Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Light-induced synthesis of unsymmetrical organic carbonates from alcohols, methanol and

CO₂ under ambient conditions

Sandhya Saini,^{a,b} Nand Kishor Gour,^c Shafiur Rehman Khan,^a Ramesh Chandra Deka^c and Suman L Jain^{a*}

^aChemical & Material Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun-248005, India. ^bAcademy of Scientific and Innovative Research, Ghaziabad- 201002, India. ^cDepartment of Chemical Sciences, Tezpur University, Napaam, Tezpur – 784028, Assam *Corresponding Author: <u>suman@iip.res.in</u>, +911352525788

Table of contents:

Experimental Procedure	
Computational details	S4
¹ H & ¹³ C NMR spectra of methyl phenyl carbonateS5	
¹ H NMR spectra of diphenyl carbonate	
¹ H & ¹³ C NMR spectra of 4-chlorophenyl methyl carbonateS7	
¹ H & ¹³ C NMR spectra of 4-bromophenyl methyl carbonate	
¹ H & ¹³ C NMR spectra of methyl o-tolyl carbonate	1
¹ H & ¹³ C NMR spectra of 4-methoxyphenyl-methyl carbonateS1	0
¹ H & ¹³ C NMR spectra of methyl p-tolyl carbonateS1	1
¹ H & ¹³ C NMR spectra of cyclohexyl methyl carbonate S12	
¹ H & ¹³ C NMR spectra of benzyl methyl carbonateS13	
¹ H & ¹³ C NMR spectra of 4-chlorobenzyl methyl carbonateS14	4
¹ H & ¹³ C NMR spectra of methyl(4-methylbenzyl) carbonateS15	5
¹ H & ¹³ C NMR spectra of methyl naphthalen-2-yl carbonate S16	
¹ H & ¹³ C NMR spectra of 6-bromonaphthalen-2-yl-methyl carbonateS17	7
¹ H & ¹³ C NMR spectra of 6-methoxynaphthalen-2-yl methyl carbonate	
References	9

1.0 Experimental Procedure for the synthesis of methyl carbonates from CO₂

In a typical experiment, TMG (25 mol%) in DMSO (20 ml) was taken in a 60 ml vessel followed by the addition of phenol (10 mmol) and methanol (3 ml). The mixture was flushed with nitrogen to evacuate trapped air and other gases from the reaction mixture. After that the reaction mixture was saturated with CO_2 by purging and the reaction vessel was sealed, equipped with CO_2 filled balloon. The reaction vessel was irradiated with 20 W LED light for 2h. The intensity of the LED light at the reaction flask was measured to be 86 W/m² by intensity meter. The reaction was continued initially for 12 h followed by monitoring the progress of the reaction by thin layer chromatography using silica gel. After completion of the reaction, the solvent was evaporated under reduced pressure and the concentrated residue was subjected to column chromatography on a silica gel (100-200 mesh) column using 9:1 hexane-ethyl acetate solvent mixture as eluent to afford the methyl phenyl carbonate in 78% isolated yield.

2.0 Computational Details:

Structures of all reaction species were optimized using hybrid meta-M06-2X exchangecorrelation functional [1] along with 6-311++G(d,p) basis sets. Frequency calculations of all optimized species were further performed at the same level of theory. We have obtained real and positive frequency of all reaction species, except the transition state (TS). We have found only one negative frequency during the frequency calculation of TS. To validate the smooth connection of transition state with reactants and products, intrinsic reaction coordinate (IRC) calculations [2] are also performed for TSs at the same level of theory. All the DFT calculations were performed using GAUSSIAN 09 program package [3].

Figure S1: Optimized geometries along with some important bond lengths of all species at M06-2X/6-311++G(d,p) level of theory.

Table S1: Enthalpy and Gibbs Free energy changes (in kcal mol⁻¹) of reaction at M06-2X/6-311++G (d,p) level of theory.

Reaction Channels	$\Delta_r H^0$	$\Delta_r G^0$
$TMG + CO_2 \rightarrow TMG - CO_2$	-62.42	-54.68
$TMG-CO_2+C_6H_5OH \rightarrow TMG-C(OH)(O)(OC_6H_5)$	-43.35	-20.64
$TMG-C(OH)(O)(OC_6H_5) \rightarrow TMG-C(O)(OCH_3)(OC_6H_5) + H_2O$	-46.30	-21.80
$TMG-C(O)(OCH_3)(OC_6H_5) \rightarrow TMG + C_6H_5O(CO)OCH_3$	-53.21	-41.62

3.0 Characterization of the products

Figure S1. ¹H NMR spectrum of methyl phenyl carbonate

Figure S2. ¹³C NMR spectrum of methyl phenyl carbonate

Figure S3. ¹H NMR spectra of diphenyl carbonate

Figure S4. ¹H NMR spectra of 4-chlorophenyl methyl carbonate

Figure S5. ¹³C NMR spectra of 4-chlorophenyl methyl carbonate

Figure S6. ¹H NMR spectra of 4-bromophenyl methyl carbonate

Figure S7. ¹³C NMR spectra of 4-bromophenyl methyl carbonate

Figure S8. ¹H NMR spectra of methyl o-tolyl carbonate

Figure S9. ¹³C NMR spectra of methyl o-tolyl carbonate

Figure S10. ¹H NMR spectra of 4-methoxyphenyl-methyl carbonate

Figure S11. ¹³C NMR spectra of 4-methoxyphenyl-methyl carbonate

Figure S12. ¹H NMR spectra of methyl p-tolyl carbonate

Figure S13. ¹³C NMR spectra of methyl p-tolyl carbonate

Figure S14. ¹H NMR spectra of cyclohexyl methyl carbonate

Figure S15. ¹³C NMR spectra of cyclohexyl methyl carbonate

Figure S16. ¹H NMR spectra of benzyl methyl carbonate

Figure S17. ¹³C NMR spectra of benzyl methyl carbonate

Figure S18. ¹H NMR spectra of 4-chlorobenzyl methyl carbonate

Figure S19. ¹³C NMR spectra of 4-chlorobenzyl methyl carbonate

Figure S20. ¹H NMR spectra of methyl(4-methylbenzyl) carbonate

Figure S21. ¹³C NMR spectra of methyl(4-methylbenzyl) carbonate

Figure S22. ¹H NMR spectra of methyl naphthalen-2-yl carbonate

Figure S23. ¹³C NMR spectra of methyl naphthalen-2-yl carbonate

Figure S24. ¹H NMR spectra of 6-bromonaphthalen-2-yl-methyl carbonate

Figure S25. ¹³C NMR spectra of 6-bromonaphthalen-2-yl-methyl carbonate

Figure S26. ¹H NMR spectra of 6-methoxynaphthalen-2-yl methyl carbonate

Figure S27. ¹³C NMR spectra of 6-methoxynaphthalen-2-yl methyl

References:

- 1. Y. Zhao, D.G. Truhlar, Theor. Chem. Acc. 120 (2008) 215.
- 2. Gonzalez C, Schlegel HB An improved algorithm for reaction path following. *The Journal of Chemical Physics* 90 (1989) 2154-2161.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman,
 J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian09,
 Revision D.01, *Gaussian*, Inc.: Wallingford, CT, 2009.