Electronic Supplementary Information for

Chiral Macrocycle Induced Circularly Polarized Luminescence of a Twisted Intramolecular Charge Transfer Dye

Tiejun Li, ^{a,c} Hao Guo, ^{b,c} Yuan Wang, ^{a,c} Guanghui Ouyang, ^{*a} Qi-Qiang Wang^b and Minghua Liu^{*a,c}

- ^{a.} Beijing National Laboratory for Molecular Science (BNLMS) and CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- ^{b.} BNLMS and CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- c. University of Chinese Academy of Sciences, Beijing, 100049, China

E-mail: ouyanggh@iccas.ac.cn, liumh@iccas.ac.cn.

1. Supplementary figures.

Scheme S1. The formula structures of (S, S, S, S)-macrocycle and (R, R, R, R)-macrocycle, which are abbreviated as *S*-Host and *R*-Host, respectively.

	λ_{abs}/nm	$arepsilon_{ m max}/ m M^{-1}cm^{-1}\ (at\lambda_{ m abs})^{ m a}$	$\lambda_{ m em}$ / nm	$\varDelta ilde{v}_{ m Stokes}$ / cm ⁻¹	FLQY ^b	Lifetime /ns ^c
S-Host	280	3.27×10^{4}	317	4.2×10^{3}	0.5%	11.2
ANS-1	270	8.70×10^{3}	494	1.7×10^{4}	5.5%	9.0
Host/ANS-1 ^d	278	5.95×10^{4}	464	1.4×10^{4}	16.1%	10.7
ANS-2	275	6.52×10^{3}	460	1.5×10^{4}	4.8%	10.9
Host/ANS-2 ^d	254	4.47×10^{4}	412	1.5×10^{4}	2.1%	13.1

Table S1: Photophysical data of the host, guest dyes and their complexes.

^a The mole extinction coefficient is corresponding to λ_{abs} .

^b The photoexcitation luminescent quantum yield is measured by absolute method using an integrating sphere.

^c Diode laser excitation wavelength 260 nm, monitor emission wavelength decay at 460 nm, in THF, 298 K.

^d 1:1 mole ratio in THF.

Figure S1. Schematic presentation of the LE state and TICT state conversion and fluorescence process in the TICT process of **ANS-1**.

Figure S2. UV-Vis absorption spectra of a) *S*-Host/ANS-1 mixture (1:1 in mole ratio, blue solid line), the superposition of individual *S*-Host and ANS-1 absorption spectra (magenta dotted line). b) *S*-Host/ANS-2 mixture (1:1 in mole ratio, blue solid line), the superposition of *S*-Host and ANS-2 absorption spectra (magenta dotted line). [*S*-Host] = [ANS-1] = [ANS-2] = 2×10^{-4} M in THF, 298 K.

Figure S3. Emission decay curves of a) **ANS-1** (black dotted line) and the **Host/ANS-1** mixture (red dotted line). b) **ANS-2** (black dotted line) and the **Host/ANS-2** mixture (red dotted line). [**Host**] = [**ANS-1**] = [**ANS-2**] = 2×10^{-4} M in THF, 298 K. $\lambda_{ex} = 260$ nm, monitor emission wavelength decay at 460 nm.

	$\tau_1(ns)$	$\mathbf{\tau}_{2}\left(\mathbf{ns}\right)$	B ₁	B ₂	τ	X ²
S-Host	3.4742	12.646	40.39%	59.61%	11.2	1.099
ANS-1	4.9890	9.4082	13.55%	86.45%	9.0	1.033
Host/ANS-1 ^d	5.2477	10.9356	9.61%	90.39%	10.7	1.129
ANS-2	4.1546	11.3887	16.68%	83.32%	10.9	1.045
Host/ANS-2 ^d	5.0082	13.5408	13.96%	86.04%	13.1	1.035

Table S2: Fitting data of emission decay curves.

$$\tau = (B_1 * \tau_1^2 + B_2 * \tau_2^2) / (B_1 * \tau_1 + B_2 * \tau_2)$$
 Eq. 1

The emission decay curves are fitted by equation 1, where τ represents the average lifetime, τ_1 and τ_2 represent lifetimes of different decay profiles, **B**₁ and **B**₂ represent proportion of each profile. χ^2 represents the confidence factor. When $0.8 < \chi^2 < 1.3$, the fitting result is reliable and applicable. And the closer the fitting value χ^2 is to 1, the better the fitting effect.

Figure S4. Benesi-Hildebrand equation shows a 1:1 binding model and the binding constant $K_a = (3.34\pm0.01)\times10^4$ M⁻¹ of the host-guest complex through titrating the *S*-Host into the TICT dye ANS-1 ($\lambda_{abs} = 280$ nm).

Figure S5. a) Isothermal UV/Vis binding titration of chiral-macrocycle **Host** upon addition of dye **ANS-2** at 298 K in THF (λ_{abs} =280 nm), the gray dotted lines are intermediate curves with increased amounts of **ANS-2**. b) Non-linear least-square curve fitting with 1:1 binding model and affords a constant of $K_a = (2.29\pm0.04) \times 10^3 \text{ M}^{-1}$ ($\lambda_{abs} = 280 \text{ nm}$).

Figure S6. Benesi-Hildebrand equation shows a 1:1 binding model and the binding constant $K_a = (2.29\pm0.04) \times 10^3 \text{ M}^{-1}$ through titrating different equivalents of dyes **ANS-2** into the macrocycle **Host** ($\lambda_{abs} = 280 \text{ nm}$).

Figure S7. a) Stacked ¹H-NMR spectra (acetonitrile-d3, 300 MHz, 298 K) of *S*-Host, ANS-1 and their host-guest complexes (1:1 in mole ratio). b) Stacked ¹H-NMR spectra (DMSO-d6, 300 MHz, 298 K) of *S*-Host, ANS-2 and their host-guest complexes *S*-Host/ANS-2 (1:1 in mole ratio).

Figure S8. Circularly polarized luminescence spectra of *R*-Host (blue line) and *S*-Host (red line), the excitation wavelength $\lambda_{ex} = 280$ nm, [*R*/*S*-Host] = 2×10⁻⁴ M in THF, 298 K.

Figure S9. Circularly polarized luminescence spectra of *R*-Host/ANS-2 mixture (blue line) and *S*-Host/ANS-2 mixture (red line), the excitation wavelength $\lambda_{ex} = 280$ nm, [Host/ANS-2] = 2×10⁻⁴ M in THF, 298 K.

Figure S10. Proposed binding mode of *S*-Host/ANS-2 complex based on energyoptimized structure by DFT method at Gaussian 09, B3LYP 6-31+G* level with a PCM model (solvent = tetrahydrofuran). The color balls represent: gray (carbon), white (hydrogen), blue (nitrogen), red (oxygen), green (fluorine) and brown (sulphur).

Scheme S2. The chemical structures of a binaphthol-urea macrocycle (M1) and a TICT-dye ANS-3.

Figure S11. a) UV-Vis, b) FL, c) CD and d) CPL spectra of M1, ANS-1 and their mixture (1:1 in mole ratio). $[M1] = [ANS-1] = 2 \times 10^{-4} \text{ M in THF}$, 298 K.

Figure S12. a) UV-Vis, b) FL, c) CD and d) CPL spectra of *R*-Host, ANS-3 and their mixture (1:1 in mole ratio). [*R*-Host] = [ANS-3] = 2×10^{-4} M in THF, 298 K.

Figure S13. Luminescence lifetime measurements at longer time scale (μ s) of ANS-1(black scatter) and instrument response function (IRF, red scatter).

Figure S14. Luminescence lifetime measurements at longer time scale (μ s) of a) *S*-Host/ANS-1 = 1:1 mixture (black scatter), IRF (red scatter). b) *R*-Host/ANS-1=1:1 mixture (black scatter), IRF (red scatter). [Host/ANS-1] = 2×10⁻⁴ M in THF, 298 K.

2. General Information

All reagents and solvents were purchased from TCI and Aladdin and used directly without further purification. **ANS-1** (8-anilino-1-naphthalenesulfonic acid, > 95%, TCI), **ANS-2** (8-aminonaphthalene-1-sulphonic acid, $\ge 98.0\%$ (HPLC), Aladdin).

Formation of the host-guest complex

Chiral macrocycle *R/S*-Host, dye 8-Anilino-1-naphthalenesulfonic acid (ANS-1) and 8-aminonaphthalene-1-sulphonic acid (ANS-2) were separately dissolved in organic solvent tetrahydrofuran at a concentration of 4×10^{-4} M. Equal volume of the host and guest solution were mixed and stirred for 30 min to give the corresponding host-guest complex with a concentration of 2×10^{-4} M.

Characterization Instruments and Methods.

UV–Vis spectra were recorded in cuvettes (path length 1 mm) on a SHIMADZU UV-2600 spectrometer. All the tested samples were prepared in tetrahydrofuran.

Fluorescence spectra tested samples were prepared in tetrahydrofuran at a concentration of 2×10^{-4} M on a HITACHIF-4600.

Circular Dichroism (CD) spectra were recorded in cuvettes (path length 1 mm) on a JASCO J-810 spectrophotometer.

CPL measurements were performed with a JASCO CPL-200 spectrometer. The DC values were adjusted to about 0.5 Voltage. For all the tested solution samples, the EX slit and EM slit were set as 5 nm, and the PMT voltage was set as 400 V.

Quantum yield were recorded with a HORIBA FluoroMax+.

Fluorescence lifetime were recorded with an Edinburgh FLS-980 photospectrometer.