Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Iodine-Mediated Electrochemical C(sp³)-H Cyclization: Access to

${\bf Quinazolinone\text{-}Fused}\ N\text{-}{\bf Heterocycles}$

Yan Zhang,^a Zhenghong Zhou,^a Zhibin Li,^a Kangfei Hu,^a Zhenggen Zha **a and Zhiyong Wang **a **Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China

Table of Contents

General Information	S2
Experimental Procedure	S2
Optimization of reaction conditions	S3
Cyclic Voltammetric Experiment	S4
Detail Descriptions for Products	S5
References	S17
Copies of Product NMR Spectra	S18

General Information

Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. NMR spectra were recorded on a Bruker AV-500 (1 H: 500 MHz, 13 C: 125 Hz) spectrometer using TMS as internal reference. Chemical shifts (δ) and coupling constants (J) were expressed in ppm and Hz, respectively. The following calibration was used: CDCl₃ δ = 7.26 and 77.16 ppm, DMSO δ = 2.50 and 39.70 ppm. High resolution mass spectra (HRMS) were measured using electrospray ionization (ESI) and the time-of-flight (TOF) mass analyzer. The anode electrode and cathode electrode all are Pt ($1.0 \times 1.0 \text{ cm}^2$). These electrodes are commercially available from GaossUnion, China.

Experimental Procedure

Typical Procedure A for the Electrosynthesis of 2-Quinolinyl-quinazolin-4(3H)-ones: An undivided cell was equipped with a magnet stirrer, platinum plate $(1.0 \times 1.0 \text{ cm}^2)$ electrode, as the working electrode and counter electrode. The substrate 2-aminobenzamide 1a (0.3 mmol), 2-methylquinoline 2a (0.33 mmol), $H_2C_2O_4$ (0.6 mmol), electrolyte NH₄I (0.06 mmol) and NH₄BF₄ (0.3 mmol) were added to the solvent DMF (3 mL). The electrolysis was conducted in an undivided cell at oil bath $(100 \, ^{\circ}\text{C})$. After the reaction was completed, the reaction system was allowed to attain room temperature and extracted with ethyl acetate $(3 \times 20 \text{ mL})$, and then the organic layer was washed with brine $(2 \times 10 \text{ mL})$ and dried with anhydrous Na₂SO₄. Subsequently, the solvent was removed under reduced pressure and the remaining crude product was purified by column chromatography over silica gel (PE/EtOAc = 5:1) to afford the corresponding products.

Typical Procedure B for the Electrosynthesis of 2-Pyridinyl-quinazolin-4(3H)-ones: An undivided cell was equipped with a magnet stirrer, platinum plate $(1.0 \times 1.0 \text{ cm}^2)$ electrode, as the working electrode and counter electrode. The substrate 2-aminobenzamide 1a (0.3 mmol), 2-methylpyridine 2r (0.6 mmol), Ph₂PO₂H (0.6 mmol), electrolyte KI (0.3 mmol) were added to the solvent DMSO (3 mL). The electrolysis was conducted in an undivided cell at oil bath (120 °C). After the reaction was completed, the reaction system was allowed to attain room temperature and extracted with ethyl acetate $(3 \times 20 \text{ mL})$, and then the organic layer was washed with brine $(2 \times 10 \text{ mL})$ and dried with anhydrous Na₂SO₄. Subsequently, the solvent was removed under reduced pressure and the remaining crude product was purified by column chromatography over silica gel (PE/EtOAc = 8:1) to afford the corresponding products.

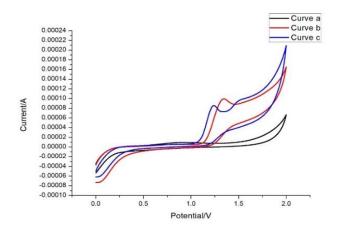

Gram-scale synthesis of 3aa and 3an: An undivided cell was equipped with a magnet stirrer, platinum plate $(1.5 \times 1.5 \text{ cm}^2)$ electrode, as the working electrode and counter electrode. The substrate 2-aminobenzamide **1a** (5 mmol), *N*-heteroaromatics **2** (5.5 mmol), NH₄I (1.0 mmol) and NH₄BF₄ (5 mmol) were added to the solvent DMF (50 mL). The electrolysis was electrolyzed (J = 10 mA/cm^2 , I = 23 mA) in an undivided cell at oil bath (100 °C). After the reaction was completed (about 2 days), the reaction system was allowed to attain room temperature. Then the reaction mixture was concentrated under reduced pressure. H₂O (100 mL) was added the reaction system was extracted with ethyl acetate ($3 \times 100 \text{ mL}$). Subsequently, the organic layer was washed with brine ($2 \times 100 \text{ mL}$) and dried with anhydrous Na₂SO₄. Finally, the solvent was removed under reduced pressure and the remaining crude product was purified by column chromatography over silica gel (PE/EtOAc = 5:1) to afford the corresponding products.

Table S1. Optimization of reaction conditions

Entry	Variations from standard conditions	Yield(%)b
1	None	93
2	DMA as the solvent	68
3	NMP as the solvent	trace
4	Bu ₄ NI as the electrolyte	81
5	KI as the electrolyte	76
6	NH ₄ Br, NH ₄ Cl as the electrolyte	n. d ^c
7	without acid	34
8	0.2 equivalent NH ₄ I with 1.0 equivalent NH ₄ BF ₄ instead of 1.0 equivalent NH ₄ I	95
9	0.1 equivalent NH ₄ I instead of 0.2 equivalent NH ₄ I	35
10	0.3 equivalent NH ₄ I instead of 0.2 equivalent NH ₄ I	91
11	90°C instead of 100°C	67
12	110°C instead of 100°C	86
13	5mA instead of 10mA	90
14	15mA instead of 10mA	73
15	without electricity	n.d

^a Reaction conditions: 1a (0.3 mmol), 2a (0.33 mmol), $H_2C_2O_4$ (0.6 mmol), NH_4I (0.3 mmol) and DMF (3 mL); the electrolysis was conducted in an undivided cell at an oil bath (T = 100 °C) for 10 h, Pt/Pt, air. ^b The isolated yields after column chromatography. ^c Not detected.

Figure S1. Cyclic Voltammetric (CV) Experiment

Figure S1. Cyclic voltammograms of intermediate **5** and related compounds in 0.1 M NH₄BF₄/DMF using a Pt disk as the working electrode, and Pt wire and Ag/AgCl as the counter and reference electrodes, at a scan rate of 100 mV/s: background (curve a), intermediate **5** (5 mmol/L) (curve b), and intermediate **5** (5 mmol/L) and H₂C₂O₄ (10 mmol/L) (curve c).

Figure S1 showed that the oxidation wave of intermediate 5 was decreased in the presence of oxalic acid, indicating that the addition of oxalic acid was beneficial to the oxidation of the intermediate (curves b and c in Figure S1).

Detail descriptions for products

2-(quinolin-2-yl)quinazolin-4(3H)-one (3aa)1:

The title compound was prepared according to the general working procedure A and purified by column chromatography (petroleum ether/ethyl acetate = 5/1) to give the product as white solid. 96% yield, 78.7 mg, ${}^{1}H$ NMR (500 MHz, CDCl₃) δ 11.20 (s, 1H), 8.64 (d, J = 8.5 Hz, 1H), 8.36 (dd, J = 13.7, 8.2 Hz, 2H), 8.15 (d, J = 8.4 Hz, 1H), 7.92 - 7.84 (m, 2H), 7.80 (dd, J = 13.6, 7.0 Hz, 2H), 7.63 (t, J = 7.5 Hz, 1H), 7.53 (t, J = 7.5 Hz, 1H). ${}^{13}C$ NMR (125 MHz, CDCl₃) δ 161.6 (s), 149.3 (s), 149.1 (s), 148.2 (s), 146.9 (s), 137.8 (s), 134.7 (s), 130.6 (s), 129.8 (s), 129.4 (s), 128.4 (s), 128.4 (s), 127.9 (s), 126.9 (s), 122.8 (s), 118.6 (s).

6-Fluoro-2-(quinolin-2-yl)quinazolin-4(3H)-one (3ba)²:

The title compound was prepared according to the general working procedure A and purified by column chromatography (petroleum ether/ethyl acetate = 5/1) to give the product as yellow solid. 95% yield, 83.3 mg. ¹H NMR (500 MHz, CDCl₃) δ 11.23 (s, 1H), 8.61 (d, J = 8.6 Hz, 1H), 8.34 (d, J = 8.5 Hz, 1H), 8.14 (d, J = 8.3Hz, 1H), 7.99 (dd, J = 8.3, 2.9 Hz, 1H), 7.92 - 7.85 (m, 2H), 7.82 - 7.78 (m, 1H), 7.67 - 7.63 (m, 1H), 7.54 - 7.49 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 161.5 (d, J = 248.4 Hz), 160.8 (d, J = 3.2 Hz), 148.6 (s), 147.9 (s), 146.9 (s), 145.8 (s), 137.8 (s), 130.7 (d, J = 5.3 Hz), 129.8 (s), 129.4 (s), 128.5 (s), 127.9 (s), 124.2 (d, J = 8.4 Hz), 123.2 (d, J = 23.9 Hz), 118.5 (s), 112.1 (d, J = 23.7Hz).

6-chloro-2-(quinolin-2-yl)quinazolin-4(3H)-one (3ca)¹:

The title compound was prepared according to the general working procedure A and purified by column chromatography (petroleum ether/ethyl acetate = 5/1) to give the product as yellow solid. 67% yield, 61.8 mg. ¹H NMR (500 MHz, CDCl₃) δ 11.26 (s, 1H), 8.63 (d, J = 8.3 Hz, 1H), 8.36 (d, J = 8.4 Hz, 1H), 8.34 (s, 1H), 8.16 (d, J = 8.3 Hz, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.86 - 7.77 (m, 2H), 7.74 (d, J = 8.5 Hz, 1H), 7.66 (t, J = 7.3 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 160.5 (s), 149.4 (s), 147.8 (s), 147.7 (s), 146.9 (s), 137.9 (s), 135.2 (s), 133.6 (s), 130.8 (s), 129.9 (s), 129.8 (s), 129.5 (s), 128.6 (s), 127.9 (s), 126.5 (s), 123.9 (s), 118.6 (s).

6-bromo-2-(quinolin-2-yl)quinazolin-4(3H)-one (3da):

S5

The title compound was prepared according to the general working procedure A and purified by column chromatography (petroleum ether/ethyl acetate = 5/1) to give the product as white solid. 81% yield, 85.3 mg. ¹H NMR (500 MHz, CDCl₃) δ 11.26 (s, 1H), 8.62 (d, J = 8.6 Hz, 1H), 8.50 (s, 1H), 8.36 (d, J = 8.5 Hz, 1H), 8.15 (d, J = 8.5 Hz, 1H), 7.94 - 7.86 (m, 2H), 7.82 (t, J = 7.6 Hz, 1H), 7.74 (d, J = 8.6 Hz, 1H), 7.66 (t, J = 7.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 160.4 (s), 149.5 (s), 148.1 (s), 147.8 (s), 146.9 (s), 137.9 (d, J = 3.2 Hz), 130.8 (s), 130.1 (s), 129.8 (s), 129.6 (s), 129.5 (s), 128.6 (s), 127.9 (s), 124.2 (s), 121.4 (s), 118.6 (s). HRMS calcd. $[C_{17}H_{10}BrN_3O + H]^+$: 352.0085, found: 352.0084. 6-iodo-2-(quinolin-2-yl)quinazolin-4(3H)-one (3ea)²:

The title compound was prepared according to the general working procedure A and purified by column chromatography (petroleum ether/ethyl acetate = 5/1) to give the product as yellow solid. 83% yield, 99.3 mg. ¹H NMR (500 MHz, CDCl₃) δ 11.26 (s, 1H), 8.70 (d, J = 2.0 Hz, 1H), 8.63 (d, J = 8.6 Hz, 1H), 8.36 (d, J = 8.5 Hz, 1H), 8.15 (d, J = 8.5 Hz, 1H), 8.06 (dd, J = 8.5, 2.1 Hz, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.84 - 7.79 (m, 1H), 7.68 - 7.63 (m, 1H), 7.60 (d, J = 8.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 160.1 (s), 149.6 (s), 148.5 (s), 147.7 (s), 146.9 (s), 143.6 (s), 137.9 (s), 135.9 (s), 130.8 (s), 130.0 (s), 129.8 (s), 129.5 (s), 128.6 (s), 127.9 (s), 124.3 (s), 118.6 (s), 92.5 (s).

2-(quinolin-2-yl)-6-(trifluoromethyl)quinazolin-4(3H)-one (3fa):

The title compound was prepared according to the general working procedure A and purified by column chromatography (petroleum ether/ethyl acetate = 5/1) to give the product as yellow solid. 58% yield, 59.4 mg. ¹H NMR (500 MHz, CDCl₃) δ 11.36 (s, 1H), 8.69 - 8.63 (m, 2H), 8.39 (d, J = 8.5 Hz, 1H), 8.17 (d, J = 8.4 Hz, 1H), 8.03 - 7.94 (m, 2H), 7.92 (d, J = 8.1 Hz, 1H), 7.83 (t, J = 7.3 Hz, 1H), 7.67 (t, J = 7.3 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 160.8 (s), 151.5 (s), 150.9 (s), 147.6 (s), 146.9 (s), 138.1 (s), 138.0 (s), 131.0 (q, J = 3.2 Hz), 130.9 (s), 129.9 (s), 129.7 (s), 129.5 (q, J = 33.2 Hz), 129.4 (s), 129.3 (s), 128.8 (s), 128.0 (s), 123.8 (q, J = 263.5 Hz), 118.7 (s). HRMS calcd. [C₁₈H₁₀F₃N₃O + H]⁺: 342.0854, found: 342.0859.

5-bromo-2-(quinolin-2-yl)quinazolin-4(3H)-one (3ha):

The title compound was prepared according to the general working procedure A and purified by column chromatography (petroleum ether/ethyl acetate = 5/1) to give the product as white solid. 71% yield, 75.0 mg. ¹H NMR (500 MHz, CDCl₃) δ 11.08 (s, 1H), 8.61 (d, J= 8.4 Hz, 1H), 8.35 (d, J= 8.3 Hz, 1H), 8.19 (d, J= 8.1 Hz, 1H), 7.90 (d, J= 8.0 Hz, 1H), 7.82 (dd, J= 14.5, 7.7 Hz, 2H), 7.73 (d, J= 7.6 Hz, 1H), 7.65 (t, J= 7.2 Hz, 1H), 7.55 (t, J= 7.7 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 159.7 (s), 151.4 (s), 149.4 (s), 147.5 (s), 146.9 (s), 137.9 (s), 134.4 (s), 134.2 (s), 130.8 (s), 129.9 (s), 129.5 (s), 128.6 (s), 128.3 (s), 127.9 (s), 121.8 (s), 120.9 (s), 118.6 (s). HRMS calcd. [C₁₇H₁₀BrN₃O + H]⁺: 352.0085, found: 352.0089.

8-fluoro-2-(quinolin-2-yl)quinazolin-4(3H)-one (3ia):

The title compound was prepared according to the general working procedure A and purified by column chromatography (petroleum ether/ethyl acetate = 5/1) to give the product as yellow solid. 69% yield, 60.2 mg. ¹H NMR (500 MHz, CDCl₃) δ 11.26 (s, 1H), 8.69 (d, J = 8.5 Hz, 1H), 8.35 (d, J = 8.6 Hz, 1H), 8.14 (d, J = 8.1 Hz, 2H), 7.90 (d, J = 8.0 Hz, 1H), 7.83 - 7.77 (m, 1H), 7.64 (t, J = 7.2 Hz, 1H), 7.56 - 7.50 (m, 1H), 7.50 - 7.44 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 160.6 (d, J = 3.1Hz), 157.8 (d, J = 256.3Hz), 149.4 (s), 147.8 (s), 146.8 (s), 138.7 (d, J = 11.7 Hz), 137.9 (s), 130.7 (s), 129.8 (s), 129.6 (s), 128.6 (s), 127.9 (s), 127.7 (d, J = 7.5Hz), 124.7 (s), 122.4 (d, J = 4.3 Hz), 120.3 (d, J = 19.2 Hz), 118.8 (s). HRMS calcd. $[C_{17}H_{10}FN_3O + H]^+$: 292.0886, found: 292.0887.

6-methyl-2-(quinolin-2-yl)quinazolin-4(3H)-one (3ja)1:

The title compound was prepared according to the general working procedure A and purified by column chromatography (petroleum ether/ethyl acetate = 5/1) to give the product as white solid. 90% yield, 77.8 mg. ¹H NMR (500 MHz, CDCl₃) δ 11.19 (s, 1H), 8.64 (d, J = 8.6 Hz, 1H), 8.35 (d, J = 8.6 Hz, 1H), 8.17 (s, 1H), 8.15 (d, J = 8.5 Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.83 - 7.76 (m, 2H), 7.67 - 7.60 (m, 2H), 2.53 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 161.6 (s), 148.4 (s), 148.3 (s), 147.2 (s), 146.9 (s), 138.2 (s), 137.7 (s), 136.2 (s), 130.6 (s), 129.8 (s), 129.4 (s), 128.3 (s), 128.2 (s), 127.9 (s), 126.5 (s), 122.5 (s), 118.5 (s), 21.6 (s).

6-methoxy-2-(quinolin-2-yl)quinazolin-4(3H)-one (3ka)²:

The title compound was prepared according to the general working procedure A and purified by column chromatography (petroleum ether/ethyl acetate = 5/1) to give the product as white solid. 89% yield, 80.9 mg. ¹H NMR (500 MHz, CDCl₃) δ 11.20 (s, 1H), 8.61 (d, J = 8.5 Hz, 1H), 8.32 (d, J = 8.5 Hz, 1H), 8.13

(d, J = 8.4 Hz, 1H), 7.87 (d, J = 8.1 Hz, 1H), 7.84 - 7.75 (m, 2H), 7.73 (s, 1H), 7.62 (t, J = 7.4 Hz, 1H), 7.39 (d, J = 8.8 Hz, 1H), 3.95 (s, 3H). ¹³C **NMR (125 MHz, CDCl₃)** δ 161.4 (s), 159.2 (s), 148.2 (s), 147.2 (s), 146.9 (s), 143.6 (s), 137.7 (s), 130.6 (s), 129.9 (s), 129.7 (s), 129.3 (s), 128.2 (s), 127.9 (s), 124.9 (s), 123.7 (s), 118.5 (s), 106.5 (s), 56.0 (s).

7-dimethoxy-2-(quinolin-2-yl)quinazolin-4(3H)-one (3la):

The title compound was prepared according to the general working procedure A and purified by column chromatography (petroleum ether/ethyl acetate = 5/1) to give the product as white solid. 75% yield, 74.9 mg. ¹H NMR (500 MHz, CDCl₃) δ 11.17 (s, 1H), 8.59 (d, J= 8.6 Hz, 1H), 8.33 (d, J= 8.6 Hz, 1H), 8.14 (d, J= 8.5 Hz, 1H), 7.89 (d, J= 8.1 Hz, 1H), 7.80 (t, J= 7.6 Hz, 1H), 7.70 (s, 1H), 7.64 (t, J= 7.4 Hz, 1H), 7.29 (s, 1H), 4.06 (s, 3H), 4.04 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 161.0 (s), 155.2 (s), 149.8 (s), 148.2 (s), 148.1 (s), 147.0 (s), 145.3 (s), 137.7 (s), 130.6 (s), 129.8 (s), 129.3 (s), 128.3 (s), 127.9 (s), 118.3 (s), 116.2 (s), 108.7 (s), 105.9 (s), 56.6 (s), 56.5 (s). HRMS calcd. [C₁₉H₁₅N₃O₃ + H]⁺: 334.1192, found: 334.1197.

3-methyl-2-(quinolin-2-yl)quinazolin-4(3H)-one (3ma)1:

The title compound was prepared according to the general working procedure A and purified by column chromatography (petroleum ether/ethyl acetate = 5/1) to give the product as white solid. 89% yield, 76.6 mg. 1 H NMR (500 MHz, CDCl₃) δ 8.43 - 8.35 (m, 2H), 8.16 (d, J = 8.4 Hz, 1H), 7.98 - 7.91 (m, 2H), 7.81 (t, J = 7.7 Hz, 1H), 7.78 (d, J = 3.8 Hz, 2H), 7.66 (t, J = 7.5 Hz, 1H), 7.51 - 7.58 (m, 1H), 3.72 (s, 3H). 13 C NMR (125 MHz, CDCl₃) δ 162.8 (s), 154.1 (s), 153.3 (s), 147.3 (s), 147.1 (s), 137.8 (s), 134.4 (s), 130.6 (s), 129.9 (s), 128.1 (s), 128.1 (s), 127.9 (s), 127.8 (s), 127.6 (s), 127.0 (s), 121.4 (s), 121.2 (s), 33.7 (s).

3-propyl-2-(quinolin-2-yl)quinazolin-4(3H)-one (3na)²:

The title compound was prepared according to the general working procedure A and purified by column chromatography (petroleum ether/ethyl acetate = 5/1) to give the product as white solid. 91% yield, 86.0 mg. 1 H NMR (500 MHz, CDCl₃) δ 8.38 (dd, J = 8.1, 4.5 Hz, 2H), 8.15 (d, J = 8.5 Hz, 1H), 7.93 (d, J = 8.4 Hz, 2H), 7.84 - 7.75 (m, 3H), 7.70 - 7.63 (m, 1H), 7.54 (ddd, J = 8.1, 5.7, 2.6 Hz, 1H), 4.39 - 4.11 (m, 2H), 1.90 - 1.75 (m, 2H), 0.79 (t, J = 7.4 Hz, 3H). 13 C NMR (125 MHz, CDCl₃) δ 162.4 (s), 154.2 (s), 153.4 (s), 147.1 (s), 147.0 (s), 137.7 (s), 134.4 (s), 130.6 (s), 129.9 (s), 128.1 (s), 128.1 (s), 127.9 (s), 127.6 (s), 127.5 (s), 127.1 (s), 121.7 (s), 121.4 (s), 47.2 (s), 22.5 (s), 11.4 (s).

3-isopropyl-2-(quinolin-2-yl)quinazolin-4(3H)-one (3oa)²:

The title compound was prepared according to the general working procedure A and purified by column chromatography (petroleum ether/ethyl acetate = 5/1) to give the product as yellow solid. 56% yield, 52.9 mg. ¹H NMR (500 MHz, CDCl₃) δ 8.38 (d, J = 8.4 Hz, 1H), 8.34 (d, J = 8.0 Hz, 1H), 8.16 (d, J = 8.4 Hz, 1H), 7.92 (d, J = 8.2 Hz, 1H), 7.85 (d, J = 8.4 Hz, 1H), 7.81 (t, J = 7.7 Hz, 1H), 7.78 - 7.72 (m, 2H), 7.65 (t, J = 7.5 Hz, 1H), 7.52 (t, J = 7.1 Hz, 1H), 4.43 (dt, J = 13.5, 6.7 Hz, 1H), 1.67 (d, J = 6.7 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 162.6 (s), 155.0 (s), 153.8 (s), 147.3 (s), 146.5 (s), 137.8 (s), 134.3 (s), 130.6 (s), 130.0 (s), 128.0 (s), 128.0 (s), 127.5 (s), 127.3 (s), 126.7 (s), 122.5 (s), 120.9 (s), 54.6 (s), 20.0 (s).

2-(6-fluoroquinolin-2-yl)quinazolin-4(3H)-one (3ab)³:

The title compound was prepared according to the general working procedure A and purified by column chromatography (petroleum ether/ethyl acetate = 5/1) to give the product as white solid. 94% yield, 82.0 mg. ¹H NMR (500 MHz, CDCl₃) δ 11.08 (s, 1H), 8.64 (d, J = 8.4 Hz, 1H), 8.35 (d, J = 7.6 Hz, 1H), 8.28 (d, J = 8.5 Hz, 1H), 8.18 - 8.08 (m, 1H), 7.85 (d, J = 7.8 Hz, 1H), 7.80 (t, J = 7.3 Hz, 1H), 7.54 (dd, J = 16.7, 8.4 Hz, 2H), 7.49 (d, J = 8.3 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 161.6 (d, J = 250 Hz), 161.5 (s), 149.1 (s), 148.8 (s), 147.8 (s), 144.0 (s), 137.1 (d, J = 5.5 Hz), 134.8 (s), 132.4 (d, J = 9.4 Hz), 130.2 (d, J = 10.3 Hz), 128.4 (s), 127.8 (s), 126.9 (s), 121.0 (d, J = 26.3 Hz), 120.9 (s), 119.4 (s), 111.1 (d, J = 21.3 Hz).

2-(6-chloroquinolin-2-yl)quinazolin-4(3H)-one (3ac)³:

The title compound was prepared according to the general working procedure A and purified by column chromatography (petroleum ether/ethyl acetate = 5/1) to give the product as white solid. 75% yield, 69.1 mg. ¹H NMR (500 MHz, CDCl₃) δ 11.09 (s, 1H), 8.67 (d, J = 8.6 Hz, 1H), 8.36 (dd, J = 7.9, 1.2 Hz, 1H), 8.26 (d, J = 8.6 Hz, 1H), 8.08 (d, J = 9.0 Hz, 1H), 7.91 - 7.85 (m, 2H), 7.84 - 7.79 (m, 1H), 7.72 (dd, J = 9.0, 2.3 Hz, 1H), 7.58 - 7.52 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 161.4 (s), 149.1 (s), 148.7 (s), 148.5 (s), 145.3 (s), 136.8 (s), 134.8 (s), 134.4 (s), 131.7 (s), 131.3 (s), 129.9 (s), 128.4 (s), 127.9 (s), 127.0 (s), 126.6 (s), 122.8 (s), 119.6 (s).

2-(7-chloroquinolin-2-yl)quinazolin-4(3H)-one (3ad)²:

The title compound was prepared according to the general working procedure A and purified by column chromatography (petroleum ether/ethyl acetate = 5/1) to give the product as white solid. 80% yield, 73.7mg. ¹H NMR (500 MHz, CDCl₃) δ 11.11 (s, 1H), 8.68 (d, J = 8.4 Hz, 1H), 8.37 (dd, J = 14.5, 8.2 Hz, 2H), 8.15 (s, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.83 (dd, J = 16.0, 8.2 Hz, 2H), 7.60 (d, J = 8.6 Hz, 1H), 7.56 (t, J = 7.4 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 161.4 (s), 149.2 (s), 149.0 (s), 148.7 (s), 147.3 (s), 137.7 (s), 136.7 (s), 134.9 (s), 129.5 (s), 129.1 (s), 128.7 (s), 128.4 (s), 128.0 (s), 127.8 (s), 127.0 (s), 122.8 (s), 118.9 (s).

2-(6-bromoquinolin-2-yl)quinazolin-4(3H)-one (3ae)2:

The title compound was prepared according to the general working procedure A and purified by column chromatography (petroleum ether/ethyl acetate = 5/1) to give the product as yellow solid. 85% yield, 89.5 mg. ¹H NMR (500 MHz, CDCl₃) δ 11.08 (s, 1H), 8.67 (d, J = 8.6 Hz, 1H), 8.36 (d, J = 7.9 Hz, 1H), 8.25 (d, J = 8.6 Hz, 1H), 8.05 (d, J = 2.0 Hz, 1H), 8.01 (d, J = 8.9 Hz, 1H), 7.89 - 7.84 (m, 2H), 7.83 - 7.79 (m, 1H), 7.55 (t, J = 7.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 161.4 (s), 149.1 (s), 148.7 (s), 148.6 (s), 145.5 (s), 136.7 (s), 134.8 (s), 134.2 (s), 131.4 (s), 130.4 (s), 130.0 (s), 128.4 (s), 127.9 (s), 127.0 (s), 122.8 (s), 122.6 (s), 119.6 (s).

2-(8-bromoquinolin-2-yl)quinazolin-4(3H)-one (3af):

The title compound was prepared according to the general working procedure A and purified by column chromatography (petroleum ether/ethyl acetate = 5/1) to give the product as yellow solid. 78% yield, 82.1 mg. ¹H NMR (500 MHz, CDCl₃) δ 11.07 (s, 1H), 8.60 (d, J = 8.5 Hz, 1H), 8.35 (d, J = 8.5 Hz, 1H), 8.18 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 8.1 Hz, 1H), 7.85 - 7.77 (m, 2H), 7.73 (d, J = 7.6 Hz, 1H), 7.65 (t, J = 7.4 Hz, 1H), 7.55 (t, J = 7.9 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 159.7 (s), 151.4 (s), 149.4 (s), 147.5 (s), 146.9 (s), 137.9 (s), 134.3 (s), 134.1 (s), 130.7 (s), 129.9 (s), 129.5 (s), 128.6 (s), 128.3 (s), 127.9 (s), 121.8 (s), 121.0 (s), 118.5 (s). HRMS calcd. [C₁₇H₁₀BrN₃O + H]⁺: 352.0085, found: 352.0085.

2-(7-(trifluoromethyl)quinolin-2-yl)quinazolin-4(3H)-one (3ag):

The title compound was prepared according to the general working procedure A and purified by column chromatography (petroleum ether/ethyl acetate = 5/1) to give the product as yellow solid. 82% yield, 83.9 mg. 1 H NMR (500 MHz, CDCl₃) δ 11.13 (s, 1H), 8.88 (d, J = 8.6 Hz, 1H), 8.50 (s, 1H), 8.46 (d, J = 8.6 Hz, 1H), 8.40 (d, J = 7.8 Hz, 1H), 8.06 (d, J = 8.5 Hz, 1H), 7.96 (d, J = 8.1 Hz, 1H), 7.89 - 7.81 (m, 2H), 7.59 (t, J = 7.4 Hz, 1H). 13 C NMR (125 MHz, CDCl₃) δ 161.3 (s), 149.5 (s), 148.7 (s), 148.6 (s), 146.0 (s), 137.9 (s), 135.0 (s), 132.6 (q, J = 32.6 HZ), 130.8 (s), 130.4 (s), 128.3 (s), 128.2 (q, J = 271.3 HZ), 127.6 (q, J = 3.8 HZ), 127.1 (s), 124.2 (s), 122.8 (s), 122.7 (s), 120.8 (s), 112.9 (s). HRMS calcd. [C₁₈H₁₀F₃N₃O + H]⁺: 342.0854, found: 342.0853.

2-(6-methoxyquinolin-2-yl)quinazolin-4(3H)-one (3ah)1:

The title compound was prepared according to the general working procedure A and purified by column chromatography (petroleum ether/ethyl acetate = 5/1) to give the product as white solid. 85% yield, 77.3 mg. ¹H NMR (500 MHz, CDCl₃) δ 11.16 (s, 1H), 8.62 (d, J = 8.6 Hz, 1H), 8.37 (d, J = 7.9 Hz, 1H), 8.23 (d, J = 8.6 Hz, 1H), 8.03 (d, J = 9.2 Hz, 1H), 7.88 (d, J = 8.1 Hz, 1H), 7.84 - 7.78 (m, 1H), 7.53 (t, J = 7.5 Hz, 1H), 7.44 (dd, J = 9.2, 2.7 Hz, 1H), 7.13 (d, J = 2.6 Hz, 1H), 3.97 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 161.6 (s), 159.4 (s), 149.4 (s), 149.2 (s), 145.6 (s), 143.0 (s), 136.3 (s), 134.88 (s), 131.3 (s), 130.9 (s), 128.1 (s), 127.5 (s), 126.9 (s), 123.7 (s), 122.6 (s), 119.1 (s), 105.2 (s), 55.9 (s).

2-(6-ethoxyquinolin-2-yl)quinazolin-4(3H)-one (3ai):

The title compound was prepared according to the general working procedure A and purified by column chromatography (petroleum ether/ethyl acetate = 5/1) to give the product as white solid. 88% yield, 83.7 mg. ¹H NMR (500 MHz, CDCl₃) δ 11.11 (s, 1H), 8.55 (d, J = 8.5 Hz, 1H), 8.34 (d, J = 7.8 Hz, 1H), 8.16 (d, J = 8.6 Hz, 1H), 7.98 (d, J = 9.2 Hz, 1H), 7.85 (d, J = 8.1 Hz, 1H), 7.78 (t, J = 7.5 Hz, 1H), 7.50 (t, J = 7.4 Hz, 1H), 7.39 (dd, J = 9.1, 2.3 Hz, 1H), 7.06 (d, J = 2.2 Hz, 1H), 4.14 (q, J = 6.9 Hz, 2H), 1.49 (t, J = 6.9 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 161.5 (s), 158.7 (s), 149.3 (s), 147.2 (s), 145.4 (s), 142.8 (s), 136.1 (s), 134.7 (s), 131.1 (s), 130.8 (s), 128.1 (s), 127.4 (s), 126.9 (s), 123.9 (s), 122.6 (s), 118.9 (s), 105.7 (s), 64.1 (s), 14.8 (s). HRMS calcd. [C₁₉H₁₅N₃O₂ + H]⁺: 318.1243, found: 318.1241.

2-(6-methylquinolin-2-yl)quinazolin-4(3H)-one (3aj)²:

The title compound was prepared according to the general working procedure A and purified by column chromatography (petroleum ether/ethyl acetate = 5/1) to give the product as white solid. 74% yield, 63.7 mg. ¹H NMR (500 MHz, CDCl₃) δ 11.19 (s, 1H), 8.63 (d, J = 8.5 Hz, 1H), 8.37 (d, J = 7.9 Hz, 1H),

8.26 (d, J = 8.6 Hz, 1H), 8.04 (d, J = 8.5 Hz, 1H), 7.90 (d, J = 8.1 Hz, 1H), 7.81 (t, J = 7.6 Hz, 1H), 7.68 - 7.60 (m, 2H), 7.54 (t, J = 7.5 Hz, 1H), 2.58 (s, 3H). ¹³C **NMR (125 MHz, CDCl₃)** δ 161.5 (s), 149.3 (s), 149.1 (s), 147.1 (s), 145.5 (s), 138.8 (s), 137.1 (s), 134.8 (s), 133.0 (s), 129.5 (s), 129.5 (s), 128.2 (s), 127.6 (s), 126.9 (s), 126.8 (s), 122.7 (s), 118.7 (s), 22.0 (s).

2-(8-methylquinolin-2-yl)quinazolin-4(3H)-one (3ak):

The title compound was prepared according to the general working procedure A and purified by column chromatography (petroleum ether/ethyl acetate = 5/1) to give the product as yellow solid. 68% yield, 58.6 mg. ¹H NMR (500 MHz, CDCl₃) δ 11.02 (s, 1H), 8.65 (d, J= 8.5 Hz, 1H), 8.37 (d, J= 7.8 Hz, 1H), 8.31 (d, J= 8.5 Hz, 1H), 7.88 (d, J= 8.0 Hz, 1H), 7.80 (t, J= 7.5 Hz, 1H), 7.72 (d, J= 8.0 Hz, 1H), 7.62 (d, J= 6.8 Hz, 1H), 7.52 (dd, J= 17.1, 7.9 Hz, 2H), 2.89 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 161.4 (s), 149.3 (s), 149.1 (s), 146.9 (s), 145.9 (s), 138.1 (s), 137.7 (s), 134.7 (s), 130.8 (s), 129.5 (s), 128.3 (s), 128.3 (s), 127.6 (s), 127.0 (s), 125.9 (s), 122.7 (s), 118.4 (s), 18.3 (s). HRMS calcd. [C₁₈H₁₃N₃O + H]⁺: 288.1137, found: 288.1141.

2-(6-(tert-butyl) quinolin-2-yl)quinazolin-4(3H)-one (3al):

The title compound was prepared according to the general working procedure A and purified by column chromatography (petroleum ether/ethyl acetate = 5/1) to give the product as white solid. 91% yield, 89.8 mg. ¹H NMR (500 MHz, CDCl₃) δ 11.23 (s, 1H), 8.62 (d, J = 8.5 Hz, 1H), 8.36 (d, J = 7.8 Hz, 1H), 8.30 (d, J = 8.5 Hz, 1H), 8.08 (d, J = 8.9 Hz, 1H), 7.92 - 7.85 (m, 2H), 7.83 - 7.75 (m, 2H), 7.52 (t, J = 7.4 Hz, 1H), 1.45 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 161.6 (s), 151.6 (s), 149.3 (s), 149.2 (s), 147.4 (s), 145.5 (s), 137.7 (s), 134.7 (s), 129.7 (s), 129.3 (s), 129.3 (s), 128.2 (s), 127.6 (s), 126.9 (s), 122.8 (s), 122.7 (s), 118.5 (s), 35.3 (s), 31.2 (s). HRMS calcd. $[C_{21}H_{19}N_3O + H]^+$: 330.1606, found: 330.1606.

ethyl 2-(4-oxo-3,4-dihydroquinazolin-2-yl)-4-phenylquinoline-3-carboxylate (3an):

The title compound was prepared according to the general working procedure A and purified by column chromatography (petroleum ether/ethyl acetate = 5/1) to give the product as yellow solid. 68% yield, 85.9 mg. ¹H NMR (500 MHz, CDCl₃) δ 11.19 (s, 1H), 8.38 (d, J = 7.8 Hz, 1H), 8.23 (d, J = 8.4 Hz, 1H), 7.85 (t, J = 7.4 Hz, 1H), 7.77 (t, J = 7.6 Hz, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.64 - 7.50 (m, 6H), 7.44 -

S12

7.39 (m, 2H), 4.26 (q, J = 7.1 Hz, 2H), 1.06 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 167.3 (s), 161.5 (s), 148.6 (s), 148.5 (s), 148.0 (s), 146.4 (s), 143.6 (s), 134. 7 (s), 134.5 (s), 131.3 (s), 129.9 (s), 129.7 (s), 129.1 (s), 129.0 (s), 128.3 (s), 128.3 (s), 128.0 (s), 127.9 (s), 126.9 (s), 126.9 (s), 126.4 (s), 122.8 (s), 61.5 (s), 13.9 (s). HRMS calcd. $[C_{26}H_{19}N_3O_3 + H]^+$: 422.1505, found: 422.1513.

ethyl 2-(4-oxo-3,4-dihydroquinazolin-2-yl)quinoline-3-carboxylate (3ao)⁴:

The title compound was prepared according to the general working procedure A and purified by column chromatography (petroleum ether/ethyl acetate = 5/1) to give the product as yellow solid. 83% yield, 85.9 mg. ¹H NMR (500 MHz, CDCl₃) δ 11.03 (s, 1H), 8.45 - 8.33 (m, 2H), 8.16 (d, J = 8.3 Hz, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.84 (t, J = 7.5 Hz, 1H), 7.81 - 7.77 (m, 1H), 7.74 (d, J = 7.8 Hz, 1H), 7.67 (t, J = 7.3 Hz, 1H), 7.54 (t, J = 7.1 Hz, 1H), 4.53 (q, J = 6.7 Hz, 2H), 1.35 (t, J = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 168.5 (s), 161.4 (s), 148.4 (s), 148.1 (s), 146.7 (s), 145.0 (s), 137.3 (s), 134.8 (s), 131.9 (s), 129.7 (s), 129.3 (s), 128.1 (s), 128.1 (s), 128.0 (s), 127.8 (s), 127.1 (s), 127.0 (s), 122.6 (s), 62.3 (s), 14.3 (s).

2-(quinolin-4-yl)quinazolin-4(3H)-one (3ap)³:

The title compound was prepared according to the general working procedure A and purified by column chromatography (petroleum ether/ethyl acetate = 5/1) to give the product as white solid. 65% yield, 53.5 mg. 1 H NMR (500 MHz, DMSO) δ 12.84 (s, 1H), 9.08 (d, J = 4.3 Hz, 1H), 8.29 - 8.19 (m, 2H), 8.16 (d, J = 5.0 Hz, 1H), 7.92 - 7.84 (m, 2H), 7.81 (d, J = 4.3 Hz, 1H), 7.77 (d, J = 8.0 Hz, 1H), 7.68 (t, J = 7.8 Hz, 1H), 7.62 (t, J = 7.3 Hz, 1H). 13 C NMR (125 MHz, DMSO) δ 161.9 (s), 151.9 (s), 150.3 (s), 148.1 (s), 145.7 (s), 139.4 (s), 134.9 (s), 134.6 (s), 130.2 (s), 129.6 (s), 127.9 (s), 127.5 (s), 127.0 (s), 126.1 (s), 125.8 (s), 124.9 (s), 121.7 (s).

2-(isoquinolin-1-yl)quinazolin-4(3H)-one (3aq)²:

The title compound was prepared according to the general working procedure A and purified by column chromatography (petroleum ether/ethyl acetate = 5/1) to give the product as white solid. 84% yield, 69.0 mg. ¹H NMR (500 MHz, CDCl₃) δ 11.36 (s, 1H), 10.15 (d, J = 7.6 Hz, 1H), 8.58 (d, J = 4.9 Hz, 1H), 8.38 (d, J = 7.7 Hz, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.90 (d, J = 5.2 Hz, 1H), 7.87 - 7.81 (m, 2H), 7.80 - 7.76 (m, 2H), 7.55 (t, J = 7.3 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 161.6 (s), 150.3 (s), 149.0 (s),

145.8 (s), 140.6 (s), 137.8 (s), 134.6 (s), 130.8 (s), 129.2 (s), 128.6 (s), 128.3 (s), 127.8 (s), 127.4 (s), 127.4 (s), 126.7 (s), 124.8 (s), 122.5 (s).

2-(pyridin-2-yl)quinazolin-4(3H)-one (3ar)1:

The title compound was prepared according to the general working procedure B and purified by column chromatography (petroleum ether/ethyl acetate = 8/1) to give the product as white solid. 73% yield, 48.8 mg. 1 H NMR (500 MHz, CDCl₃) δ 10.98 (s, 1H), 8.67 (d, J = 4.4 Hz, 1H), 8.63 (d, J = 7.9 Hz, 1H), 8.35 (d, J = 7.9 Hz, 1H), 7.93 (t, J = 7.7 Hz, 1H), 7.87 (d, J = 8.1 Hz, 1H), 7.80 (t, J = 7.6 Hz, 1H), 7.55 - 7.45 (m, 2H). 13 C NMR (125 MHz, CDCl₃) δ 161.5 (s), 149.1 (s), 149.1 (s), 148.9 (s), 148.4 (s), 137.7 (s), 134.8 (s), 128.1 (s), 127.5 (s), 126.9 (s), 126.5 (s), 122.6 (s), 122.2 (s).

2-(5-methylpyridin-2-yl)quinazolin-4(3H)-one (3as):

The title compound was prepared according to the general working procedure B and purified by column chromatography (petroleum ether/ethyl acetate = 8/1) to give the product as white solid. 63% yield, 44.8 mg. ¹H NMR (500 MHz, CDCl₃) δ 10.94 (s, 1H), 8.48 (s, 1H), 8.46 (d, J= 8.1 Hz, 1H), 8.34 (d, J= 7.9 Hz, 1H), 7.80 (t, J= 8.9 Hz, 2H), 7.71 (d, J= 7.2 Hz, 1H), 7.50 (t, J= 7.2 Hz, 1H), 2.44 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 161.6 (s), 149.3 (s), 149.3 (s), 146.0 (s), 138.1 (s), 136.8 (s), 135.8 (s), 134.7 (s), 128.0 (s), 127.2 (s), 126.9 (s), 122.5 (s), 121.7 (s), 18.8 (s). HRMS calcd. [C₁₄H₁₁N₃O + H]⁺: 238.0980, found: 238.0984.

2-(6-methylpyridin-2-yl)quinazolin-4(3H)-one (3at)1:

The title compound was prepared according to the general working procedure B and purified by column chromatography (petroleum ether/ethyl acetate = 8/1) to give the product as white solid. 71% yield, 50.5 mg. 1 H NMR (500 MHz, CDCl₃) δ 11.08 (s, 1H), 8.40 (d, J= 7.7 Hz, 1H), 8.34 (d, J= 7.8 Hz, 1H), 7.84 (d, J= 8.0 Hz, 1H), 7.81 - 7.75 (m, 2H), 7.51 (t, J= 7.4 Hz, 1H), 7.32 (d, J= 7.6 Hz, 1H), 2.63 (s, 3H). 13 C NMR (125 MHz, CDCl₃) δ 161.6 (s), 158.1 (s), 149.3 (s), 149.2 (s), 147.5 (s), 137.9 (s), 134.7 (s), 128.0 (s), 127.4 (s), 126.9 (s), 126.2 (s), 122.5 (s), 119.3 (s), 24.4 (s).

6-fluoro-2-(pyridin-2-yl) quinazolin-4(3H)-one (3br):

S14

The title compound was prepared according to the general working procedure B and purified by column chromatography (petroleum ether/ethyl acetate = 8/1) to give the product as white solid. 66% yield, 47.7 mg. ¹H NMR (500 MHz, CDCl₃) δ 10.99 (s, 1H), 8.67 (d, J = 4.4 Hz, 1H), 8.56 (d, J = 7.9 Hz, 1H), 7.97 (dd, J = 8.3, 2.8 Hz, 1H), 7.92 (t, J = 7.7 Hz, 1H), 7.84 (dd, J = 8.9, 4.9 Hz, 1H), 7.58 - 7.44 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 161.3 (d, J = 247.5 Hz), 160.8 (s), 148.9 (s), 148.5 (s), 148.2 (s), 145.8 (s), 137.7 (s), 130.5 (d, J = 8.2 Hz), 126.5 (s), 123.9 (d, J = 8.6 Hz), 123.2 (d, J = 23.8 Hz), 122.1 (s), 112.0 (d, J = 23.8 Hz). HRMS calcd. [C₁₃H₈FN₃O + H]⁺: 242.0730, found: 242.0735.

5-bromo-2-(pyridin-2-yl) quinazolin-4(3H)-one (3hr):

The title compound was prepared according to the general working procedure B and purified by column chromatography (petroleum ether/ethyl acetate = 8/1) to give the product as white solid. 41% yield, 37.0 mg. 1 H NMR (500 MHz, CDCl₃) δ 10.84 (s, 1H), 8.67 (d, J = 4.3 Hz, 1H), 8.54 (d, J = 7.9 Hz, 1H), 7.91 (t, J = 7.7 Hz, 1H), 7.76 (d, J = 8.1 Hz, 1H), 7.71 (d, J = 7.7 Hz, 1H), 7.55 - 7.46 (m, 2H). 13 C NMR (125 MHz, CDCl₃) δ 159.7 (s), 151.5 (s), 149.4 (s), 149.0 (s), 147.9 (s), 137.7 (s), 134.3 (s), 133.9 (s), 128.1 (s), 126.7 (s), 122.2 (s), 121.8 (s), 120.8 (s). HRMS calcd. [C₁₃H₈BrN₃O + H]⁺: 301.9929, found: 301.9926.

6-methyl-2-(pyridin-2-yl) quinazolin-4(3H)-one:

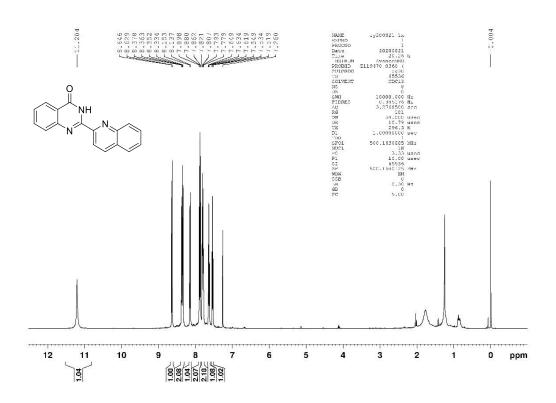
The title compound was prepared according to the general working procedure B and purified by column chromatography (petroleum ether/ethyl acetate = 8/1) to give the product as white solid. 68% yield, 48.3 mg. ¹H NMR (500 MHz, CDCl₃) δ 10.91 (s, 1H), 8.67 - 8.57 (m, 1H), 8.52 (d, J = 7.7 Hz, 1H), 8.11 (s, 1H), 7.87 (t, J = 7.5 Hz, 1H), 7.69 (d, J = 8.2 Hz, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.48 - 7.39 (m, 1H), 2.48 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 161.5 (s), 148.8 (s), 148.6 (s), 148.3 (s), 147.2 (s), 137.7 (s), 137.5 (s), 136.1 (s), 127.9 (s), 126.3 (s), 126.1 (s), 122.2 (s), 121.9 (s), 21.5 (s). HRMS calcd. [C₁₄H₁₁N₃O + H]⁺: 238.0980, found: 238.0988.

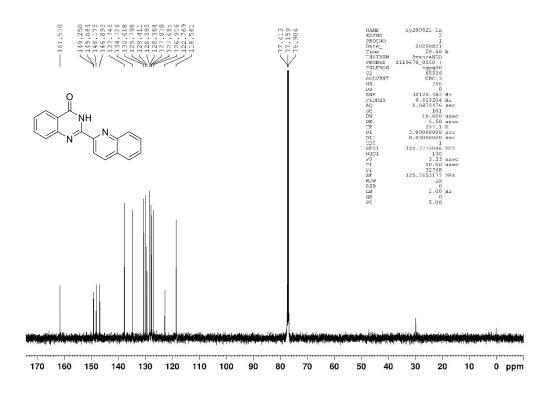
6-methoxy-2-(pyridin-2-yl) quinazolin-4(3H)-one (3kr):

The title compound was prepared according to the general working procedure B and purified by column chromatography (petroleum ether/ethyl acetate = 5/1) to give the product as white solid. 56% yield, 42.5 mg. ¹H NMR (500 MHz, CDCl₃) δ 10.91 (s, 1H), 8.58 (d, J = 4.6 Hz, 1H), 8.46 (d, J = 7.9 Hz, 1H), 7.83 (t, J = 7.7 Hz, 1H), 7.69 (d, J = 8.9 Hz, 1H), 7.66 (d, J = 2.8 Hz, 1H), 7.42 - 7.35 (m, 1H), 7.32 (dd, J = 8.9, 2.8 Hz, 1H), 3.89 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 161.3 (s), 158.9 (s), 148.7 (s), 148.6

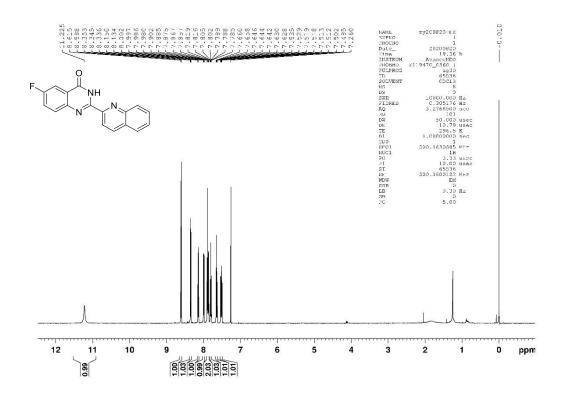
(s), 146.9 (s), 143.6 (s), 137.5 (s), 129.6 (s), 125.9 (s), 124.8 (s), 123.3 (s), 121.6 (s), 106.3 (s), 55.9 (s). HRMS calcd. $[C_{14}H_{11}N_3O_2 + H]^+$: 254.0930, found: 254.0928.

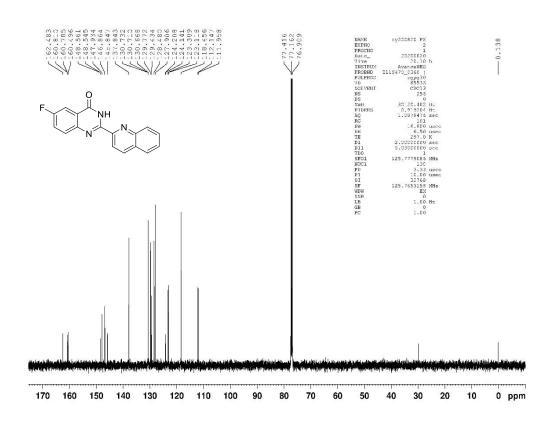
3-methyl-2-(pyridin-2-yl) quinazolin-4(3H)-one (3mr)¹:

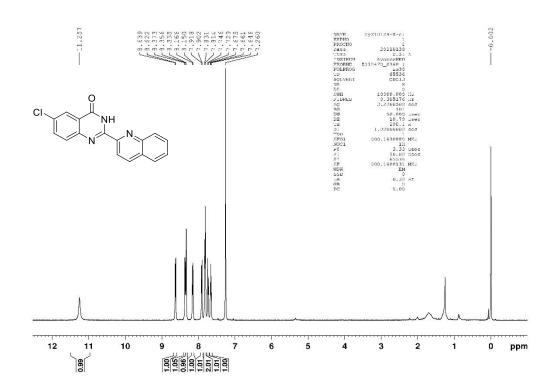

The title compound was prepared according to the general working procedure B and purified by column chromatography (petroleum ether/ethyl acetate = 10/1) to give the product as white solid. 74% yield, 52.6 mg. ¹H NMR (500 MHz, CDCl₃) δ 8.71 (d, J = 4.4 Hz, 1H), 8.33 (d, J = 8.0 Hz, 1H), 7.90 (t, J = 7.3 Hz, 1H), 7.83 (d, J = 7.7 Hz, 1H), 7.74 (d, J = 3.8 Hz, 2H), 7.50 (dt, J = 8.1, 4.1 Hz, 1H), 7.47 - 7.40 (m, 1H), 3.59 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 162.6 (s), 154.0 (s), 153.5 (s), 149.0 (s), 147.0 (s), 137.6 (s), 134.4 (s), 127.5 (s), 127.5 (s), 126.9 (s), 124.9 (s), 124.5 (s), 121.0 (s), 33.6 (s).

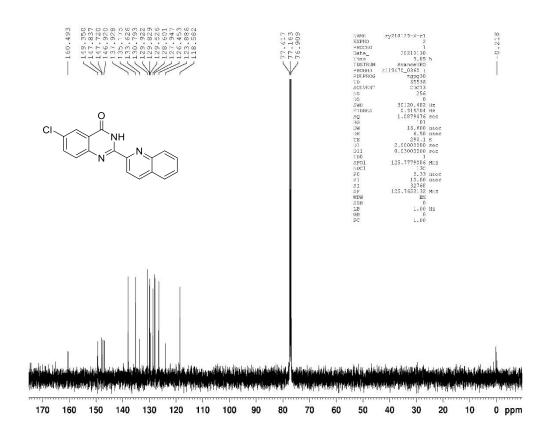

References

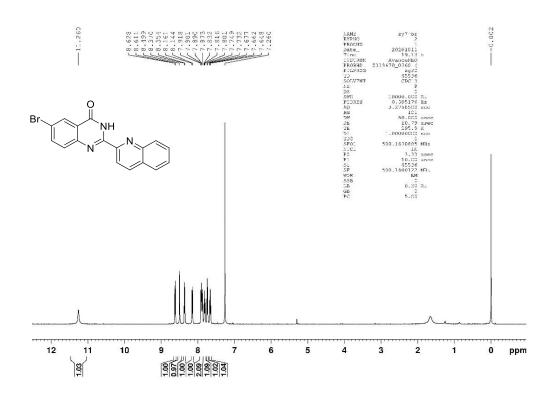
- (1) Li, Q.; Huang, Y.; Chen, T. Q.; Zhou, Y. B.; Xu, Q.; Yin, S. F.; Han, L. B. Org. Lett. 2014, 16, 3672-3675.
- (2) Liu, H. H.; Zhai, T. R.; Ding, S. T.; Hou, Y. L.; Zhang, X. Y.; Feng, L.; Ma, C. Org. Chem. Front. 2016, 3, 1096-1099.
- (3) Yang, L.; Shi, X.; Hu, B. Q.; Wang, L. X. Asian J. Org. Chem. 2016, 5, 494-498.
- (4) Lingaiah, N.; Hanmant, K. G., Rajashaker B. Synlett. 2012, 23, 12, 1775-1778.

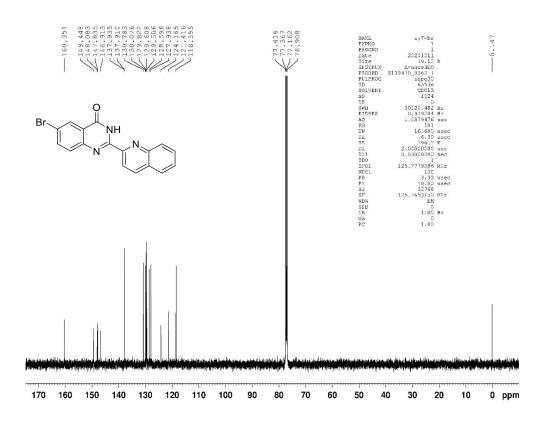

Copies of product NMR spectra

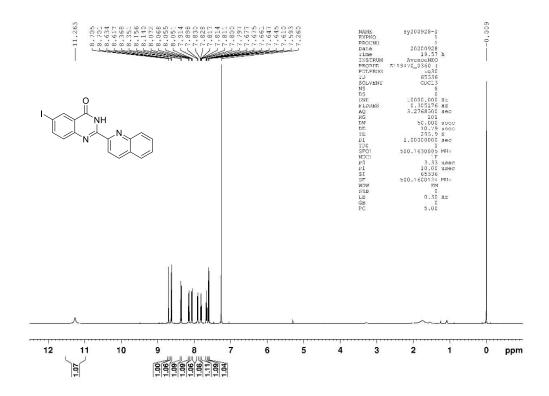

2-(quinolin-2-yl)quinazolin-4(3H)-one (3aa):

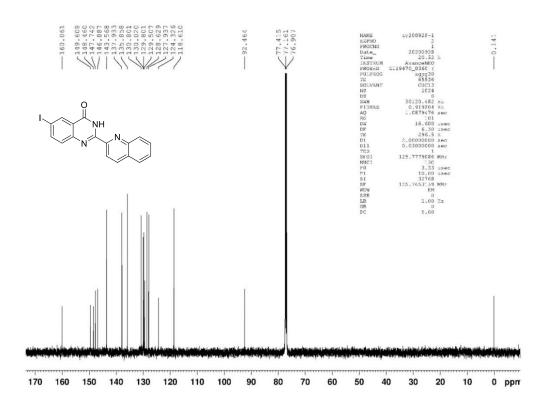


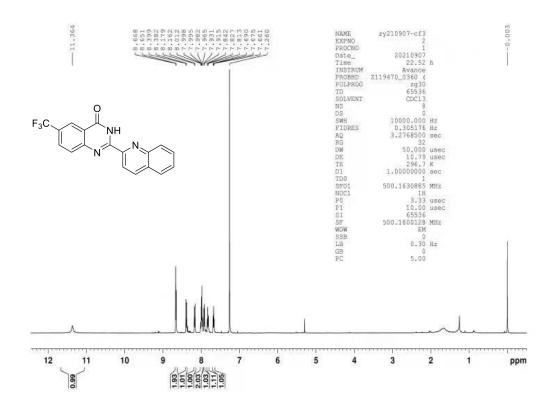

6-Fluoro-2-(quinolin-2-yl)quinazolin-4(3H)-one (3ba):

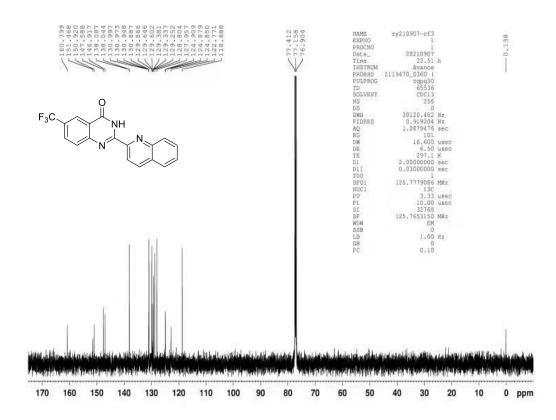


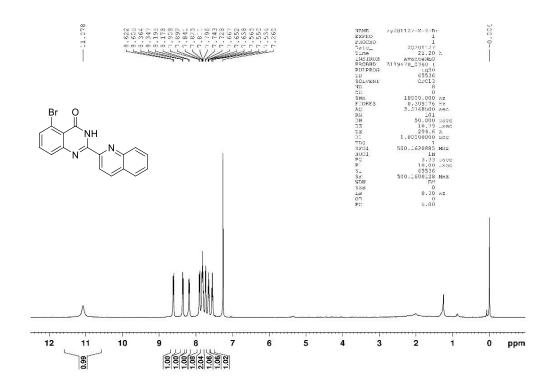

6-chloro-2-(quinolin-2-yl)quinazolin-4(3H)-one (3ca):

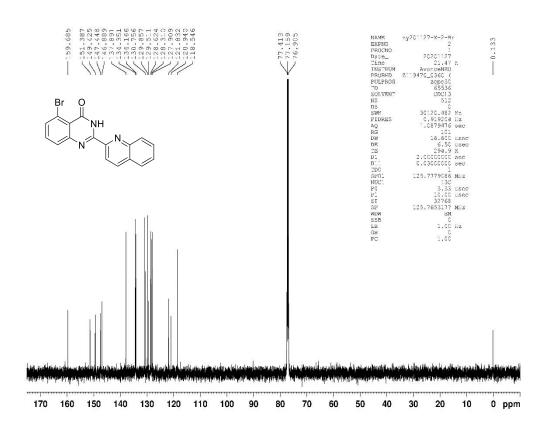


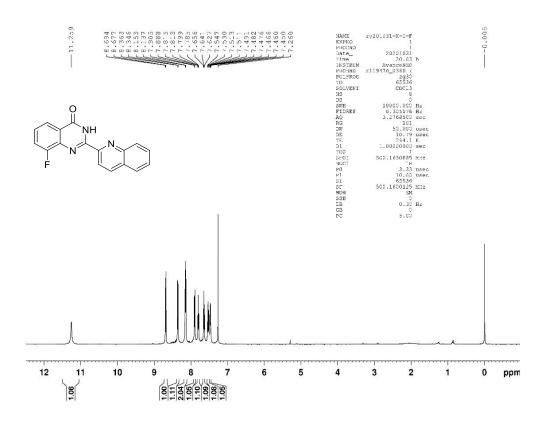

6-bromo-2-(quinolin-2-yl)quinazolin-4(3H)-one (3da):

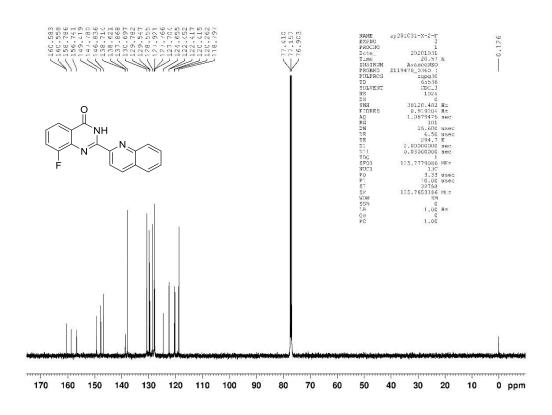


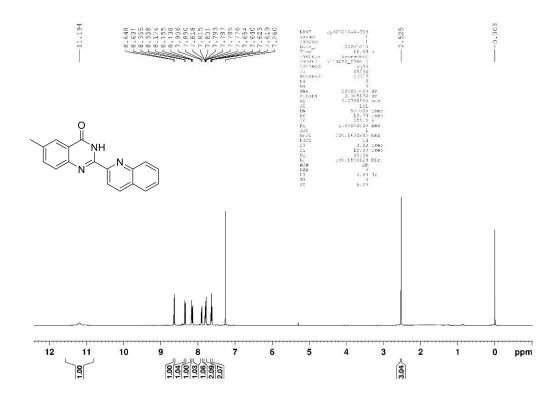

6-iodo-2-(quinolin-2-yl)quinazolin-4(3H)-one (3ea):

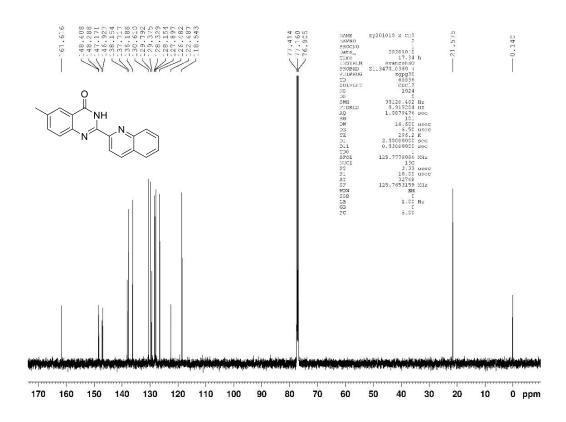


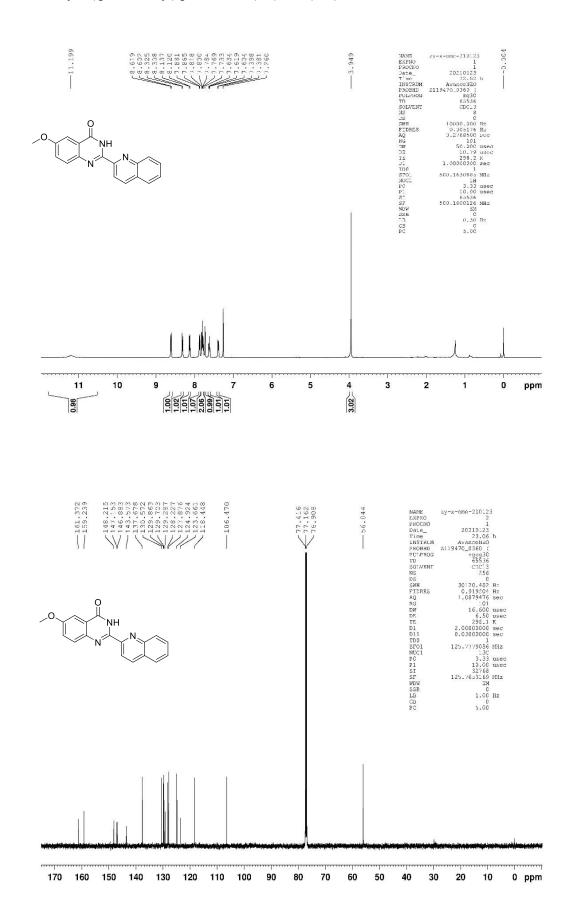

2-(quinolin-2-yl)-6-(trifluoromethyl)quinazolin-4(3H)-one (3fa):



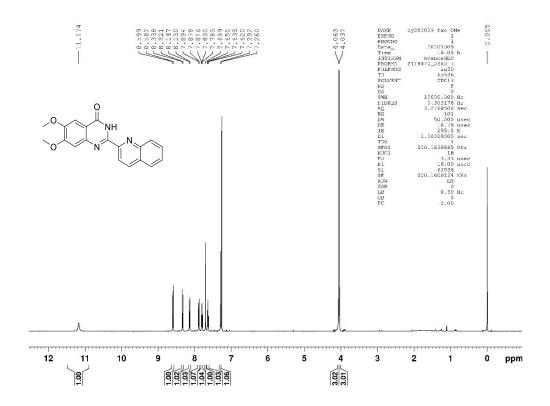

5-bromo-2-(quinolin-2-yl)quinazolin-4(3H)-one (3ha):

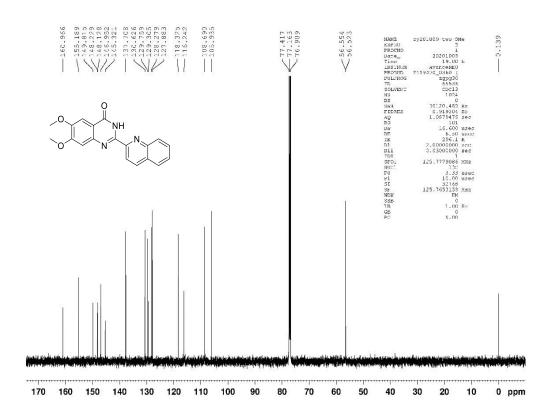



8-fluoro-2-(quinolin-2-yl)quinazolin-4(3H)-one (3ia):

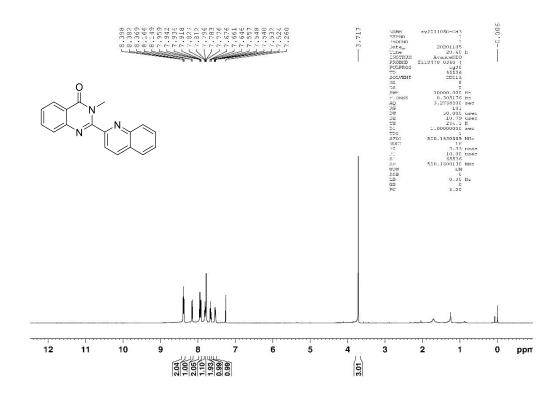


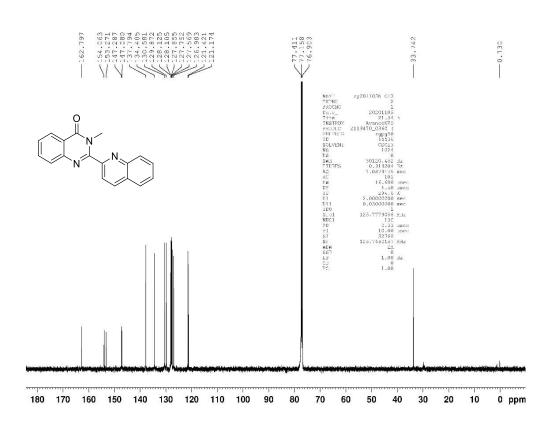
6-methyl-2-(quinolin-2-yl)quinazolin-4(3H)-one (3ja)

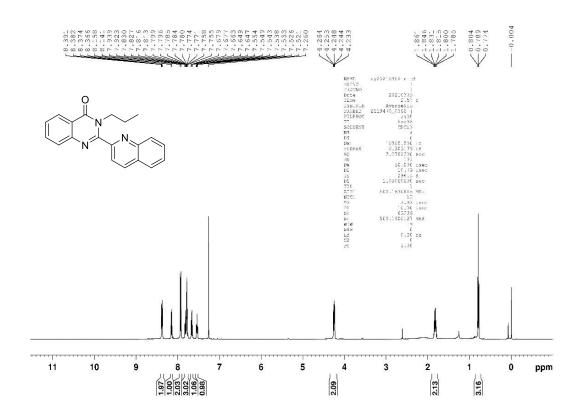


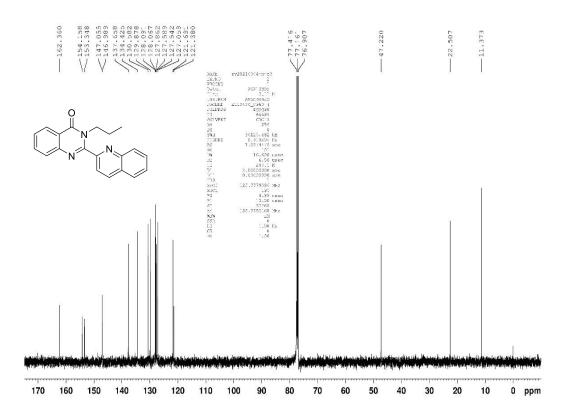


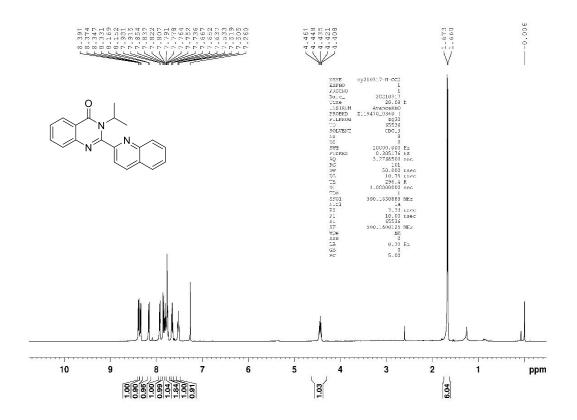
6-methoxy-2-(quinolin-2-yl)quinazolin-4(3H)-one (3ka):

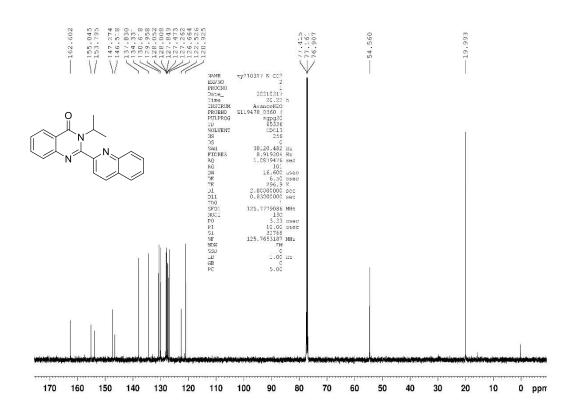


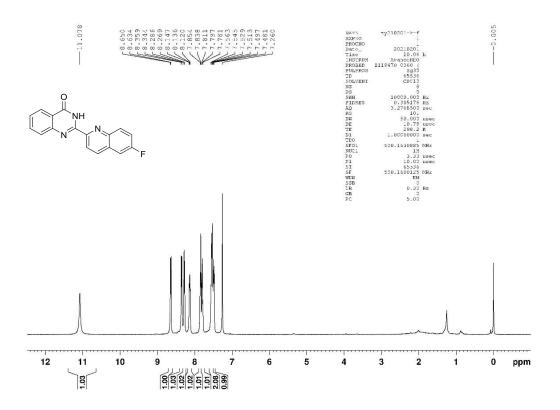

7-dimethoxy-2-(quinolin-2-yl)quinazolin-4(3H)-one (3la):

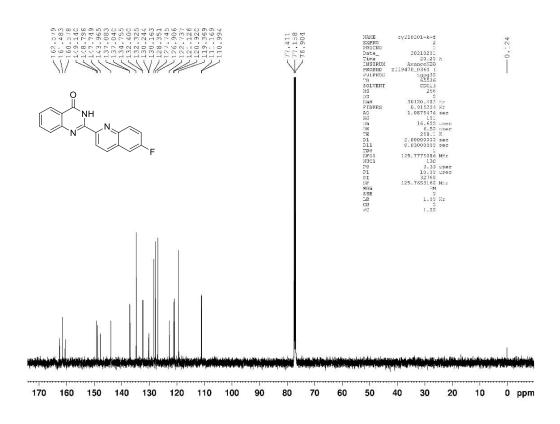


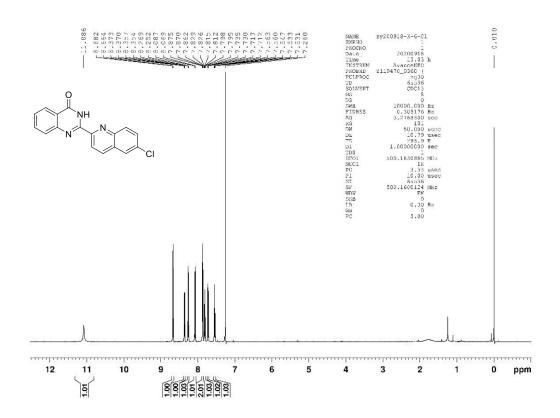

3-methyl-2-(quinolin-2-yl)quinazolin-4(3H)-one (3ma):

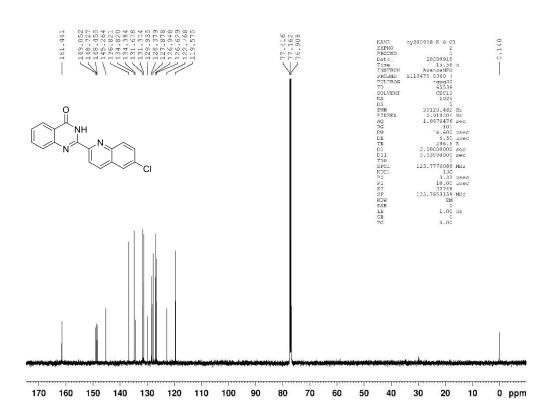


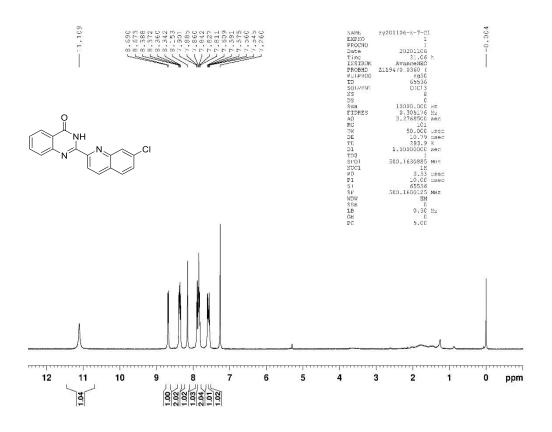

3-propyl-2-(quinolin-2-yl)quinazolin-4(3H)-one (3na):

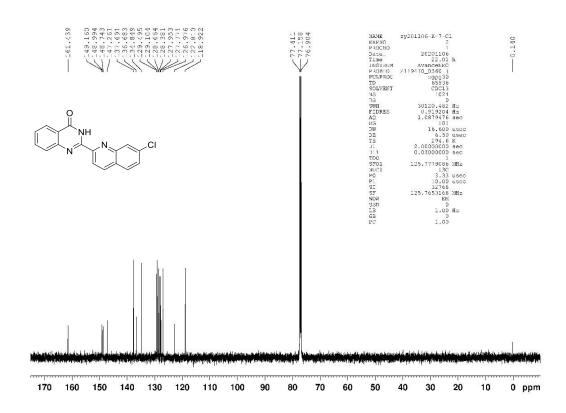


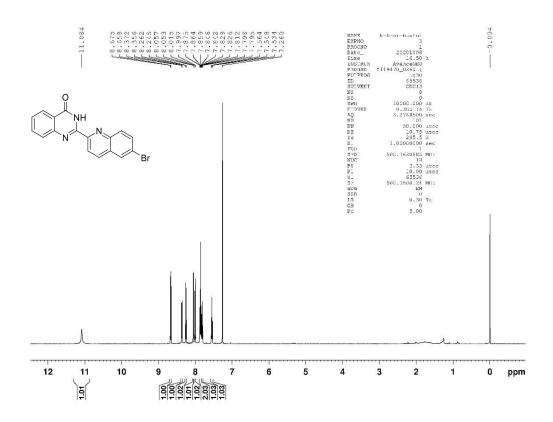

3-isopropyl-2-(quinolin-2-yl)quinazolin-4(3H)-one (3oa):

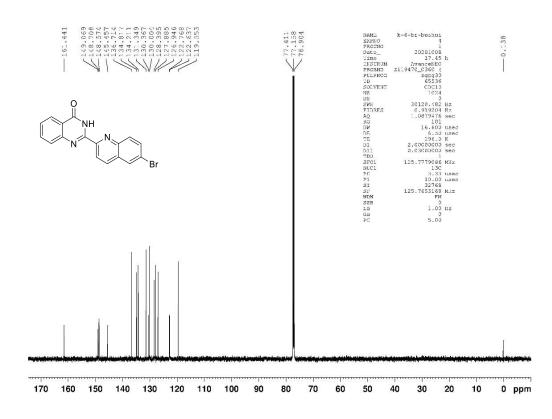


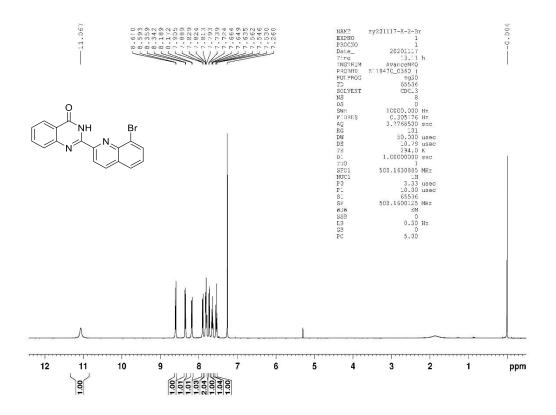

2-(6-fluoroquinolin-2-yl)quinazolin-4(3H)-one (3ab):

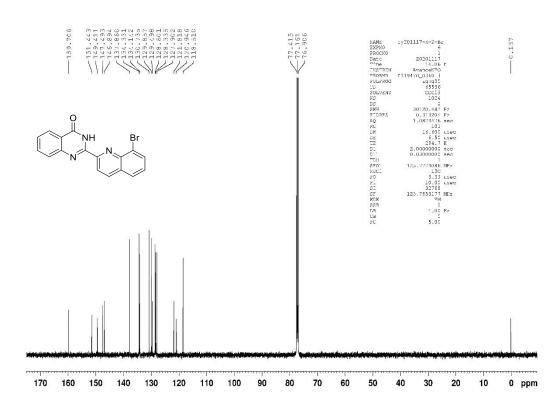


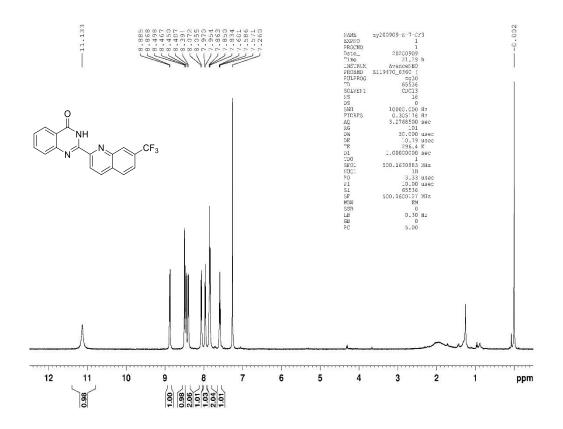

2-(6-chloroquinolin-2-yl)quinazolin-4(3H)-one (3ac):

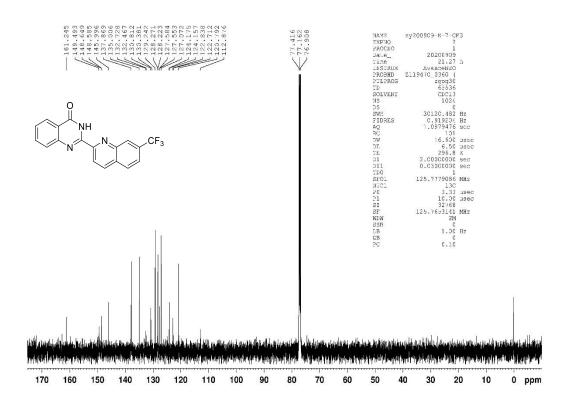


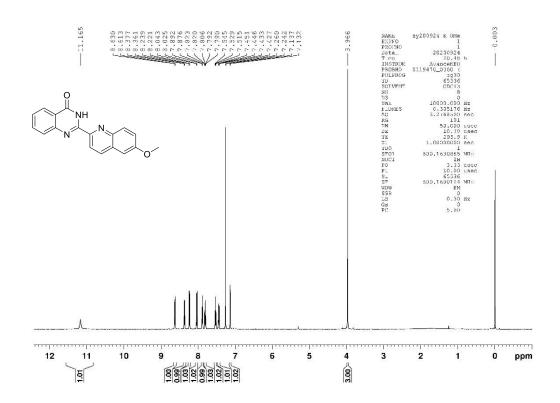

2-(7-chloroquinolin-2-yl)quinazolin-4(3H)-one (3ad):

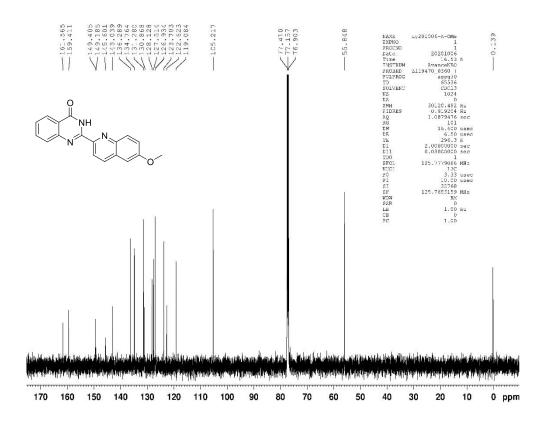


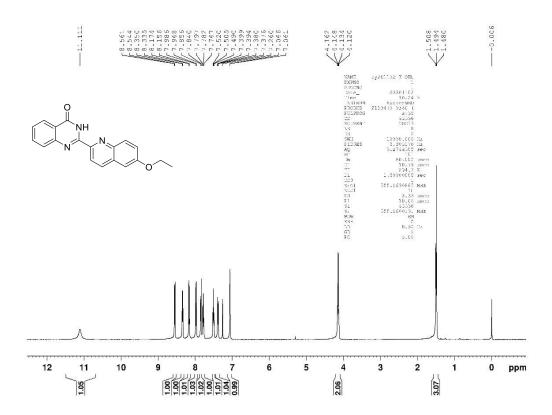

2-(6-bromoquinolin-2-yl)quinazolin-4(3H)-one (3ae):

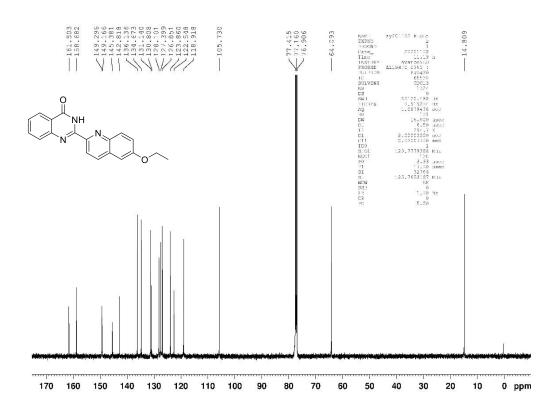


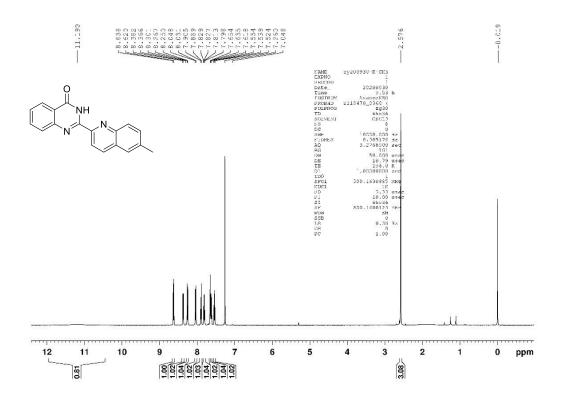

2-(8-bromoquinolin-2-yl)quinazolin-4(3H)-one (3af):

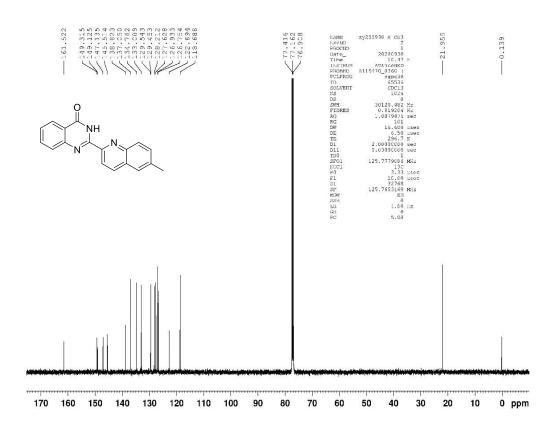


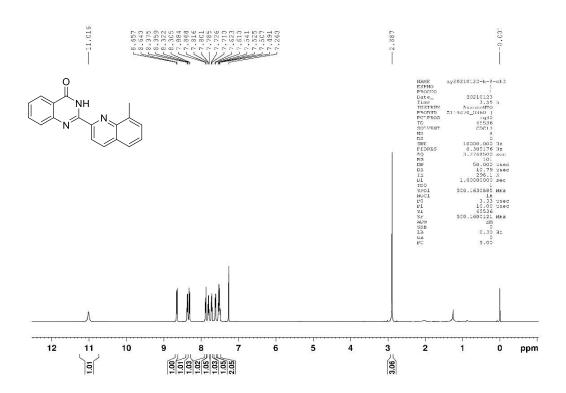

2-(7-(trifluoromethyl)quinolin-2-yl)quinazolin-4(3H)-one (3ag):

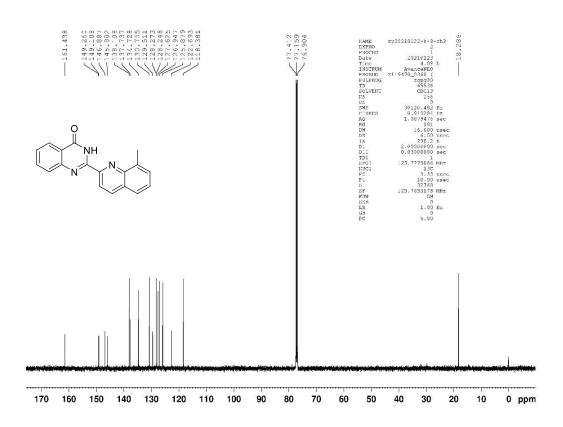


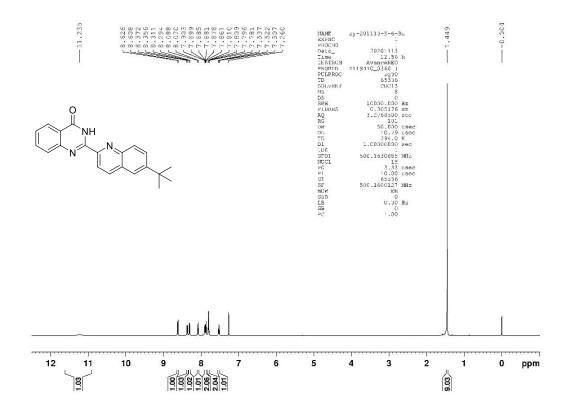

2-(6-methoxyquinolin-2-yl)quinazolin-4(3H)-one (3ah):

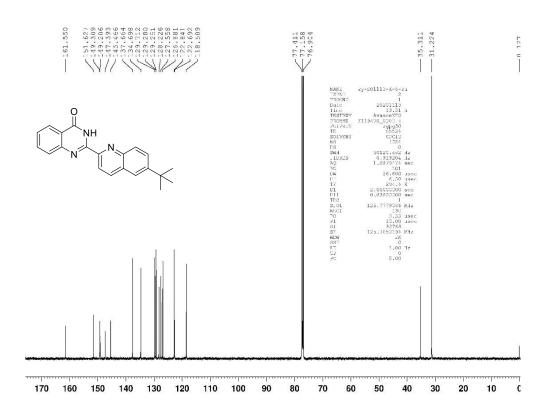


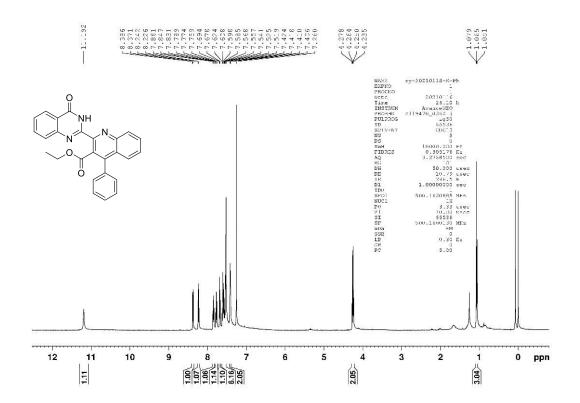

2-(6-ethoxyquinolin-2-yl)quinazolin-4(3H)-one (3ai):

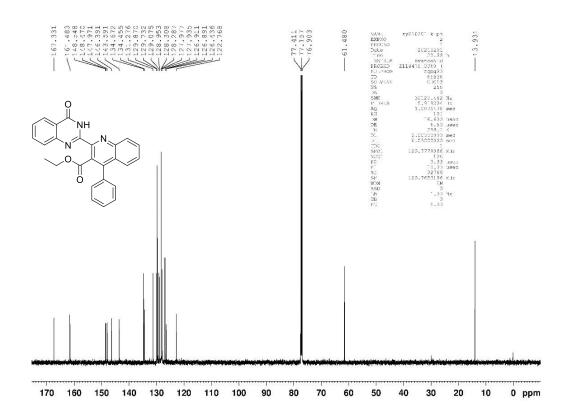


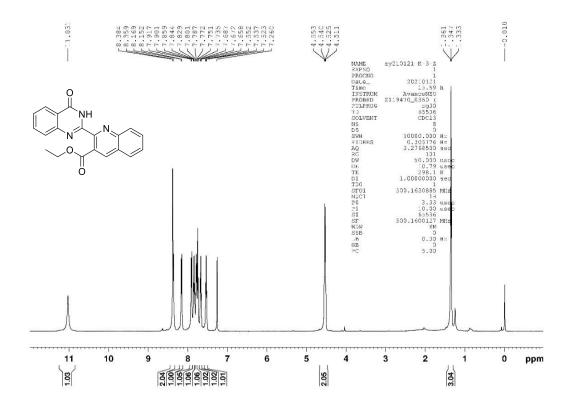

2-(6-methylquinolin-2-yl)quinazolin-4(3H)-one (3aj):

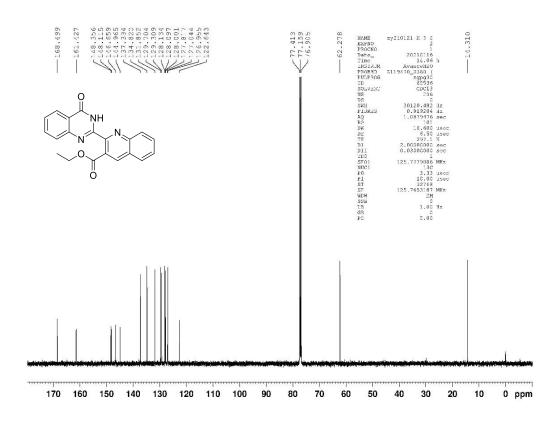


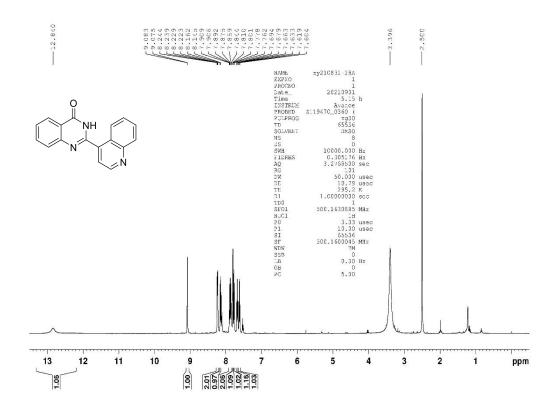

2-(6-methylquinolin-2-yl)quinazolin-4(3H)-one (3aj):

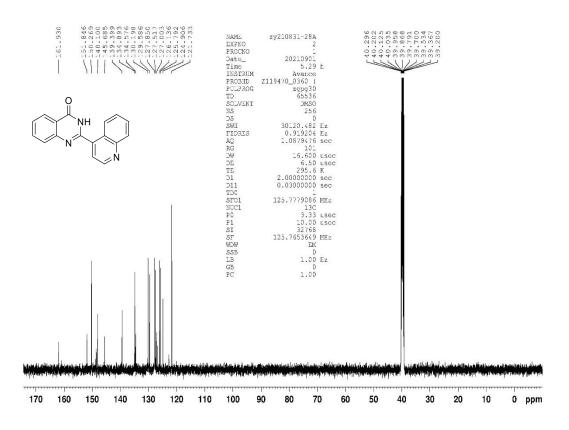


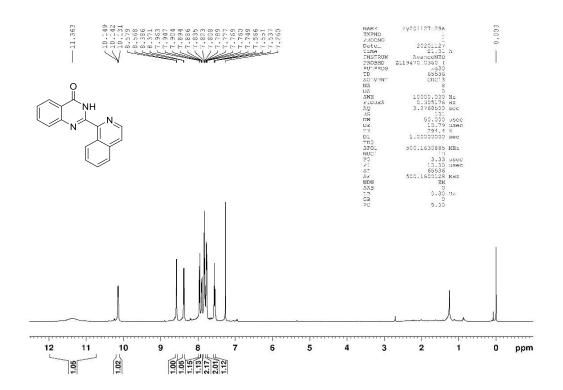

2-(6-(tert-butyl)quinolin-2-yl)quinazolin-4(3H)-one (3al):

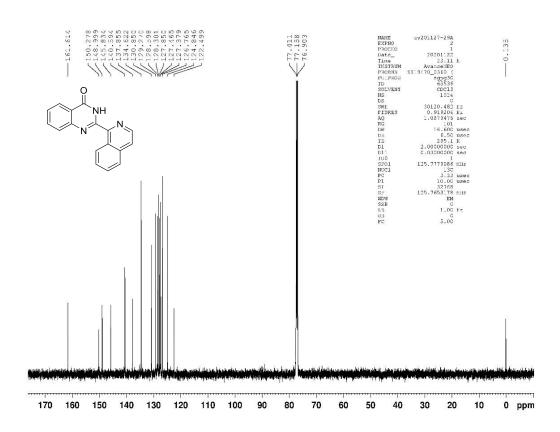


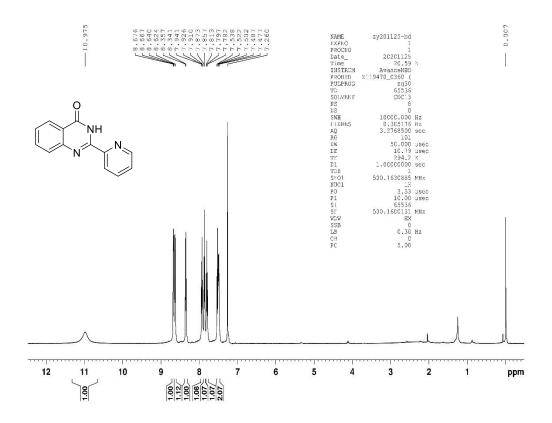

ethyl 2-(4-oxo-3,4-dihydroquinazolin-2-yl)-4-phenylquinoline-3-carboxylate (3an):

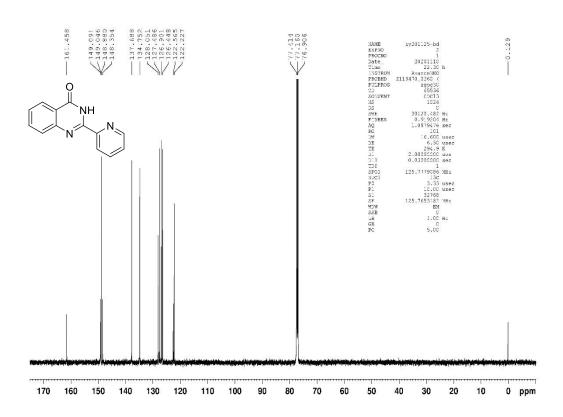


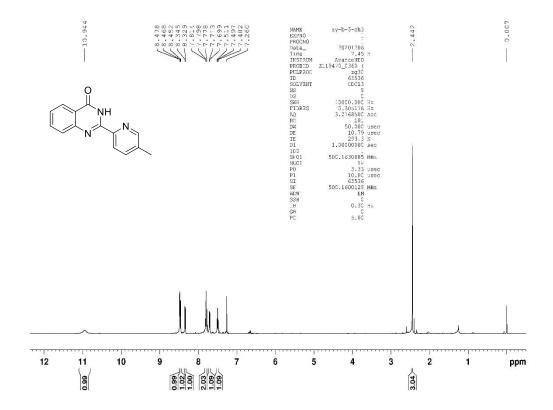

ethyl 2-(4-oxo-3,4-dihydroquinazolin-2-yl)quinoline-3-carboxylate (3ao):

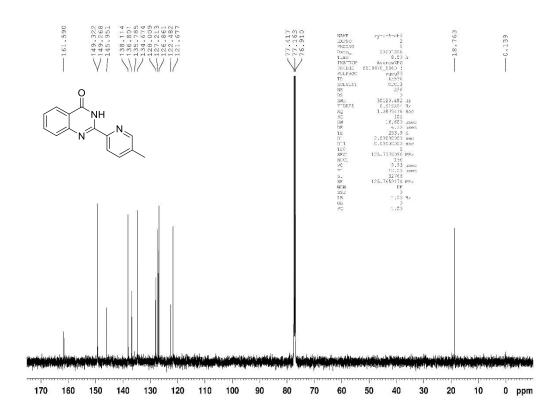


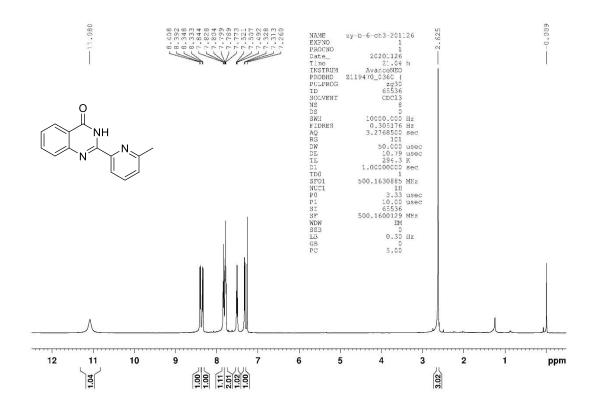

2-(quinolin-4-yl)quinazolin-4(3H)-one (3ap):

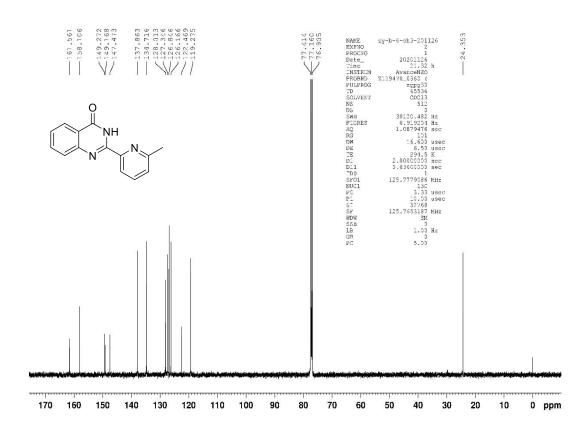


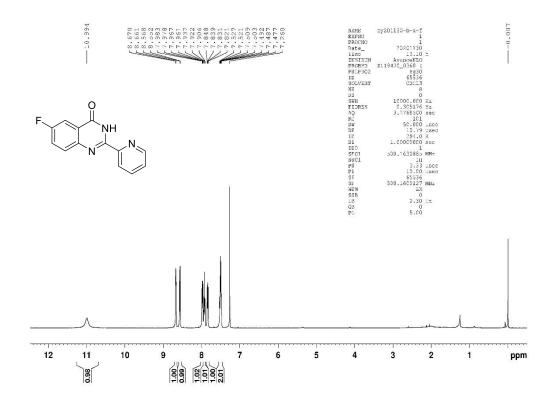

2-(isoquinolin-1-yl)quinazolin-4(3H)-one (3aq):

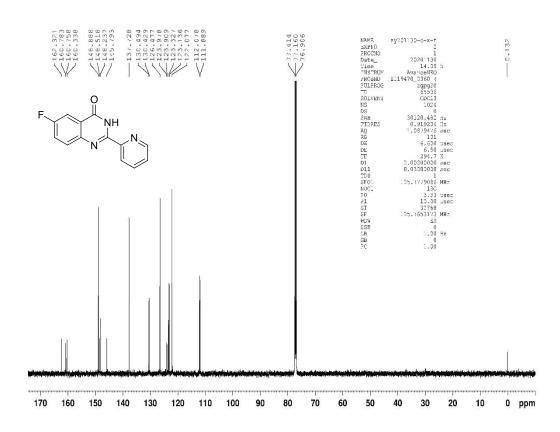


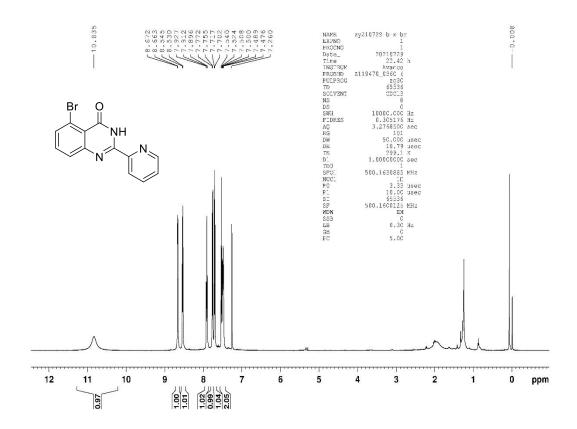

2-(pyridin-2-yl)quinazolin-4(3H)-one (3ar):

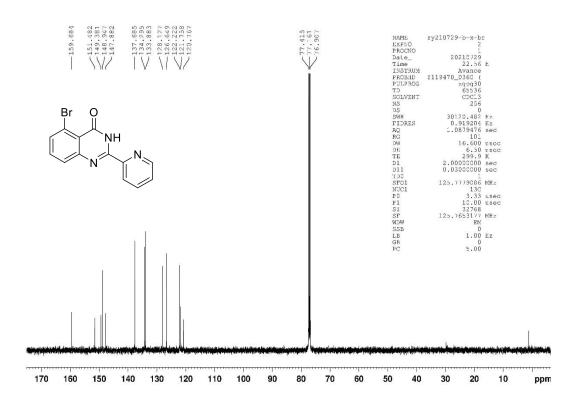


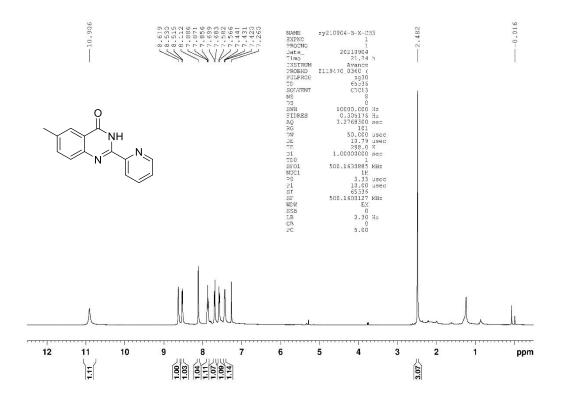

2-(5-methylpyridin-2-yl)quinazolin-4(3H)-one (3as):

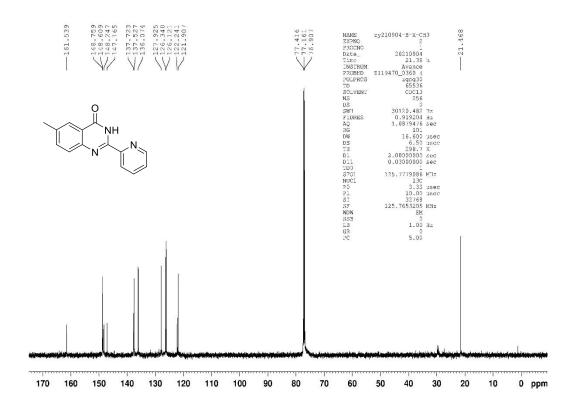


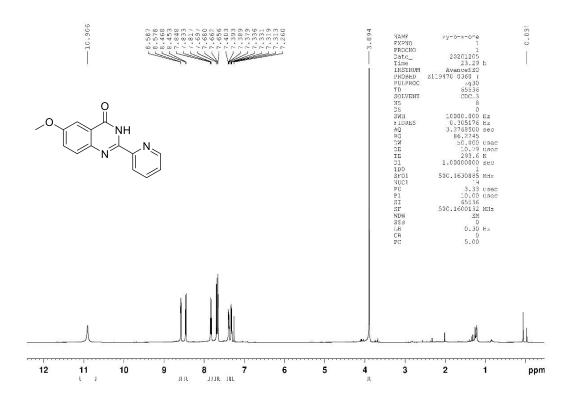

2-(6-methylpyridin-2-yl)quinazolin-4(3H)-one (3at):

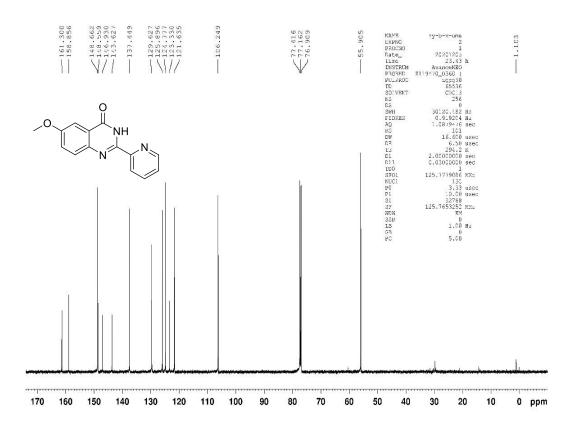


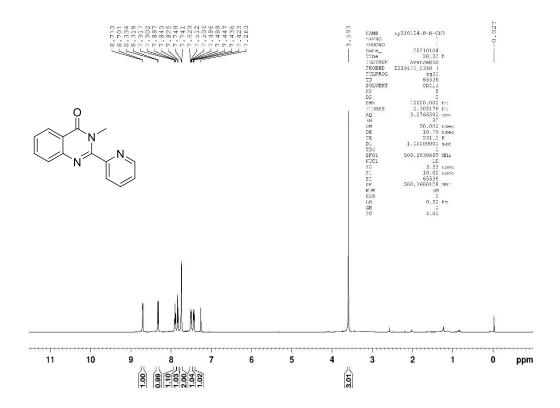

6-fluoro-2-(pyridin-2-yl)quinazolin-4(3H)-one (3br):

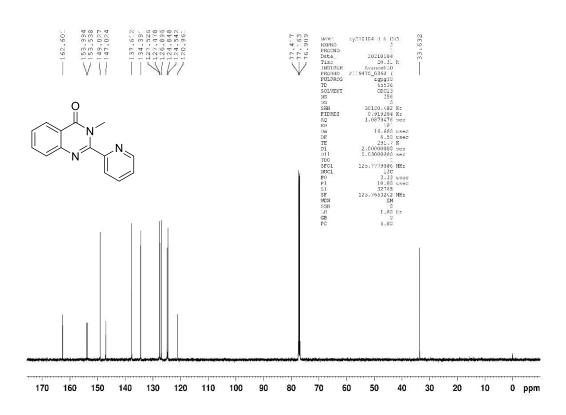



5-bromo-2-(pyridin-2-yl)quinazolin-4(3H)-one (3hr):




6-methyl-2-(pyridin-2-yl)quinazolin-4(3H)-one (3jr):




6-methoxy-2-(pyridin-2-yl)quinazolin-4(3H)-one (3kr):

3-methyl-2-(pyridin-2-yl)quinazolin-4(3H)-one (3mr):

