Supporting Information

Rhodium-Catalyzed Denitrogenative gem-Difunctionalization of Pyridotriazoles with Thioesters: Formal Carbene Insertion into C(O)–S Bonds

Zhe Gao,1 Di Jiang,1 Bin Li,*1 and Baiquan Wang1,2

*E-mail: nklibin@nankai.edu.cn

1State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
2State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

Table of Contents

I. Table of Contents S1
II. General Experimental Section S2
III. Single crystal X-ray structure of complexes 3aa and 3zb S3
IV. Table S1. Crystal Data and Summary of X-ray Data Collection S5
V. Preparation and Characterization of Products 3 S6-S23
VI. Scale up preparation of 3aa S24
VII. Intermolecular comptetion reaction S25-S27
VIII. Oxidation reaction of 3aa S28
IX. Asymmetric synthesis S29-S30
X. NMR Spectra of Products S31-S82
XI. References S83
General Experimental Section

Analytic methods. All the reactions were carried out under argon atmosphere using standard Schlenk technique. 1H NMR (400 MHz), 19F (376 MHz) and 13C(1H) NMR (100 MHz) were recorded on a Bruker AV400 NMR spectrometer. Chemical shifts of 1H, 19F, and 13C(1H) NMR spectra are reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: proton (CDCl$_3$: $\delta = 7.26$ ppm, DMSO-d_6: $\delta = 2.50$), carbon (CDCl$_3$: $\delta = 77.00$, DMSO-d_6: $\delta = 39.50$). All coupling constants (J values) were reported in Hertz (Hz). Multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), doublet of doublet of doublets (ddd), doublet of triplets (dt), triplet (t), triplet of doublets (td), quartet (q), and multiplet (m). Column chromatography was performed on silica gel 200-300 mesh. Analytical thin-layer chromatography (TLC) was performed on pre-coated, glass-backed silica gel plates. Visualization of the developed chromatogram was performed by UV absorbance (254 nm). HRMS were done on Agilent 6520 Q-TOF LC/MS or Varian 7.0T FTMS.

General preparation for chemicals. Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. The substrates pyridotriazoles ($\mathbf{1}$)$^{[1]}$ and thioesters ($\mathbf{2}$)$^{[2]}$ were prepared according to the literature procedures.
X-ray Crystallographic Analysis. All intensity data were collected with a Bruker SMART CCD diffractometer equipped with graphite mono-chromated Mo-Kα radiation (λ = 0.71073 Å). The structures were solved by direct methods and refined by full-matrix least squares on F^2. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were considered in calculated positions. Single crystals of complexes 3aa and 3zb suitable for X-ray diffraction were obtained from hexane/CH₂Cl₂ solution. The crystal data and summary of X-ray data collection are presented in Tables S1.

Single crystal X-ray structure of complex 3aa and 3zb

![ORTEP diagram of complex 3aa](image)

Figure S1. ORTEP diagram of complex 3aa. Thermal ellipsoids are shown at the 30% level. All hydrogen atoms have been omitted for clarity.
Figure S2. ORTEP diagram of complex 3zb. Thermal ellipsoids are shown at the 30% level. All hydrogen atoms have been omitted for clarity.
<table>
<thead>
<tr>
<th>complex</th>
<th>3aa</th>
<th>3zb</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula</td>
<td>C${20}$H${16}$BrNOS</td>
<td>C${20}$H${14}$BrNOS</td>
</tr>
<tr>
<td>fw</td>
<td>398.30</td>
<td>396.29</td>
</tr>
<tr>
<td>crystal system</td>
<td>triclinic</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>space group</td>
<td>P-1</td>
<td>C2/c</td>
</tr>
<tr>
<td>a (Å)</td>
<td>8.0631(16)</td>
<td>21.028(4)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>9.1192(18)</td>
<td>11.443(2)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>12.401(3)</td>
<td>15.478(3)</td>
</tr>
<tr>
<td>α (°)</td>
<td>106.20(3)</td>
<td>90</td>
</tr>
<tr>
<td>β (°)</td>
<td>95.56(3)</td>
<td>113.67(3)</td>
</tr>
<tr>
<td>γ (°)</td>
<td>96.77(3)</td>
<td>90</td>
</tr>
<tr>
<td>V (Å3)</td>
<td>861.4(4)</td>
<td>3411.3(14)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>ρ_{calc} (g cm$^{-3}$)</td>
<td>1.536</td>
<td>1.543</td>
</tr>
<tr>
<td>μ (mm$^{-1}$)</td>
<td>2.513</td>
<td>2.538</td>
</tr>
<tr>
<td>F(000)</td>
<td>404.0</td>
<td>1600</td>
</tr>
<tr>
<td>cryst size (mm)</td>
<td>0.20×0.18×0.12</td>
<td>0.20×0.18×0.12</td>
</tr>
<tr>
<td>max. 2θ(°)</td>
<td>55.62</td>
<td>88.71</td>
</tr>
<tr>
<td>no. of refns collected</td>
<td>10421</td>
<td>20089</td>
</tr>
<tr>
<td>no. of indep refns/Rint</td>
<td>4063 / 0.0448</td>
<td>4058 / 0.0562</td>
</tr>
<tr>
<td>no. of params</td>
<td>218</td>
<td>218</td>
</tr>
<tr>
<td>goodness-of-fit on F2</td>
<td>0.997</td>
<td>1.029</td>
</tr>
<tr>
<td>R_1, wR$_2$ [$I > 2\sigma(I)$]</td>
<td>0.0318, 0.0677</td>
<td>0.0358, 0.0700</td>
</tr>
<tr>
<td>R_1, wR$_2$ (all data)</td>
<td>0.0505, 0.0715</td>
<td>0.0529, 0.0749</td>
</tr>
</tbody>
</table>
Preparation and Characterization of Products 3

General Procedure A: Rh-Catalyzed denitrogenative thiocarbonylation of pyridotriazoles with thioesters

![Chemical Reaction Diagram]

A mixture of pyridotriazole (1) (0.40 mmol, 2.0 equiv), Rh₂(Oct)₄ (0.002 mmol, 1.0 mol %), and thioester (2) (0.20 mmol, 1.0 equiv) were weighted in a Schlenk tube equipped with a stir bar. Dry Toluene (2.0 mL) was added and the resulting mixture was stirred at 60 °C for 2 h using heating modular of parallel reactor under Ar atmosphere. The reaction was then cooled to room temperature and transferred to a 100 mL round-bottomed flask using CH₂Cl₂. Silica was added to the flask and volatiles were evaporated under reduced pressure. The purification was performed by flash column chromatography on silica gel with petroleum ether/EtOAc.
1-(6-bromopyridin-2-yl)-1-phenyl-1-(phenylthio)propan-2-one (3aa)

The title compound was isolated by column chromatography (eluent: EtOAc/ petroleum ether = 1/50) as a white solid in 97% yield (77.1 mg); M.p.: 151-153 °C; \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta 7.58\) (d, \(J = 6.9\) Hz, 2H), 7.40-7.30 (m, 5H), 7.22-7.18 (m, 1H), 7.10-7.05 (m, 5H), 2.18 (s, 3H); \(^{13}\)C\(^{1}\)H NMR (DMSO-\(d_6\), 100 MHz): \(\delta 199.7, 159.4, 139.7, 139.6, 137.0, 135.2, 129.2, 129.0, 128.5, 128.4, 128.0, 126.9, 123.4, 76.9, 27.4; HRMS (ESI) m/z: [M+H]\(^+\) Calcd for C\(_{20}\)H\(_{17}\)BrNOS 398.0209, Found: 398.0208.

1-(6-bromopyridin-2-yl)-1-phenyl-1-(phenylthio)pentan-2-one (3ab)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a pale yellow solid in 86% yield (73.4 mg); M.p.: 51-53 °C; \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta 7.60\) (d, \(J = 6.9\) Hz, 2H), 7.36-7.28 (m, 5H), 7.18 (t, \(J = 7.2\) Hz, 1H), 7.08-6.98 (m, 5H), 2.57-2.49 (m, 1H), 2.25-2.18 (m, 1H), 1.66-1.56 (m, 1H), 1.53-1.42 (m, 1H), 0.74 (t, \(J = 7.4\) Hz, 3H); \(^{13}\)C\(^{1}\)H NMR (CDCl\(_3\), 100 MHz): \(\delta 203.4, 160.1, 140.5, 137.8, 137.3, 135.6, 131.6, 129.6, 128.6, 128.3, 128.2, 128.0, 126.4, 123.2, 77.7, 42.0, 18.5, 13.6; HRMS (ESI) m/z: [M+H]\(^+\) Calcd for C\(_{22}\)H\(_{21}\)BrNOS 426.0522, Found: 426.0530.

1-(6-bromopyridin-2-yl)-1,3-diphenyl-1-(phenylthio)propan-2-one (3ac)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a pale yellow solid in 89% yield (84.6 mg); M.p.: 122-124 °C; \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta 7.62-7.60\) (m, 2H), 7.40-7.31 (m, 5H), 7.23-7.17 (m, 4H), 7.10 (dd, \(J = 7.6, 0.6\) Hz, 1H), 7.08-7.00 (m, 6H), 3.90 (d, \(J = 16.1\) Hz, 1H), 3.60 (d, \(J = 16.1\) Hz, 1H); \(^{13}\)C\(^{1}\)H NMR (CDCl\(_3\), 100 MHz): \(\delta 200.5, 160.0, 140.6, 138.0, 137.2, 135.7, 134.9, 131.4, 129.6, 128.7, 128.5, 128.3, 128.2, 128.0, 126.6, 126.5, 123.6, 77.4, 46.3 (one signal missing due to overlap); HRMS (ESI) m/z: [M+H]\(^+\) Calcd for C\(_{26}\)H\(_{21}\)BrNOS 474.0522, Found: 474.0530.
(E)-1-(6-bromopyridin-2-yl)-1,4-diphenyl-1-(phenylthio)but-3-en-2-one (3ad)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a pale yellow oil in 97% yield (94.4 mg); **1H NMR (CDCl₃, 400 MHz):** δ 7.69 (d, J = 15.7 Hz, 1H), 7.51-7.48 (m, 2H), 7.47-7.44 (m, 2H), 7.40 (d, J = 7.7 Hz, 1H), 7.36-7.26 (m, 8H), 7.24-7.20 (m, 1H) 7.17-7.05 (m, 5H); **13C{1H} NMR (CDCl₃, 100 MHz):** δ 191.4, 160.0, 142.3, 140.7, 138.3, 135.8, 134.7, 131.0, 130.2, 129.5, 129.0, 128.7, 128.4, 128.3, 128.1, 127.7, 126.6, 124.3, 123.5, 75.0 (one signal missing due to overlap); **HRMS (ESI) m/z:** [M+H]+ Calcd for C₂₇H₂₁BrNOS 486.0522, Found: 486.0527.

2-(6-bromopyridin-2-yl)-1,2-diphenyl-2-(phenylthio)ethan-1-one (3ae)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a pale yellow oil in 37% yield (34.2 mg); **1H NMR (CDCl₃, 400 MHz):** δ 7.73 (d, J = 7.4 Hz, 2H), 7.54 (dd, J = 8.3, 1.5 Hz, 2H), 7.40-7.31 (m, 3H), 7.28-7.17 (m, 7H), 7.08-6.99 (m, 4H); **13C{1H} NMR (CDCl₃, 100 MHz):** δ 194.5, 160.4, 140.4, 138.7, 138.2, 136.2, 135.8, 132.0, 131.4, 130.6, 129.6, 128.9, 128.2, 128.0, 127.7, 127.6, 126.3, 123.6, 75.5; **HRMS (ESI) m/z:** [M+H]+ Calcd for C₂₅H₁₉BrNOS 460.0365, Found: 460.0375.

1-(6-bromopyridin-2-yl)-1-phenyl-1-(o-tolylthio)propan-2-one (3af)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a pale yellow solid in 93% yield (76.2 mg); M.p.: 113-115 °C; **1H NMR (CDCl₃, 400 MHz):** δ 7.56 (dd, J = 8.1, 2.2 Hz, 2H), 7.36-7.30 (m, 5H), 7.09 (td, J = 7.2, 1.5 Hz, 1H), 7.03-6.99 (m, 2H), 6.89 (dd, J = 6.9, 1.0 Hz, 1H), 6.86 (dd, J = 7.1, 1.4 Hz, 1H), 2.18 (s, 3H), 1.94 (s, 3H); **13C{1H} NMR (CDCl₃, 100 MHz):** δ 201.0, 159.8, 142.8, 140.6, 137.8, 137.4, 135.2, 131.0, 130.2, 129.7, 128.6, 128.2, 127.9, 126.5, 125.9, 122.8, 77.1, 27.6, 20.5; **HRMS (ESI):** [M+Na]+ Calcd for C₂₅H₁₈BrNNaOS⁺ 434.0185, Found: 434.0184.
1-(6-bromopyridin-2-yl)-1-((4-chlorophenyl)thio)-1-phenylpropan-2-one (3ag)

The title compound was isolated by column chromatography (eluent: EtOAc /petroleum ether = 1/50) as a pale yellow solid in 76% yield (65.7 mg); M.p.: 126-128 °C; 1H NMR (CDCl$_3$, 400 MHz): δ 7.58-7.56 (m, 2H), 7.39 (t, J = 7.8 Hz, 1H), 7.37-7.31 (m, 4H), 7.24 (dd, J = 8.8, 1.2 Hz, 1H), 7.15 (dd, J = 7.6, 0.9 Hz 1H), 7.11-7.06 (m, 2H), 6.97-6.92 (m, 1H), 2.22 (s, 3H); 13C(1H) NMR (CDCl$_3$, 100 MHz): δ 200.7, 159.8, 140.5, 138.4, 137.6, 137.1, 135.1, 131.5, 129.6, 129.4, 129.0, 128.5, 128.1, 126.8, 126.6, 123.0, 76.8, 27.9; HRMS (ESI): [M+Na]$^+$ Calcd for C$_{20}$H$_{15}$BrClNNaOS $^+$ 453.9638, Found: 453.9641.

1-(6-bromopyridin-2-yl)-1-phenyl-1-(m-tolylthio)propan-2-one (3ah)

The title compound was isolated by column chromatography (eluent: EtOAc /petroleum ether = 1/50) as a white solid in 88% yield (72.7 mg); M.p.: 113-115 °C; 1H NMR (CDCl$_3$, 400 MHz): δ 7.58-7.55 (m, 2H), 7.40-7.29 (m, 5H), 7.10 (dd, J = 7.7, 0.7 Hz, 1H), 7.01-6.95 (m, 2H), 6.88 (d, J = 7.2 Hz, 1H), 6.82 (s, 1H), 2.18 (s, 3H), 2.15 (s, 3H); 13C(1H) NMR (CDCl$_3$, 100 MHz): δ 200.8, 160.3, 140.5, 138.1, 137.9, 137.7, 136.2, 132.5, 131.1, 129.6, 129.5, 128.3, 128.1, 128.0, 126.4, 123.3, 77.2, 27.9, 21.1; HRMS (ESI) m/z: [M+Na]$^+$ Calcd for C$_{21}$H$_{18}$BrNNaOS 434.0185, Found: 434.0174.

1-(6-bromopyridin-2-yl)-1-phenyl-1-(p-tolylthio)propan-2-one (3ai)

The title compound was isolated by column chromatography (eluent: EtOAc /petroleum ether = 1/50) as a yellow solid in 82% yield (67.8 mg); M.p.: 149-151 °C; 1H NMR (CDCl$_3$, 400 MHz): δ 7.60-7.58 (m, 2H), 7.40-7.29 (m, 5H), 7.10 (dd, J = 7.7, 0.8 Hz, 1H), 6.95-6.88 (m, 4H), 2.25 (s, 3H), 2.17 (s, 3H); 13C(1H) NMR (CDCl$_3$, 100 MHz): 200.6, 160.4, 140.6, 139.2, 138.0, 137.9, 135.8, 129.6, 129.2, 128.3, 127.9, 127.7, 126.4, 123.1, 77.1, 27.8, 21.1; HRMS (ESI) m/z: [M+Na]$^+$ Calcd for C$_{21}$H$_{18}$BrNNaOS 434.0185, Found: 434.0178.
1-(6-bromopyridin-2-yl)-1-((4-methoxyphenyl)thio)-1-phenylpropan-2-one (3aj)

The title compound was isolated by column chromatography (elucent: EtOAc / petroleum ether = 1/50 to EtOAc / petroleum ether = 1/20) as a pale yellow solid in 92% yield (78.2 mg); M.p.: 191-193 °C; \(^1\)H NMR (CDCl\textsubscript{3}, 400 MHz): \(\delta\) 7.59-7.56 (m, 2H), 7.41-7.29 (m, 5H), 7.06 (dd, \(J = 7.6, 0.8\) Hz, 1H), 6.99-6.96 (m, 2H), 6.63-6.60 (m, 2H), 3.72 (s, 3H), 2.16 (s, 3H); \(^{13}\)C\(^{1}\)H NMR (DMSO-d\textsubscript{6}, 100 MHz): \(\delta\) 199.6, 160.2, 159.5, 139.7, 139.4, 137.6, 137.1, 129.2, 128.3, 127.8, 126.6, 123.4, 120.7, 114.1, 76.9, 55.1, 27.4; HRMS (ESI) m/z: [M+Na]\(^+\) Calcd for C\textsubscript{21}H\textsubscript{18}BrClNOS 450.0134, Found: 450.0135.

1-(6-bromopyridin-2-yl)-1-((4-fluorophenyl)thio)-1-phenylpropan-2-one (3ak)

The title compound was isolated by column chromatography (elucent: EtOAc / petroleum ether = 1/50) as a pale yellow solid in 85% yield (70.6 mg); M.p.: 151-153 °C; \(^1\)H NMR (CDCl\textsubscript{3}, 400 MHz): \(\delta\) 7.57-7.55 (m, 2H), 7.41 (t, \(J = 7.8\) Hz, 1H), 7.37-7.29 (m, 4H), 7.11 (d, \(J = 7.7\) Hz, 1H), 7.06-7.02 (m, 2H), 6.77 (t, \(J = 8.6\) Hz, 2.15 (s, 3H); \(^{13}\)C\(^{1}\)H NMR (CDCl\textsubscript{3}, 100 MHz): \(\delta\) 206.0, 163.3 (d, \(J_{CF} = 250.0\) Hz), 160.0, 140.7, 138.2 (d, \(J_{CF} = 8.6\) Hz), 138.1, 137.4, 129.4, 128.5, 128.1, 126.5, 123.2, 115.4 (d, \(J_{CF} = 21.7\) Hz), 77.5, 27.8 (one signal missing due to overlap); \(^{19}\)F NMR (CDCl\textsubscript{3}, 376 MHz): \(\delta\) -111.5 (s); HRMS (ESI) m/z: [M+H]\(^+\) Calcd for C\textsubscript{20}H\textsubscript{16}BrFNOS 416.0115, Found: 416.0115.

1-(6-bromopyridin-2-yl)-1-((4-chlorophenyl)thio)-1-phenylpropan-2-one (3al)

The title compound was isolated by column chromatography (elucent: EtOAc / petroleum ether = 1/50) as a pale yellow solid in 82% yield (71.0 mg); M.p.: 147-149 °C; \(^1\)H NMR (CDCl\textsubscript{3}, 400 MHz): \(\delta\) 7.57-7.55 (m, 2H), 7.42 (t, \(J = 7.8\) Hz, 1H), 7.38-7.31 (m, 4H), 7.12 (dd, \(J = 7.7, 0.6\) Hz, 1H), 7.07-7.03 (m, 2H), 7.00-6.96 (m, 2H), 2.15 (s, 3H); \(^{13}\)C\(^{1}\)H NMR (CDCl\textsubscript{3}, 100 MHz): \(\delta\) 200.5, 160.0, 140.7, 138.1, 137.4, 136.9, 135.3, 130.1, 129.4, 128.54, 128.52, 128.2, 126.6, 123.1, 77.5, 27.8; HRMS (ESI) m/z: [M+H]\(^+\) Calcd for C\textsubscript{20}H\textsubscript{16}BrClNOS 431.9819, Found: 431.9821.
1-((4-bromophenyl)thio)-1-(6-bromopyridin-2-yl)-1-phenylpropan-2-one (3am)

The title compound was isolated by column chromatography (eluent: EtOAc /petroleum ether = 1/50) as a white solid in 97% yield (92.1 mg); M.p.: 148-150 °C; 1H NMR (CDCl$_3$, 400 MHz): δ 7.57-7.54 (m, 2H), 7.42 (t, $J = 7.8$ Hz, 1H), 7.38-7.30 (m, 4H), 7.22-7.19 (m, 2H), 7.12 (dd, $J = 7.7$, 0.7 Hz, 1H), 6.93-6.90 (m, 2H), 2.15 (s, 3H); 13C(1H) NMR (CDCl$_3$, 100 MHz): δ 200.4, 159.8, 140.6, 138.2, 137.2, 137.0, 131.4, 130.6, 129.3, 128.5, 128.2, 126.6, 123.5, 123.0, 77.4, 27.7; HRMS (ESI) m/z: [M+H]$^+$ Calcd for C$_{20}$H$_{16}$Br$_2$NOS 475.9314, Found: 475.9316.

1-(6-bromopyridin-2-yl)-1-((4-iodophenyl)thio)-1-phenylpropan-2-one (3an)

The title compound was isolated by column chromatography (eluent: EtOAc /petroleum ether = 1/50) as an orange solid in 97% yield (101.6 mg); M.p.: 126-128 °C; 1H NMR (CDCl$_3$, 400 MHz): δ 7.57-7.54 (m, 2H), 7.44-7.38 (m, 3H), 7.37-7.31 (m, 4H), 7.12 (dd, $J = 7.6$, 0.5 Hz, 1H), 6.78-6.75 (m, 2H), 2.15 (s, 3H); 13C(1H) NMR (CDCl$_3$, 100 MHz): δ 200.5, 159.9, 140.7, 138.2, 137.5, 137.3, 137.0, 131.5, 129.4, 128.6, 128.2, 126.7, 123.1, 95.4, 77.4, 27.8; HRMS (ESI) m/z: [M+H]$^+$ Calcd for C$_{20}$H$_{16}$BrINOS 523.9175, Found: 523.9178.

4-((1-(6-bromopyridin-2-yl)-2-oxo-1-phenylpropyl)thio)benzonitrile (3ao)

The title compound was isolated by column chromatography (eluent: EtOAc /petroleum ether = 1/50 to EtOAc /petroleum ether = 1/20) as a pale yellow solid in 76% yield (64.2 mg); M.p.: 135-137 °C; 1H NMR (CDCl$_3$, 400 MHz): δ 7.52 (dd, $J = 8.0$, 1.4 Hz, 2H), 7.46 (t, $J = 7.8$ Hz, 1H), 7.39-7.33 (m, 6H), 7.27-7.25 (m, 1H), 7.17 (d, $J = 8.3$ Hz, 2H), 2.17 (s, 3H); 13C(1H) NMR (CDCl$_3$, 100 MHz): δ 200.4, 159.6, 140.6, 139.2, 138.5, 136.8, 133.9, 131.6, 129.0, 128.8, 128.5, 126.9, 123.1, 118.3, 111.3, 77.4, 27.9; HRMS (ESI) m/z: [M+H]$^+$ Calcd for C$_{21}$H$_{16}$BrN$_2$OS 423.0161, Found: 423.0165.
1-(6-bromopyridin-2-yl)-1-((4-nitrophenyl)thio)-1-phenylpropan-2-one (3ap)

The title compound was isolated by column chromatography (eluent: EtOAc /petroleum ether = 1/50 to EtOAc /petroleum ether = 1/10) as a pale orange solid in 86% yield (76.6 mg); M.p.: 89-91 °C; \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta\) 7.94-7.90 (m, 2H), 7.53 (dd, \(J = 8.3, 1.8\) Hz, 2H), 7.47 (t, \(J = 7.8\) Hz, 1H), 7.39-7.33 (m, 4H), 7.29 (dd, \(J = 7.7, 0.5\) Hz, 1H), 7.24-7.20 (m, 2H), 2.19 (s, 3H); \(^1\)C\(^{\text{1H}}\) NMR (CDCl\(_3\), 100 MHz): \(\delta\) 200.4, 159.6, 146.9, 141.9, 140.6, 138.7, 136.8, 133.3, 128.93, 128.88, 128.6, 127.0, 123.14, 123.08, 77.4, 28.0; HRMS (ESI) m/z: [M+H]\(^+\) Calcd for C\(_{20}\)H\(_{16}\)BrN\(_2\)O\(_3\)S 443.0060, Found: 443.0062.

1-((4-acetylphenyl)thio)-1-(6-bromopyridin-2-yl)-1-phenylpropan-2-one (3aq)

The title compound was isolated by column chromatography (eluent: EtOAc /petroleum ether = 1/50 to EtOAc /petroleum ether = 1/10) as a pale yellow oil in 93% yield (82.1 mg); \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta\) 7.67-7.64 (m, 2H), 7.57-7.55 (m, 2H), 7.42 (t, \(J = 7.8\) Hz, 1H), 7.38-7.30 (m, 4H), 7.22 (dd, \(J = 7.7, 0.7\) Hz, 1H), 7.16-7.13 (m, 2H), 2.51 (s, 3H), 2.18 (s, 3H); \(^1\)C\(^{\text{1H}}\) NMR (CDCl\(_3\), 100 MHz): \(\delta\) 200.4, 197.4, 159.9, 140.5, 138.7, 138.4, 137.1, 136.1, 133.5, 129.1, 128.6, 128.3, 128.0, 126.7, 123.0, 77.1, 27.9, 26.5; HRMS (ESI) m/z: [M+Na]\(^+\) Calcd for C\(_{22}\)H\(_{18}\)BrNaO\(_3\)S 462.0134, Found: 462.0142.

1-(6-bromopyridin-2-yl)-1-(naphthalen-2-ylthio)-1-phenylpropan-2-one (3ar)

The title compound was isolated by column chromatography (eluent: EtOAc /petroleum ether = 1/50 to EtOAc /petroleum ether = 1/10) as a pale orange solid in 98% yield (88.3 mg); M.p.: 115-117 °C; \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta\) 7.72 (d, \(J = 7.6\) Hz, 1H), 7.62 (d, \(J = 6.8\) Hz, 2H), 7.58 (d, \(J = 7.8\) Hz, 1H), 7.54 (t, \(J = 4.1\) Hz, 2H), 7.46-7.39 (m, 2H), 7.37-7.32 (m, 3H), 7.31 (d, \(J = 7.6\) Hz, 1H), 7.28 (br s, 1H), 7.11 (dd, \(J = 8.5, 1.2\) Hz, 1H), 7.05 (dd, \(J = 6.8, 1.1\) Hz, 1H), 2.21 (s, 3H); \(^1\)C\(^{\text{1H}}\) NMR (CDCl\(_3\), 100 MHz): \(\delta\) 200.8, 160.0, 140.6, 138.0, 137.6, 135.6, 133.0, 132.9, 131.7, 131.0, 129.5, 128.9, 128.4,
128.1, 127.7, 127.4, 126.7, 126.5, 126.1, 123.1, 77.5, 27.8; HRMS (ESI) m/z: [M+Na]+ Calcd for C_{24}H_{18}BrNNaOS 470.0185, Found: 470.0189.

1-(6-bromopyridin-2-yl)-1-phenyl-1-(thiophen-2-ylthio)propan-2-one (3as)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a white solid in 95% yield (76.7 mg); M.p.: 116-118 °C; \(^1H\) NMR (CDCl\(_3\), 400 MHz): \(\delta\) 7.57 (dd, \(J = 8.2, 1.6\) Hz, 2H), 7.43-7.32 (m, 5H), 7.27-7.26 (m, 1H), 6.97 (d, \(J = 7.5\) Hz, 1H), 6.82-6.79 (m, 1H), 6.73 (dd, \(J = 3.5, 1.0\) Hz, 1H), 2.17 (s, 3H); \(^{13}C\{^1H\} NMR (CDCl_3, 100 MHz): \delta 201.1, 159.6, 140.8, 138.0, 137.8, 136.9, 131.8, 129.6, 129.5, 128.6, 128.3, 126.9, 126.7, 123.0, 79.2, 27.7; HRMS (ESI): [M+H]+ Calcd for C_{18}H_{15}BrNOS_2 403.9773, Found: 403.9777.

1-(6-bromopyridin-2-yl)-1-phenyl-1-(thiophen-2-ylthio)propan-2-one (3at)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow oil in 85% yield (76.0 mg); \(^1H\) NMR (CDCl\(_3\), 400 MHz): \(\delta\) 7.60-7.58 (m, 2H), 7.47 (t, \(J = 7.8\) Hz, 1H), 7.39 (dd, \(J = 7.5, 0.6\) Hz, 1H), 7.38-7.34 (m, 3H) 7.31-7.29 (m, 1H), 7.23-7.20 (m, 2H), 7.15-7.12 (m, 2H), 3.57 (d, \(J = 12.1\) Hz, 1H), 3.40 (d, \(J = 12.2\) Hz, 1H), 2.22 (s, 3H); \(^{13}C\{^1H\} NMR (CDCl_3, 100 MHz): \delta 200.0, 161.1, 140.7, 138.8, 137.5, 134.9, 132.9, 130.5, 129.0, 128.6, 128.0, 126.7, 122.3, 72.7, 34.9, 27.8 (one signal missing due to overlap); HRMS (ESI) m/z: [M+H]+ Calcd for C_{21}H_{18}BrClNOS 445.9976, Found: 445.9977.
methyl 2-((1-(6-bromopyridin-2-yl)-2-oxo-1-phenylpropyl)thio)acetate (3au)

The title compound was isolated by column chromatography (eluent: EtOAc /petroleum ether = 1/10) as a pale yellow oil in 67% yield (52.6 mg); \[^1\text{H NMR (CDCl}_3, 400 MHz\)]: \(\delta 7.55 \text{ (t, } J = 1.5 \text{ Hz, 1H), 7.53-7.51 \text{ (m, 2H), 7.43 (dd, } J = 7.7, 0.5 \text{ Hz, 1H), 7.38 (dd, } J = 7.8, 0.5 \text{ Hz, 1H), 7.36-7.33 \text{ (m, 2H), 7.31-7.28 \text{ (m, 1H), 3.61 (s, 3H), 3.26 (d, } J = 15.6 \text{ Hz, 1H), 3.11 (d, } J = 15.6 \text{ Hz, 1H), 2.18 (s, 3H);} \[^{13}\text{C}[^{1}\text{H}] \text{ NMR (CDCl}_3, 100 MHz\)]: \(\delta 200.3, 169.6, 160.7, 140.8, 138.9, 137.0, 129.1, 128.6, 128.1, 126.9, 122.4, 72.3, 52.4, 33.1, 27.7; \text{ HRMS (ESI)} m/z: [M+Na]^+ \text{ Calcd for C}_{17}\text{H}_{16}\text{BrNNaO}_3\text{S 415.9926, Found: 415.9933.}

1-(6-bromopyridin-2-yl)-1-((furan-2-ylmethyl)thio)-1-phenylpropan-2-one (3av)

The title compound was isolated by column chromatography (eluent: EtOAc /petroleum ether = 1/50) as an orange oil in 55% yield (43.8 mg); \[^1\text{H NMR (CDCl}_3, 400 MHz\)]: \(\delta 7.59 \text{ (d, } J = 7.8 \text{ Hz, 2H), 7.48 (t, } J = 7.7 \text{ Hz, 1H), 7.41 (d, } J = 7.6 \text{ Hz, 1H), 7.37-7.28 \text{ (m, 5H), 6.25-6.23 \text{ (m, 1H), 6.06 (d, } J = 2.9 \text{ Hz, 1H), 3.67 (d, } J = 13.9 \text{ Hz, 1H), 3.51 (d, } J = 13.9 \text{ Hz, 1H), 2.22 (s, 3H);} \[^{13}\text{C}[^{1}\text{H}] \text{ NMR (CDCl}_3, 100 MHz\)]: \(\delta 200.3, 161.1, 149.8, 142.2, 140.7, 138.8, 137.5, 129.1, 128.6, 127.9, 126.7, 122.2, 110.5, 108.1, 72.4, 27.8, 27.7; \text{ HRMS (ESI)} m/z: [M+H]^+ \text{ Calcd for C}_{19}\text{H}_{17}\text{BrNO}_2\text{S 402.0158, Found: 402.0160.}

2-(6-bromopyridin-2-yl)-2-(methylthio)-1,2-diphenylethan-1-one (3aw)

The title compound was isolated by column chromatography (eluent: CH_2Cl_2 /petroleum ether = 1/5) as an orange oil in 84% yield (67.2 mg); \[^1\text{H NMR (CDCl}_3, 400 MHz\)]: \(\delta 7.77 \text{ (d, } J = 7.4 \text{ Hz, 2H), 7.63 (d, } J = 7.5 \text{ Hz, 2H), 7.43-7.41 \text{ (m, 2H), 7.39-7.28 \text{ (m, 4H), 7.25-7.20 \text{ (m, 3H), 1.96 (s, 3H);} \[^{13}\text{C}[^{1}\text{H}] \text{ NMR (CDCl}_3, 100 MHz\)]: \(\delta 193.5, 161.6, 140.7, 138.7, 138.6, 136.2, 131.7, 130.3, 129.2, 128.3, 127.5, 126.3, 122.0, 70.0, 14.3 \text{ (one signal missing due to overlap); \text{ HRMS (ESI)} m/z: [M+H]^+ \text{ Calcd for C}_{20}\text{H}_{17}\text{BrNOS 398.0209, Found: 398.0213.}
1-[(1-(6-bromopyridin-2-yl)-2-oxo-1,2-diphenylethyl)thio]pentan-3-one (3ax)

The title compound was isolated by column chromatography (eluent: EtOAc /petroleum ether = 1/50 to EtOAc /petroleum ether = 1/20) as a pale yellow solid in 88% yield (82.9 mg). M.p.: 78-80 °C; \(^{1}H\) NMR (CDCl\(_3\), 400 MHz): \(\delta 7.77\) (dd, \(J = 8.6, 1.3\) Hz, 2H), 7.58 (dd, \(J = 8.7, 1.3\) Hz, 2H), 7.44-7.27 (m, 6H), 7.26-7.20 (m, 3H), 2.69-2.63 (m, 2H), 2.61-2.56 (m, 2H), 2.30 (q, \(J = 7.3\) Hz, 2H), 0.97 (t, \(J = 7.3\) Hz, 3H); \(^{13}C\)\({}^{1}H\) NMR (CDCl\(_3\), 100 MHz): \(\delta 209.3, 194.6, 161.7, 140.6, 139.1, 138.7, 136.0, 131.8, 130.4, 129.2, 128.3, 127.7, 127.6, 126.4, 122.2, 70.7, 41.3, 35.7, 25.4, 7.6; HRMS (ESI) m/z: [M+H]\(^{+}\) Calcd for C\(_{24}H\(_{23}\)BrNO\(_2\)S 468.0627, Found: 468.0633.

1-(6-bromopyridin-2-yl)-1-phenyl-1-(prop-2-yn-1-ylthio)propan-2-one (3ay)

The title compound was isolated by column chromatography (eluent: EtOAc /petroleum ether = 1/50) as an orange oil in 86% yield (61.7 mg);

\(^{1}H\) NMR (CDCl\(_3\), 400 MHz): \(\delta 7.56-7.50\) (m, 3H), 7.42 (dd, \(J = 7.7, 0.6\) Hz, 1H), 7.40-7.34 (m, 3H), 7.32-7.29 (m, 1H), 3.17 (dd, \(J = 16.0, 2.7\) Hz, 1H), 3.00 (dd, \(J = 16.0, 2.7\) Hz, 1H), 2.22 (s, 3H), 2.12 (t, \(J = 2.7\) Hz, 1H);

\(^{13}C\)\({}^{1}H\) NMR (CDCl\(_3\), 100 MHz): \(\delta 200.4, 160.7, 140.8, 138.9, 137.0, 129.0, 128.6, 128.1, 126.9, 122.5, 78.7, 72.5, 71.7, 27.8, 18.9; HRMS (ESI) m/z: [M+H]\(^{+}\) Calcd for C\(_{17}H\(_{15}\)BrNOS 360.0052, Found: 360.0046.

2-(6-bromopyridin-2-yl)-1,2-diphenyl-2-(prop-2-yn-1-ylthio)ethan-1-one (3az)

The title compound was isolated by column chromatography (eluent: EtOAc /petroleum ether = 1/50) as an pale orange oil in 97% yield (82.3 mg); \(^{1}H\) NMR (CDCl\(_3\), 400 MHz): \(\delta 7.73\) (dd, \(J = 8.4, 1.1\) Hz, 2H), 7.60-7.58 (m, 2H), 7.43 (d, \(J = 7.6\) Hz, 1H), 7.40-7.27 (m, 6H), 7.25-7.20 (m, 2H), 3.20 (d, \(J = 2.7\) Hz, 2H), 2.10 (t, \(J = 2.7\) Hz, 1H); \(^{13}C\)\({}^{1}H\) NMR (CDCl\(_3\), 100 MHz): \(\delta 194.6, 161.0, 140.7, 138.7, 138.1, 135.8, 132.0, 130.3, 129.1, 128.5, 127.9, 127.7, 126.6, 122.5, 78.6, 71.9, 71.1, 19.7; HRMS (ESI) m/z: [M+H]\(^{+}\) Calcd for C\(_{22}H\(_{17}\)BrNOS 422.0209, Found: 422.0204.
2-(allylthio)-2-(6-bromopyridin-2-yl)-1,2-diphenylethan-1-one (3za)

The title compound was isolated by column chromatography (eluent: EtOAc /petroleum ether = 1/50) as a pale yellow oil in 72% yield (60.5 mg); ¹H NMR (CDCl₃, 400 MHz): δ 7.78 (d, J = 8.6 Hz, 2H), 7.61 (dd, J = 8.9, 1.4 Hz, 2H) 7.42 (t, J = 7.6 Hz, 1H), 7.39-7.28 (m, 5H), 7.27-7.21 (m, 3H), 5.78-5.68 (m, 1H), 5.11 (dd, J = 16.9, 1.3 Hz, 1H), 5.02 (d, J = 10.0 Hz, 1H), 3.15-3.05 (m, 2H); ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 194.4, 161.8, 140.7, 139.0, 138.6, 136.2, 132.5, 131.8, 130.3, 129.2, 128.4, 127.7, 127.6, 126.4, 122.2, 118.5, 70.7, 34.9; HRMS (ESI) m/z: [M+H]+ Calcd for C₂₂H₁₉BrNOS 424.0365, Found: 424.0371.

2-(allylthio)-2-(6-bromopyridin-2-yl)-1,2-diphenylethan-1-one (3zb)

The title compound was isolated by column chromatography (eluent: EtOAc /petroleum ether = 1/50) as a pale yellow solid in 86% yield (67.9 mg); M.p.: 149-151 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.38 (t, J = 7.7 Hz, 1H), 7.31-7.21 (m, 8H), 7.10-7.02 (m, 3H), 4.11 (d, J = 20.3 Hz, 1H), 3.93 (d, J = 20.3 Hz, 1H); ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 200.7, 160.6, 139.8, 138.6, 137.1, 135.4, 131.4, 129.2, 128.4, 128.3, 128.13, 128.10, 127.3, 126.9, 126.7, 123.0, 67.3, 45.3; HRMS (ESI) m/z: [M+H]+ Calcd for C₂₀H₁₅BrNOS 396.0052, Found: 396.0054.

3-(6-bromopyridin-2-yl)-3-phenylisothiochroman-4-one (3zc)

The title compound was isolated by column chromatography (eluent: EtOAc /petroleum ether = 1/50) as a pale pink solid in 62% yield (48.6 mg); M.p.: 186-188 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.17 (d, J = 7.4 Hz, 1H), 7.44 (t, J = 7.7 Hz, 1H), 7.38-7.29 (m, 8H), 7.03 (d, J = 7.4 Hz, 2H), 3.69 (d, J = 16.9 Hz, 1H), 3.61 (d, J = 16.9 Hz, 1H); ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 191.0, 160.2, 140.9, 140.5, 138.1, 137.4, 133.5, 132.2, 129.8, 128.7, 128.6, 128.2, 127.5, 127.4, 126.8, 124.2, 64.8, 28.9; HRMS (ESI) m/z: [M+H]+ Calcd for C₂₀H₁₅BrNOS 396.0052, Found: 396.0059.
1-[(4-bromophenyl)thio]-1-(6-bromopyridin-2-yl)-1-phenynonadecan-2-one (3zd)

The title compound was isolated by column chromatography (eluent: EtOAc/ petroleum ether = 1/50 to EtOAc/ petroleum ether = 1/20) as a yellow solid in 99% yield (140.0 mg); M.p.: 51-53 ºC; 1H NMR (CDCl$_3$, 400 MHz): δ 7.56 (dd, $J = 8.2$, 1.5 Hz, 2H), 7.42-7.29 (m, 5H), 7.18 (d, $J = 8.5$ Hz, 2H), 7.06 (d, $J = 7.6$ Hz, 1H), 6.88 (d, $J = 8.5$ Hz, 2H), 2.55-2.47 (m, 1H), 2.23-2.15 (m, 1H), 1.62-1.51 (m, 1H), 1.48-1.37 (m, 1H), 1.32-1.07 (m, 28H), 0.88 (t, $J = 6.6$ Hz, 3H); 13C(1H) NMR (CDCl$_3$, 100 MHz): δ 203.3, 160.0, 140.6, 138.0, 137.12, 137.08, 131.3, 130.9, 129.4, 128.5, 128.2, 126.5, 123.4, 123.2, 77.8, 40.1, 31.8, 29.8, 29.63, 29.59, 29.5, 29.33, 29.29, 29.2, 28.9, 25.1, 22.6, 14.1 (five signals missing due to overlap); HRMS (ESI): [M+Na]$^+$ Calcd for C$_{36}$H$_{47}$Br$_2$NNaOS 722.1637, Found: 722.1644.

(5S,8R,9S,10S,13R,14S,17R)-17-[(6-[(4-bromophenyl)thio]-6-(6-bromopyridin-2-yl)-5-oxo-6-p henylhexan-2-yl)]-10,13-dimethyldodecahydro-3H-cyclopenta[a]phenanthrene-3,7,12(2H,4 H)-trione (3ze)

The title compound was isolated by column chromatography (eluent: EtOAc/ petroleum ether = 1/20 to EtOAc/ petroleum ether = 1/2) as a yellow oil in 83% yield (136.1 mg, mixture of two diastereoisomers, d.r. = 1:1); 1H NMR (CDCl$_3$, 400 MHz): δ 7.59-7.55 (m, 2H), 7.42-7.30 (m, 5H), 7.17 (dd, $J = 8.5$, 1.9 Hz, 2H), 7.04 (d, $J = 7.5$ Hz) + 6.99 (d, $J = 7.2$ Hz) (1H), 6.85 (dd, $J = 8.5$, 2.6 Hz, 2H), 2.92-2.76 (m, 3H), 2.66-1.55(m, 21H), 1.37 (s, 3H), 1.00 (s) + 0.95 (s) (3H), 0.64 (d, $J = 6.5$ Hz) + 0.53 (d, $J = 6.6$ Hz) (3H); 13C(1H) NMR (CDCl$_3$, 100 MHz): δ 212.0, 211.9, 208.9, 208.6, 203.7, 160.1, 159.9, 140.71, 140.68, 138.0, 137.14, 137.10, 137.0, 131.4, 130.94, 130.88, 129.5, 128.62, 128.59, 128.32, 128.27, 126.6, 123.48, 123.43, 123.29, 123.23, 78.2, 78.0, 56.84, 56.78, 51.7, 51.6, 49.0, 46.8, 45.6, 45.5, 44.9, 42.7, 38.6, 37.1, 37.0, 36.4, 36.0, 35.2, 35.1, 30.7, 30.6, 27.39, 27.36, 25.08, 25.05,
21.9, 18.9, 18.7, 11.9, 11.8 (20 signals missing due to overlap); \textit{HRMS (ESI)}: [M+Na]^+ Calcd for \(C_{42}H_{45}Br_2NNaO_4S\) 840.1328, Found: 840.1332.

1-((4-bromophenyl)thio)-1-(6-bromopyridin-2-yl)-4-(4,5-diphenyloxazol-2-yl)-1-phenylbutan-2-one (3zf)

The title compound was isolated by column chromatography (eluent: EtOAc/ petroleum ether = 1/20 to EtOAc/ petroleum ether = 1/2) as a yellow solid in 94% yield (133.7 mg); M.p.: 146-148 °C; \textit{\(^1\)H NMR (CDCl\(_3\), 400 MHz)}: \(\delta\) 7.58-7.52 (m, 6H), 7.42-7.28 (m, 11H), 7.19 (d, \(J = 8.4\) Hz, 2H), 7.10 (d, \(J = 7.6\) Hz, 1H), 6.91 (d, \(J = 8.4\) Hz, 2H), 3.23-3.10 (m, 3H), 2.84-2.74 (m, 1H); \textit{\(^{13}\)C{\(^1\)H} NMR (CDCl\(_3\), 100 MHz)}: \(\delta\) 201.3, 162.2, 159.8, 145.0, 140.6, 138.2, 137.0, 136.7, 134.9, 132.4, 131.4, 130.6, 129.2, 128.8, 128.7, 128.5, 128.39, 128.36, 128.2, 127.9, 127.8, 126.7, 126.3, 123.5, 123.3, 77.2, 37.1, 23.7; \textit{HRMS (ESI)}: [M+Na]^+ Calcd for \(C_{36}H_{26}Br_2N_2NaO_2S\) 730.9974, Found: 730.9978.

1-(6-bromopyridin-2-yl)-1-phenyl-1-(phenylselanyl)propan-2-one (3zg)

The title compound was isolated by column chromatography (eluent: EtOAc/ petroleum ether = 1/50) as a pale yellow solid in 68% yield (60.1 mg); M.p.: 125-127 °C; \textit{\(^1\)H NMR (CDCl\(_3\), 400 MHz)}: \(\delta\) 7.54 (dd, \(J = 7.8, 1.7\) Hz, 2H), 7.36-7.21 (m, 6H), 7.11-7.05 (m, 4H), 6.84 (dd, \(J = 6.8, 1.7\) Hz, 1H), 2.17 (s, 3H); \textit{\(^{13}\)C{\(^1\)H} NMR (DMSO-\(d_6\), 100 MHz)}: \(\delta\) 200.9, 161.0, 140.59, 140.57, 137.99, 137.95, 137.3, 130.0, 129.0, 128.4, 128.3, 127.8, 126.3, 122.8, 75.1, 27.7; \textit{HRMS (ESI)} m/z: [M+H]^+ Calcd for \(C_{20}H_{17}BrNOSe\) 445.9653, Found: 445.9658.
1-(6-bromopyridin-2-yl)-1-phenyl-1-(m-tolylthio)propan-2-one (3ba)

The title compound was isolated by column chromatography (eluent: EtOAc/ petroleum ether = 1/50) as a yellow solid in 98% yield (80.7 mg); M.p.: 110-112 °C; \(^1H\) NMR (CDCl\(_3\), 400 MHz): \(\delta\) 7.40 (s, 1H), 7.39-7.34 (m, 2H), 7.29 (dd, \(J = 7.8, 0.5\) Hz, 1H), 7.25-7.17 (m, 2H), 7.12 (d, \(J = 7.6\) Hz, 1H), 7.10-7.05 (m, 5H), 2.33 (s, 3H), 2.17 (s, 3H); \(^{13}C\)\(^{1}H\) NMR (CDCl\(_3\), 100 MHz): \(\delta\) 200.9, 160.2, 140.5, 138.1, 137.9, 137.4, 135.6, 131.5, 130.0, 128.8, 128.7, 128.3, 126.4, 123.2, 77.5, 27.8, 21.5 (two signals missing due to overlap); HRMS (ESI) [M+H]^+ m/z: Calcd for C\(_{21}\)H\(_{19}\)BrNOS 412.0365, Found: 412.0367.

1-(6-bromopyridin-2-yl)-1-phenyl-1-(p-tolylthio)propan-2-one (3ca)

The title compound was isolated by column chromatography (eluent: EtOAc/ petroleum ether = 1/50) as a pale yellow solid in 94% yield (77.7 mg); M.p.: 126-128 °C; \(^1H\) NMR (CDCl\(_3\), 400 MHz): \(\delta\) 7.48 (d, \(J = 8.2\) Hz, 2H), 7.35 (t, \(J = 7.8\) Hz, 1H), 7.28 (d, \(J = 7.8\) Hz, 1H), 7.21-7.14 (m, 3H), 7.10-7.04 (m, 5H), 2.35 (s, 3H), 2.16 (s, 3H); \(^{13}C\)\(^{1}H\) NMR (CDCl\(_3\), 100 MHz): \(\delta\) 200.9, 160.3, 140.5, 137.9, 135.5, 134.4, 131.6, 129.3, 129.1, 128.7, 128.3, 126.3, 123.0, 77.3, 27.7, 21.0 (one signals missing due to overlap); HRMS (ESI) m/z: [M+H]^+ Calcd for C\(_{21}\)H\(_{19}\)BrNOS 412.0365, Found: 412.0366.

1-(6-bromopyridin-2-yl)-1-((4-methoxyphenyl)thio)-1-phenylpropan-2-one (3da)

The title compound was isolated by column chromatography (eluent: EtOAc/ petroleum ether = 1/20) as a pale yellow solid in 98% yield (84.6 mg); M.p.: 169-171 °C; \(^1H\) NMR (CDCl\(_3\), 400 MHz): \(\delta\) 7.50 (d, \(J = 8.8\) Hz, 2H), 7.36 (t, \(J = 7.8\) Hz, 1H), 7.29 (d, \(J = 7.7\) Hz, 1H), 7.20 (t, \(J = 7.0\) Hz, 1H), 7.10-7.03 (m, 5H), 6.86 (d, \(J = 8.8\) Hz, 2H), 3.81 (s, 3H), 2.16 (s, 3H); \(^{13}C\)\(^{1}H\) NMR (CDCl\(_3\), 100 MHz): \(\delta\) 200.8, 160.3, 159.1, 140.5, 138.0, 135.5, 131.5, 130.7, 129.2, 128.7, 128.3, 126.4, 122.9, 113.7, 76.9, 55.2, 27.6; HRMS (ESI) m/z: [M+H]^+ Calcd for C\(_{21}\)H\(_{19}\)BrNO\(_2\)S 428.0314, Found: 428.0323.
1-(6-bromopyridin-2-yl)-1-phenyl-1-((4-(trifluoromethoxy)phenyl)thio)propan-2-one (3ea)

The title compound was isolated by column chromatography (eluent: EtOAc/ petroleum ether = 1/50) as a yellow solid in 92% yield (88.4 mg); M.p.: 141-143 °C; 1H NMR (CDCl$_3$, 400 MHz): δ 7.55 (d, J = 8.9 Hz, 2H), 7.46 (t, J = 7.8 Hz, 1H), 7.37 (d, J = 7.8 Hz, 1H), 7.25-7.21 (m, 2H), 4.82 (s, 2H), 4.22 (s, 3H); 13C{1H} NMR (CDCl$_3$, 100 MHz): δ 200.1, 159.9, 148.5, 140.9, 138.5, 136.6, 135.3, 131.3, 130.9, 129.1, 128.6, 126.9, 122.7, 120.34 (q, J$_{CF}$ = 257.6 Hz), 120.28, 75.7, 27.8; 19F NMR (CDCl$_3$, 376 MHz): δ -57.7 (s); HRMS (ESI) m/z: [M+H]$^+$ Calcd for C$_{21}$H$_{16}$BrF$_3$NO$_2$S 482.0032, Found: 482.0036.

1-(6-bromopyridin-2-yl)-1-phenyl-1-((4-(trifluoromethyl)phenyl)thio)propan-2-one (3fa)

The title compound was isolated by column chromatography (eluent: EtOAc/ petroleum ether = 1/50) as a yellow oil in 91% yield (84.3 mg); 1H NMR (CDCl$_3$, 400 MHz): δ 7.68 (d, J = 8.3 Hz, 2H), 7.55 (d, J = 8.4 Hz, 2H), 7.47 (t, J = 7.8 Hz, 1H), 7.38 (d, J = 7.8 Hz, 1H), 7.23 (d, J = 7.4 Hz, 2H), 7.12 (t, J = 7.8 Hz, 2H), 7.05 (d, J = 7.5 Hz, 2H), 2.24 (s, 3H); 13C{1H} NMR (CDCl$_3$, 100 MHz): δ 199.7, 159.6, 142.0, 141.0, 138.6, 135.1, 130.7, 130.1, 129.7 (d, J$_{CF}$ = 32.7 Hz), 129.1, 128.7, 127.1, 125.0 (q, J$_{CF}$ = 3.6 Hz), 123.9 (d, J$_{CF}$ = 272.3 Hz), 122.7, 75.9, 27.8; 19F NMR (CDCl$_3$, 376 MHz): δ -62.6 (s); HRMS (ESI) m/z: [M+H]$^+$ Calcd for C$_{21}$H$_{16}$BrF$_3$NOS 466.0083, Found: 466.0089.

1-(6-bromopyridin-2-yl)-1-((4-fluorophenyl)thio)-1-phenylpropan-2-one (3ga)

The title compound was isolated by column chromatography (eluent: EtOAc/ petroleum ether = 1/50) as a pale yellow solid in 97% yield (80.5 mg); M.p.: 141-143 °C; 1H NMR (CDCl$_3$, 400 MHz): δ 7.55-7.52 (m, 2H), 7.42 (t, J = 7.8 Hz, 1H), 7.34 (d, J = 7.8 Hz, 1H), 7.22 (t, J = 7.3 Hz, 1H), 7.14-7.09 (m, 3H), 7.05-6.98 (m, 4H), 2.19 (s, 3H); 13C{1H} NMR (CDCl$_3$, 100 MHz): δ 200.3, 162.1 (d, J$_{CF}$ = 248.7 Hz), 160.1, 140.8, 138.3, 135.4, 133.6 (d, J$_{CF}$ = 3.4 Hz), 131.5 (d, J$_{CF}$ = 8.1 Hz), 131.1, 129.0, 128.5, 126.7, 122.7, 115.1 (d, J$_{CF}$ = 21.4 Hz).
H\textsubscript{2}), 76.0, 27.7; 19F NMR (CDCl\textsubscript{3}, 376 MHz): \(\delta -102.0\) (s); HRMS (ESI) m/z: [M+H]\(^+\) Calcd for C\textsubscript{20}H\textsubscript{16}BrFNOS 416.0115, Found: 416.0124.

1-(6-bromopyridin-2-yl)-1-((4-chlorophenyl)thio)-1-phenylpropan-2-one (3ha)

The title compound was isolated by column chromatography (eluent: EtOAc/ petroleum ether = 1/50) as a pale yellow solid in 71% yield (61.7 mg); M.p.: 127-129 °C; 1H NMR (CDCl\textsubscript{3}, 400 MHz): \(\delta\) 7.51 (d, \(J = 8.6\) Hz, 2H), 7.42 (t, \(J = 7.8\) Hz, 1H), 7.34 (d, \(J = 7.8\) Hz, 1H), 7.28 (d, \(J = 8.6\) Hz, 2H), 7.23 (t, \(J = 7.3\) Hz, 1H), 7.14-7.09 (m, 3H), 7.04 (d, \(J = 7.4\) Hz, 2H), 2.20 (s, 3H); 13C\{1H\} NMR (CDCl\textsubscript{3}, 100 MHz): \(\delta\) 200.0, 159.9, 140.8, 138.4, 136.4, 135.3, 133.9, 131.1, 130.9, 129.0, 128.6, 128.3, 126.8, 122.7, 76.0, 27.7; HRMS (ESI) m/z: [M+H]\(^+\) Calcd for C\textsubscript{20}H\textsubscript{16}BrClNOS 431.9819, Found: 431.9816.

(1R,2R,5S)-2-isopropyl-5-methylcyclohexyl-4-(1-(6-bromopyridin-2-yl)-2-oxo-1-(phenylthio) propyl)benzoate (3ia)

The title compound was isolated by column chromatography (eluent: EtOAc/ petroleum ether = 1/50) as a yellow oil in 96% yield (112.0 mg, mixture of two diastereoisomers, \(d.r. = 1:1\)); 1H NMR (CDCl\textsubscript{3}, 400 MHz): \(\delta\) 7.98 (d, \(J = 8.6\) Hz, 2H), 7.68-7.64 (m, 2H), 7.42 (td, \(J = 7.8\), 2.2 Hz, 1H), 7.34 (d, \(J = 7.9\) Hz, 1H), 7.24-7.19 (m, 1H), 7.16-7.03 (m, 5H), 4.96-4.89 (m, 1H), 2.21+2.20 (s+s, 3H), 2.12-2.09 (m, 1H), 1.98-1.91 (m, 1H), 1.74-1.71 (m, 2H), 1.57-1.51 (m, 2H), 1.14-1.07 (m, 2H), 0.93-0.90 (m, 7H), 0.88-0.78 (s+s, 3H); 13C\{1H\} NMR (CDCl\textsubscript{3}, 100 MHz): \(\delta\) 199.9, 199.8, 165.5, 159.7, 159.6, 142.6, 142.5, 140.8, 138.4, 138.3, 135.2, 135.1, 130.9, 130.8, 130.14, 130.11, 129.6, 129.3, 129.0, 128.56, 128.55, 128.56, 128.2, 122.7, 76.6, 76.4, 74.9, 47.12, 47.10, 40.8, 34.2, 31.3, 27.83, 27.79, 26.3, 23.5, 22.0, 20.7, 16.40, 16.39 (14 signals missing due to overlap); HRMS (ESI) m/z: [M+H]\(^+\) Calcd for C\textsubscript{31}H\textsubscript{35}BrNO\textsubscript{3}S 580.1516, Found: 580.1520.
1-(benzofuran-7-yl)-1-(6-bromopyridin-2-yl)-1-(phenylthio)propan-2-one (3ja)

The title compound was isolated by column chromatography (eluent: EtOAc/ petroleum ether = 1/50) as a white solid in 71% yield (62.7 mg); M.p.: 127-129 °C; \(^1\)H NMR (CDCl\(_3\), 400 MHz): δ 7.87 (s, 1H), 7.64 (s, 1H), 7.54 (d, J = 8.8 Hz, 1H), 7.47 (d, J = 8.8 Hz, 1H), 7.38 (t, J = 7.7 Hz, 1H), 7.31 (d, J = 7.8 Hz, 1H), 7.20-7.17 (m, 1H), 7.11 (d, J = 7.7 Hz, 1H), 7.06 (d, J = 4.0 Hz, 4H), 6.74 (s, 1H), 2.18 (s, 3H); \(^1\)^1\(^3\)C{\(^1\)H} NMR (DMSO-d\(_6\), 100 MHz): δ 199.8, 159.8, 153.5, 146.7, 139.6, 139.5, 135.1, 131.7, 131.0, 128.9, 128.4, 127.2, 126.7, 125.6, 123.4, 122.2, 111.2, 107.0, 76.9, 27.4; HRMS (ESI) m/z: [M+H]^+ Calcd for C\(_{22}\)H\(_{17}\)BrNO\(_2\)S 438.0158, Found: 438.0164.

1-(6-bromopyridin-2-yl)-1-((4-chlorophenyl)thio)-1-(thiophen-2-yl)propan-2-one (3ka)

The title compound was isolated by column chromatography (eluent: EtOAc/ petroleum ether = 1/50) as an orange solid in 50% yield (40.3 mg); M.p.: 102-104 °C; \(^1\)H NMR (CDCl\(_3\), 400 MHz): δ 7.46 (t, J = 7.8 Hz, 1H), 7.40 (d, J = 7.8 Hz, 1H), 7.27-7.22 (m, 3H), 7.13 (t, J = 7.7 Hz, 2H), 7.06-7.03 (m, 3H), 6.96-6.93 (m, 1H), 2.20 (s, 3H); \(^1\)^1\(^3\)C{\(^1\)H} NMR (CDCl\(_3\), 100 MHz): δ 199.0, 159.9, 141.3, 140.9, 138.6, 136.2, 130.5, 129.4, 129.3, 128.5, 127.3, 127.2, 126.3, 122.2, 72.7, 26.7; HRMS (ESI) m/z: [M+H]^+ Calcd for C\(_{18}\)H\(_{15}\)BrCINO\(_2\) 403.9773, Found: 403.9765.

1-(6-chloropyridin-2-yl)-1-phenyl-1-(phenylthio)propan-2-one (3la)

The title compound was isolated by column chromatography (eluent: EtOAc/ petroleum ether = 1/50 to EtOAc/ petroleum ether = 1/20) as a white solid in 88% yield (62.2 mg); M.p.: 149-151 °C; \(^1\)H NMR (CDCl\(_3\), 400 MHz): δ 7.59 (d, J = 7.3 Hz, 2H), 7.48 (t, J = 7.8 Hz, 1H), 7.36-7.30 (m, 3H), 7.20 (t, J = 6.6 Hz, 1H), 7.15 (d, J = 7.9 Hz, 1H), 7.10-7.05 (m, 5H), 2.18 (s, 3H); \(^1\)^1\(^3\)C{\(^1\)H} NMR (CDCl\(_3\), 100 MHz): δ 200.7, 159.8, 150.2, 138.3, 137.7, 135.5, 131.5, 129.6, 128.8, 128.4, 128.0, 122.8, 72.7, 27.9 (one signal missing due to overlap); HRMS (ESI) m/z: [M+H]^+ Calcd for C\(_{20}\)H\(_{17}\)ClNOS 354.0714, Found: 354.0722.
1-(6-iodopyridin-2-yl)-1-phenyl-1-(phenylthio)propan-2-one (3ma)

The title compound was isolated by column chromatography (eluent: EtOAc/ petroleum ether = 1/50 to EtOAc/ petroleum ether = 1/20) as a white solid in 84% yield (74.8 mg); M.p.: 135-137 °C; 1H NMR (CDCl$_3$, 400 MHz): δ 7.59-7.57 (m, 2H), 7.53 (dd, $J = 7.6$, 0.8 Hz, 1H), 7.37-7.30 (m, 3H), 7.21-7.17 (m, 1H), 7.14 (d, $J = 7.7$ Hz, 1H), 7.10-7.05 (m, 5H), 2.16 (s, 3H); 13C(1H) NMR (CDCl$_3$, 100 MHz): δ 200.8, 160.7, 137.6, 137.1, 135.5, 133.2, 131.5, 129.4, 128.7, 128.4, 128.3, 128.0, 123.5, 116.0, 77.4, 27.7; HRMS (ESI) m/z: [M+Na]$^+$ Calcd for C$_{20}$H$_{16}$INaOS 467.9889, Found: 467.9893.

methyl 6-(2-oxo-1-phenyl-1-(phenylthio)propyl)picolinate (3na)

The title compound was isolated by column chromatography (eluent: EtOAc/ petroleum ether = 1/20 to DCM/ EtOAc = 1/10) as colorless oil in 81% yield (60.9 mg); 1H NMR (CDCl$_3$, 400 MHz): δ 7.94 (d, $J = 7.7$ Hz, 1H), 7.65 (t, $J = 7.9$ Hz, 1H), 7.57 (dd, $J = 7.8$, 1.6 Hz, 2H), 7.35-7.30 (m, 3H), 7.23 (d, $J = 8.0$ Hz, 1H), 7.19-7.13 (m, 1H), 7.07-7.02 (m, 4H), 3.94 (s, 3H), 2.21 (s, 3H); 13C(1H) NMR (CDCl$_3$, 100 MHz): δ 201.3, 165.5, 159.4, 147.1, 137.9, 136.7, 135.4, 131.8, 129.5, 128.6, 128.41, 128.35, 128.0, 127.5, 123.4, 77.8, 52.7, 28.1; HRMS (ESI) m/z: [M+Na]$^+$ Calcd for C$_{22}$H$_{19}$NNaO$_3$S 400.0978, Found: 400.0982.
Scale up preparation of 3aa

A mixture of pyridotriazole 1a (4.0 mmol, 2.0 equiv), Rh$_2$(Oct)$_4$ (0.02 mmol, 1.0 mol %) were weighted in a Schlenk tube equipped with a stir bar. Thioester 2a (2.0 mmol, 1.0 equiv) and dry Toluene (20 mL) was added and the mixture was stirred at 60 °C for 2 h using heating modular of parallel reactor under Ar atmosphere. Afterwards, the reaction was cooled to room temperature and transferred to a 100 mL round-bottomed flask using CH$_2$Cl$_2$. Silica was added to the flask and volatiles were evaporated under reduced pressure. The purification was performed by flash column chromatography on silica gel. The desired product 3aa was obtained in 92% isolated yield (731.1 mg).
Intermolecular competition reaction

A mixture of pyridotriazoles (1a) (0.4 mmol, 4.0 equiv), Rh$_2$(Oct)$_4$ (0.002 mmol, 2.0 mol %) were weighted in a Schlenk tube equipped with a stir bar. Thioesters (2a) (0.1 mmol, 1.0 equiv), 2z (0.1 mmol, 1.0 equiv) and dry Toluene (2.0 mL) were added and the mixture was stirred at 60 °C for 2 h using heating modular of parallel reactor under Ar atmosphere. Afterwards, the reaction was cooled to room temperature and transferred to a 100 mL round-bottomed flask using CH$_2$Cl$_2$. Solvent was evaporated under reduced pressure. Only the corresponding products 3aa and 3az were observed from the 1H NMR of crude reaction mixture, and cross-over products 3ae and 3ay were not detected. The yield of 3aa (98%) and 3az (73%) were determined by integration of 1H NMR using 1,1,2,2-tetrachloroethane as an internal standard.
Oxidation reaction of 3aa

3aa (0.2 mmol, 1.0 equiv) was weighted in a round bottom flask equipped with a stir bar and dry dichloromethane (1.0 mL) was added. Then mCPBA (1.2 mmol, 6.0 equiv) solution in dichloromethane (1.5 mL) was added dropwise at 0 °C. The mixture was stirred at room temperature overnight. Afterwards, sodium hydroxide solution was added to neutralize the system and extracted by CH₂Cl₂. Drying by Anhydrous magnesium sulfate. Silica was added to the flask and volatiles were evaporated under reduced pressure. The purification was performed by flash column chromatography on silica gel.

The title compound was isolated by column chromatography (eluent: EtOAc/ petroleum ether = 1/50 to EtOAc/ petroleum ether = 1/20) as a white solid in 83% yield (71.3 mg); M.p.: 221-223 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.89 (d, J = 7.7 Hz, 2H), 7.68-7.64 (m, 1H), 7.58-7.57 (m, 4H), 7.48-7.35 (m, 5H), 7.28-7.24 (m, 2H), 2.04 (s, 3H); ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 198.8, 154.1, 140.8, 138.6, 137.7, 133.4, 131.3, 131.0, 130.5, 129.5, 128.6, 128.3, 127.7, 125.9, 91.1, 29.6; HRMS (ESI): [M+H]^+ Calcd for C₂₀H₁₁BrNO₅S⁺ 430.0107, Found: 430.0104.
Asymmetric synthesis

\[\text{Rh}_2(\text{S-DOSP})_4: \text{dirhodium(II) tetrakis[(S)-N- \{ \text{ o-dodecylphenylsulfonyl} \} \text{proline}]} \]

A mixture of pyridotriazole 1a (0.4 mmol, 2.0 equiv), Rh$_2$(S-DOSP)$_4$ (0.002 mmol, 1.0 mol %) were weighted in a Schlenk tube equipped with a stir bar. Thioester 2a (0.2 mmol, 1.0 equiv) and dry Toluene (2 mL) was added and the mixture was stirred at 60 °C for 2 h using heating modular of parallel reactor under Ar atmosphere. Afterwards, the reaction was cooled to room temperature and transferred to a 100 mL round-bottomed flask using CH$_2$Cl$_2$. Silica was added to the flask and volatiles were evaporated under reduced pressure. The purification was performed by flash column chromatography on silica gel. The desired product 3aa was obtained in 91% isolated yield (72.5 mg).

The enantiomeric excess of 3aa was determined by HPLC with a Chiralpak OD-H column, n-hexane/2-propanol= 90:10, flow rate= 1 mL/min, 254 nm UV detector.
PeakTable

Detector A Ch1 254nm

<table>
<thead>
<tr>
<th>Peak#</th>
<th>Ret. Time</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.404</td>
<td>716602</td>
<td>76101</td>
<td>45.396</td>
<td>54.128</td>
</tr>
<tr>
<td>2</td>
<td>7.716</td>
<td>861955</td>
<td>64403</td>
<td>54.604</td>
<td>45.872</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1578557</td>
<td>140595</td>
<td>100.000</td>
<td>100.000</td>
</tr>
</tbody>
</table>

Detector A Ch1 254nm

<table>
<thead>
<tr>
<th>Peak#</th>
<th>Ret. Time</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.424</td>
<td>38007036</td>
<td>2427823</td>
<td>89.762</td>
<td>88.734</td>
</tr>
<tr>
<td>2</td>
<td>7.739</td>
<td>4334929</td>
<td>308254</td>
<td>10.238</td>
<td>11.266</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>42341965</td>
<td>2736078</td>
<td>100.000</td>
<td>100.000</td>
</tr>
</tbody>
</table>
Spectral Copies of ^1H, ^{13}C, and ^{19}F NMR of Compounds Obtained in this Study
1-(6-bromopyridin-2-yl)-1-phenyl-1-(phenylthio)propan-2-one (3aa)
1-(6-bromopyridin-2-yl)-1-phenyl-1-(phenylthio)pentan-2-one (3ab)

Br

S

N

1H NMR, CDCl$_3$, 400 MHz

13C(1H) NMR, CDCl$_3$, 100 MHz

S33
1-(6-bromopyridin-2-yl)-1,3-diphenyl-1-(phenylthio)propan-2-one (3ac)

^{1}H NMR, CDCl₃, 400 MHz

^{13}C{^{1}H} NMR, CDCl₃, 100 MHz
(E)-1-(6-bromopyridin-2-yl)-1,4-diphenyl-1-(phenylthio)but-3-en-2-one

(3ad)
2-(6-bromopyridin-2-yl)-1,2-diphenyl-2-(phenylthio)ethan-1-one (3ae)

1H NMR, CDCl$_3$, 400 MHz

13C1H NMR, CDCl$_3$, 100 MHz
1-(6-bromopyridin-2-yl)-1-phenyl-1-(o-tolylthio)propan-2-one (3af)

$^{1} \text{H NMR, CDCl}_3$, 400 MHz

$^{13}\text{C}({}^1\text{H}) \text{NMR, CDCl}_3$, 100 MHz
1-(6-bromopyridin-2-yl)-1-phenyl-1-(m-tolylthio)propan-2-one (3ag)

13C(1H) NMR, CDCl$_3$, 100 MHz
1-(6-bromopyridin-2-yl)-1-phenyl-1-(m-tolylthio)propan-2-one (3ah)
1-(6-bromopyridin-2-yl)-1-phenyl-1-(p-tolylthio)propan-2-one (3ai)

\[\text{Structure Image} \]

\[^1H \text{NMR, CDCl}_3, 400 \text{MHz} \]

<table>
<thead>
<tr>
<th>ppm (t1)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.60</td>
<td></td>
</tr>
<tr>
<td>7.58</td>
<td></td>
</tr>
<tr>
<td>7.40</td>
<td></td>
</tr>
<tr>
<td>7.29</td>
<td></td>
</tr>
<tr>
<td>7.26</td>
<td></td>
</tr>
<tr>
<td>7.11</td>
<td></td>
</tr>
<tr>
<td>7.10</td>
<td></td>
</tr>
<tr>
<td>7.09</td>
<td></td>
</tr>
<tr>
<td>7.08</td>
<td></td>
</tr>
<tr>
<td>6.95</td>
<td></td>
</tr>
<tr>
<td>6.88</td>
<td></td>
</tr>
</tbody>
</table>

\[^13C \text{(H) NMR, CDCl}_3, 100 \text{MHz} \]

<table>
<thead>
<tr>
<th>ppm (t1)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.57</td>
<td></td>
</tr>
<tr>
<td>160.40</td>
<td></td>
</tr>
<tr>
<td>140.59</td>
<td></td>
</tr>
<tr>
<td>139.16</td>
<td></td>
</tr>
<tr>
<td>137.98</td>
<td></td>
</tr>
<tr>
<td>137.86</td>
<td></td>
</tr>
<tr>
<td>137.84</td>
<td></td>
</tr>
<tr>
<td>129.57</td>
<td></td>
</tr>
<tr>
<td>129.21</td>
<td></td>
</tr>
<tr>
<td>128.32</td>
<td></td>
</tr>
<tr>
<td>127.89</td>
<td></td>
</tr>
<tr>
<td>127.70</td>
<td></td>
</tr>
<tr>
<td>126.42</td>
<td></td>
</tr>
<tr>
<td>123.10</td>
<td></td>
</tr>
<tr>
<td>77.32</td>
<td></td>
</tr>
<tr>
<td>77.06</td>
<td></td>
</tr>
<tr>
<td>77.00</td>
<td></td>
</tr>
<tr>
<td>76.68</td>
<td></td>
</tr>
<tr>
<td>76.50</td>
<td></td>
</tr>
<tr>
<td>77.00</td>
<td></td>
</tr>
<tr>
<td>76.50</td>
<td></td>
</tr>
</tbody>
</table>

S40
1-(6-bromopyridin-2-yl)-1-((4-methoxyphenyl)thio)-1-phenylpropan-2-one

(3aj)

1H NMR, CDCl$_3$, 400 MHz

13C(1H) NMR, DMSO-d$_6$, 100 MHz
1-(6-bromopyridin-2-yl)-1-((4-fluorophenyl)thio)-1-phenylpropan-2-one (3ak)
19F NMR, CDCl$_3$, 376 MHz
1-(6-bromopyridin-2-yl)-1-((4-chlorophenyl)thio)-1-phenylpropan-2-one (3al)

1H NMR, CDCl₃, 400 MHz

13C{1H} NMR, CDCl₃, 100 MHz
1-(((4-bromophenyl)thio)-1-(6-bromopyridin-2-yl)-1-phenylpropan-2-one (3am)
1-(6-bromopyridin-2-yl)-1-((4-iodophenyl)thio)-1-phenylpropan-2-one (3an)

1H NMR, CDCl$_3$, 400 MHz

13C(1H) NMR, CDCl$_3$, 100 MHz
4-((1-(6-bromopyridin-2-yl)-2-oxo-1-phenylpropylthio)benzonitrile (3ao)
1-(6-bromopyridin-2-yl)-1-((4-nitrophenyl)thio)-1-phenylpropan-2-one (3ap)
1-(6-bromopyridin-2-yl)-1-(naphthalen-2-ylthio)-1-phenylpropan-2-one (3ar)
1-(6-bromopyridin-2-yl)-1-phenyl-1-(thiophen-2-ylthio)propan-2-one (3as)
1-(6-bromopyridin-2-yl)-1-((4-chlorobenzyl)thio)-1-phenylpropan-2-one (3at)

1H NMR, CDCl$_3$, 400 MHz

13C(1H) NMR, CDCl$_3$, 100 MHz
methyl 2-((1-(6-bromopyridin-2-yl)-2-oxo-1-phenylpropyl)thio)acetate (3au)
1-(6-bromopyridin-2-yl)-1-((furan-2-ylmethyl)thio)-1-phenylpropan-2-one

(3av)
2-(6-bromopyridin-2-yl)-2-(methylthio)-1,2-diphenylethan-1-one (3aw)
1-((1-(6-bromopyridin-2-yl)-2-oxo-1,2-diphenylethyl)thio)pentan-3-one (3ax)

1H NMR, CDCl₃, 400 MHz

13C[¹H] NMR, CDCl₃, 100 MHz
1-(6-bromopyridin-2-yl)-1-phenyl-1-(prop-2-yn-1-ylthio)propan-2-one (3ay)

1H NMR, CDCl₃, 400 MHz

13C{¹H} NMR, CDCl₃, 100 MHz
2-(6-bromopyridin-2-yl)-1,2-diphenyl-2-(prop-2-yn-1-ylthio)ethan-1-one (3az)

^{1}H NMR, CDCl$_3$, 400 MHz

$^{13}C(1H)$ NMR, CDCl$_3$, 100 MHz
2-(allylthio)-2-(6-bromopyridin-2-yl)-1,2-diphenylethan-1-one (3za)

^1H NMR, CDCl₃, 400 MHz

^13C(^1H) NMR, CDCl₃, 100 MHz
2-(allylthio)-2-(6-bromopyridin-2-yl)-1,2-diphenylethan-1-one (3zb)

1H NMR, CDCl$_3$, 400 MHz

13C(1H) NMR, CDCl$_3$, 100 MHz
3-(6-bromopyridin-2-yl)-3-phenylisothiochroman-4-one (3zc)

1H NMR, CDCl$_3$, 400 MHz

13C(1H) NMR, CDCl$_3$, 100 MHz
1-((4-bromophenyl)thio)-1-(6-bromopyridin-2-yl)-1-phenylnonadecan-2-one (3zd)
(5S,8R,9S,10S,13R,14S,17R)-17-(6-((4-bromophenyl)thio)-6-(6-bromopyridin-2-yl)-5-oxo-6-phenylhexan-2-yl)-10,13-dimethyldodecacyclo[3H-cyclopenta[a]phenanthrene-3,7,12(2H,4H)-trione (3ze)

1^H NMR, CDCl3, 400 MHz

13C\(^{1}\)NMR, CDCl3, 100 MHz
1-((4-bromophenyl)thio)-1-(6-bromopyridin-2-yl)-4-(4,5-diphenyloxazol-2-yl)-1-phenylbutan-2-one (3zf)

\[\text{1H NMR, CDCl}_3, 400 \text{ MHz} \]

\[\text{13C}^{1} \text{H} \text{NMR, CDCl}_3, 100 \text{ MHz} \]
1-(6-bromopyridin-2-yl)-1-phenyl-1-(phenylselanyl)propan-2-one (3zg)

1H NMR, CDCl$_3$, 400 MHz

13C(1H) NMR, CDCl$_3$, 100 MHz
1-(6-bromopyridin-2-yl)-1-phenyl-1-(m-tolylthio)propan-2-one (3ba)

1H NMR, CDCl₃, 400 MHz

13C{¹H} NMR, CDCl₃, 100 MHz

S66
1-(6-bromopyridin-2-yl)-1-phenyl-1-(p-tolylthio)propan-2-one (3ca)
1-(6-bromopyridin-2-yl)-1-((4-methoxyphenyl)thio)-1-phenylpropan-2-one (3da)

13C(1H) NMR, CDCl$_3$, 100 MHz

1H NMR, CDCl$_3$, 400 MHz
1-(6-bromopyridin-2-yl)-1-phenyl-1-((4-(trifluoromethoxy)phenyl)thio)propan-2-one (3ea)
19F NMR, CDCl$_3$, 376 MHz
1-(6-bromopyridin-2-yl)-1-phenyl-1-((4-(trifluoromethyl)phenyl)thio)propan-2-one (3fa)
$^{19}\text{F NMR, CDCl}_3, 376 \text{ MHz}$
1-(6-bromopyridin-2-yl)-1-((4-fluorophenyl)thio)-1-phenylpropan-2-one (3ga)
19F NMR, CDCl$_3$, 376 MHz
1-(6-bromopyridin-2-yl)-1-((4-chlorophenyl)thio)-1-phenylpropan-2-one (3ha)

1H NMR, CDCl$_3$, 400 MHz

13C(1H) NMR, CDCl$_3$, 100 MHz
(1R,2R,5S)-2-isopropyl-5-methylcyclohexyl-4-(1-(6-bromopyridin-2-yl)-2-oxo-1-(phenylthio)propyl)benzoate (3ia)
1-(benzofuran-7-yl)-1-(6-bromopyridin-2-yl)-1-(phenylthio)propan-2-one (3ja)
1-(6-bromopyridin-2-yl)-1-((4-chlorophenyl)thio)-1-(thiophen-2-yl)propan-2-one (3ka)

1H NMR, CDCl3, 400 MHz

13C{1H} NMR, CDCl3, 100 MHz
1-(6-chloropyridin-2-yl)-1-phenyl-1-(phenylthio)propan-2-one (3la)

$\text{H NMR, CDCl}_3, 400 \text{ MHz}$

$\text{H NMR, CDCl}_3, 100 \text{ MHz}$
1-(6-iodopyridin-2-yl)-1-phenyl-1-(phenylthio)propan-2-one (3ma)

1H NMR, CDCl$_3$, 400 MHz

13C1H NMR, CDCl$_3$, 100 MHz
methyl 6-(2-oxo-1-phenyl-1-(phenylthio)propyl)picolinate (3na)

$\text{^1H NMR, CDCl}_3, 400 \text{ MHz}$

$\text{^{13}C(\text{^1H}) NMR, CDCl}_3, 100 \text{ MHz}$
1-(6-bromopyridin-2-yl)-1-phenyl-1-(phenylsulfonyl)propan-2-one (4)

$\text{^1H NMR, CDCl}_3, 400 \text{ MHz}$

$\text{^13C[\text{1H}] NMR, CDCl}_3, 100 \text{ MHz}$
References

