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1. Experimental section
Materials and chemicals: Palladium acetate (Pd(OAc),, 98%), Tungsten carbonyl
(W(CO)g, 97%), Chloroauric acid tetrahydrate (HAuCl,-4H,O, A.R. grade, 99%), and
Chloroplatinic acid hexahydrate (H,PtCls-6H,0, 99%) came from Shanghai Macklin
Co. Ltd. N, N-Dimethylformamide (DMF, >99.5%), Acetic acid (AA, 99%). Methanol
(CH3;0H, AR grade, 99.9%), and ethanol (CH3;CH,OH, AR grade, 99.7%) were from
Sinopharm Chemical Reagent Co. Ltd., Water (H,O, 18 MQ/cm) used in tests was
prepared through flowing through an ultra-pure purification system.
Preparation of PdPtAu@Pd core@shell Catalysts: In a preparation of PdPtAu@Pd
catalysts, 10 mg of Pd(OAc),, 1.6 mg of HAuCl,-4H,0, 2.0 mg H,PtCls-6H,0, 30 mg
of W(CO)s, 2 mL acetic acid were added in a vial containing 8 mL DMF in sequence.
The precursor compound was mixed and dissolved fully under ultrasonication.
Afterwards, the vial was removed to an oil bath and heated up to 140 °C for 60 min.
After cooling down to room temperature, the final products were denoted as
PdPtAu@Pd catalysts, and collected by centrifugating and washing with the ethanol

solution for several times.



Characterizations: The structure characterizations of the obtained products were firstly
conducted by transmission electron microscope (TEM, accelerating voltage: 120 kV,
HT-7700) and high resolution TEM (HRTEM, operation voltage: 200 kV, F20). The
phase structure was investigated by X-ray diffraction (XRD) spectra recorded on a
X’Pert-Pro MPD diffractometer (Netherlands PANalytical) operating at 40 kV with Cu
Ka radiation. The elemental composition and chemical states of the sample were
analyzed by scanning electron microscope energy-dispersive X-ray spectroscopy
(SEM-EDS, working voltage: 15 kV) and X-ray photoelectron spectroscopy (XPS) that
conducted on a VG Scientific ESCALab 220 XL electron spectrometer with 300 W Al
Ka radiation, respectively.

Electrochemical measurements: The electrochemical tests were performed on an
Electrochemical Work Station (CHI660E Shanghai Chenhua Instrument Corporation,
China) with a three-electrode electrochemical cell including the working electrode
(glassy carbon electrode, GCE, diameter: 3 mm), the counter electrode (platinum wire),
and the reference electrode (KCL saturated calomel electrode, SCE). The calibration
technique was also adopted to ensure the stability of reference electrode.[®] The
obtained catalysts were dispersed in a mixture containing isopropanol and Nafion (5%)
to form a 0.40 mgmeta/mL dispersion. Subsequently, 5 pL catalytic ink was deposited
on a GCE and dried naturally to fabricate the catalyst-coated working electrode. MOR
measurements were conducted in 0.5 M KOH + 1 M methanol solution. In addition, a
150 W power xenon lamp with UV cut—off filter (> 400 nm) was applied to supply

visible light.



2. Supporting figures and tables

Figure. S1 Additional TEM images of PAPtAu@Pd core@shell nanocatalysts.
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Figure. S2 XPS spectra of (a) Pd 3d, and (b) Pt 4f, and (c) Au 4f in PdPtAu@Pd

core@shell nanocatalysts.
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Figure. S3 (a and b) TEM images of the products with the same reaction conditions as

that of PAPtAu@Pd without the addition of W(CO);.
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Figure. S4 (a and b) TEM images of the products with the same reaction conditions as

that of PAPtAu@Pd without the addition of AA.
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Figure. S5 CV (1%, 100%™, 200®, 300™, 400™ and 500™) curves of (a) PdAPtAu@Pd with
light, (b) PdPtAu@Pd without light, (¢) Pt/C, and (d) Pd/C catalysts recorded in 0.5 M

KOH + 1 M methanol solution.
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Figure. S6 Retained mass activities of the tested catalysts after consecutive CV tests

for MOR.
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Figure. S7 TEM images of PdPtAu@Pd core@shell catalysts after 500 CV cycles.



Table S1. MOR performances of PdPtAu@Pd core@shell catalysts and various

electrocatalysts from published works.

Peak currents
Catalysts from CV curves Electrolyte Reference
Jm (A mg)
05 M KOH + 1 M
PdPtAu@Pd 2.266 This work
methanol
PdsSn 0.1 M KOH + 0.5M | Nano  Lett. 2019, 19,
1.04
WNWs methanol 6894—-6903
Pd-PdO 0.1 M KOH + 0.3 M | Adv. Funct. Mater. 2020, 30,
1.11
PNTs methanol 2000534.
]1 M KOH + 1 M
Pd;,Cu4Coy4 1.062 Energy Chem. 2019, 29, 72.
methanol
1 M KOH + 1 M| ACS Appl. Mater. Interfaces
PdCo 1.08
methanol 2018, 10, 29965
0.5 M NaOH + 0.5 M | J. Power Sources 2018, 398,
PdAg@Pd 0.69
methanol 201.
1 M KOH + 1 M| Electrochim. Acta. 2017, 227,
PdAuCu 1.046
methanol 330
1 M KOH + 1 M
Pd,Cu, 0916 J. Mater. Sci. 2018, 53, 15871.
methanol
0.5 M NaOH + 1 M | Angew. Chem., Int. Ed. 2019,
PdO.SzAg 0.72

methanol

58, 8794




3. MOR pathway mechanism

The MOR pathway could be explained by the following equations. Generally, the
methanol electrooxidation is a slow kinetic process with 6e- transfer, including the
absorption, dehydrogenation, and oxidation process, which could be illustrated in the
following equations [1-3].

6¢” pathway mechanism:

1) absorption process:
CH;0H — CH;0H 45 (1)
i) dehydrogenation process:
dehydrogenation in one-step: CH3;0H,4 — CO* + 4H" + 4e- (2)
dehydrogenation step by step: CH;0H,4s = CH,OH* + H" + ¢ 3)
CH,OH* — CHOH* + H" + ¢ 4
CHOH* — COH* + H* + ¢ (5)
COH* — CO*+H"+ ¢ (6)
1) oxidation process: H,O — OH*+H" + ¢ (7)
CO*+OH* — CO, +H" + ¢ (8)

As illustrated in the elementary reactions, the methanol molecule firstly absorbed
on the surfaces of catalysts to form the CH3;OH,q4s species (equation (1)), and then
dehydrogenated and decomposed to form carbon intermediate species CO*, the CO
species could be gradually dehydrogenated by CH,OH*, CHOH*, COH* (equation (2-
6)). In alkaline media, the MOR mechanism went through two possible pathways.
However, the CO* could combine with OH- to form the OH* in alkaline conditions,
thus to form the ultima CO, products.
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