Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Cis-3-Azido-2-Methoxyindolines as Safe and Stable

Precursors to Overcome the Instability of Fleeting 3-Azidoindoles

Toshiki Yamashiro^a, Takumi Abe^{*a}, Masaru Tanioka^b, Shinichiro Kamino^b, Daisuke Sawada^{*a} ^a Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 7008530, Japan ^b School of Pharmacuetical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 4648650, Japan E-mail: t-abe@okayama-u.ac.jp E-mail: dsawada@okayama-u.ac.jp

SUPPORTING INFORMATION

Contents
1. General Experimental ·······S2
2. Experimental Procedure S3–23
3. X-ray Crystallographic Analysis
4. Supplementary References S29
5. Copies of ¹ H and ¹³ C NMR spectra
6. Copies of 2D spectra of 7 S122–123

1. General Experimental

Melting points were recorded with a METTLER TOLEDO MP50 Melting Point System and are uncorrected. Highresolution MS spectra were recorded with a Brucker micrOTOF mass spectrometers (ESI-TOF-MS). IR spectra were measured with a Shimadzu IR Affinity-1 spectrometer. The NMR experiments were performed with JEOL JNM-ECZ600R (¹H NMR: 600 MHz, ¹³C NMR: 151 MHz) spectrometer, and chemical shifts are expressed in ppm (δ) using residual undeuterated solvent as an internal reference (CDCl₃, ¹H NMR: δ 7.25, ¹³C NMR: δ 77.1). The following abbreviations were used to explain NMR peak multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, sep = septet, m = multiplet, dd = doublet of doublets, ddd = doublet of doublet of doublets, dq = doublet of quartets, tt = triplet of triplets, br = broad; coupling constants in Hz; integration. The crystal structure of **3a** was determined by the single-crystal X-ray diffraction method at T = 103 K. The diffraction data was collected using Rigaku XtaLAB Synergy-i diffractometer (Cu–K α radiation). The structure was solved using the SHELXT^[S1] and refined with SHELXL-2018/3^[S2] via OLEX2.^[S3] All non-hydrogen atoms were refined anisotropically. All the hydrogen atoms were put on calculated geometrically, and were refined by applying riding models. Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre: Deposition code CCDC 2107262 (**3a**).

Reactions were monitored by thin layer chromatography (TLC) carried out on a silica gel plates (60F-254) and visualized under UV illumination at 254 or 365 nm depending on the compounds. Flash column chromatography was performed on silica gel (WAKO Gel 75–150 mesh, WAKO Co., Ltd.).

2. Experimental Procedure

■Synthesis of *N*-protected indoles (1)

The *N*-protected indoles **1** as *N*-tosylindoles (**1a–1g**, **1l–1n**), *N*-benzenesulfonylindole (**1h**), *N*-(2-nitrobenzenesulfonyl)indole (**1i**), *N*-benzoylindole (**1j**) and *N*-acetylindole (**1k**) were prepared by reported methods.^[S4–6] All substrates were used as received from commercial suppliers (Sigma-Aldrich, Kanto Chemical, TCI and Wako) and all reagents were weighed and handled in air at room temperature.

General Procedure for the Bromoalkoxylation of 1

To a solution of *N*-protected indoles **1** (2.0 mmol) in MeOH (20 mL, 0.1 M) was added NBS (392 mg, 1.1 mmol). The mixture was stirred at room temperature until the complete disappearance of starting material as indicated by TLC. After H₂O (20 mL) was added to the mixture, the whole was extracted with AcOEt (3 x 50 mL), washed with brine (25 mL). The combined organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by recrystallization from MeOH and/or silica gel column chromatography (AcOEt/hexane = 1/8-1/2) to give **2a**-**2k**. The other compounds (**2l**, **2m** and **2n**) were prepared by our reported method.^[S7]

trans-3-Bromo-7-chloro-2-methoxy-1-tosylindoline (2g)

753 mg, 89% yield. colorless solid; mp 126–128 °C; IR (KBr): 1464, 1364, 1163, 1034, 991 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 7.66 (d, *J* = 7.8 Hz, 2H), 7.62 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.26–7.24 (m, 3H), 7.09 (t, *J* = 7.8 Hz, 1H), 5.90 (s, 1H), 4.87 (s, 1H), 3.49 (s, 3H), 2.38 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 144.5, 138.8, 136.5, 136.1, 132.6, 129.5, 128.2, 127.2, 125.0, 124.7, 101.0, 56.4, 45.9, 21.7; HRMS (ESI) *m/z*: 437.9544, 439.9516, 439.9522, 441.9492 (Calcd for C₁₆H₁₅BrClNO₃SNa [M+Na]⁺: 437.9542, 439.9513, 439.9522, 441.9492).

trans-1-Benzenesulfonyl-3-bromo-2-methoxyindoline (2h)

671 mg, 91% yield. colorless solid; mp 108–110 °C; IR (KBr): 1468, 1354, 1169, 991 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ: 7.80–7.78 (m, 2H), 7.68 (d, J = 7.8 Hz, 1H), 7.50 (t, J = 7.8 Hz, 1H), 7.40–7.38 (m, 2H), 7.33 (t, J = 7.8 Hz, 1H), 7.26 (d, J = 8.4 Hz, 1H), 7.10 (t, J = 7.2 Hz, 1H), 5.56 (s, 1H), 4.92 (s, 1H), 3.60 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ: 140.5, 138.1, 133.7, 131.5, 130.7, 129.0, 127.7, 126.3, 125.6, 117.2, 99.9, 56.4, 47.1; HRMS (ESI) *m/z*: 389.9776, 391.9757 (Calcd for C₁₅H₁₄BrNO₃SNa [M+Na]⁺: 389.9776, 391.9755).

Synthesis of 3-azido-2-alkoxyindolines (3a)

Optimization of Reaction Conditions

Table S1 Synthesis of 3-azido-2-methoxyindolines (3a)

	N Ts 2a	r base (> NaN ₃ ('OMe solvnet (100 °C	K eq) Y eq) (0.1 M) , time	N ₃ N ₅ Cis-3a	e
run	base (X eq)	NaN ₃ (Y eq)	solvent	time (h)	yield (%) ^a
1	Et ₃ N (5)	5	DMF	1	74
2	Et ₃ N (5)	5	DMSO	1	85
3	Et ₃ N (5)	5	DMA	1	90
4	—	5	DMA	1	75
5	K ₂ CO ₃ (5)	5	DMA	1	96
6	K ₂ CO ₃ (1)	5	DMA	1	95
7	K ₂ CO ₃ (0.5)	5	DMA	1	92
8	K ₂ CO ₃ (5)	2	DMA	1	85
9	K ₂ CO ₃ (1)	5	DMA	0.5	95 ^b

^a Isolated yields. ^b Stirred until the complete disapearance of starting material as indicated by TLC.

The solution of base (X mmol, X eq) and NaN₃ (Y mmol, Y eq) in solvent (10 mL, 0.1 M) was stirred at 100 °C in oil bath. To the mixture was added **2a** (382 mg, 1 mmol) and the mixture was stirred until the complete disappearance of starting material as indicated by TLC. After the reaction mixture was cooled down to room temperature, H₂O (10 mL) was added to the mixture. Then, the whole was extracted with AcOEt/hexane = 1/5 (3 x 25 mL), washed with H₂O (25 mL) and brine (25 mL). The combined organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (AcOEt/hexane = 1/10-1/3) to give *cis*-**3a**.

General Procedure for the synthesis of 3-azido-2-methoxyindolines 3 (Scheme 3)

To a solution of K_2CO_3 (138 mg, 1 mmol) and NaN_3 (325 mg, 5 mmol) in DMA (dimethylacetamide) (10 mL, 0.1 M) was added **2** (1 mmol) and the mixture was stirred at 100 °C in oil bath until the complete disappearance of starting material as indicated by TLC. After the reaction mixture was cooled down to room temperature, H₂O (10 mL) was added to the mixture. Then, the whole was extracted with AcOEt/hexane = 1/5 (3 x 25 mL), washed with H₂O (25 mL) and brine (25 mL). The combined organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by recrystallization from CHCl₃/hexane and/or silica gel column chromatography

(AcOEt/hexane = 1/10-1/3) to give *cis*-3.

cis-3-Azido-2-methoxy-1-tosylindoline (3a)

Table S1, run 6: 326 mg, 95% yield. colorless solid; mp 97–100 °C; IR (KBr): 2106, 1464, 1348, 1167 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 7.57 (d, *J* = 7.8 Hz, 1H), 7.56 (d, *J* = 8.4 Hz, 2H), 7.32 (t, *J* = 8.4 Hz, 1H), 7.21 (d, *J* = 7.2 Hz, 1H), 7.18 (d, *J* = 7.8 Hz, 2H), 7.15 (t, *J* = 7.8 Hz, 1H), 5.40 (d, *J* = 6.0 Hz, 1H), 4.07 (d, *J* = 5.4 Hz, 1H), 3.62 (s, 3H), 2.34 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 144.6, 139.8, 135.8, 130.0, 130.0, 129.6, 126.9, 125.6, 124.4, 118.0, 95.6, 62.9, 56.8, 21.7; HRMS (ESI) *m/z*: 367.0839 (Calcd for C₁₆H₁₆N₄O₃SNa [M+Na]⁺: 367.0841).

cis-3-Azido-2,5-dimethoxy-1-tosylindoline (3b)

321 mg, 85% yield. colorless solid; mp 132–134 °C; IR (KBr): 2118, 1489, 1350, 1167 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 7.53 (d, *J* = 9.0 Hz, 1H), 7.48 (d, *J* = 7.8 Hz, 2H), 7.16 (d, *J* = 7.8 Hz, 2H), 6.86 (ddd, *J* = 8.4, 2.4, 0.6 Hz, 1H), 6.72 (dd, *J* = 2.4, 0.6 Hz, 1H), 5.33 (d, *J* = 5.4 Hz, 1H), 3.87 (d, *J* = 5.4 Hz, 1H), 3.78 (s, 3H), 3.61 (s, 3H), 2.35 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 158.3, 144.5, 135.6, 132.8, 131.8, 130.0, 126.8, 120.0, 115.1, 110.1, 95.1, 63.0, 56.4, 55.8, 21.7; HRMS (ESI) *m/z*: 397.0948 (Calcd for C₁₇H₁₈N₄O₄SNa [M+Na]⁺: 397.0947).

cis-3-Azido-5-chloro-2-methoxy-1-tosylindoline (3c)

377 mg, 99% yield. colorless solid; mp 101–103 °C; IR (KBr): 2118, 1468, 1360, 1167, 1105 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 7.55 (d, *J* = 8.4 Hz, 2H), 7.50 (d, *J* = 8.4 Hz, 1H), 7.29 (dd, *J* = 8.4, 0.6 Hz, 1H), 7.21 (d, *J* = 8.4 Hz, 2H), 7.17 (d, *J* = 1.2 Hz, 1H), 5.39 (d, *J* = 5.4 Hz, 1H), 4.02 (d, *J* = 5.4 Hz, 1H), 3.62 (s, 3H), 2.37 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 144.9, 138.4, 135.6, 131.7, 131.1, 130.1, 126.8, 124.7, 119.1, 94.8, 62.6, 56.8, 21.7; HRMS (ESI) *m/z*: 401.0451, 403.0422 (Calcd for C₁₆H₁₅ClN₄O₃SNa [M+Na]⁺: 401.0451, 403.0422).

cis-3-Azido-5-bromo-2-methoxy-1-tosylindoline (3d)

333 mg, 79% yield. colorless solid; mp 111–112 °C; IR (KBr): 2116, 1466, 1364, 1167, 999 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 7.56 (d, *J* = 8.4 Hz, 2H), 7.44 (d, *J* = 0.6 Hz, 1H), 7.44 (d, *J* = 0.6 Hz, 1H), 7.32 (dd, *J* = 2.4, 1.2 Hz, 1H), 7.21 (d, *J* = 7.2 Hz, 2H), 5.39 (d, *J* = 6.0 Hz, 1H), 4.05 (dd, *J* = 6.0, 1.2 Hz, 1H), 3.62 (s, 3H), 2.37 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 144.9, 138.9, 135.6, 133.1, 131.2, 130.1, 127.6, 126.8, 119.4, 118.5, 94.7, 62.5, 56.8, 21.7; HRMS (ESI) *m/z*: 444.9946, 446.9925 (Calcd for C₁₆H₁₅BrN₄O₃SNa [M+Na]⁺: 444.9946, 446.9926).

cis-3-Azido-4-chloro-2-methoxy-1-tosylindoline (3e)

360 mg, 95% yield. colorless oil; IR (KBr): 2112, 1466, 1362, 1171, 1005 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 7.66 (d, *J* = 8.4 Hz, 2H), 7.62 (d, *J* = 8.4 Hz, 1H), 7.27–7.23 (m, 3H), 7.09 (dd, *J* = 8.4, 1.2 Hz, 1H), 5.45 (d, *J* = 6.0 Hz, 1H), 4.30 (d, *J* = 6.0 Hz, 1H), 3.67 (s, 3H), 2.39 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 144.9, 141.9, 135.6, 131.7, 131.4, 130.1, 127.0, 126.1, 115.2, 94.0, 63.2, 57.3, 21.7; HRMS (ESI) *m/z*: 401.0450, 403.0422 (Calcd for C₁₆H₁₅ClN₄O₃SNa [M+Na]⁺: 401.0451, 403.0422).

cis-3-Azido-6-chloro-2-methoxy-1-tosylindoline (3f)

345 mg, 91% yield. colorless solid; mp 129–128 °C; IR (KBr): 2114, 1474, 1350, 1169, 995 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 7.60 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 1.2 Hz, 1H), 7.23 (d, *J* = 8.4 Hz, 2H), 7.12–7.12 (m, 2H), 5.40 (d, *J* = 6.0 Hz, 1H), 4.06 (d, *J* = 5.4 Hz, 1H), 3.62 (s, 3H), 2.37 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 144.9, 141.0, 135.8, 135.7, 130.1, 128.0, 126.9, 125.6, 125.2, 118.1, 94.8, 62.4, 56.9, 21.7; HRMS (ESI) *m/z*: 401.0451, 403.0422 (Calcd for C₁₆H₁₅ClN₄O₃SNa [M+Na]⁺: 401.0451, 403.0422).

cis-3-Azido-7-chloro-2-methoxy-1-tosylindoline (3g)

371 mg, 98% yield. colorless solid; mp 120–122 °C; IR (KBr): 2112, 1464, 1364, 1173, 959 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 7.67 (ddd, J = 9.0, 1.8, 1.8 Hz, 2H), 7.40 (dd, J = 7.8, 1.2 Hz, 1H), 7.27 (ddd, J = 9.0, 1.2, 1.2 Hz, 2H), 7.22 (t, J = 7.2 Hz, 1H), 7.15 (dd, J = 7.8, 1.2 Hz, 1H), 5.42 (d, J = 5.4 Hz, 1H), 4.07 (d, J = 5.4 Hz, 1H), 3.38 (s, 3H), 2.42 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 145.1, 138.0, 136.0, 135.5, 131.7, 130.0, 128.5, 128.4, 127.6, 122.6, 97.6, 63.3, 56.2, 21.8; HRMS (ESI) *m/z*: 401.0451, 403.0422 (Calcd for C₁₆H₁₅ClN₄O₃SNa [M+Na]⁺: 401.0451, 403.0422).

cis-3-Azido-1-benzenesulfonyl-2-methoxyindoline (3h)

290 mg, 88% yield. colorless solid; mp 129–131 °C; IR (KBr): 2120, 1464, 1354, 1169 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 7.70 (ddd, *J* = 8.4, 1.8, 1.8 Hz, 2H), 7.57 (d, *J* = 8.4 Hz, 1H), 7.53 (ddd, *J* = 7.8, 6.6, 1.2 Hz, 1H), 7.40 (ddd, *J* = 7.8, 6.0, 1.8 Hz, 2H), 7.33 (tt, *J* = 7.8, 1.2 Hz, 1H), 7.21 (d, *J* = 7.2 Hz, 1H), 7.15 (ddd, *J* = 7.8, 1.2, 1.2 Hz, 1H), 5.42 (d, *J* = 5.4 Hz, 1H), 4.07 (d, *J* = 5.4 Hz, 1H), 3.63 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 139.7, 138.8, 133.6, 130.1, 129.5, 129.4, 126.8, 125.6, 124.5, 117.8, 94.6, 62.9, 56.8; HRMS (ESI) *m/z*: 353.0684 (Calcd for C₁₅H₁₄N₄O₃SNa [M+Na]⁺: 353.0684).

cis-3-Azido-2-methoxy-1-(2-nitrobenzenesulfonyl)indoline (3i)

30.6 mg, 8% yield. pale yellow solid; mp 116–117 °C; IR (KBr): 2116, 1474, 1346, 1167 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 8.08 (dd, *J* = 8.4, 1.8 Hz, 1H), 7.53 (ddd, *J* = 8.4, 7.2, 1.2 Hz, 1H), 7.28–7.27 (m, 2H), 7.22–7.17 (m, 3H), 7.07 (ddd, *J* = 8.4, 7.2, 1.2 Hz, 1H), 5.88 (d, *J* = 6.0 Hz, 1H), 4.68 (d, *J* = 6.0 Hz, 1H), 3.67 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 138.9, 138.1, 134.9, 132.8, 129.9, 128.7, 128.6, 124.8, 124.8, 124.6, 120.0, 115.5, 95.4, 62.9, 56.9; HRMS (ESI) *m/z*: 398.0537 (Calcd for C₁₅H₁₃N₅O₅SNa [M+Na]⁺: 398.0535).

cis-3-Azido-1-benzoyl-2-methoxyindoline (3j)

containing rotamers

220 mg, 75% yield. colorless crystal; mp 98–99 °C; IR (KBr): 2104, 1649, 1479, 1383 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 7.61 (d, J = 7.2 Hz, 2H), 7.56 (tt, J = 7.2, 1.8 Hz, 1H), 7.52–7.49 (m, 3H), 7.43 (d, J = 7.8 Hz, 1H), 7.30 (br s, 1H), 7.21 (t, J = 7.2 Hz, 1H), 5.49 (br s, 1H), 4.75 (d, J = 5.4 Hz, 1H), 3.42 (s, 3H); ¹³C NMR (151 MHz,

CDCl₃) δ: 170.0, 141.3, 135.9, 131.0, 129.7, 128.8, 128.0, 127.6, 124.9, 124.3, 117.7, 93.3, 62.6, 57.7; HRMS (ESI) *m/z*: 317.1015 (Calcd for C₁₆H₁₄N₄O₂SNa [M+Na]⁺: 317.1015).

cis-1-Acetyl-3-azido-2-methoxyindoline (3k)

containing rotamers

341 mg, 73% yield. yellow oil; IR (KBr): 2108, 1683, 1479, 1389 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 8.13 (d, J = 6.0 Hz, 1H), 7.41–7.27 (m, 2H), 7.10 (t, J = 7.2 Hz, 1H), 5.39 (s, 1H), 4.74 (s, 1H), 3.50 (s, 3H), 2.30 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 169.6, 141.6, 130.1, 126.4, 124.6, 124.1, 117.1, 91.5, 62.6, 56.4, 23.5; HRMS (ESI) *m/z*: 225.0858 (Calcd for C₁₁H₁₂N₄O₂SNa [M+Na]⁺: 225.0858).

cis-3-Azido-2-ethoxy-1-tosylindoline (31)

240 mg, 67% yield. colorless solid; mp 89–90 °C; IR (KBr): 2118, 1466, 1350, 1165 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 7.58 (ddd, J = 9.0, 1.8, 1.8 Hz, 2H), 7.53 (d, J = 7.8 Hz, 1H), 7.32 (ddd, J = 7.8, 6.6, 1.2 Hz, 1H), 7.22 (d, J = 7.2 Hz, 1H), 7.18 (d, J = 8.4 Hz, 2H), 7.14 (ddd, J = 8.4, 7.8, 0.6 Hz, 1H), 5.50 (d, J = 6.0 Hz, 1H), 4.06 (d, J = 6.0 Hz, 1H), 4.30 (dq, J = 8.4, 7.2 Hz, 1H), 3.77 (dq, J = 8.4, 7.2 Hz, 1H), 2.35 (s, 3H), 1.25 (t, J = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 144.5, 139.9, 136.0, 130.0, 129.9, 129.6, 126.9, 125.4, 124.4, 117.7, 93.2, 65.3, 62.8, 21.3, 15.0; HRMS (ESI) *m/z*: 381.0997 (Calcd for C₁₇H₁₈N₄O₃SNa [M+Na]⁺: 381.0997).

cis-3-Azido-2-isopropoxy-1-tosylindoline (3m)

362 mg, 97% yield. colorless solid; mp 107–109 °C; IR (KBr): 2118, 1466, 1350, 1165 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 7.55 (ddd, J = 8.4, 1.8, 1.8 Hz, 2H), 7.53 (d, J = 9.0 Hz, 1H), 7.31 (ddd, J = 7.8, 6.0, 1.8 Hz, 1H), 7.21 (d, J = 7.8 Hz, 1H), 7.17 (d, J = 8.4 Hz, 2H), 7.15 (ddd, J = 8.4, 7.2, 1.2 Hz, 1H), 5.59 (d, J = 6.0 Hz, 1H), 4.31 (sep, J = 6.0 Hz, 1H), 3.97 (d, J = 5.4 Hz, 1H), 2.35 (s, 3H), 1.30 (d, J = 6.0 Hz, 3H), 1.20 (d, J = 6.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 144.4, 139.9, 136.1, 130.0, 129.9, 129.9, 126.8, 125.5, 124.4, 118.1, 91.5, 71.1, 62.7, 23.0, 21.6, 21.4; HRMS (ESI) *m/z*: 395.1154 (Calcd for C₁₈H₂₀N₄O₃SNa [M+Na]⁺: 395.1154).

cis-3-Azido-2-benzyloxy-1-tosylindoline (3n)

348 mg, 83% yield. colorless solid; mp 110–111 °C; IR (KBr): 2104, 1462, 1364, 1173 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 7.59 (d, *J* = 7.8 Hz, 1H), 7.51 (ddd, *J* = 7.8, 1.8, 1.8 Hz, 2H), 7.40 (d, *J* = 7.2 Hz, 2H), 7.35–7.32 (m, 3H), 7.29 (tt, *J* = 7.2, 1.2 Hz, 1H), 7.22 (d, *J* = 7.8 Hz, 1H), 7.16 (t, *J* = 7.8 Hz, 1H), 7.13 (d, *J* = 7.8 Hz, 2H), 5.57 (d, *J* = 5.4 Hz, 1H), 5.00 (d, *J* = 12.0 Hz, 1H), 4.86 (d, *J* = 12.0 Hz, 1H), 4.03 (d, *J* = 5.4 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 144.6, 139.9, 137.0, 135.8, 130.1, 130.0, 129.7, 128.5, 128.0, 127.9, 126.8, 125.7, 124.4, 118.2, 92.6, 70.7, 63.0, 21.6; HRMS (ESI) *m/z*: 443.1154 (Calcd for C₂₂H₂₀N₄O₃SNa [M+Na]⁺: 443.1154).

Gram-scale synthesis of 3-azido-2-methoxy-1-tosylindoline (3a)

A solution of K_2CO_3 (4.16 g, 30 mmol) and NaN₃ (9.75 g, 150 mmol) in DMA (dimethylacetamide) (300 mL, 0.1 M) was stirred at 100 °C in oil bath. To the mixture was added **2a** (11.5 g, 30 mmol) and stirred for 1 h at 100 °C. After the reaction mixture was cooled down to room temperature, H₂O (50 mL) was added to the mixture. Then, the whole was extracted with AcOEt/hexane = 1/5 (3 x 100 mL), washed with H₂O (100 mL) and brine (100 mL). The combined organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by recrystallization from CHCl₃/hexane to give **3a** (8.81g, 85%).

Optimization of Reaction Conditions

					́ОМе		
N ₃ N OMe + Ts 3a	MeO	OMe OMe ur 4a	catalyst (10 mol%) Ider Ar then air solvent 80 °C	MeO N Ts	OMe	H MeO N Ts	OMe OMe N Ts
				5aa			ouu
					yield	(%)	
	run	cat. (10 mol%)	solvent (mL)	time (h)	5aa ^a	6aa ^a	
	1	In(OTf) ₃	DCE (3)	2	18	8	
	2	InF ₃ •4H ₂ O	DCE (3)	2	trace	0	
	3	InBr ₃	DCE (3)	1	74	15	
	4	InCl ₃ •4H ₂ O	DCE (3)	1	77	17	
	5	AICI ₃	DCE (3)	2	42	3	
	6	LaCl ₃ •7H ₂ O	DCE (3)	2	trace	0	
	7	FeCl ₃	DCE (3)	1	73	20	
	8	BF ₃ •OEt ₂	DCE (3)	1	67	6	
	9	InCl ₃ •4H ₂ O	toluene (3)	2	48	0	
	10	InCl ₃ •4H ₂ O	CIC ₆ H ₅ (3)	2	54	3	
	11	InCl ₃ •4H ₂ O	$CF_{3}C_{6}H_{5}(3)$	2	67	13	
	12	InCl ₃ •4H ₂ O	HFIP (3)	1	72	8	
	13	InCl ₃ •4H ₂ O	MeOH (3)	2	nr	nr	
	14	InCl ₃ •4H ₂ O	DCE (3)	1	21	58	
	15	—	DCE (3)	16	nr	nr	
	16 ^c	InCl ₃ •4H ₂ O	DCE (1.5)	0.5	77	17	
	17	InCl ₃ •4H ₂ O	DCE (0.6)	1	76	14	

Table S2Optimization of reaction conditions using 3a and 4a

^a Isolated yields. ^b 3a (0.3 mmol), and 4a (0.15 mmol), and InCl₃•4H₂O (0.03 mmol) in DCE (3 mL).

To a solution of **3a** (103 mg, 0.3 mmol) and 1,3,5-trimethoxybenzene **4a** (55.5 mg, 0.33 mmol) in solvent (3 mL, 0.1 M) was added catalyst (0.03 mmol) under Ar. The mixture was stirred at 80 °C in oil bath until the complete disappearance of starting material and 3-azidoindole as indicated by TLC or for 2 h. After H₂O (0.1 mL) was added to the mixture at 80 °C, and the mixture was stirred at 80 °C for 30 min. The whole was cooled to room temperature and H₂O (10 mL) was added to the mixture. Then, the whole was extracted with CHCl₃ (3 x 20 mL), washed with brine (20 mL). The organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (AcOEt/hexane = 1/10-1/2) to give **5aa** and **6aa**.

1-Tosyl-3-(2,4,6-trimethoxyphenyl)indole (5aa)

Table S2, run 4: 101 mg, 77% yield. colorless solid; mp 122–123 °C; IR (KBr): 1454, 1364, 1179, 1125 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 7.97 (d, *J* = 8.4 Hz, 1H), 7.62 (ddd, *J* = 8.4, 1.2, 1.2 Hz, 2H), 7.59 (s, 1H), 7.24 (ddd, *J* = 8.4, 7.2, 1.2 Hz, 1H), 7.23 (d, *J* = 7.8 Hz, 1H), 7.20 (d, *J* = 8.4 Hz, 2H), 7.14 (ddd, *J* = 7.8, 7.2, 0.6 Hz, 1H), 6.23 (s, 2H), 3.89 (s, 3H), 3.69 (s, 6H), 2.32 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 161.2, 159.2, 144.7, 135.6, 134.9, 131.5, 129.8, 1267.0, 126.5, 124.0, 122.9, 121.7, 115.3, 113.5, 102.7, 91.0, 55.8, 55.5, 21.7; HRMS (ESI) *m/z*: 460.1195 (Calcd for C₂₄H₂₃NO₅SNa [M+Na]⁺: 460.1195).

3,3'-(2,4,6-trimethoxy-1,3-phenylene)bis-1-tosylindole (6aa)

Table S2, run 4: 17.8 mg, 17% yield. colorless solid; mp 229–231 °C; IR (KBr): 1445, 1366, 1175, 1109 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 8.00 (d, J = 7.8 Hz, 2H), 7.77 (ddd, J = 8.4, 1.8, 1.8 Hz, 4H), 7.64 (s, 2H), 7.36 (d, J = 7.8 Hz, 2H), 7.29 (ddd, J = 7.8, 6.6, 1.2 Hz, 2H), 7.20 (ddd, J = 7.8, 7.2, 0.6 Hz, 2H), 7.17 (d, J = 7.8 Hz, 4H), 6.46 (s, 1H), 3.77 (s, 6H), 2.72 (s, 3H), 2.30 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ : 159.0, 158.8, 144.8, 135.5, 135.0, 131.3, 129.8, 126.9, 126.1, 124.4, 123.2, 121.6, 115.7, 113.6, 107.9, 91.9, 60.5, 55.9, 21.6; HRMS (ESI) *m/z*: 729.1706 (Calcd for C₃₉H₃₄N₂O₇S₂Na [M+Na]⁺: 729.1705).

General Procedure for the reaction of 3 with 4a (Scheme 4)

To a solution of **3** (0.3 mmol) and **4a** (55.5 mg, 0.33 mmol) in 1,2-dichloroethane (DCE) (1.5 mL, 0.2 M) was added InCl₃•4H₂O (8.8 mg, 0.03 mmol) under Ar. The mixture was stirred at 80 °C in oil bath until the complete disappearance of starting material and 3-azidoindole as indicated by TLC or for 24 h. After H₂O (0.1 mL) was added to the mixture at 80 °C, and the mixture was stirred at 80 °C for 30 min. The mixture was then allowed to cool to room temperature and was diluted with H₂O (10 mL). Then, the whole was extracted with CHCl₃ (3 x 20 mL), washed with brine (20 mL). The organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (AcOEt/hexane = 1/10-1/3) to give **5ba–5ka**.

5-Methoxy-1-tosyl-3-(2,4,6-trimethoxyphenyl)indole (5ba)

118 mg, 84% yield. colorless solid; mp 107–109 °C; IR (KBr): 1472, 1364, 1173, 1126 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 7.85 (d, *J* = 9.0 Hz, 1H), 7.75 (ddd, *J* = 8.4, 1.8, 1.8 Hz, 2H), 7.55 (s, 1H), 7.19 (d, *J* = 8.4 Hz, 2H), 6.86 (dd, *J* = 9.0, 2.4 Hz, 1H), 6.66 (d, *J* = 3.0 Hz, 1H), 6.23 (s, 2H), 3.87 (s, 3H), 3.71 (s, 3H), 3.70 (s, 6H), 2.32 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 161.2, 159.2, 156.2, 144.5, 135.6, 132.6, 129.7, 127.4, 126.9, 115.5, 114.4, 113.2, 104.1, 102.8, 91.0, 55.8, 55.7, 55.5, 21.6; HRMS (ESI) *m/z*: 490.1300 (Calcd for C₂₅H₂₅NO₆SNa [M+Na]⁺: 490.1300).

5-Chloro-1-tosyl-3-(2,4,6-trimethoxyphenyl)indole (5ca)

111 mg, 79% yield. colorless solid; mp 142–143 °C; IR (KBr): 1468, 1371, 1175, 1126, 1009 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 7.88 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.50 (ddd, *J* = 8.4, 1.8, 1.8 Hz, 2H), 7.59 (s, 1H), 7.22–7.19 (m, 4H), 6.22 (s, 2H), 3.87 (s, 3H), 3.70 (s, 6H), 2.34 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 161.5, 159.1, 144.9, 135.3, 133.3, 132.9, 129.9, 128.8, 127.8, 126.9, 124.2, 121.4, 114.9, 114.6, 102.0, 91.0, 55.8, 55.5, 21.7; HRMS (ESI) *m/z*: 494.0806, 496.0775 (Calcd for C₂₄H₂₂CINO₅SNa [M+Na]⁺: 494.0805, 496.0775).

5-Bromo-1-tosyl-3-(2,4,6-trimethoxyphenyl)indole (5da)

118 mg, 76% yield. colorless solid; mp 153–154 °C; IR (KBr): 1456, 1371, 1175, 1125, 1009 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 7.83 (d, *J* = 8.4 Hz, 1H), 7.75 (d, *J* = 9.0 Hz, 2H), 7.57 (s, 1H), 7.35–7.32 (m, 2H), 7.21 (d, *J* = 8.4 Hz, 2H), 6.22 (s, 2H), 3.87 (s, 3H), 3.70 (s, 6H), 2.34 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 161.5, 159.1, 145.0, 135.3, 133.7, 133.3, 129.9, 127.6, 126.9, 126.8, 124.5, 116.6, 115.0, 114.8, 102.0, 91.0, 55.8, 55.5, 21.7; HRMS (ESI) *m/z*: 538.0300, 540.0279 (Calcd for C₂₄H₂₂BrNO₅SNa [M+Na]⁺: 538.0300, 540.0279).

4-Chloro-1-tosyl-3-(2,4,6-trimethoxyphenyl)indole (5ea)

109 mg, 77% yield. colorless solid; mp 166–168°C; IR (KBr): 1456, 1377, 1175, 1132, 1024 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 7.88 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.75 (ddd, *J* = 6.6, 1.8, 1.8 Hz, 2H), 7.49 (s, 1H), 7.22 (d, *J* = 7.8 Hz, 2H), 7.14 (t, *J* = 3.6 Hz, 1H), 7.09 (dd, *J* = 7.8, 1.2 Hz, 1H), 6.17 (s, 2H), 3.86 (s, 3H), 3.66 (s, 6H), 2.35 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 161.5, 159.7, 145.0, 136.4, 135.3, 129.9, 128.6, 127.4, 127.2, 127.0, 124.6, 124.4, 114.9, 112.3, 103.2, 90.5, 55.8, 55.4, 21.7; HRMS (ESI) *m/z*: 494.0805, 496.0776 (Calcd for C₂₄H₂₂ClNO₅SNa [M+Na]⁺: 494.0805, 496.0775).

6-Chloro-1-tosyl-3-(2,4,6-trimethoxyphenyl)indole (5fa)

103 mg, 73% yield. colorless oil; IR (KBr): 1456, 1371, 1177, 1128, 1011 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 7.99 (d, *J* = 1.2 Hz, 1H), 7.62 (ddd, *J* = 8.4, 1.8, 1.8 Hz, 2H), 7.57 (s, 1H), 7.23 (d, *J* = 7.8 Hz, 2H), 7.15 (d, *J* = 7.8 Hz, 1H), 7.12 (dd, *J* = 8.4, 1.8 Hz, 1H), 6.22 (s, 2H), 3.86 (s, 3H), 3.69 (s, 6H), 2.34 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 161.4, 159.1, 145.0, 135.4, 135.2, 130.0, 129.9, 127.0, 126.9, 123.5, 122.6, 115.1, 113.7, 102.2, 91.0, 55.8, 55.5, 21.7; HRMS (ESI) *m/z*: 494.0804, 496.0776 (Calcd for C₂₄H₂₂ClNO₅SNa [M+Na]⁺: 494.0805, 496.0775).

7-Chloro-1-tosyl-3-(2,4,6-trimethoxyphenyl)indole (5ga)

49.0 mg, 35% yield. colorless solid; mp 173–175 °C; IR (KBr): 1458, 1362, 1177, 1128, 1003 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 7.86 (s, 1H), 7.75 (d, *J* = 8.4 Hz, 2H), 7.25 (d, *J* = 7.8 Hz, 2H), 7.16 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.13 (dd, *J* = 7.8, 0.6 Hz, 1H), 7.03 (t, *J* = 1.8 Hz, 1H), 6.24 (s, 2H), 3.88 (s, 3H), 3.72 (s, 6H), 2.38 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 161.5, 159.4, 144.4, 137.4, 135.4, 131.9, 130.3, 129.7, 127.3, 126.3, 123.7, 120.1, 118.9, 113.8,

102.1, 90.9, 55.9, 55.5, 21.7; HRMS (ESI) *m/z*: 494.0806, 496.0774 (Calcd for C₂₄H₂₂ClNO₅SNa [M+Na]⁺: 494.0805, 496.0775).

1-Bezenesulfonyl-3-(2,4,6-trimethoxyphenyl)indole (5ha)

101 mg, 80% yield. colorless solid; mp 96–98 °C; IR (KBr): 1447, 1364, 1182, 1128 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 8.01 (d, J = 8.4 Hz, 1H), 7.90 (ddd, J = 7.2, 1.8, 1.8 Hz, 2H), 7.46 (t, J = 7.2 Hz, 1H), 7.40 (s, 1H), 7.38 (ddd, J = 7.2, 1.8, 1.8 Hz, 2H), 7.27 (ddd, J = 7.8, 6.6, 0.6 Hz, 1H), 7.26 (d, J = 7.8 Hz, 1H), 7.17 (ddd, J = 8.4, 7.2, 1.2 Hz, 1H), 6.25 (s, 2H), 3.87 (s, 3H), 3.68 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ : 161.3, 159.2, 138.5, 135.0, 133.6, 131.6, 129.2, 126.9, 126.4, 124.1, 123.0, 121.8, 115.7, 113.6, 102.7, 91.1, 55.8, 55.5; HRMS (ESI) *m/z*: 446.1037 (Calcd for C₂₃H₂₁NO₅SNa [M+Na]⁺: 446.1038).

1-(2-Nitrobenzenesulfonyl)-3-(2,4,6-trimethoxyphenyl)indole (5ia)

0.05 mmol scale: 18.8 mg, 80% yield. colorless solid; mp 171–173 °C; IR (KBr): 1578, 1466, 1371, 1180, 1016 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ: 8.14 (d, *J* = 8.4 Hz, 1H), 7.77 (s, 1H), 7.67 (d, *J* = 7.8 Hz, 1H), 7.55 (t, *J* = 8.4 Hz, 1H), 7.27–7.24 (m, 2H), 7.19–7.13 (m, 3H), 6.25 (s, 2H), 3.88 (s, 3H), 3.72 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ: 161.2, 159.4, 139.2, 135.0, 134.3, 131.4, 131.0, 129.1, 127.8, 124.6, 123.6, 122.7, 121.6, 120.2, 113.3, 112.8, 102.7, 90.9, 55.9, 55.5; HRMS (ESI) *m/z*: 491.0892 (Calcd for C₂₃H₂₀N₂O₇SNa [M+Na]⁺: 491.0889).

1-Benzoyl-3-(2,4,6-trimethoxyphenyl)indole (5ja)

71.0 mg, 61% yield. colorless solid; mp 138-139 °C; IR (KBr): 1678, 1450, 1368, 1126 cm⁻¹; ¹H NMR (600 MHz,

CDCl₃) δ : 8.45 (d, J = 8.4 Hz, 1H), 7.80 (d, J = 7.2 Hz, 2H), 7.57 (t, J = 7.8 Hz, 1H), 7.51 (d, J = 7.8 Hz, 1H), 7.50 (t, J = 7.8 Hz, 1H), 7.37 (ddd, J = 8.4, 7.2, 1.2 Hz, 1H), 7.33 (s, 1H), 7.33 (d, J = 6.0 Hz, 1H), 7.27 (ddd, J = 8.4, 7.2, 1.2 Hz, 1H), 6.24 (s, 2H), 3.87 (s, 3H), 3.72 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ : 168.6, 161.2, 159.3, 136.1, 135.1, 131.7, 131.4, 129.4, 128.5, 127.5, 124.5, 123.6, 121.1, 116.4, 114.7, 103.0, 91.0, 55.9, 55.5; HRMS (ESI) *m/z*: 410.1368 (Calcd for C₂₄H₂₁NO₄SNa [M+Na]⁺: 410.1368).

1-Acetyl-3-(2,4,6-trimethoxyphenyl)indole (5ka)

14.5 mg, 15% yield. colorless solid; mp 142–144 °C; IR (KBr): 1717, 1456, 1339, 1125 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 8.45 (d, *J* = 8.4 Hz, 1H), 7.41 (s, 1H), 7.31 (ddd, *J* = 8.4, 7.8, 0.6 Hz, 1H), 7.25 (d, *J* = 7.8 Hz, 1H), 7.20 (t, *J* = 7.2 Hz, 1H), 6.27 (s, 2H), 3.88 (s, 3H), 3.72 (s, 6H), 2.63 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 168.4, 161.3, 159.5, 135.7, 131.2, 125.0, 124.6, 123.2, 120.9, 116.5, 115.4, 103.3, 91.4, 55.9, 55.5, 24.0; HRMS (ESI) *m/z*: 348.1212 (Calcd for C₁₉H₁₉NO₄SNa [M+Na]⁺: 348.1212).

■Gram-scale synthesis of 5aa and 6aa

To a solution of **3a** (1.03 g, 3 mmol) and **4a** (555 mg, 3.3 mmol) in DCE (15 mL, 0.2 M) was added InCl₃•4H₂O (87.9 mg, 0.3 mmol). The mixture was stirred at 80 °C in oil bath for 1 h. After H₂O (1 mL) was added to the mixture at 80 °C, and the mixture was stirred at 80 °C for 30 min. The reaction mixture was cooled to room temperature and diluted with H₂O (15 mL). Then, the whole was extracted with CHCl₃ (3 x 50 mL), washed with brine (50 mL). The combined organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (AcOEt/hexane = 1/10-1/2) to give **5aa** (981 mg, 75%) and **6aa** (171 mg, 16%).

General Procedure for the synthesis of 5

To a solution of **3a** (344 mg, 1 mmol) and nucleophiles **4** (1.1 mmol) in DCE (5 mmol, 0.2 M) was added InCl₃•4H₂O (29.3 mg, 0.1 mmol) under Ar. The mixture was stirred at 80 °C in oil bath until the complete disappearance of starting material and 3-azidoindole as indicated by TLC or for 24 h. After H₂O (1 mL) was added to the mixture at 80 °C, and the mixture was stirred at 80 °C for 30 min. The reaction mixture was cooled to room temperature and H₂O (10 mL) was added to the mixture. Then, the whole was extracted with CHCl₃ (3 x 25 mL), washed with brine (25 mL). The organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (AcOEt/hexane = 1/10-1/1, and/or toluene/hexane = 1/2-1/1) to give **5**.

Nucleophiles **4b**, **4c** and **4d** were prepared by reported methods.^[S8–10] The other nucleophiles were used as received from commercial suppliers (Sigma-Aldrich, Kanto Chemical, TCI and Wako).

3-(3-bromo-2,4,6-trimethoxyphenyl)-1-tosylindole (5ab)

275 mg, 53% yield. colorless solid; mp 145–146 °C; IR (KBr): 1449, 1369, 1177, 1115, 1016 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 8.03 (d, *J* = 8.4 Hz, 1H), 7.78 (ddd, *J* = 8.4, 1.8, 1.8 Hz, 2H), 7.64 (s, 1H), 7.30 (ddd, *J* = 8.4, 7.2, 1.2 Hz, 1H), 7.29 (d, *J* = 7.8 Hz, 1H), 7.21–7.17 (m, 3H), 6.42 (s, 1H), 3.96 (s, 3H), 3.72 (s, 3H), 3.23 (s, 3H), 2.32 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 158.4, 157.2, 157.1, 144.9, 135.5, 135.0, 130.9, 129.8, 126.9, 126.3, 124.5, 123.2, 121.5, 115.2, 113.7, 109.1, 98.7, 92.8, 60.4, 56.6, 56.1, 21.6; HRMS (ESI) *m/z*: 538.0301, 540.0280 (Calcd for C₂₄H₂₂BrNO₅SNa [M+Na]⁺: 538.0300. 540.0279).

3-(3-chloro-2,4,6-trimethoxyphenyl)-1-tosylindole (5ac)

324 mg, 69% yield. colorless solid; mp 158–160 °C; IR (KBr): 1450, 1379, 1177, 1119, 1018 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 8.03 (d, *J* = 7.8 Hz, 1H), 7.78 (ddd, *J* = 8.4, 1.8, 1.8 Hz, 2H), 7.63 (s, 1H), 7.29 (ddd, *J* = 9.0, 7.2, 1.8 Hz, 1H), 7.29 (d, *J* = 7.8 Hz, 1H), 7.20 (d, *J* = 8.4 Hz, 2H), 7.18 (ddd, *J* = 7.8, 7.2, 0.6 Hz, 1H), 6.42 (s, 1H), 3.96 (s, 3H), 3.72 (s, 3H), 3.23 (s, 3H), 2.32 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 157.4, 156.3, 156.1, 144.9, 135.5, 135.0, 130.9, 129.8, 126.9, 126.3, 124.5, 123.2, 121.5, 115.0, 113.7, 109.0, 92.9, 60.5, 56.5, 56.1, 21.6; HRMS (ESI) *m/z*: 494.0805, 496.0774 (Calcd for C₂₄H₂₂ClNO₅SNa [M+Na]⁺: 494.0805, 496.0775).

1-Tosyl-3-(2,4,6-trimethoxy-[1,1'-biphenyl]-3-yl)indole (5ad)

0.3 mmol scale: 117 mg, 76% yield. colorless solid; mp 174–175 °C; IR (KBr): 1456, 1383, 1172, 1109 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ: 8.02 (d, *J* = 8.4 Hz, 1H), 7.77 (ddd, *J* = 8.4, 1.8, 1.8 Hz, 2H), 7.66 (s, 1H), 7.40–7.39 (m, 4H), 7.37 (d, *J* = 7.8 Hz, 1H), 7.33–7.27 (m, 2H), 7.19 (ddd, *J* = 7.8, 7.2, 0.6 Hz, 1H), 7.16 (d, *J* = 7.8 Hz, 2H), 6.46 (s, 1H), 3.80 (s, 3H), 3.76 (s, 3H), 2.84 (s, 3H), 2.29 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ: 158.4, 158.1, 157.9, 144.7, 135.6, 135.0, 134.2, 131.3, 131.0, 129.8, 127.9, 126.9, 126.8, 126.1, 124.3, 123.1, 121.7, 117.8, 116.0, 113.6, 107.7, 92.0, 60.4, 56.1, 55.9, 21.6; HRMS (ESI) *m/z*: 536.1508 (Calcd for C₃₀H₂₇NO₅SNa [M+Na]⁺: 536.1508).

1-Tosyl-3-(2,4,5-trimethoxyphenyl)indole (5ae)

270 mg, 62% yield. colorless solid; mp 133–135 °C; IR (KBr): 1447, 1364, 1211, 1169, 1125 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ: 8.02 (d, *J* = 8.4 Hz, 1H), 7.80 (ddd, *J* = 7.8, 1.8, 1.8 Hz, 2H), 7.75 (s, 1H), 7.58 (d, *J* = 7.8 Hz, 1H), 7.32 (ddd, *J* = 7.8, 7.2, 0.6 Hz, 1H), 7.25–7.21 (m, 3H), 7.02 (s, 1H), 6.65 (s, 1H), 3.95 (s, 3H), 3.86 (s, 3H), 3.76 (s, 3H), 2.33 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ: 151.5, 149.3, 144.9, 143.2, 135.4, 135.1, 130.4, 129.9, 127.0, 125.0, 124.5, 123.3, 121.0, 119.4, 114.4, 113.8, 113.3, 98.4, 56.8, 56.6, 56.3, 21.7; HRMS (ESI) *m/z*: 460.1195 (Calcd for C₂₄H₂₃NO₅SNa [M+Na]⁺: 460.1195).

mixture of regioisomers

249 mg, 61% yield. colorless oil; IR (KBr): 1447, 1369, 1175, 1128 cm⁻¹; **5af**: ¹H NMR (600 MHz, CDCl₃) δ: 8.02 (d, *J* = 8.4 Hz, 1H), 7.78 (d, *J* = 7.8 Hz, 2H), 7.72 (s, 1H), 7.56 (d, *J* = 7.8 Hz, 1H), 7.39 (d, *J* = 7.8 Hz, 1H), 7.30 (ddd, *J* = 8.4, 7.2, 1.2 Hz, 1H), 7.23–7.20 (m, 3H), 6.59 (d, *J* = 2.4 Hz, 1H), 6.57 (dd, *J* = 8.4, 2.4 Hz, 1H), 3.85 (s,

3H), 3.80 (s, 3H), 2.32 (s, 3H); **5af**': ¹H NMR (600 MHz, CDCl₃) δ: 7.98 (d, *J* = 7.2 Hz, 1H), 7.79 (d, *J* = 8.4 Hz, 2H), 7.65 (s, 1H), 7.32–7.20 (m, 5H), 7.15 (ddd, *J* = 8.4, 7.8, 0.6 Hz, 1H), 6.66 (d, *J* = 8.4 Hz, 2H), 3.71 (s, 6H), 2.32 (s, 3H); mixture of **5af** and **5af**': ¹³C NMR (151 MHz, CDCl₃) δ: 160.5, 158.5, 158.1, 144.8, 144.7, 135.6, 135.5, 135.1, 134.9, 131.3, 131.2, 130.6, 129.9, 129.8, 129.4, 127.2, 127.0, 126.7, 124.8, 124.4, 124.0, 123.2, 122.9, 121.7, 121.2, 119.5, 115.2, 114.5, 113.7, 113.5, 110.1, 104.5, 104.2, 99.2, 55.9, 55.6, 55.6, 21.6, 21.6; HRMS (ESI) *m/z*: 430.1090 (Calcd for C₂₃H₂1NO₄SNa [M+Na]⁺: 430.1089).

Mixture of 3-(2,4-diethoxyphenyl)-1-tosylindole (5ag) and 3-(2,6-diethoxyphenyl)-1-tosylindole (5ag')

230 mg, 53% yield. colorless oil; IR (KBr): 1447, 1369, 1175, 1132 cm⁻¹; **5ag**: ¹H NMR (600 MHz, CDCl₃) δ : 8.05 (d, *J* = 8.4 Hz, 1H), 7.80 (d, *J* = 7.8 Hz, 2H), 7.79 (s, 1H), 7.64 (d, *J* = 7.8 Hz, 1H), 7.43 (d, *J* = 7.8 Hz, 1H), 7.31 (t, *J* = 6.6 Hz, 1H), 7.26–7.14 (m, 3H), 6.58 (d, *J* = 2.4 Hz, 1H), 6.56 (dd, *J* = 8.4, 2.4 Hz, 1H), 4.08 (q, *J* = 6.6 Hz, 2H), 4.03 (q, *J* = 6.6 Hz, 2H), 2.31 (s, 3H), 1.44 (t, *J* = 7.2 Hz, 3H), 1.36 (t, *J* = 7.2 Hz, 3H); **5ag**': ¹H NMR (600 MHz, CDCl₃) δ : 8.00 (d, *J* = 8.4 Hz, 1H), 7.79 (d, *J* = 7.8 Hz, 2H), 7.68 (s, 1H), 7.30 (d, *J* = 7.2 Hz, 1H), 7.26–7.14 (m, 5H), 6.63 (d, *J* = 7.8 Hz, 2H), 3.95 (q, *J* = 6.6 Hz, 4H), 2.31 (s, 3H), 1.17 (t, *J* = 7.2 Hz, 6H); mixture of **5ag** and **5ag**': ¹³C NMR (151 MHz, CDCl₃) δ : 159.7, 157.8, 157.3, 144.8, 144.6, 135.7, 135.5, 135.1, 134.8, 131.2, 130.9, 130.6, 129.9, 129.8, 129.2, 126.9, 126.6, 125.0, 124.4, 123.9, 123.1, 122.5, 122.2, 121.1, 119.3, 115.5, 114.4, 113.7, 113.3, 110.5, 105.2, 105.1, 100.5, 64.1, 63.9, 63.7, 21.6, 21.6, 15.0, 14.9, 14.8; HRMS (ESI) *m/z*: 458.1403 (Calcd for C₂₅H₂₅NO₄SNa [M+Na]⁺: 458.1402).

3-(Indol-3-yl)-1-tosylindole (5ah)

287 mg, 74% yield. colorless oil; IR (KBr): 3422, 1447, 1364, 1173 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 8.31 (br s, 1H), 8.08 (d, *J* = 8.4 Hz, 1H), 7.82–7.80 (m, 3H), 7.78 (d, *J* = 7.8 Hz, 1H), 7.71 (d, *J* = 7.8 Hz, 1H), 7.47 (d, *J* = 2.4 Hz, 1H), 7.45 (d, *J* = 8.4 Hz, 1H), 7.36 (ddd, *J* = 8.4, 7.2, 1.2 Hz, 1H), 7.29–7.25 (m, 2H), 7.21–7.20 (m, 3H), 2.31 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 144.9, 136.4, 135.5, 135.3, 130.5, 130.0, 126.9, 126.3, 124.9, 123.4, 122.9, 122.6, 122.5, 120.9, 120.5, 120.0, 117.4, 114.0, 111.5, 108.9, 21.6; HRMS (ESI) *m/z*: 409.0987 (Calcd for C₂₃H₁₈N₂O₂SNa [M+Na]⁺: 409.0987).

3-(5-Methoxyindol-3-yl)-1-tosylindole (5ai)

250 mg, 60% yield. colorless oil; IR (KBr): 3422, 1447, 1364, 1173 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 8.24 (br s, 1H), 8.09 (d, J = 7.8 Hz, 1H), 7.81 (ddd, J = 9.0, 1.8, 1.8 Hz, 2H), 7.76 (s, 1H), 7.69 (d, J = 8.4 Hz, 1H), 7.41 (d, J = 2.4 Hz, 1H), 7.36 (ddd, J = 8.4, 7.2, 1.2 Hz, 1H), 7.33 (d, J = 9.0 Hz, 1H), 7.26 (ddd, J = 8.4, 6.6, 1.8 Hz, 1H), 7.20 (d, J = 7.8 Hz, 2H), 7.18 (d, J = 2.4 Hz, 1H), 6.93 (dd, J = 9.0, 3.0 Hz, 1H), 3.84 (s, 3H), 2.31 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 154.8, 145.0, 135.5, 135.4, 131.5, 130.5, 130.0, 126.9, 126.9, 124.9, 123.4, 122.4, 120.9, 117.5, 114.0, 113.0, 112.2, 108.6, 101.9, 56.1, 21.6; HRMS (ESI) *m/z*: 439.1093 (Calcd for C₂₄H₂₀N₂O₃SNa [M+Na]⁺: 439.1092).

3-(5-Methylindol-3-yl)-1-tosylindole (5aj)

323 mg, 81% yield. colorless oil; IR (KBr): 3420, 1447, 1364, 1175 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 8.23 (br s, 1H), 8.10 (d, *J* = 8.4 Hz, 1H), 7.82–7.81 (m, 3H), 7.71 (d, *J* = 7.8 Hz, 1H), 7.57 (s, 1H), 7.40–7.39 (m, 2H), 7.32 (d, *J* = 8.4 Hz, 1H), 7.27 (ddd, *J* = 7.8, 7.2, 0.6 Hz, 1H), 7.18 (d, *J* = 7.8 Hz, 2H), 7.10 (dd, *J* = 8.4, 1.2 Hz, 1H), 3.67 (s, 3H), 2.39 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 145.0, 135.5, 135.3, 134.7, 130.6, 130.0, 129.8, 126.9, 126.5, 124.9, 124.5, 123.5, 122.8, 122.4, 121.0, 119.5, 117.7, 114.0, 111.2, 108.2, 21.7, 21.6; HRMS (ESI) *m/z*: 423.1143 (Calcd for C₂₄H₂₀N₂O₂SNa [M+Na]⁺: 423.1143).

3-(5-Chloroindol-3-yl)-1-tosylindole (5ak)

270 mg, 64% yield. colorless solid; mp 149-150 °C; IR (KBr): 3435, 1449, 1368, 1169, 1086 cm⁻¹; ¹H NMR (600

MHz, CDCl₃) δ : 8.40 (br s, 1H), 8.09 (d, J = 8.4 Hz, 1H), 7.82 (ddd, J = 8.4, 1.8, 1.8 Hz, 2H), 7.75 (s, 1H), 7.68 (d, J = 1.8 Hz, 1H), 7.64 (d, J = 7.8 Hz, 1H), 7.43 (d, J = 3.0 Hz, 1H), 7.37 (ddd, J = 8.4, 7.2, 1.2 Hz, 1H), 7.33 (d, J = 9.0 Hz, 1H), 7.27 (ddd, J = 8.4, 7.2, 1.2 Hz, 1H), 7.21–7.20 (m, 3H), 2.31 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 145.1, 135.5, 135.2, 134.7, 130.3, 130.0, 127.5, 126.9, 126.2, 125.1, 124.0, 123.6, 123.2, 122.6, 120.7, 119.4, 116.8, 114.0, 112.6, 108.6, 21.7; HRMS (ESI) *m/z*: 443.0596, 445.0568 (Calcd for C₂₃H₁₇ClN₂O₂SNa [M+Na]⁺: 443.0597, 445.0568).

3-(5-Bromoindol-3-yl)-1-tosylindole (5al)

256 mg, 55% yield. colorless solid; mp 154–156 °C; IR (KBr): 3433, 1447, 1368, 1171, 1094 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 8.38 (br s, 1H), 8.08 (d, *J* = 8.4 Hz, 1H), 7.83–7.81 (m, 3H), 7.73 (s, 1H), 7.64 (d, *J* = 7.8 Hz, 1H), 7.44 (d, *J* = 2.4 Hz, 1H), 7.37 (ddd, *J* = 8.4, 7.2, 1.2 Hz, 1H), 7.34 (dd, *J* = 8.4, 1.8 Hz, 1H), 7.31 (d, *J* = 7.8 Hz, 1H), 7.27 (ddd, *J* = 7.8, 7.2, 0.6 Hz, 1H), 7.22 (d, *J* = 7.8 Hz, 2H), 2.33 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 145.1, 135.5, 135.2, 135.0, 130.3, 130.0, 128.2, 126.9, 125.7, 125.1, 123.8, 123.6, 122.7, 122.5, 120.7, 116.8, 114.0, 113.7, 113.0, 108.5, 21.7; HRMS (ESI) *m/z*: 487.0091, 489.0070 (Calcd for C₂₃H₁₇BrN₂O₂SNa [M+Na]⁺: 487.0092, 489.0071).

3-(2-Methylindol-3-yl)-1-tosylindole (5am)

287 mg, 71% yield. colorless solid; mp 103–105 °C; IR (KBr): 3399, 1458, 1364, 1173 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 8.10 (br s, 1H), 8.09 (d, J = 8.4 Hz, 1H), 7.83 (ddd, J = 9.0, 1.8, 1.8 Hz, 2H), 7.58 (s, 1H), 7.45 (d, J = 7.8 Hz, 1H), 7.39 (d, J = 7.8 Hz, 1H), 7.36 (ddd, J = 8.4, 7.2, 1.2 Hz, 1H), 7.34 (d, J = 8.4 Hz, 1H), 7.23 (d, J = 8.4 Hz, 2H), 7.22 (ddd, J = 7.8, 7.2, 0.6 Hz, 1H), 7.17 (ddd, J = 8.4, 7.2, 1.2 Hz, 1H), 7.07 (ddd, J = 8.4, 7.2, 1.2 Hz, 1H), 2.42 (s, 3H), 2.34 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 145.0, 135.5, 135.4, 135.3, 132.9, 131.3, 130.0, 128.4, 127.0, 124.8, 124.0, 123.2, 121.7, 121.6, 119.9, 119.3, 117.3, 113.9, 110.5, 105.0, 21.7, 12.7; HRMS (ESI) *m/z*: 423.1142 (Calcd for C₂₄H₂₀N₂O₂SNa [M+Na]⁺: 423.1143).

3-(1-Methylindol-3-yl)-1-tosylindole (5an)

208 mg, 52% yield. red oil; IR (KBr): 1447, 1368, 1175 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 8.09 (d, J = 8.4 Hz, 1H), 7.82 (ddd, J = 8.4, 1.8, 1.8 Hz, 2H), 7.80–7.79 (m, 2H), 7.74 (d, J = 7.8 Hz, 1H), 7.39 (d, J = 8.4 Hz, 1H), 7.37 (ddd, J = 8.4, 6.6, 1.8 Hz, 1H), 7.34 (s, 1H), 7.32 (ddd, J = 7.8, 7.2, 0.6 Hz, 1H), 7.27 (ddd, J = 8.4, 7.8, 0.6 Hz, 1H), 7.21 (ddd, J = 8.4, 7.2, 1.2 Hz, 1H), 7.20 (d, J = 7.8 Hz, 2H), 3.86 (s, 3H), 2.31 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 144.9, 137.2, 135.5, 135.4, 130.5, 129.9, 127.2, 126.9, 126.8, 124.9, 123.4, 122.4, 122.2, 120.9, 120.2, 120.0, 117.6, 114.0, 109.7, 107.2, 33.1, 21.6; HRMS (ESI) *m/z*: 423.1144 (Calcd for C₂₄H₂₀N₂O₂SNa [M+Na]⁺: 423.1143).

3-Phenylthio-1-tosylindole (5ao)

190 mg, 50% yield. colorless oil; IR (KBr): 1445, 1373, 1265, 1175 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 8.00 (d, *J* = 8.4 Hz, 1H), 7.82 (s, 1H), 7.79 (ddd, *J* = 9.0, 1.8, 1.8 Hz, 2H), 7.42 (d, *J* = 7.8 Hz, 1H), 7.34 (ddd, *J* = 8.4, 7.2, 1.2 Hz, 1H), 7.25 (d, *J* = 8.4 Hz, 2H), 7.20 (ddd, *J* = 7.8, 7.2, 0.6 Hz, 1H), 7.18–7.15 (m, 2H), 7.12–7.08 (m, 3H), 2.36 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 145.5, 136.3, 135.5, 135.0, 131.1, 130.9, 130.1, 129.0, 127.3, 127.1, 125.9, 125.5, 123.9, 120.5, 113.9, 111.9, 21.7; HRMS (ESI) *m/z*: 402.0598 (Calcd for C₂₁H₁₇NO₂S₂Na [M+Na]⁺: 402.0598).

3-(4-Bromophenylthio)-1-tosylindole (5ap)

321 mg, 70% yield. colorless solid; mp 149–151 °C; IR (KBr): 1474, 1369, 1260, 1167, 1005 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 8.00 (d, *J* = 8.4 Hz, 1H), 7.83 (s, 1H), 7.80 (ddd, *J* = 8.4, 1.8, 1.8 Hz, 2H), 7.38 (d, *J* = 7.8 Hz, 1H), 7.35 (ddd, *J* = 8.4, 7.2, 1.2 Hz, 1H), 7.28–7.25 (m, 4H), 7.21 (ddd, *J* = 8.4, 7.2, 1.2 Hz, 1H), 7.20 (ddd, *J* = 7.8, 7.2, 0.6 Hz, 1H), 6.93 (ddd, *J* = 8.4, 1.8, 1.8 Hz, 1H), 2.37 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 145.6, 135.7, 135.5, 134.9, 132.0, 131.2, 130.8, 130.2, 128.7, 127.1, 125.7, 124.0, 120.4, 119.6, 113.9, 111.0, 21.7; HRMS (ESI) *m/z*: 479.9704, 481.9682 (Calcd for C₂₁H₁₆BrNO₂S₂Na [M+Na]⁺: 479.9704, 481.9683).

3-(4-Methoxyphenylthio)-1-tosylindole (5aq)

82.6 mg, 20% yield. colorless oil; IR (KBr): 1493, 1373, 1265, 1175 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 8.02 (d, *J* = 8.4 Hz, 1H), 7.81 (ddd, *J* = 8.4, 1.8, 1.8 Hz, 2H), 7.75 (s, 1H), 7.48 (d, *J* = 7.8 Hz, 1H), 7.36 (ddd, *J* = 8.4, 7.2, 1.2 Hz, 1H), 7.26–7.21 (m, 5H), 6.80 (ddd, *J* = 9.6, 2.4, 2.4 Hz, 2H), 3.78 (s, 3H), 2.37 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 158.8, 145.4, 135.5, 135.0, 131.0, 130.9, 130.1, 129.3, 127.0, 125.9, 125.4, 123.8, 120.4, 114.8, 114.4, 113.8, 55.4, 21.7; HRMS (ESI) *m/z*: 432.0704 (Calcd for C₂₂H₁₉NO₃S₂Na [M+Na]⁺: 432.0704).

3-(2-Naphthalenylthio)-1-tosylindole (5ar)

228 mg, 53% yield. colorless oil; IR (KBr): 1445, 1375, 1263, 1175 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 8.02 (d, *J* = 9.0 Hz, 1H), 7.87 (s, 1H), 7.81 (ddd, *J* = 9.0, 1.8, 1.8 Hz, 2H), 7.73 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.65 (d, *J* = 8.4 Hz, 1H), 7.53 (d, *J* = 9.0 Hz, 1H), 7.48 (d, *J* = 1.8 Hz, 1H), 7.42–7.37 (m, 3H), 7.34 (ddd, *J* = 8.4, 0.6, 0.6 Hz, 1H), 7.26 (d, *J* = 8.4 Hz, 2H), 7.22 (dd, *J* = 9.0, 1.8 Hz, 1H), 7.17 (ddd, *J* = 7.8, 7.2, 0.6 Hz, 1H), 2.38 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 145.5, 135.5, 135.0, 133.7, 131.8, 131.1, 131.0, 130.2, 128.7, 127.8, 127.1, 127.1, 126.6, 125.7, 125.6, 125.4, 124.0, 120.5, 113.9, 111.9, 21.7; HRMS (ESI) *m/z*: 452.0755 (Calcd for C₂₅H₁₉NO₂S₂Na [M+Na]⁺: 452.0755).

Control experiment: reaction of 3 with 2,6-di-tert-butyl-4-hydroxytoluene (BHT) as radical scavenger

To a solution of **3a** (104 mg, 0.3 mmol), **4a** (56.0 mg, 0.33 mmol) and BHT (68.3 mg, 0.3 mmol) in DCE (1.5 mL, 0.2 M) was added InCl₃•4H₂O (8.8 mg, 0.03 mmol) under Ar. The mixture was allowed to stir at 80 °C for 1 h in oil bath. After H₂O (0.1 mL) was added to the mixture at 80 °C, and the mixture was stirred at 80 °C for 30 min. The reaction mixture was cooled to room temperature and diluted with H₂O (10 mL). Then, the whole was extracted with CHCl₃ (3 x 20 mL), washed with brine (20 mL). The organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (AcOEt/hexane = 1/10-1/2) to give **5aa** (101 mg,

77%) and 6aa (18.2 mg, 17%).

■Isolation of the intermediate 7

To a solution of **3a** (345 mg, 1 mmol) and 1-chloro-2,4,6-trimethoxybenzene **4b** (224 mg, 1.1 mmol) in DCE (5 mL, 0.2 M) was added InCl₃•4H₂O (29.5 mg, 0.1 mmol) under Ar. The mixture was allowed to stir for 4 h at 80 °C in oil bath. After H₂O (1 mL) was added to the mixture at 80 °C, and the mixture was stirred at 80 °C for 30 min. The reaction mixture was cooled to room temperature and diluted with H₂O (10 mL). Then, extracted with CHCl₃ (3 x 25 mL), washed with brine (25 mL). The combined organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (AcOEt/hexane = 1/10-1/1) to give **5ac** (324 mg, 69%) and **7** (9.2 mg, 2%). This structure of **7** was determined by 2D NMR (H-H COSY, HMQC, HMBC).

3-[N-(3-chloro-2,4,6-trimethoxyphenyl)-N-tosylamino]indole (7)

9.2 mg, 2% yield. orange oil; IR (KBr): 3379, 1456, 1341, 1161, 1107 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ : 8.35 (br s, 1H), 7.92 (d, *J* = 7.8 Hz, 1H), 7.29 (d, *J* = 7.8 Hz, 1H), 7.26 (ddd, *J* = 8.4, 1.8, 1.8 Hz, 2H), 7.22 (ddd, *J* = 7.8, 6.6, 1.2 Hz, 1H), 7.13 (s, 1H), 6.80 (d, *J* = 8.4 Hz, 2H), 6.20 (s, 1H), 3.95 (s, 3H), 3.71 (s, 3H), 3.25 (s, 3H), 2.24 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ : 156.7, 155.7, 154.4, 142.0, 136.4, 134.8, 128.6, 127.1, 126.1, 125.0, 123.1, 120.5, 119.9, 111.7, 110.7, 109.8, 107.4, 92.8, 61.1, 56.6, 56.4, 21.6; HRMS (ESI) *m/z*: 509.0912, 511.0884 (Calcd for C₂₄H₂₃ClN₂O₅SNa [M+Na]⁺: 509.0914, 511.0884).

3. X-ray crystallographic Analysis

The structure of **3a** was also elucidated by X-ray crystallographic analysis. The single crystal for the analysis was grown by vapor diffusion of hexane to CHCl₃ solution of **3a**. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. CCDC 2107262 contains the supplementary crystallographic data for this paper.

Figure S1 ORTEP drawing of 3a and indication of O–N bonding

The dashed line in the figure indicates O–N bonding. Nitrogen is depicted in blue, oxygen in red, sulfur in yellow, carbon in black. The interatomic distances between N2 of azide (labeled as N16) and the closest oxygen atom (labeled as O13) are given in figure S1.

X-ray structure, crystal data and thermal ellipsoid plots of **3a** (at the 50% probability level unless otherwise stated).

Empirical formula	$C_{16}H_{16}N_4O_3S$
Formula weight	334.39
Crystal system	Orthorhombic
Space group [No.]	<i>P b c a</i> [61]
Crystal color, habit	Colorless, block
Crystal size	0.90×0.29×0.11 mm
Unit cell parameters	a = 18.1042(1) Å b = 8.5594(1) Å c = 21.0097(1) Å $\alpha = 90^{\circ}$ $\beta = 90^{\circ}$ $\gamma = 90^{\circ}$
Temperature	103 K
Wavelength	1.54184 Å
Volume	3255.69(4) Å ³
Ζ	8
F(000)	1440.0
<i>h</i> , <i>k</i> , <i>l</i> , max	21, 8, 25
<i>R1</i> (<i>I</i> > 2.00σ(i))	0.0287
R (all reflection)	0.0294
GOF	1.049

atom 1	atom 2	distance
S10	N1	1.649(1)
S10	O11	1.4349(9)
S10	O12	1.431(1)
S10	C18	1.759(1)
O13	C2	1.393(2)
O13	C14	1.433(2)
N1	C2	1.493(2)
N1	C9	1.435(2)
N15	N16	1.246(2)
N15	C3	1.478(2)
N16	N17	1.132(2)
C2	C3	1.549(2)
C3	C4	1.509(2)

Table S4Bond distance in angstroms of 3a

Table S5Bond angle in degrees of 3a

atom 1	atom 2	atom 3	angle
011	S10	N1	105.48(5)
011	S10	O12	119.81(6)
011	S10	C18	109.67(6)
012	S10	N1	107.29(6)
012	S10	C18	107.39(6)
N1	S10	C18	106.45(6)
C2	O13	C14	112.6(1)
S10	N1	C2	121.38(8)
S10	N1	C9	119.92(9)
C2	N1	C9	108.4(1)
N16	N15	C3	113.5(1)
N15	N16	N17	172.4(2)
O13	C2	N1	110.2(1)
O13	C2	C3	108.9(1)
N1	C2	C3	103.6(1)
N15	C3	C2	114.5(1)
N15	C3	C4	115.6(1)
C2	C3	C4	103.5(1)
C3	C4	C5	129.6(1)

atom 1	atom 2	atom 3	atom 4	angle	 atom 1	atom 2	atom 3	atom 4	angle
011	S10	N1	C2	-27.2(1)	N1	C2	C3	N15	-147.4(
011	S10	N1	C9	-168.11(9)	N1	C2	C3	C4	-20.7(
012	S10	N1	C2	-155.97(9)	N15	C3	C4	C5	-41.6(
012	S10	N1	C9	63.1(1)	N15	C3	C4	C9	139.9(
C18	S10	N1	C2	89.3(1)	C2	C3	C4	C5	-167.7(
C18	S10	N1	C9	-51.6(1)	C2	C3	C4	C9	13.8(
011	S10	C18	C19	-152.2(1)	C3	C4	C5	C6	-178.1(
011	S10	C18	C23	29.5(1)	C9	C4	C5	C6	0.2(
012	S10	C18	C19	-20.5(1)	C3	C4	C9	N1	-0.8(
012	S10	C18	C23	161.2(1)	C3	C4	C9	C8	179.0(
N1	S10	C18	C19	94.2(1)	C5	C4	C9	N1	-179.5(
N1	S10	C18	C23	-84.1(1)	C5	C4	C9	C8	0.3(
C14	O13	C2	N1	-71.3(1)	C4	C5	C6	C7	-0.4(
C14	O13	C2	C3	175.7(1)	C5	C6	C7	C8	0.0(
S10	N1	C2	013	119.9(1)	C6	C7	C8	C9	0.5(
S10	N1	C2	C3	-123.7(1)	C7	C8	C9	N1	179.1(
C9	N1	C2	O13	-95.2(1)	C7	C8	C9	C4	-0.6(
C9	N1	C2	C3	21.2(1)	S10	C18	C19	C20	-178.7(
S10	N1	C9	C4	132.1(1)	C23	C18	C19	C20	-0.4(
S10	N1	C9	C8	-47.7(2)	S10	C18	C23	C22	179.2(
C2	N1	C9	C4	-13.3(1)	C19	C18	C23	C22	0.9(
C2	N1	C9	C8	166.9(1)	C18	C19	C20	C21	-1.0(
N16	N15	C3	C2	78.9(1)	C19	C20	C21	C22	1.8(
N16	N15	C3	C4	-41.3(2)	C19	C20	C21	C24	-177.7(
C3	N15	N16	N17	171(1)	C20	C21	C22	C23	-1.3(
O13	C2	C3	N15	-30.1(1)	C24	C21	C22	C23	178.2(
O13	C2	C3	C4	96.6(1)	C21	C22	C23	C18	-0.1(

Table S6Torsion angles in degrees of 3a

Table S7Atomic coordinates for 3a

atom	Xfrac + ESD	Yfrac + ESD	Zfrac + ESD	atom	Xfrac + ESD	Yfrac + ESD	Zfrac + ESD
	0.07000(0)	0.50004(0)			0.05745(7)	0.05040(45)	0.57000(0)
S10	0.37962(2)	0.50891(3)	0.41332(2)	C21	0.25745(7)	0.25218(15)	0.57062(6)
011	0.33091(5)	0.61732(10)	0.38247(4)	C22	0.21984(7)	0.30742(16)	0.51731(6)
O12	0.44807(5)	0.56268(11)	0.43936(4)	C23	0.25623(7)	0.38641(15)	0.46917(6)
O13	0.38095(5)	0.36995(12)	0.24750(4)	C24	0.21742(8)	0.17045(18)	0.62384(7)
N1	0.39947(6)	0.37621(12)	0.35903(5)	H2	0.300215	0.400206	0.310459
N15	0.32149(6)	0.08024(15)	0.25151(6)	H3	0.289005	0.147356	0.339299
N16	0.37939(7)	0.05352(16)	0.22135(6)	H5	0.399701	-0.130523	0.343578
N17	0.42728(8)	0.0196(2)	0.18962(7)	H6	0.503388	-0.166578	0.409247
C2	0.34736(7)	0.34035(16)	0.30594(6)	H7	0.563367	0.047355	0.45334
C3	0.33407(7)	0.16228(16)	0.31245(6)	H8	0.522288	0.303637	0.433464
C4	0.39963(7)	0.10689(15)	0.35059(6)	H14A	0.410884	0.548609	0.192848
C5	0.42424(8)	-0.04332(16)	0.36189(7)	H14B	0.424108	0.577923	0.267209
C6	0.48577(8)	-0.06416(17)	0.40071(7)	H14C	0.342348	0.586195	0.238452
C7	0.52147(8)	0.06384(17)	0.42696(6)	H19	0.422915	0.37181	0.529965
C8	0.49747(7)	0.21614(16)	0.41567(6)	H20	0.360229	0.235869	0.609555
C9	0.43576(7)	0.23410(15)	0.37729(6)	H22	0.168127	0.290495	0.513959
C14	0.39031(9)	0.53361(19)	0.23556(7)	H23	0.229897	0.423338	0.433065
C18	0.33199(7)	0.41096(14)	0.47442(6)	H24A	0.164067	0.185251	0.618732
C19	0.37116(7)	0.35527(15)	0.52677(6)	H24B	0.233173	0.21426	0.664735
C20	0.33363(7)	0.27549(16)	0.57408(6)	H24C	0.228936	0.058613	0.622691

4. Supplementary References

[S1] Sheldrick, G. M. Acta Cryst. 2015, A71, 3-8.

[S2] Sheldrick, G. M. Acta Cryst. 2015, C71, 3-8.

[**S3**] Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. *J. Appl. Cryst.* **2009**, *42*, 339–341.

[S4] *N***-tosylation**, *N***-benzenesulfonylation**, and *N***-2-nosylation**: Hodson, H. F.; Madge, D. J.; Slawin, A. N. Z.; Widdowson, D. A.; Williams, D. J. *Tetrahedron* **1994**, *50*, 1899–1906.

[S5] N-benzoylation: Lanke, V.; Prebhu, K. R. Org., Lett. 2013, 15, 2818–2821.

[S6] N-acetylation: Medina-Mercado, I.; Asomoza-Solís, E. O.; Martínez-González, E.; Ugalde-Saldívar, V. M.;
Ledesma-Olvera, L. G.; Barquera-Lozada, J. E.; Gómez-Vidales, V.; Barroso-Flores, J.; Frontana-Uribe, B. A.; Porcel,
S. *Chem. Eur. J.* 2020, *26*, 634–642.

[S7] Synthesis of 3-bromo-2-alkoxy-indolines: Abe, T.; Kosaka, Y.; Kawasaki, T.; Ohata, Y.; Yamashiro, T.; Yamada, K. *Chem. Pharm. Bull.* 2020, *68*, 555–558.

[S8] Synthesis of 1-bromo-2,4,6-trimethoxybenzene: Mondal, M.; Puranik, V. G.; Argade, N. P. J. Org. Chem. 2006, 71, 4992–4995.

[S9] Synthesis of 1-chloro-2,4,6-trimethoxybenzene: Tang, R.-J.; Milcent, T.; Crousse, B. J. Org. Chem. 2018, 83, 930–938.

[S10] Synthesis of 1-phenyl-2,4,6-trimethoxybenzene: Wang, X.; Huang, D.; Wang, X.; Zeng, X.; Wang, X.; Huhn, Y. *Tetrahedron Lett.* 2016, *57*, 4235–4238.

