	-5.459339	-1.815320	-1.926569		
Н	-4.937684	-1.378512	2.312563		
Н	-6.414586	-1.327255	0.314508		
С	-0.951173	3.122451	-0.752220		
С	-1.550526	1.752428	1.230613		
В	0.598813	1.495450	0.079508		
0	0.121302	2.265222	-1.041812		
0	-0.142797	1.674033	1.286442		
С	-2.116600	2.403831	-0.062126		
Н	-0.623403	3.958497	-0.108735		
Н	-1.302805	3.563105	-1.696125		
Н	-1.984551	0.746541	1.341619		
Н	-1.868083	2.341817	2.102397		
С	-3.206438	3.417932	0.297671		
Н	-3.632580	3.874964	-0.602907		

Н	-4.023553	2.930821	0.841839
Н	-2.811687	4.219852	0.931978
С	-2.702983	1.342580	-0.999337
Н	-1.945918	0.606934	-1.275875
Н	-3.523143	0.803363	-0.512705
Н	-3.093791	1.807199	-1.913123
С	4.149333	-1.870530	1.403413
Н	5.119018	-2.260630	1.074923
Н	4.166212	-1.800110	2.495595
Н	3.372450	-2.584902	1.122767
С	4.871340	0.520264	1.383904
Н	4.704573	0.595279	2.462661
Н	5.912787	0.227136	1.216353
Н	4.709933	1.509366	0.945887
С	3.315263	-1.774722	-1.370054
Н	3.141365	-1.620051	-2.439309
Н	4.028034	-2.597482	-1.253602
Н	2.365245	-2.056422	-0.911052
С	5.187506	-0.130736	-1.416570
Н	5.952312	-0.865360	-1.142005
Н	5.083406	-0.143112	-2.506077
Н	5.536095	0.861073	-1.121228

C_{iPr}

Ele	Electronic Energy: -1131.375132				
С	4.041904	-0.830407	0.823346		
С	3.992715	-1.038030	-0.723962		
В	2.151095	0.158281	-0.044316		
0	2.996351	-0.082987	-1.127629		
0	2.705797	-0.385809	1.112143		
С	-0.387952	-0.416728	-0.642209		
Н	-0.426636	-0.651173	-1.716283		
С	-1.106801	-1.222361	0.147347		
Н	-1.115213	-1.024873	1.222554		
С	-2.020432	-2.329752	-0.310815		
Н	-1.834182	-2.532847	-1.374154		
Н	-1.815035	-3.264919	0.226621		
С	-3.490450	-1.984466	-0.129477		
С	-3.967039	-0.714990	-0.474431		
С	-4.400139	-2.920000	0.367978		
С	-5.313337	-0.393397	-0.333000		
Н	-3.262476	0.025733	-0.844064		
С	-5.749720	-2.602498	0.513802		
Н	-4.047541	-3.909802	0.647801		
С	-6.211832	-1.336984	0.163106		
Н	-5.662014	0.598370	-0.606323		
Н	-6.439026	-3.344336	0.906158		
Н	-7.261664	-1.085930	0.278948		
С	-0.728696	2.542030	-1.262278		
С	-1.122182	2.013616	1.123512		
В	0.562154	0.833645	-0.161203		
0	0.518763	1.922948	-1.192879		
0	0.112199	1.360655	1.167392		
С	-1.165531	3.151371	0.084274		
Н	-1.940186	1.309565	0.882951		
Н	-1.340727	2.430152	2.121554		
С	-0.203011	4.271260	0.486151		

Н	-0.204057	5.076400	-0.258841
Н	-0.488796	4.705628	1.451862
Н	0.813651	3.881708	0.570327
С	-2.591135	3.690372	-0.028392
Н	-3.292588	2.898681	-0.318598
Н	-2.932266	4.105673	0.927301
Н	-2.653988	4.487127	-0.779101
С	4.335624	-2.089989	1.628768
Н	5.312258	-2.503387	1.356810
Н	4.354211	-1.851023	2.695886
Н	3.574980	-2.855626	1.465355
С	4.995787	0.290172	1.246829
Н	4.825709	0.519117	2.302336
Н	6.042883	-0.000393	1.121256
Н	4.812698	1.199809	0.668031
С	3.472257	-2.422413	-1.122756
Н	3.277045	-2.430265	-2.198535
Н	4.197523	-3.209683	-0.897792
Н	2.534859	-2.649632	-0.606557
С	5.298512	-0.745534	-1.451216
Н	6.094637	-1.407374	-1.095100
Н	5.171218	-0.915388	-2.524109
Н	5.614929	0.289064	-1.305933
Н	-1.516101	1.826603	-1.577964
Н	-0.696487	3.337295	-2.026484

TSC_{iPr}

Ele	Electronic Energy: -1696.986041			
С	0.053621	-3.079060	0.183264	
С	-0.439605	-3.440411	-1.222387	
С	-0.134199	-2.232055	-2.117514	
Н	1.149263	-2.986837	0.180206	
Н	-0.212652	-3.876594	0.891885	
Н	0.950325	-2.122083	-2.234371	
Н	-0.561305	-2.402679	-3.116904	
В	-0.562793	-0.746653	-0.240533	
0	-0.674672	-1.034949	-1.620616	
0	-0.519695	-1.882816	0.653655	
С	2.285518	2.835502	0.264394	
С	0.188427	2.803538	-0.995566	
С	1.370296	3.701705	-0.608353	
Н	3.217975	3.373740	0.487410	
Н	1.781058	2.627094	1.219251	
Н	-0.507083	3.355526	-1.644219	
Н	-0.365221	2.530007	-0.085279	
В	1.628647	0.878816	-1.091093	
0	2.632270	1.624191	-0.359664	
0	0.599078	1.653105	-1.685197	
С	2.112989	4.180852	-1.858886	
Н	2.476095	3.331075	-2.441993	
Н	1.451721	4.776415	-2.498835	
Н	2.971945	4.804803	-1.586202	
С	0.867921	4.894854	0.204005	
Н	1.702763	5.521652	0.537364	
Н	0.199273	5.521765	-0.396414	
Н	0.316315	4.567325	1.092403	
С	-1.626509	0.324005	0.273744	

Н	-1.530407	0.706616	1.292587
С	-2.675488	0.738518	-0.440875
Н	-2.798862	0.365541	-1.458715
С	-3.747386	1.677886	0.045121
Н	-3.467819	2.058648	1.036539
н	-3.817928	2.552553	-0.614701
С	-5.118446	1.029860	0.134345
С	-5.261735	-0.256572	0.663773
С	-6.266178	1.704536	-0.287790
C	-6.516332	-0.848289	0.775133
H	-4.372893	-0.795785	0.979736
C	-7 524883	1 116350	-0 179430
н	-6 173285	2 702813	-0 708385
Ċ	-7 654655	-0 163276	0 353659
н	-6 605938	-1 848402	1 188860
ц	-8 101030	1 657651	-0 516092
ц	-8 633674	-0.625084	0.436527
п С	1 665255	-0.023084	0.430327
c	1.005555	-0.126559	2.951057
	2.780553	-0.936427	2.187006
в	1.238317	-0.147438	0.655021
0	0.972182	0.519301	1.855622
0	2.2501//	-1.089547	0.868625
C	3.05/895	-2.321009	2.765915
н	3.831563	-2.818862	2.173920
Н	3.413626	-2.250692	3.799223
Н	2.160826	-2.942762	2.744877
С	4.103690	-0.167306	2.051746
Н	4.586229	-0.010402	3.021184
Н	4.783167	-0.747686	1.420140
Н	3.932978	0.793946	1.562487
С	2.183096	0.937062	3.891149
Н	1.338267	1.467733	4.339937
Н	2.766675	0.483527	4.699174
Н	2.809029	1.668012	3.375366
С	0.646029	-1.019396	3.646905
Н	1.091789	-1.547753	4.495067
Н	-0.165098	-0.388949	4.023979
Н	0.215585	-1.737798	2.945764
0	2.188798	-0.049093	-2.006012
С	3.542550	-0.434614	-1.882415
н	3.885830	-0.255048	-0.859529
С	0.326249	-4.660032	-1.734770
н	0.147586	-5.532415	-1.095965
н	0.011399	-4.920739	-2.751506
н	1.405274	-4.469635	-1.754311
C	-1.945477	-3.722913	-1.200805
н	-2.308739	-3.968324	-2.205370
н	-2 173750	-4 569116	-0 542413
н	-2 498860	-2 851448	-0.841367
C	3 660110	-1 927896	-2 162641
Ч	A 705220	-2 251209	-2 117051
Ц	3 000201	-2.2J1300	-2.11/331
п	2 260100	-2.400014	-2 157567
п С	7 206100	-2.10020/	-2.12/202
с Ц	4.230130	0.320201	2.0304/3
	4.004303		-2.0/0939
П		1.458466	-2.585220
н	5.454104	0.120229	-2.//1496

[BpinBneop-OⁱPr]⁻ in ⁱPrOH

Ele	ctronic Ener	gy: -976.866	670
В	0.992471	0.617756	1.067176
В	-0.074022	-0.445620	0.180455
0	0.833983	2.006711	0.536004
0	2.388674	0.143828	0.892433
0	-0.838779	-0.112195	-0.934031
0	-0.289485	-1.784490	0.507888
C	-1.399418	-2.277980	-0.260553
c	-1 407139	-1 310939	-1 487849
C	3.363216	1.036738	1.348147
c	1 795854	2 907413	0.998123
c	3 232473	2 432969	0 712422
c	3 464458	2.452505	-0 798000
н	3 360332	3 335060	-1 265212
ц	J.J00352	1 07/768	-1.205212
	4.471407	1.574708	1 252024
	2.750444	1.0/5/0/	1 250704
	4.250757	3.391273	1.550764
н	5.266296	3.055463	1.178912
н	4.140857	4.399185	0.929903
н	4.084154	3.464347	2.434012
н	4.359696	0.624470	1.1164/1
н	3.313889	1.157859	2.446201
Н	1.633160	3.885820	0.514978
Н	1.704829	3.069275	2.088225
С	-2.788950	-0.998365	-2.048165
Н	-2.697860	-0.317491	-2.899227
Н	-3.280414	-1.912670	-2.396226
Н	-3.425878	-0.523756	-1.299473
С	-0.480913	-1.769574	-2.617828
Н	-0.877620	-2.647872	-3.135275
Н	-0.379863	-0.958151	-3.343630
Н	0.515167	-2.008420	-2.234673
С	-2.650350	-2.143971	0.612807
Н	-3.538276	-2.541323	0.112468
Н	-2.497360	-2.704091	1.539303
Н	-2.832293	-1.098089	0.877045
С	-1.163973	-3.743659	-0.602621
Н	-1.169300	-4.342534	0.312507
Н	-1.956251	-4.118792	-1.258535
Н	-0.202840	-3.889610	-1.098915
0	0.714808	0.594274	2.537589
С	-0.599230	0.859202	2.933241
н	-1.242040	1.019715	2.048828
С	-1.153273	-0.345693	3.695127
Н	-1.106392	-1.228098	3.051681
н	-0.548869	-0.535721	4.589941
н	-2.192722	-0.190712	4.006931
С	-0.657535	2.135038	3.773540
н	-0.307258	2.986416	3.183519
н	-1.675264	2.345739	4.121908
н	-0.007459	2.035138	4.650601

13_{iPr}

Electronic Energy: -720.132794

С	-0.932455	3.531409	0.890076
С	-1.957859	3.957681	-0.165300
С	-2.061848	2.809647	-1.174442
Н	-1.329145	2.695248	1.480120
н	-0.723837	4.358394	1.576543
Н	-2.520544	1.933863	-0.697738
н	-2.692286	3.100251	-2.021072
В	0.333732	2.591089	-0.941901
0	-0.794014	2.429285	-1.700205
0	0.307221	3.134564	0.314086
С	1.700430	2.149672	-1.550571
н	1.718874	1.732840	-2.559088
С	2.861026	2.250839	-0.892406
Н	2.862403	2.656460	0.120018
С	4.203342	1.820573	-1.416563
Н	4.098277	1.479085	-2.452875
Н	4.883794	2.680280	-1.427430
С	4.814767	0.718264	-0.571395
С	4.139590	-0.495882	-0.411526
С	6.045860	0.887196	0.063414
С	4.685533	-1.518440	0.356982
Н	3.174825	-0.633926	-0.892721
С	6.596027	-0.134312	0.836060
Н	6.581195	1.826359	-0.048489
С	5.917722	-1.340348	0.984646
Н	4.148873	-2.455581	0.468532
Н	7.555133	0.014838	1.322373
Н	6.344266	-2.136709	1.586243
С	-3.317365	4.166253	0.505472
Н	-3.261398	4.968390	1.248099
Н	-4.072963	4.447763	-0.234727
Н	-3.658838	3.257285	1.011466
С	-1.511622	5.250346	-0.861392
Н	-2.242476	5.546408	-1.620444
Н	-1.426660	6.064702	-0.135058
Н	-0.542362	5.139979	-1.355241

Calculations in TFE

E-1_{tfe}

Electronic Energy: -759.451179				
С	-0.536926	-0.338824	0.125309	
Н	-1.215414	0.502592	-0.011204	
С	-1.054709	-1.569799	0.215551	
Н	-0.378561	-2.413845	0.355349	
С	-2.512354	-1.950485	0.145307	
Н	-2.633930	-2.676070	-0.669346	
С	2.977820	1.004040	0.090529	
С	3.191003	-0.457618	0.616523	
В	0.988319	-0.084258	0.213022	
0	1.545867	1.170237	0.217110	
0	1.927021	-1.085073	0.298788	
С	3.355503	-0.531462	2.135184	
Н	3.296930	-1.577284	2.446955	
Н	4.322292	-0.130937	2.451007	
Н	2.564031	0.022702	2.647636	
С	4.311471	-1.224393	-0.070113	

Н	5.268009	-0.714872	0.079836
Н	4.389604	-2.226762	0.359016
Н	4.132544	-1.323650	-1.141943
С	3.313956	1.163550	-1.392760
Н	2.956611	2.138252	-1.734267
Н	4.392318	1.112189	-1.564032
Н	2.827649	0.390943	-1.994941
С	3.676458	2.082039	0.905957
Н	4.758803	1.922028	0.898825
Н	3.475276	3.063874	0.469484
Н	3.331186	2.089923	1.941066
Н	-2.764415	-2.498090	1.062558
С	-3.461973	-0.794216	-0.045128
С	-3.798744	-0.352269	-1.326890
С	-3.991432	-0.117418	1.056233
С	-4.648738	0.735896	-1.505678
Н	-3.390360	-0.867317	-2.192497
С	-4.842056	0.971251	0.882822
Н	-3.734279	-0.448220	2.059101
С	-5.173635	1.401006	-0.399985
Н	-4.902647	1.063424	-2.509062
Н	-5.247388	1.483074	1.750164
н	-5.838254	2.248053	-0.537242

CF₃CH₂O⁻ in TFE Electronic Energy: -452.121682

С	-2.415610	0.828560	-0.038340
С	-1.943693	1.620371	-1.266155
Н	-2.264630	0.940235	-2.116191
Н	-0.822025	1.450401	-1.232710
0	-2.369750	2.872013	-1.293216
F	-1.999798	1.372773	1.129657
F	-1.964294	-0.456766	-0.033029
F	-3.764418	0.748699	0.048952

$\mathbf{A}_{\mathsf{TFE}}$

Ele	Electronic Energy: -1195.890633			
В	1.241615	0.305653	-0.963370	
В	0.074201	-0.954256	-0.645185	
0	0.653499	1.612832	-0.552347	
0	2.490451	0.021900	-0.224683	
0	-0.356148	-1.801275	-1.657745	
0	-0.409105	-1.143671	0.641648	
С	-1.320853	-2.185936	0.949187	
С	-1.274177	-2.853216	-1.405872	
С	-1.168828	-3.394680	0.022044	
С	3.414596	1.074255	-0.244651	
С	1.565279	2.676202	-0.576440	
Н	-2.348040	-1.800036	0.881002	
Н	-1.149410	-2.483626	1.990990	
Н	-2.296807	-2.492369	-1.586160	
Н	-1.073766	-3.651870	-2.130548	
Н	3.793704	1.252069	-1.266850	
Н	4.280268	0.797015	0.378882	
С	-2.301837	-4.388644	0.281445	
н	-2.225049	-5.247979	-0.392931	

Н	-2.259071	-4.764788	1.308998
Н	-3.282931	-3.925710	0.130537
С	0.188475	-4.074835	0.240934
Н	0.271433	-4.442350	1.269058
Н	0.302754	-4.928404	-0.435388
Н	1.020150	-3.388640	0.060336
0	1.649479	0.383060	-2.421501
С	0.677510	0.815846	-3.292910
Н	0.010946	0.008777	-3.642149
Н	0.040144	1.603992	-2.864097
С	2.815567	2.393662	0.275875
Н	1.064082	3.582803	-0.199397
Н	1.894142	2.892821	-1.608305
С	2.421655	2.242506	1.747100
Н	3.299513	2.023144	2.366737
Н	1.962500	3.163229	2.126722
Н	1.705815	1.425968	1.860496
С	3.826508	3.526830	0.107511
Н	3.409458	4.480046	0.453196
Н	4.736590	3.331914	0.686959
Н	4.116479	3.648440	-0.942718
С	1.326849	1.408384	-4.521925
F	2.093481	2.481219	-4.239415
F	2.119986	0.528514	-5.164484
F	0.396205	1.818559	-5.412560

Bneo-OCH₂CF₃ in TFE

Electronic Energy: -823.964597 C 1.184243 2.604723 2.305080 C 1.007635 3.441522 -0.006695 C 1.446737 3.821532 1.410736 H 1.280280 4.227097 -0.717754 H -0.080916 3.311579 -0.042747 В 1.989013 1.296893 0.465694 O 1.809236 1.422873 1.809535 0 1.623749 2.235135 -0.453177 C 2.934884 4.198043 1.428892 H 3.572828 3.391719 1.057275 H 3.110663 5.076807 0.800698 H 3.255301 4.438012 2.447369 C 0.600519 4.998274 1.901703 H 0.886604 5.278824 2.920047 H 0.748177 5.872205 1.259742 H -0.466449 4.752867 1.902846 2.589249 0.130051 0.050666 0 С 3.003041 -0.005475 -1.281793 H 2.927705 -1.054727 -1.574997 H 2.412340 0.604774 -1.969560 C 4.455605 0.412780 -1.412411 F 5.268430 -0.348915 -0.664622 F 4.858416 0.309837 -2.689378 F 4.643834 1.687956 -1.025810 Н 1.574902 2.779105 3.312182 H 0.104842 2.424982 2.386132

B₂neop₂ in TFE

Electronic Energy: -743.714667			
В	0.975370	0.353692	0.488279
В	-0.059747	-0.986290	0.184977
0	1.318170	0.648595	1.780988
0	1.419449	1.102612	-0.568830
0	-0.403315	-1.281014	-1.107565
0	-0.503070	-1.735451	1.242237
С	-1.359029	-2.853663	1.022201
С	-1.256962	-2.386892	-1.390066
С	-1.136253	-3.502307	-0.347339
С	2.275747	2.220475	-0.348329
С	2.171437	1.754628	2.064021
С	2.051870	2.869675	1.020764
С	0.666425	3.525796	1.087562
Н	0.505614	3.978044	2.071244
Н	0.580721	4.313668	0.332625
Н	-0.138753	2.806629	0.913948
С	3.139459	3.916822	1.270012
Н	3.087665	4.712285	0.519820
Н	3.012765	4.377032	2.255095
Н	4.139982	3.474034	1.227653
Н	-2.400457	-2.519586	1.112829
Н	-1.166598	-3.574812	1.823381
Н	-2.292619	-2.026501	-1.433998
Н	-0.988902	-2.760816	-2.383693
Н	2.084480	2.941429	-1.149960
Н	3.317110	1.885864	-0.437762
С	-2.223868	-4.549567	-0.595996
Н	-2.097838	-5.009558	-1.581265
Н	-2.171395	-5.345174	0.153997
Н	-3.224427	-4.106940	-0.552799
С	0.249255	-4.158142	-0.415618
Н	0.335714	-4.946382	0.338850
Н	0.409345	-4.609863	-1.399659
Н	1.054446	-3.438919	-0.242300
Н	1.902253	2.128920	3.057207
Н	3.207052	1.394286	2.109260

TSA_{TFE}

Electronic Energy: -1955.321415			
С	0.490230	1.967220	2.023530
С	1.194174	2.716643	0.842187
В	0.711352	0.532040	0.220031
0	0.919158	1.876565	-0.275217
0	0.601555	0.602825	1.631038
С	-0.359700	-3.018008	-0.278578
С	-2.202974	-2.356198	-1.744009
С	-1.580754	-3.561402	-1.031560
Н	0.129955	-3.829922	0.278245
н	0.371405	-2.643432	-1.011515
Н	-3.135490	-2.648992	-2.246586
н	-1.502351	-2.001268	-2.514582
В	-1.548171	-0.959946	0.193296
0	-0.704989	-2.016131	0.638200
0	-2.508580	-1.309585	-0.855121
С	-2.586566	-4.183419	-0.057809
н	-2.946114	-3.441807	0.658887

-2.127526 -1.131018	-5.007406	
-1.131018		0.500303
	-4.592091	-2.066690
-0.668337	-5.457115	-1.578892
-1.982301	-4.955384	-2.653186
-0.399392	-4.165732	-2.762288
1.724871	-0.540309	-0.373417
1.753181	-0.698614	-1.453432
2 647009	-1 160796	0 365167
2 652340	-1 001494	1 444702
3 749629	-2 036453	-0 168535
3 58195/	-2.030433	-1 239250
-2 560022	2.213233	-1.239230
1 107405	2.032075	2.059290
-1.107405	0.075640	-3.409690
-1.010901	0.462925	-1.042125
-1.940649	1.490955	-0.921739
-0.505912	0.14/112	-2.300282
-1.639982	2.096224	-3.281900
-3.459372	1.466140	-2.302055
-2.887516	3.066827	-1.797701
-0.357404	0.653019	-4.270092
-1.933853	0.012577	-3.772266
-2.449167	2.505514	-4.513830
-2.862085	3.512104	-4.387411
-1.815846	2.514448	-5.407374
-3.282556	1.818023	-4.695810
-0.482327	3.075416	-3.055082
0.118864	2.782548	-2.190672
0.164871	3.108300	-3.939130
-0.867485	4.087257	-2.883329
1.179886	2.136478	3.374797
1.222692	3.192449	3.662218
0.616767	1.599648	1 111100
		4.14410.3
2.196368	1.737387	4.144183 3.357412
2.196368 -0.987552	1.737387 2 345011	4.144183 3.357412 2.155325
2.196368 -0.987552 -1.477094	1.737387 2.345011 1.640622	4.144183 3.357412 2.155325 2.831444
2.196368 -0.987552 -1.477094 -1.100276	1.737387 2.345011 1.640622 3.358801	4.144183 3.357412 2.155325 2.831444 2.554552
2.196368 -0.987552 -1.477094 -1.100276 -1.485063	1.737387 2.345011 1.640622 3.358801 2.276026	4.144183 3.357412 2.155325 2.831444 2.554552 1.186242
2.196368 -0.987552 -1.477094 -1.100276 -1.485063	1.737387 2.345011 1.640622 3.358801 2.276026	4.144183 3.357412 2.155325 2.831444 2.554552 1.186242
2.196368 -0.987552 -1.477094 -1.100276 -1.485063 2.719871 2.150060	1.737387 2.345011 1.640622 3.358801 2.276026 2.771386	4.144183 3.357412 2.155325 2.831444 2.554552 1.186242 1.005024
2.196368 -0.987552 -1.477094 -1.100276 -1.485063 2.719871 3.159960	1.737387 2.345011 1.640622 3.358801 2.276026 2.771386 3.127104	4.144183 3.357412 2.155325 2.831444 2.554552 1.186242 1.005024 0.068337
2.196368 -0.987552 -1.477094 -1.100276 -1.485063 2.719871 3.159960 3.024130	1.737387 2.345011 1.640622 3.358801 2.276026 2.771386 3.127104 3.450998	4.144183 3.357412 2.155325 2.831444 2.554552 1.186242 1.005024 0.068337 1.807243
2.196368 -0.987552 -1.477094 -1.100276 -1.485063 2.719871 3.159960 3.024130 3.123108	1.737387 2.345011 1.640622 3.358801 2.276026 2.771386 3.127104 3.450998 1.775762	4.144183 3.357412 2.155325 2.831444 2.554552 1.186242 1.005024 0.068337 1.807243 1.210365
2.196368 -0.987552 -1.477094 -1.100276 -1.485063 2.719871 3.159960 3.024130 3.123108 0.659835	1.737387 2.345011 1.640622 3.358801 2.276026 2.771386 3.127104 3.450998 1.775762 4.117866	4.144183 3.357412 2.155325 2.831444 2.554552 1.186242 1.005024 0.068337 1.807243 1.210365 0.566335
2.196368 -0.987552 -1.477094 -1.100276 -1.485063 2.719871 3.159960 3.024130 3.123108 0.659835 0.791494	1.737387 2.345011 1.640622 3.358801 2.276026 2.771386 3.127104 3.450998 1.775762 4.117866 4.762972	4.144183 3.357412 2.155325 2.831444 2.554552 1.186242 1.005024 0.068337 1.807243 1.210365 0.566335 1.441694
2.196368 -0.987552 -1.477094 -1.100276 -1.485063 2.719871 3.159960 3.024130 3.024130 3.123108 0.659835 0.791494 1.206576	1.737387 2.345011 1.640622 3.358801 2.276026 2.771386 3.127104 3.450998 1.775762 4.117866 4.762972 4.565012	 3.357412 2.155325 2.831444 2.554552 1.186242 1.005024 0.068337 1.807243 1.210365 0.566335 1.441694 -0.269710
2.196368 -0.987552 -1.477094 -1.100276 -1.485063 2.719871 3.159960 3.024130 3.024130 3.123108 0.659835 0.791494 1.206576 -0.399234	1.737387 2.345011 1.640622 3.358801 2.276026 2.771386 3.127104 3.450998 1.775762 4.117866 4.762972 4.565012 4.092576	 3.357412 2.155325 2.831444 2.554552 1.186242 1.005024 0.068337 1.807243 1.210365 0.566335 1.441694 -0.269710 0.305481
2.196368 -0.987552 -1.477094 -1.100276 -1.485063 2.719871 3.159960 3.024130 3.123108 0.659835 0.791494 1.206576 -0.399234 -2.210264	1.737387 2.345011 1.640622 3.358801 2.276026 2.771386 3.127104 3.450998 1.775762 4.117866 4.762972 4.565012 4.092576 -0.387450	 3.357412 2.155325 2.831444 2.554552 1.186242 1.005024 0.068337 1.807243 1.210365 0.566335 1.441694 -0.269710 0.305481 1.334008
2.196368 -0.987552 -1.477094 -1.100276 -1.485063 2.719871 3.159960 3.024130 3.123108 0.659835 0.791494 1.206576 -0.399234 -2.210264 -3.470410	1.737387 2.345011 1.640622 3.358801 2.276026 2.771386 3.127104 3.450998 1.775762 4.117866 4.762972 4.565012 4.092576 -0.387450 0.164524	 4.144183 3.357412 2.155325 2.831444 2.554552 1.186242 1.005024 0.068337 1.807243 1.210365 0.566335 1.441694 -0.269710 0.305481 1.334008 1.226837
2.196368 -0.987552 -1.477094 -1.100276 -1.485063 2.719871 3.159960 3.024130 3.123108 0.659835 0.791494 1.206576 -0.399234 -2.210264 -3.470410 -3.449949	1.737387 2.345011 1.640622 3.358801 2.276026 2.771386 3.127104 3.450998 1.775762 4.117866 4.762972 4.565012 4.092576 -0.387450 0.164524 1.261230	 4.144183 3.357412 2.155325 2.831444 2.554552 1.186242 1.005024 0.068337 1.807243 1.210365 0.566335 1.441694 -0.269710 0.305481 1.334008 1.226837 1.277959
2.196368 -0.987552 -1.477094 -1.100276 -1.485063 2.719871 3.159960 3.024130 3.024130 3.123108 0.659835 0.791494 1.206576 -0.399234 -2.210264 -3.470410 -3.449949 -3.989368	1.737387 2.345011 1.640622 3.358801 2.276026 2.771386 3.127104 3.450998 1.775762 4.117866 4.762972 4.565012 4.092576 -0.387450 0.164524 1.261230 -0.123318	 4.144183 3.357412 2.155325 2.831444 2.554552 1.186242 1.005024 0.068337 1.807243 1.210365 0.566335 1.441694 -0.269710 0.305481 1.334008 1.226837 1.277959 0.307289
2.196368 -0.987552 -1.477094 -1.100276 -1.485063 2.719871 3.159960 3.024130 3.024130 3.123108 0.659835 0.791494 1.206576 -0.399234 -2.210264 -3.470410 -3.449949 -3.989368 3.733175	1.737387 2.345011 1.640622 3.358801 2.276026 2.771386 3.127104 3.450998 1.775762 4.117866 4.762972 4.565012 4.092576 -0.387450 0.164524 1.261230 -0.123318 -3.020483	 4.144183 3.357412 2.155325 2.831444 2.554552 1.186242 1.005024 0.068337 1.807243 1.210365 0.566335 1.441694 -0.269710 0.305481 1.334008 1.226837 1.277959 0.307289 0.317304
2.196368 -0.987552 -1.477094 -1.100276 -1.485063 2.719871 3.159960 3.024130 3.024130 3.123108 0.659835 0.791494 1.206576 -0.399234 -2.210264 -3.470410 -3.449949 -3.989368 3.733175 5.126931	1.737387 2.345011 1.640622 3.358801 2.276026 2.771386 3.127104 3.450998 1.775762 4.117866 4.762972 4.565012 4.092576 -0.387450 0.164524 1.261230 -0.123318 -3.020483 -1.424294	 4.144183 3.357412 2.155325 2.831444 2.554552 1.186242 1.005024 0.068337 1.807243 1.210365 0.566335 1.441694 -0.269710 0.305481 1.334008 1.226837 1.277959 0.307289 0.317304 0.023600
2.196368 -0.987552 -1.477094 -1.100276 -1.485063 2.719871 3.159960 3.024130 3.123108 0.659835 0.791494 1.206576 -0.399234 -2.210264 -3.470410 -3.449949 -3.989368 3.733175 5.126931 5.345845	1.737387 2.345011 1.640622 3.358801 2.276026 2.771386 3.127104 3.450998 1.775762 4.117866 4.762972 4.565012 4.092576 -0.387450 0.164524 1.261230 -0.123318 -3.020483 -1.424294 -0.072852	 4.144183 3.357412 2.155325 2.831444 2.554552 1.186242 1.005024 0.068337 1.807243 1.210365 0.566335 1.441694 -0.269710 0.305481 1.334008 1.226837 1.277959 0.307289 0.317304 0.023600 -0.264045
2.196368 -0.987552 -1.477094 -1.100276 -1.485063 2.719871 3.159960 3.024130 3.123108 0.659835 0.791494 1.206576 -0.399234 -2.210264 -3.470410 -3.449949 -3.989368 3.733175 5.126931 5.345845 6.203969	1.737387 2.345011 1.640622 3.358801 2.276026 2.771386 3.127104 3.450998 1.775762 4.117866 4.762972 4.565012 4.092576 -0.387450 0.164524 1.261230 -0.123318 -3.020483 -1.424294 -0.072852 -2.189267	 4.144183 3.357412 2.155325 2.831444 2.554552 1.186242 1.005024 0.068337 1.807243 1.210365 0.566335 1.441694 -0.269710 0.305481 1.334008 1.226837 1.277959 0.307289 0.317304 0.023600 -0.264045 0.475914
2.196368 -0.987552 -1.477094 -1.100276 -1.485063 2.719871 3.159960 3.024130 3.123108 0.659835 0.791494 1.206576 -0.399234 -2.210264 -3.470410 -3.449949 -3.989368 3.733175 5.126931 5.345845 6.203969 6.606582	1.737387 2.345011 1.640622 3.358801 2.276026 2.771386 3.127104 3.450998 1.775762 4.117866 4.762972 4.565012 4.092576 -0.387450 0.164524 1.261230 -0.123318 -3.020483 -1.424294 -0.072852 -2.189267 0.495343	 3.357412 2.155325 2.831444 2.554552 1.186242 1.005024 0.068337 1.807243 1.210365 0.566335 1.441694 -0.269710 0.305481 1.334008 1.226837 1.277959 0.307289 0.317304 0.023600 -0.264045 0.475914 -0.109712
2.196368 -0.987552 -1.477094 -1.100276 -1.485063 2.719871 3.159960 3.024130 3.123108 0.659835 0.791494 1.206576 -0.399234 -2.210264 -3.470410 -3.449949 -3.989368 3.733175 5.126931 5.345845 6.203969 6.606582 4.509798	1.737387 2.345011 1.640622 3.358801 2.276026 2.771386 3.127104 3.450998 1.775762 4.117866 4.762972 4.565012 4.092576 -0.387450 0.164524 1.261230 -0.123318 -3.020483 -1.424294 -0.072852 -2.189267 0.495343 0.534550	 4.144183 3.357412 2.155325 2.831444 2.554552 1.186242 1.005024 0.068337 1.807243 1.210365 0.566335 1.441694 -0.269710 0.305481 1.334008 1.226837 1.277959 0.307289 0.317304 0.023600 -0.264045 0.475914 -0.109712 -0.599799
	1.753181 2.647009 2.652340 3.749629 3.581954 -2.560022 -1.107405 -1.010901 -1.940649 -0.505912 -1.639982 -3.459372 -2.887516 -0.357404 -1.933853 -2.449167 -2.862085 -1.815846 -3.282556 -0.482327 0.118864 0.164871 -0.867485 1.179886 1.222692	1.753181-0.6986142.647009-1.1607962.652340-1.0014943.749629-2.0364533.581954-2.213253-2.5600222.052675-1.1074050.673846-1.0109010.462925-1.9406491.490955-0.5059120.147112-1.6399822.096224-3.4593721.466140-2.8875163.066827-0.3574040.653019-1.9338530.012577-2.4491672.505514-2.8620853.512104-1.8158462.514448-3.2825561.818023-0.4823273.0754160.1188642.7825480.1648713.108300-0.8674854.0872571.1798862.1364781.2226923.192449

н	6.050791	-3.239757	0.710472
С	7.674702	-0.279402	0.340042
Н	6.755484	1.546750	-0.337350
Н	8.292172	-2.236919	0.988317
Н	8.657940	0.163479	0.464717
С	-4.308381	-0.318836	2.388012
F	-5.542435	0.228020	2.351137
F	-4.470307	-1.656497	2.386202
F	-4.470307	-1.656497	2.386202
F	-3.770945	0.005394	3.580510

${\bf B}_{\rm TFE}$

Ele	ctronic Ener	gy: -1131.37	0475
С	3.357236	-0.663223	0.956210
С	3.693724	-0.788283	-0.567996
В	1.448599	-0.122630	-0.319026
0	2.691914	-0.005493	-1.171618
0	1.952782	-0.699625	0.974362
С	0.331936	-1.119370	-0.971190
Н	0.059046	-0.952003	-2.023765
С	-0.382382	-2.056758	-0.336609
Н	-0.172093	-2.251804	0.717777
С	-1.521563	-2.858239	-0.928067
Н	-1.514947	-2.741035	-2.018530
Н	-1.392569	-3.927750	-0.717150
С	-2.866047	-2.411049	-0.388340
С	-3.446341	-1.225866	-0.852573
С	-3.532906	-3.128623	0.606192
С	-4.656148	-0.770198	-0.340284
Н	-2.931966	-0.651376	-1.618867
С	-4.745527	-2.676293	1.125797
Н	-3.097859	-4.052562	0.979231
С	-5.311667	-1.495327	0.654443
Н	-5.086703	0.153723	-0.715132
Н	-5.247712	-3.249172	1.899719
Н	-6.255783	-1.141877	1.057078
С	-0.554023	3.291649	-1.198623
С	-0.537512	3.064558	1.235418
В	0.634843	1.416281	-0.150942
0	0.246447	2.125112	-1.285530
0	0.254408	1.897201	1.096603
С	-1.459676	3.292923	0.035500
Н	0.094650	4.179629	-1.174804
Н	-1.159185	3.351707	-2.112198
Н	-1.129253	2.960628	2.153744
Н	0.118296	3.938164	1.363387
С	-2.153943	4.649130	0.164799
Н	-2.798603	4.838386	-0.700076
Н	-2.780802	4.679161	1.062271
Н	-1.427628	5.466411	0.231298
С	-2.501123	2.171114	-0.055969
Н	-2.033686	1.185081	-0.112972
Н	-3.153835	2.178534	0.823521
Н	-3.129298	2.297167	-0.944646
С	3.905813	-1.799823	1.819497
Н	4.997052	-1.868476	1.742362
Н	3.652981	-1.626446	2.871055

Н	3.475072	-2.759248	1.523479
С	3.837642	0.681165	1.531681
Н	3.386866	0.820946	2.519404
Н	4.926775	0.728273	1.640344
Н	3.511823	1.504458	0.890013
С	3.580370	-2.244325	-1.054454
Н	3.609561	-2.251817	-2.149154
Н	4.399096	-2.873016	-0.686847
Н	2.627499	-2.674737	-0.736775
С	5.066750	-0.239514	-0.957410
Н	5.868594	-0.750299	-0.411882
Н	5.240374	-0.389776	-2.028407
Н	5.134941	0.831424	-0.752329

$\textbf{TSB}_{\text{TFE}}$

Ele	ctronic Ener	gy: -1131.33	7722
С	3.878005	-0.494435	0.799692
С	3.847018	-0.466309	-0.766993
В	1.985816	0.632994	0.050781
0	2.924277	0.582805	-1.037413
0	2.572252	-0.071578	1.163624
С	0.380815	-0.388556	-0.533479
Н	0.327819	-0.550112	-1.618199
С	-0.296273	-1.238126	0.241506
Н	-0.278792	-1.076704	1.322862
С	-1.137297	-2.410606	-0.216086
Н	-0.913611	-2.635353	-1.264464
Н	-0.872930	-3.303234	0.367881
С	-2.622483	-2.146831	-0.066571
С	-3.463412	-2.122938	-1.180017
С	-3.178329	-1.881751	1.189682
С	-4.820242	-1.832816	-1.049487
Н	-3.048495	-2.323152	-2.164436
С	-4.530663	-1.585695	1.325841
Н	-2.541182	-1.898701	2.070087
С	-5.358625	-1.557911	0.204163
Н	-5.455115	-1.816416	-1.930287
Н	-4.940866	-1.377906	2.309592
Н	-6.414164	-1.327268	0.308904
С	-0.951204	3.122737	-0.750624
С	-1.553145	1.751482	1.230683
В	0.597935	1.495188	0.082661
0	0.122535	2.266140	-1.038885
0	-0.145166	1.673657	1.288663
С	-2.117287	2.403243	-0.062654
С	-3.208062	3.416806	0.295915
Н	-3.632826	3.874192	-0.605092
Н	-4.025862	2.929066	0.838436
Н	-2.814667	4.218457	0.931376
С	-2.701889	1.342219	-1.001275
Н	-1.944415	0.606582	-1.276785
Н	-3.522784	0.802765	-0.516197
Н	-3.091270	1.807186	-1.915467
С	4.151235	-1.871667	1.400356
Н	5.120621	-2.261085	1.070352
Н	4.169409	-1.802628	2.492611
Н	3.374413	-2.586050	1.119579

С	4.873461	0.518896	1.382597
н	4.708470	0.592675	2.461712
н	5.914476	0.225473	1.213275
Н	4.712302	1.508666	0.945957
С	3.314293	-1.772846	-1.372266
Н	3.139927	-1.617379	-2.441366
Н	4.027487	-2.595340	-1.257026
Н	2.364617	-2.055601	-0.913207
С	5.185374	-0.127796	-1.419092
Н	5.951066	-0.861927	-1.145900
Н	5.080081	-0.139756	-2.508492
Н	5.533661	0.864084	-1.123625
Н	-1.986608	0.745286	1.340454
Н	-1.872193	2.340250	2.102264
Н	-1.301476	3.563558	-1.694898
Н	-0.624781	3.958653	-0.106364

$\boldsymbol{C}_{\text{TFE}}$

Electronic Energy: -1131.376803

-			
С	-4.046814	-0.823257	-0.822766
С	-3.997108	-1.029923	0.724593
В	-2.152692	0.161208	0.042833
0	-2.997699	-0.076790	1.126812
0	-2.709152	-0.382633	-1.112785
С	0.384673	-0.421381	0.640174
Н	0.422710	-0.655953	1.714270
С	1.103219	-1.227870	-0.148753
Н	1.112818	-1.030305	-1.223986
С	2.017209	-2.334682	0.310005
Н	1.830019	-2.538537	1.373009
Н	1.813816	-3.269714	-0.228315
С	3.486753	-1.986411	0.130109
С	3.961444	-0.717804	0.481081
С	4.397598	-2.917975	-0.372638
С	5.307094	-0.393193	0.340241
Н	3.256088	0.020133	0.854828
С	5.746553	-2.597383	-0.517931
Н	4.046533	-3.907006	-0.657015
С	6.206780	-1.332822	-0.161311
Н	5.654340	0.597743	0.618333
Н	6.436826	-3.336076	-0.914441
Н	7.256085	-1.079442	-0.276692
С	0.736925	2.533637	1.261282
С	1.128188	2.005177	-1.125130
В	-0.561599	0.831905	0.159036
0	-0.513959	1.920798	1.190989
0	-0.109439	1.357642	-1.169349
С	1.177350	3.141531	-0.084638
Н	1.942891	1.297034	-0.885861
Н	1.348034	2.421918	-2.122754
С	0.221300	4.267208	-0.485753
Н	0.225819	5.071194	0.260421
Н	0.510372	4.701496	-1.450481
Н	-0.797353	3.883239	-0.571546
С	2.605968	3.672403	0.028888
Н	3.302808	2.876570	0.318851
Н	2.949691	4.086377	-0.926422

Н	2.672977	4.468304	0.780092
С	-4.344624	-2.082473	-1.627105
Н	-5.322345	-2.492604	-1.354339
Н	-4.363130	-1.844229	-2.694393
Н	-3.586373	-2.850430	-1.463417
С	-4.997610	0.299815	-1.246319
Н	-4.828328	0.527214	-2.302293
Н	-6.045346	0.012375	-1.119317
Н	-4.811498	1.209490	-0.668487
С	-3.479934	-2.415276	1.124020
Н	-3.284084	-2.423099	2.199676
Н	-4.207563	-3.200614	0.900153
Н	-2.543651	-2.645758	0.607205
С	-5.301428	-0.733438	1.452772
Н	-6.099400	-1.393755	1.098117
Н	-5.173488	-0.902644	2.525694
Н	-5.615694	0.301692	1.306695
Н	1.520284	1.813869	1.576836
н	0.708384	3.328498	2.025957

$\textbf{TSC}_{\textbf{TFE}}$

Ele	ctronic Energ	gy: -1955.32	9549
С	0.164300	-2.852476	1.350336
С	-0.086348	-3.609078	0.040622
С	0.196186	-2.609723	-1.087844
н	1.237894	-2.632410	1.439652
н	-0.124153	-3.475819	2.208833
н	1.257518	-2.330043	-1.065125
н	0.004329	-3.082143	-2.061848
В	-0.666844	-0.805195	0.255968
0	-0.608365	-1.463633	-0.996717
0	-0.570612	-1.654394	1.427941
С	1.716003	3.186976	-0.046542
С	-0.405710	2.686281	-1.165979
С	0.677159	3.762559	-1.015855
н	2.592245	3.847009	0.009930
Н	1.273949	3.121879	0.956934
Н	-1.179883	3.023115	-1.868853
Н	-0.893204	2.527234	-0.193314
В	1.242371	0.960853	-0.981928
0	2.171701	1.911316	-0.438041
0	0.117075	1.475460	-1.652853
С	1.317764	4.075767	-2.371344
Н	1.776625	3.182383	-2.801463
Н	0.567559	4.447751	-3.078256
Н	2.092806	4.843193	-2.265309
С	0.065056	5.026236	-0.411255
Н	0.832376	5.789613	-0.241039
Н	-0.687642	5.453629	-1.082751
Н	-0.419124	4.814200	0.548497
С	-1.890396	0.200447	0.417369
Н	-1.964322	0.765838	1.350334
С	-2.859057	0.380396	-0.482708
Н	-2.816452	-0.169879	-1.423777
С	-4.041539	1.298288	-0.320472
Н	-3.942711	1.845277	0.626770
Н	-4.044272	2.056024	-1.115268

С	-5.377738	0.577355	-0.338622
С	-5.542521	-0.629203	0.348665
С	-6.475498	1.107731	-1.020261
С	-6.771049	-1.283047	0.360857
Н	-4.689608	-1.056851	0.868793
С	-7.707701	0.457085	-1.011868
Н	-6.363770	2.041518	-1.565813
С	-7.860081	-0.741603	-0.319981
Н	-6.878363	-2.219493	0.900188
Н	-8.547733	0.885598	-1.550335
Н	-8.817996	-1.252332	-0.314383
С	1.365338	0.854471	3.169108
С	2.591696	0.039775	2.626673
В	0.974829	0.227980	0.974930
0	0.610637	1.129034	1.977980
0	2.095181	-0.498115	1.392363
С	3.028827	-1.115781	3.520555
Н	3.867363	-1.641471	3.054421
Н	3.359467	-0.748877	4.497781
Н	2.218957	-1.832157	3.670657
С	3.802306	0.910902	2.282806
Н	4.255698	1.346474	3.178090
Н	4.552310	0.287251	1.787093
Н	3.518622	1.704899	1.589539
С	1.729198	2.175752	3.837261
Н	0.816481	2.691902	4.148814
Н	2.342582	2.003591	4.727790
Н	2.277081	2.832209	3.158591
С	0.454930	0.041670	4.093630
Н	0.951066	-0.208724	5.035936
Н	-0.433218	0.638454	4.322654
Н	0.126306	-0.871084	3.592151
0	1.888205	-0.043470	-1.757896
С	3.193301	-0.394723	-1.442313
Н	3.841537	0.478768	-1.301545
Н	3.251604	-1.003023	-0.531463
С	0.882888	-4.786406	-0.062495
Н	0.739482	-5.486656	0.768176
Н	0.727611	-5.339077	-0.995769
Н	1.924267	-4.445754	-0.041800
С	-1.535516	-4.100529	-0.028493
Н	-1.726471	-4.613972	-0.977866
Н	-1.746182	-4.804349	0.784895
Н	-2.233960	-3.263719	0.052407
С	3.769714	-1.200384	-2.580731
F	5.046356	-1.543045	-2.308773
F	3.780304	-0.520178	-3.741543
F	3.096884	-2.344575	-2.807095

[BpinBneop-OCH₂CF₃]⁻ in TFE

Ele	ctronic Ener	gy: -1235.21	2431
В	0.987480	0.275559	1.007549
В	-0.047699	-1.011776	0.452330
0	0.447161	1.565065	0.497039
0	2.372413	0.050331	0.553003
0	-0.543510	-1.152636	-0.838955
0	-0.510938	-2.053291	1.251385

С	-1.529953	-2.770026	0.530896
С	-1.176406	-2.440449	-0.955217
С	3.231066	1.134391	0.780466
С	1.287464	2.659141	0.744940
С	2.700817	2.446311	0.173159
С	2.632662	2.325099	-1.351132
Н	2.234558	3.243242	-1.799528
Н	3.628226	2.146665	-1.774864
Н	1.982836	1.493656	-1.631564
С	3.607025	3.608527	0.576229
Н	4.626716	3.460713	0.201610
Н	3.236142	4.555684	0.167382
Н	3.661078	3.711538	1.666263
Н	4.214832	0.902643	0.341282
Н	3.389784	1.297119	1.861297
Н	0.841603	3.559194	0.291416
Н	1.377171	2.850024	1.828848
С	-2.375520	-2.327897	-1.887749
Н	-2.035733	-2.098352	-2.901582
Н	-2.927471	-3.272705	-1.920661
Н	-3.057264	-1.536905	-1.570081
С	-0.142672	-3.399772	-1.551216
Н	-0.568739	-4.390874	-1.731408
Н	0.206280	-2.995951	-2.505368
Н	0.722028	-3.505257	-0.889988
С	-2.878218	-2.191097	0.968913
Н	-3.715960	-2.723959	0.510126
Н	-2.965362	-2.281680	2.055106
Н	-2.952403	-1.131259	0.709140
С	-1.459661	-4.247581	0.893484
Н	-1.718665	-4.382591	1.947384
Н	-2.169899	-4.824917	0.292959
Н	-0.458916	-4.652993	0.734133
0	1.053164	0.330306	2.519950
С	-0.137940	0.624574	3.143565
Η	-0.738180	1.362788	2.590417
Н	-0.775881	-0.261214	3.306242
С	0.134310	1.227290	4.501455
F	0.853742	0.411616	5.296385
F	-1.019304	1.492662	5.153900
F	0.813891	2.389222	4.425131

$\mathbf{13}_{\mathsf{TFE}}$

Ele	ctronic Energ	gy: -720.132	2992
С	-0.932307	3.530864	0.890233
С	-1.957601	3.957736	-0.164992
С	-2.062006	2.810101	-1.174524
Н	-1.329118	2.694555	1.479920
Н	-0.723491	4.357565	1.576954
Н	-2.520772	1.934242	-0.698121
Н	-2.692393	3.101167	-2.021006
В	0.333676	2.590812	-0.942198
0	-0.794100	2.429593	-1.700543
0	0.307421	3.133864	0.313958
С	1.700237	2.148939	-1.551107
Н	1.718315	1.731169	-2.559254
С	2.861258	2.250751	-0.893722

Н	2.863305	2.657497	0.118275
С	4.203317	1.819882	-1.418035
Н	4.097881	1.477648	-2.454049
Н	4.883897	2.679453	-1.429584
С	4.814596	0.718068	-0.572071
С	4.140138	-0.496625	-0.412861
С	6.044881	0.888001	0.064172
С	4.685854	-1.518674	0.356604
Н	3.176185	-0.635653	-0.895417
С	6.594808	-0.132983	0.837757
Н	6.579687	1.827508	-0.047272
С	5.917122	-1.339509	0.985848
Н	4.149778	-2.456213	0.467593
Н	7.553208	0.016944	1.325209
Н	6.343493	-2.135426	1.588145
С	-3.316994	4.166324	0.505971
Н	-3.260661	4.968073	1.248979
Н	-4.072504	4.448367	-0.234103
Н	-3.658594	3.257162	1.011502
С	-1.511179	5.250596	-0.860631
Н	-2.242168	5.547097	-1.619373
Н	-1.425925	6.064580	-0.133930
Н	-0.542026	5.140288	-1.354779

Direct B-B/C-B metathesis

TSA-DIRECT in MeOH

Ele	ctronic Ener	gy: -1503.11	6681
С	-1.922827	2.626651	1.379628
С	-1.929128	3.657567	0.247121
С	-2.250584	2.896577	-1.043434
Н	-2.927993	2.186058	1.480384
Н	-1.676340	3.110640	2.331236
Н	-3.318901	2.635369	-1.051533
Н	-2.062465	3.532334	-1.916387
В	-0.927230	1.040637	-0.117355
0	-1.499882	1.704087	-1.213943
0	-0.972896	1.603436	1.165329
С	-0.566230	4.352504	0.143425
Н	-0.587826	5.119041	-0.638195
Н	-0.309546	4.839674	1.090020
Н	0.227310	3.642083	-0.099222
С	-3.027616	4.691817	0.504117
Н	-2.808547	5.268548	1.408395
Н	-3.100559	5.395195	-0.331851
Н	-4.005366	4.215600	0.632870
С	-3.636567	-1.647043	1.046329
С	-3.460013	-1.857366	-1.394144
С	-4.432788	-1.537109	-0.255963
Н	-4.236934	-1.313188	1.898033
Н	-3.348210	-2.691478	1.224149
Н	-3.936858	-1.695227	-2.365834
Н	-3.150655	-2.909267	-1.338726
В	-1.834250	-0.580914	-0.157407
0	-2.454390	-0.849750	1.026100
0	-2.296322	-1.038471	-1.353316

С	-5.003308	-0.122025	-0.418214
Н	-4.215283	0.636049	-0.433981
н	-5.563183	-0.040371	-1.354971
н	-5.681327	0.114958	0.407509
С	-5.564021	-2.566645	-0.247576
Н	-6.256204	-2.371932	0.577592
Н	-6.133500	-2.520230	-1.181028
Н	-5.177533	-3.584847	-0.134771
С	0.900591	0.943282	-0.674424
Н	0.930151	1.036813	-1.758397
С	1.818660	1.573190	0.067599
Н	1.776389	1.462057	1.149849
С	2.989324	2.336101	-0.483300
Н	2.788262	2.643677	-1.513615
Н	3.172756	3.234613	0.114403
С	4.198273	1.418693	-0.435374
С	4.450289	0.541516	-1.493581
С	5.009939	1.360013	0.698001
С	5.493164	-0.376690	-1.420481
Н	3.815530	0.571702	-2.375109
С	6.053065	0.439994	0.775247
Н	4.819422	2.033976	1.528935
С	6.295710	-0.432466	-0.282420
н	5.677661	-1.050979	-2.250900
Н	6.675531	0.404467	1.663808
н	7.107205	-1.150539	-0.222017
С	0.840301	-2.678744	-0.254900
С	1.300201	-2.075988	1.120048
В	0.235926	-0.464870	-0.108980
0	0.510374	-1.508894	-1.019890
0	0.531534	-0.868111	1.211311
С	2.783965	-1.696647	1.137440
н	2.984161	-1.103538	2.033866
Н	3.424084	-2.583293	1.162304
Н	3.058353	-1.093301	0.269214
С	0.979556	-2.947336	2.328328
Н	1.471970	-3.921122	2.243317
Н	1.343112	-2.462023	3.238341
н	-0.095358	-3.105144	2.433118
С	-0.412515	-3.551713	-0.138262
н	-0.806339	-3.740353	-1.140245
Н	-0.186713	-4.512132	0.333022
Н	-1.189174	-3.058149	0.450484
С	1.926356	-3.442777	-1.002793
Н	2.282647	-4.288133	-0.405988
Н	1.523076	-3.835027	-1.940618
Н	2.774841	-2.797365	-1.237953

E-2 in MeOH

Electronic Energy: -720.133087 C -1.265172 -1.020839 3.128611

C	-1.2651/2	-1.020839	3.128611	
С	0.251641	0.916172	3.209874	
В	0.622690	-0.872933	1.626837	
0	1.000626	0.335050	2.147837	
0	-0.478466	-1.555282	2.068167	
С	1.463889	-1.499499	0.472158	
н	1.149848	-2.455265	0.048953	

С	2.563751	-0.923816	-0.027241
С	3.427212	-1.490220	-1.120536
н	2.975977	-2.414075	-1.500600
Н	3.467853	-0.782740	-1.957200
С	4.839837	-1.767606	-0.640093
С	5.056489	-2.656738	0.417387
С	5.942634	-1.147332	-1.228597
С	6.344042	-2.925122	0.869714
Н	4.203717	-3.137225	0.889940
С	7.234774	-1.411966	-0.777325
Н	5.790330	-0.451270	-2.049213
С	7.439302	-2.302038	0.272813
Н	6.494288	-3.619980	1.690245
Н	8.080888	-0.920314	-1.247419
Н	8.444577	-2.509011	0.625833
Н	2.899082	0.027362	0.387957
С	-1.225082	0.509980	3.174593
Н	-2.291644	-1.372532	2.982631
Н	-0.899592	-1.432705	4.077960
Н	0.700463	0.611046	4.163837
Н	0.351383	2.003010	3.123453
С	-1.920398	1.106095	1.943367
Н	-2.972644	0.806022	1.917275
Н	-1.879085	2.199379	1.974334
Н	-1.456191	0.780038	1.008590
С	-1.913865	0.995810	4.451773
Н	-1.876980	2.087756	4.517613
Н	-2.966359	0.695410	4.459878
Н	-1.435678	0.584502	5.346751

A2-Bpin in MeOH

Electronic Energy: -1046.592698

		57	
С	-2.816945	-2.843931	-0.817539
С	-3.693177	-1.824824	-0.011788
В	-1.396291	-1.389146	0.369507
0	-1.565863	-2.194306	-0.882681
0	-2.782310	-1.281310	0.918479
В	-0.804169	0.205074	-0.029512
С	-3.317810	-3.116275	-2.236169
Н	-2.676626	-3.859607	-2.721594
Н	-4.341082	-3.508717	-2.227821
Н	-3.298610	-2.207804	-2.842579
С	-2.665791	-4.184370	-0.078459
Н	-3.592912	-4.768175	-0.079722
Н	-1.891260	-4.772369	-0.581558
Н	-2.345237	-4.014256	0.951187
С	-4.227915	-0.695460	-0.908434
Н	-5.005924	-1.041227	-1.597214
Н	-4.659529	0.084811	-0.272581
Н	-3.415462	-0.249289	-1.487923
С	-4.865626	-2.458942	0.736933
Н	-5.442571	-1.684185	1.252991
Н	-5.541068	-2.979666	0.048678
Н	-4.513811	-3.172413	1.485245
Ν	-1.649924	1.321062	0.295237
Ν	0.404572	0.606951	-0.705546
С	-1.394898	2.644185	0.004176

С	-0.173041	2.953654	-0.673179
С	-2.269354	3.667447	0.339944
С	0.135120	4.305780	-0.994796
С	0.737145	1.910454	-1.033397
С	-1.953902	4.999503	0.017666
Н	-3.196758	3.430389	0.852934
С	1.351901	4.590079	-1.670016
С	-0.786272	5.324018	-0.631139
С	1.914108	2.230450	-1.694118
Н	-2.653620	5.784442	0.291186
С	2.209486	3.569828	-2.005383
Н	1.590343	5.620552	-1.915894
Н	-0.553740	6.356432	-0.874523
Н	2.605738	1.439471	-1.969347
Н	3.138003	3.794507	-2.522856
Н	1.076006	-0.089194	-0.992698
Н	-2.531736	1.104070	0.740535
0	-0.608456	-2.111771	1.405612
С	0.739385	-2.287016	1.114342
Н	1.204285	-2.928660	1.875784
Н	0.902317	-2.768682	0.134597
н	1.304561	-1.336866	1.099434

A2-Bdan in MeOH

Ele	Electronic Energy: -1046.565504			
С	3.651979	-0.661750	-0.675314	
С	3.766774	0.820888	-0.193948	
В	1.629816	0.048343	0.164059	
0	2.407185	-1.078608	-0.081172	
0	2.385321	1.198370	-0.036332	
В	-0.032822	0.030877	0.668510	
С	4.768227	-1.579628	-0.194649	
Н	4.606759	-2.590716	-0.578804	
Н	5.738745	-1.229088	-0.559889	
Н	4.803609	-1.631018	0.895026	
С	3.491743	-0.787677	-2.192458	
Н	4.421052	-0.548406	-2.717128	
Н	3.214497	-1.816970	-2.435122	
Н	2.702010	-0.126518	-2.560266	
С	4.428190	0.956127	1.180138	
Н	5.500390	0.745410	1.134841	
Н	4.293112	1.980157	1.538367	
Н	3.968336	0.278961	1.905700	
С	4.434835	1.763615	-1.185941	
Н	4.472611	2.773913	-0.769028	
Н	5.461162	1.442439	-1.390181	
Н	3.888302	1.804555	-2.129865	
Ν	-0.791073	1.274291	0.190110	
Ν	-0.776171	-1.162057	0.032722	
С	-2.140545	1.298545	0.013337	
С	-2.846230	0.056422	-0.167630	
С	-2.869364	2.492159	-0.039070	
С	-4.251832	0.061641	-0.401764	
С	-2.121396	-1.187743	-0.162961	
С	-4.254529	2.478352	-0.256186	
н	-2.347297	3.435911	0.097607	
С	-4.924950	-1.171846	-0.616150	

С	-4.946579	1.301354	-0.431402
С	-2.828337	-2.373042	-0.396448
Н	-4.788958	3.425373	-0.284016
С	-4.212745	-2.350146	-0.616211
Н	-5.997552	-1.166497	-0.788466
Н	-6.019372	1.303096	-0.602649
н	-2.290231	-3.317742	-0.395535
Н	-4.730946	-3.291152	-0.787260
Н	-0.335020	-2.069954	0.025168
н	-0.380057	2.179754	0.365831
0	-0.141561	0.010664	2.171422
С	0.466353	-1.062997	2.812549
Н	1.551502	-1.128111	2.609639
н	0.338834	-0.966793	3.899419
н	0.037123	-2.037408	2.517232

BpinBdan in MeOH

Ele	ctronic Energ	gy: -931.378	3852
С	-2.768186	-2.935038	-0.729546
С	-4.085816	-2.170313	-0.362993
В	-2.353804	-0.702941	-0.547515
0	-1.886107	-1.855123	-1.128237
0	-3.585855	-0.868197	0.034122
В	-1.499758	0.768801	-0.548341
С	-2.900464	-3.917145	-1.883977
Н	-1.937465	-4.399960	-2.069382
Н	-3.629282	-4.695498	-1.638943
Н	-3.216536	-3.419274	-2.802020
С	-2.112573	-3.617589	0.471395
Н	-2.689172	-4.486927	0.797894
Н	-1.113034	-3.954455	0.185509
Н	-2.012547	-2.927931	1.314137
С	-5.004631	-1.941074	-1.563515
Н	-5.473432	-2.873404	-1.888778
Н	-5.792946	-1.240220	-1.277755
Н	-4.456157	-1.512764	-2.407064
С	-4.871924	-2.771495	0.792581
Н	-5.768804	-2.174837	0.978214
Н	-5.186223	-3.790700	0.548689
Н	-4.282063	-2.798075	1.710163
Ν	-2.055133	1.966266	-0.018946
Ν	-0.184834	0.880206	-1.078609
С	-1.387266	3.186180	-0.000733
С	-0.068644	3.235187	-0.550248
С	-1.958270	4.329469	0.525680
С	0.645355	4.465752	-0.551271
С	0.542806	2.065395	-1.098754
С	-1.242278	5.541984	0.519717
Н	-2.959795	4.287443	0.942763
С	1.954397	4.499169	-1.101364
С	0.025121	5.619478	-0.002161
С	1.818381	2.136399	-1.626138
Н	-1.709663	6.428342	0.938050
С	2.515726	3.359742	-1.622201
Н	2.500174	5.437608	-1.102641
Н	0.568987	6.559026	-0.002469
Н	2.278629	1.245537	-2.042458

Н	3.516876	3.393325	-2.041312
Н	0.279094	0.074191	-1.470619
н	-2.984897	1.969517	0.373600

TS-Bpin-to-Bdan in MeOH

FIG	ctronic Ener	gy: -1046.56	5504
С	4.406966	2.427119	0.050034
С	5.083352	1.231450	0.119686
С	4.375332	0.007257	-0.015783
С	2.964803	0.040552	-0.210858
С	2.279997	1.300434	-0.277696
С	3.017782	2.475469	-0.148236
Н	6.111401	-1.275367	0.185579
Н	4.953488	3.361308	0.152219
н	6.158311	1.206091	0.272817
С	5.036416	-1.249553	0.032625
С	2.234563	-1.184833	-0.366680
н	2.505405	3.432500	-0.196862
С	2.926114	-2.393275	-0.318970
С	4.316059	-2.411207	-0.119088
Н	2.378022	-3.324321	-0.435143
н	4.827000	-3.370094	-0.082994
Ν	0.926059	1.303567	-0.484287
Ν	0.881678	-1.122392	-0.577587
В	0.073138	0.100064	-0.386899
С	-3.774491	-0.641925	-0.474291
C	-3.733675	0.839927	0.033485
В	-1.586306	0.106786	-0.303418
0	-2 424641	1 256741	-0 353460
0	-2 413226	-1 056081	-0 373073
c	-3 851094	0 946474	1 559689
н	-3 628251	1 975661	1 856432
н	-4 858501	0.698833	1 908627
н	-3 127910	0.291527	2 049757
c	-4 762561	1 760162	-0 615942
н	-5 780/35	1 /0/967	-0 122050
н	-4 672401	2 768208	-0 199710
ц	-4 615820	1 925112	-0.100710
C	-4 650497	-1 571923	0 359705
н	-5 601302	-1 230875	0.353703
н	-4 627078	-2 581175	-0.062778
н	-4.027078	-1 627757	1 30201/
C	-4.233220	-1.027757	-1 050076
ц	-3 006036	-0.740034	-1.950070
Ц	5 226502	0 512075	2.294741
п	2 576022	-0.313973	2.103/2/
	-3.370933	-0.008338	1 275002
c	-0.003373	1.006062	2.000402
С Ц	-0.025278	-1.090902	2.000403
п 	1 170045	1 011017	2.3303/0
	-1.1/9045	-1.91101/	
п 	0.411/99	-1.440490	2.144393
	0.418981	-2.01040/	
1	0.493030	2.213000	-0.4039/5

TSA2-Bdan in MeOH

Electronic Energy: -1766.698129

-1.176137	-1.097353	2.773827
0.312514	0.860058	2.417611
0.040317	-0.700103	0.631416
0.297644	0.636506	1.032861
-0.440665	-1.567669	1.665362
-2.814725	-3.097873	-0.599346
-3.820749	-1.961835	-0.196563
-1.700939	-1.076989	-0.447726
-1.636880	-2.368489	-0.969232
-2 948881	-0 872964	0 147442
1 168585	-1 427049	-0 232910
0.980706	-2 //7023	-0 5783/7
2 350295	-0.879080	-0.578547
2.330233	1 544500	1 204022
3.400037 3.1107E1	-1.344333	1 652107
3.110/31	-2.526527	-1.052197
3.097753	-0.961102	-2.203331
4.731909	-1.716344	-0.493228
4.676729	-2.210817	0.813691
5.981411	-1.403819	-1.032691
5.838324	-2.396355	1.556961
3.707831	-2.441464	1.248351
7.147863	-1.586443	-0.292194
6.042441	-1.011864	-2.044901
7.080291	-2.084784	1.005950
5.774644	-2.781991	2.570108
8.109403	-1.335352	-0.729802
7.987056	-2.225863	1.585807
-1.231799	0.590153	-1.518215
2.555025	0.138887	-0.196743
-0.978324	0.402865	3.105624
-2.244304	-1.293771	2.605615
-0.859322	-1.707576	3.630378
1,169843	0.344817	2.885611
0.450565	1.937012	2.582205
-2 161092	1 227956	2 591878
-3 087117	0 921596	3 092570
-2 003052	2 205008	2 782220
-2.003932	1 085222	1 510212
-2.200901	1.085252	1.519212
-0.042333	1 646476	4.019910
-0.755791	1.045475	4.077154
-1.730874	0.207378	5.137448
0.029078	0.049097	5.011632
-3.258779	-3.939678	-1./909/8
-2.494680	-4.689908	-2.014188
-4.194666	-4.463711	-1.571386
-3.402073	-3.323713	-2.680814
-2.431411	-4.015248	0.564409
-3.276273	-4.627646	0.892940
-3.276273 -1.631326	-4.627646 -4.684029	0.892940 0.233442
-3.276273 -1.631326 -2.051339	-4.627646 -4.684029 -3.432126	0.892940 0.233442 1.405159
-3.276273 -1.631326 -2.051339 -4.695506	-4.627646 -4.684029 -3.432126 -1.483253	0.892940 0.233442 1.405159 -1.358663
-3.276273 -1.631326 -2.051339 -4.695506 -5.403377	-4.627646 -4.684029 -3.432126 -1.483253 -2.253863	0.892940 0.233442 1.405159 -1.358663 -1.677459
-3.276273 -1.631326 -2.051339 -4.695506 -5.403377 -5.266542	-4.627646 -4.684029 -3.432126 -1.483253 -2.253863 -0.609519	0.892940 0.233442 1.405159 -1.358663 -1.677459 -1.029775
-3.276273 -1.631326 -2.051339 -4.695506 -5.403377 -5.266542 -4.071748	-4.627646 -4.684029 -3.432126 -1.483253 -2.253863 -0.609519 -1.180415	0.892940 0.233442 1.405159 -1.358663 -1.677459 -1.029775 -2.202208
-3.276273 -1.631326 -2.051339 -4.695506 -5.403377 -5.266542 -4.071748 -4.700249	-4.627646 -4.684029 -3.432126 -1.483253 -2.253863 -0.609519 -1.180415 -2.287936	0.892940 0.233442 1.405159 -1.358663 -1.677459 -1.029775 -2.202208 1.004990
-3.276273 -1.631326 -2.051339 -4.695506 -5.403377 -5.266542 -4.071748 -4.700249 -5.333008	-4.627646 -4.684029 -3.432126 -1.483253 -2.253863 -0.609519 -1.180415 -2.287936 -1.426988	0.892940 0.233442 1.405159 -1.358663 -1.677459 -1.029775 -2.202208 1.004990 1.239221
	-1.176137 0.312514 0.040317 0.297644 -0.440665 -2.814725 -3.820749 -1.700939 -1.636880 -2.948881 1.168585 0.980706 2.350295 3.460057 3.118751 3.697753 4.731909 4.676729 5.981411 5.838324 3.707831 7.147863 6.042441 7.080291 5.774644 8.109403 7.987056 -1.231799 2.555025 -0.978324 -2.244304 -0.859322 1.169843 0.450565 -2.161092 -3.087117 -2.003952 -2.286981 -0.842339 -0.733791 -1.730874 0.029078 -3.258779 -2.494680 -4.194666 -3.402073 -2.431411	-1.176137-1.0973530.3125140.8600580.040317-0.7001030.2976440.636506-0.440665-1.567669-2.814725-3.097873-3.820749-1.961835-1.700939-1.076989-1.636880-2.368489-2.948881-0.8729641.168585-1.4270490.980706-2.4470232.350295-0.8790803.460057-1.5445993.118751-2.5283273.697753-0.9611024.731909-1.7163444.676729-2.2108175.981411-1.4038195.83824-2.3963553.707831-2.4414647.147863-1.5864436.042441-1.0118647.080291-2.0847845.774644-2.7819918.109403-1.3353527.987056-2.225863-1.2317990.5901532.5550250.138887-0.9783240.402865-2.244304-1.293771-0.859322-1.7075761.1698430.3448170.4505651.937012-2.1610921.227956-3.0871170.921596-2.0039522.295098-2.2869811.085232-0.8423390.585900-0.7337911.645475-1.7308740.2073780.0290780.049097-3.258779-3.939678-2.494680-4.68908-4.194666-4.463711-3.402073-3.323713-

н	-4.105327	-2.523798	1.889250
Ν	-1.991755	1.698465	-0.890214
Ν	0.138404	1.025604	-1.874225
С	-1.458134	2.885190	-0.483346
С	-0.085929	3.171161	-0.783164
С	-2.210310	3.839722	0.200323
С	0.490285	4.406418	-0.375609
С	0.711754	2.197805	-1.467115
С	-1.631854	5.057724	0.589851
Н	-3.248314	3.624941	0.438758
С	1.859831	4.657933	-0.662344
С	-0.315800	5.351071	0.315511
С	2.051365	2.484775	-1.722806
Н	-2.244756	5.780709	1.122752
С	2.608638	3.708323	-1.317268
Н	2.300489	5.601236	-0.352519
Н	0.122506	6.295782	0.624287
Н	2.662054	1.749268	-2.239496
Н	3.657083	3.902012	-1.530547
Н	0.807317	0.320629	-2.147663
Н	-2.931746	1.506611	-0.577585
0	-1.993466	-0.028436	-2.587258
С	-1.316576	-0.822395	-3.524477
Н	-0.778917	-1.649900	-3.044894
Н	-2.055301	-1.253959	-4.208130
Н	-0.602034	-0.229987	-4.113678

TS	A2-Bpin in	MeOH	
Ele	ctronic Ener	gy: -1766.68	9245
С	-0.898364	-1.045610	2.614890
С	1.121609	0.398597	2.713243
В	0.437353	-0.426571	0.593726
0	0.969670	0.674348	1.345916
0	-0.244450	-1.403378	1.421859
С	1.308088	3.082071	-1.098870
С	0.068007	3.613366	-0.259438
В	-0.363737	1.509805	-1.173876
0	1.028009	1.708690	-1.314106
0	-0.916260	2.592579	-0.416725
С	1.461029	-1.202133	-0.362905
Н	1.174517	-2.187344	-0.751307
С	2.689248	-0.779755	-0.669856
С	3.694298	-1.522904	-1.508723
Н	3.246273	-2.458591	-1.869306
Н	3.946788	-0.935659	-2.401658
С	4.979408	-1.840884	-0.765395
С	4.939032	-2.325553	0.545696
С	6.226088	-1.673578	-1.372487
С	6.110282	-2.641911	1.227448
Н	3.974646	-2.443359	1.032445
С	7.402176	-1.987661	-0.694159
Н	6.277028	-1.290995	-2.388882
С	7.348262	-2.474151	0.609293
Н	6.057476	-3.016941	2.245227
Н	8.361198	-1.847797	-1.183929
Н	8.262916	-2.716908	1.141135
В	-1.295027	-0.158555	-0.413873

0	-1.103964	1.246806	-2.383120
С	-0.432804	0.548464	-3.397795
Н	0.385222	1.144757	-3.822456
Н	0.000666	-0.394655	-3.038864
Н	-1.149014	0.312798	-4.191882
Н	3.011558	0.189655	-0.291436
С	-0.221509	0.114535	3.397492
Н	-1.944546	-0.781294	2.402353
Н	-0.914281	-1.949539	3.238135
Н	1.797918	-0.459425	2.870095
Н	1.591482	1.273252	3.184805
С	-1.095765	1.371705	3.349520
Н	-2.093806	1.169437	3.754354
Н	-0.647646	2.182687	3.935571
Н	-1.196267	1.721828	2.320918
С	0.017613	-0.293590	4.853740
H	0.499642	0.514729	5.415348
н	-0.929280	-0.527361	5.352977
н	0.658273	-1.180383	4.916549
С	2.646944	3.182471	-0.371167
H	3.436162	2.779675	-1.013935
н	2.899557	4.221152	-0.133835
н	2 619385	2 592024	0 545528
C	1.432320	3.741047	-2.480856
н	1 665754	4 808290	-2 416287
н	2 238734	3 246130	-3 030287
н	0 511034	3 614819	-3 056281
c	0 364340	3 785561	1 230533
н	1 081666	4 593744	1 405323
н	-0 565698	1 030033	1 7/9300
н	0.745904	2 853163	1 641589
r c	-0 52/1991	A 92/126	-0 785351
ц	-0.524551	5 106386	-0.783331
н	0.201028	5 7/1562	-0.174842
ц	-0.858686	1 822/70	-0.723108
N	-0.858080	-1 2802479	-1.020733
N	2 155120	-1.380348	0 2200/7
C IN	-2.433138	-1 001178	0.220047
c c	2 019607	1 27/2/7	0.491040
c c	2 042216	2 105111	1 950067
c c	-3.042310	1 070929	-1.830007
c c	-3.200007	-1.979626	-0.500209
c c	-3.710300	-0.146502	1 050223
	-4.31/380	-3.775002	-1.858233
н С	-2.2165/1		-2.3/3418
C C	-0.2/303/	-1.341357	0.188182
C	-5.382090	-3.199664	-1.205643
	-4./85269	0.443228	
Н	-4.45/332	-4./09/63	-2.3955/8
C	-6.054513	-0.160940	0.858403
н	-7.257683	-1./99223	0.1/5282
Н	-6.362766	-3.665752	-1.220141
Н	-4.629469	1.3/2799	1.426216
H	-6.8/5678	0.320291	1.382651
H	-2.363440	1.322195	0.631576
Н	-0.851758	-1.898314	-1.5/4989

References

- [1] D. Chen, G. Xu, Q. Zhou, L.W. Chung, W. Tang, J. Am. Chem. Soc. 2017, 139, 9767
- [2] H. Shimizu, T. Igarashi, T. Miura, M. Murakami, Angew. Chem. Int. Ed. 2011, 50, 11465.
- [3] M. Kovalenko, D. Yarmoliuk, D. Serhiichuk, D. Cherneko, V. Smyrnov, A. Breslavskyi,
 O. Hryshchuk, I. Kleban, Y. Rassukana, A. Tymtsunik, A. Tolmachev, Y. Kuchkovska,
 O. Grygorenko, *Eur. J. Org. Chem.*, **2019**, 5624.
- [4] N. Praveen Ganesh, S. Hond, P. Y. Chavant, J. Org. Chem. 2007, 72, 4510.
- [5] M. J. Frisch; G. W. Trucks; H. B. Schlegel; G. E. Scuseria; M. A. Robb; J. R. Cheeseman; G. Scalmani; V. Barone; G. A. Petersson; H. Nakatsuji; X. Li; M. Caricato; A. V. Marenich; J. Bloino; B. G. Janesko; R. Gomperts; B. Mennucci; H. P. Hratchian; J. V. Ortiz; A. F. Izmaylov; J. L. Sonnenberg; D. Williams-Young; F. Ding; F. Lipparini; F. Egidi; J. Goings; B. Peng; A. Petrone; T. Henderson; D. Ranasinghe; V. G. Zakrzewski; . Gao; N. Rega; G. Zheng; W. Liang; M. Hada; M. Ehara; K. Toyota; R. Fukuda; J. Hasegawa; M. Ishida; T. Nakajima; Y. Honda; O. Kitao; H. Nakai; T. Vreven; K. Throssell;, J. A., Jr. Montgomery; J. E. Peralta; F. Ogliaro; M. J. Bearpark; J. J. Heyd; E. N. Brothers; K. N. Kudin; V. N. Staroverov; T. A. Keith; R. Kobayashi; J. Nor-mand; K. Raghavachari; A. P. Rendell; J. C. Burant; S. S. Iyengar; J. Tomasi; M. Cossi; J. M. Millam; M. Klene; C. Adamo; R. Cammi; J. W. Ochterski; R. L. Martin; K. Morokuma; O. Farkas; J. B. Foresman; D. J. Fox Gaussian 16, Revision A.03; Gaussi-an, Inc., Wallingford CT, 2016. R. G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, U.K., **1989**.
- [6] R. G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, U.K., **1989**.
- [7] J. D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615-6620.
- [8] a) M. S. Gordon, *Chem. Phys. Lett.* **1980**, 76, 163. b) R. C. J. Binning, L. A. Curtiss, *J. Comput. Chem.* **1990**, 11, 1206. c) K. Fukui, *J. Phys. Chem.* **1970**, 74, 4161.
- [9] a) M. Caricato, J. Chem. Theory Comput. 2012, 8, 11. b) J. Tomasi, S. Miertus, Chem. Phys. 1982, 65, 2. c) J. L. Pascual-ahuir, E. Silla, I. Tuñon, 1994, 15, 10.
- [10] M. Álvarez-Moreno, C. de Graaf, N. Lopez, F. Maseras, J. M. Poblet, C. Bo, J. Chem. Inf. Model. 2015, 55, 95.