Supporting information for:

Competitive Gold/Nickel Transmetalation

Mitchell J. Demchuk,^{a,†} Joseph A. Zurakowski,^{a,†} Brady J. H. Austen,^a David J. Nelson,^{b,*} and

Marcus W. Drover^{a,*}

^aDepartment of Chemistry and Biochemistry, The University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada *E-mail: <u>marcus.drover@uwindsor.ca</u>

^bWestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, Scotland, <u>david.nelson@strath.ac.uk</u> ⁺ These authors contributed equally.

1. Experimental Section	S2
2. Preparation of Compounds	S 3
3. Multinuclear NMR data	S8
4. Crystallography	S35
5. Computational Chemistry	S38

Experimental Section:

General Considerations. All experiments were carried out employing standard Schlenk techniques under an atmosphere of dry nitrogen employing degassed, dried solvents in a solvent purification system supplied by PPT, LLC. Non-halogenated solvents were tested with a standard purple solution of sodium benzophenone ketyl in tetrahydrofuran in order to confirm effective moisture removal. *d*₆-benzene was dried over molecular sieves and degassed by three freeze-pump-thaw cycles. HBCy₂¹, $[Ni(P_2B^{Cy}_4)_2]$, $^2[Ni(P_2B^{Cy}_4)_2]$, 2

Physical methods. ¹H NMR spectra are reported in parts per million (ppm) and are referenced to residual solvent e.g., ¹H(C₆D₆): δ 7.16; ¹³C(C₆D₆): 128.06; coupling constants are reported in Hz. ¹³C, ¹¹B, and ³¹P NMR spectra were performed as proton-decoupled experiments and are reported in ppm.

¹ A. Abiko, Org. Synth. **2002**, 79, 103.

² M. W. Drover, M. C. Dufour, L. A. Lesperance-Nantau, R. P. Noriega, K. Levin and R. W. Schurko, *Chem. –Eur. J.* **2020**, *26*, 11180;

³ J. A. Zurakowski, B. J. H. Austen, M. C. Dufour, Austen, B. J. H., M. Bhattacharyya, D. M. Spasyuk, and M. W. Drover, *Chem. –Eur. J.* **2021**, ASAP. DOI: 10.1002/chem.202103121.

⁴ C. Croix, A. Longeau-Balland, H. Allouchi, M. Giorgi, M., A. Duchêne, and J. Thibonnet, J. Organomet. Chem. 2005, 690, 4835.

Preparation of Compounds:

Representative procedure for transmetalation: In the glovebox, $[Ni(P_2B^{Cy_4})(4-C_6H_4F)(I)]^3$ (5 mg, 1 equiv.) and $[(R-C_6H_4) - Au(PPh_3)]$ (R = H, CH₃O, F, CF₃) were combined and dissolved in *ca.* 500 µL C₆D₆; 1 equiv. of C₆H₅CF₃ and Ph₃P=O was added as an internal standard. The mixture was transferred to a J. Young NMR tube, removed from the glovebox, and immediately analyzed by NMR spectroscopy. Alternative preparations of $[Ni^{II}(P_2B^{Cy_4})(4-CH_3OC_6H_4)(I)]$ and $[Ni^{II}(P_2B^{Cy_4})(4-CF_3C_6H_4)(I)]$ are provided below.

[Ni^{II}(P₂B^{Cy}₄)(4-CH₃OC₆H₄)(I)] (2-OCH₃; C₆₉H₁₂₃B₄IOP₂Ni,

 M_W = 1259 g/mol): In the glovebox, [Ni⁰(P₂B^{Cy₄})₂] (1) (35 mg, 0.018 mmol) and 4-iodoanisole (4 mg, 0.018 mmol, ≈ 1 equiv.) were added to a 20 mL scintillation vial equipped with a stir bar and 4 mL of toluene. This mixture was stirred for 6 h and toluene removed *in-vauco*, providing crude complex **2-OCH**₃, which was recrystallized from hexanes (1 mL) at -35 °C to provide

orange crystals (7 mg, 33%). ¹H{³¹P} NMR (500 MHz, C₆D₆, 298 K): δ = 7.71 (app. t, ³*J*_{H,H} = 8.4 Hz, 2H, Ni-Ar_{ortho}), 7.01 (t, 2H, ³*J*_{HH} = 8.4 Hz; Ni-Ar_{meta}), 3.43 (s, OC<u>H</u>₃) 2.26 (m, 4H), 2.00 – 1.15 (multiple overlapping C(*sp*³)–H resonances). ¹³C{¹H} NMR (125.8 MHz, C₆D₆, 298 K): δ = 157.2, 137.8, 113.8 (d, *J*_{P,C} = 6 Hz), 54.6, 36.2, 30.5 (d, *J*_{P,C} = 22 Hz), 29.2 (d, *J*_{P,C} = 28 Hz), 28.0, 27.9, 27.6, 27.5, 27.4, 26.8 (m), 22.9 (m), 20.6, 20.0, (some alkyl signals are overlapping, one aryl signal not observed). ³¹P{¹H} NMR (202.5 MHz, C₆D₆, 298 K): δ = + 61.0 (d, ²*J*_{P,P} = 25 Hz), 52.0 (d, ²*J*_{P,P} = 25 Hz). ¹¹B{¹H} NMR (160.5 MHz, C₆D₆, 298 K): δ = + 83.8 (Δ_{1/2} = 2900 Hz; BCy₂R).

[Ni^{II}(P₂B^{Cy₄})(4-CF₃C₆H₄)(I)] (2-CF₃; C₆₉H₁₂₀B₄IF₃P₂Ni, M_W = 1297 g/mol): In the glovebox, [Ni⁰(P₂B^{Cy₄})₂] (1) (35 mg, 0.018 mmol) and 4-iodobenzotrifluoride (\approx 5 mg, 0.018 mmol, \approx 1 equiv.) were added to a 20 mL scintillation vial equipped with a stir bar and 4 mL of toluene. This mixture was stirred for 6 h and toluene removed *in-vauco*, providing crude complex **2-CF**₃, which was recrystallized from hexanes (1

mL) at -35 °C to provide orange crystals, contaminated with "free" P₂B^{Cy}₄. Unlike previous *p*-X (X = H, F, OCH₃) oxidative addition adducts, the *p*-CF₃ variant could not be separated from free ligand due to similar solubility. The conversion of **1** by ³¹P NMR spectroscopy was found to be > 95%. ¹H NMR (500 MHz, C₆D₆, 298 K): δ = 7.93 (app. t, ³*J*_{H,H} = 7.9 Hz, 2H, Ni-Ar_{ortho}), 7.48 (d, 2H, ³*J*_{HH} = 7.8 Hz; Ni-Ar_{meta}), 2.22 (m, 4H), 2.00 – 1.15 (multiple overlapping C(*sp*³)–H resonances). ³¹P{¹H} NMR (202.5 MHz, C₆D₆, 298 K): δ = + 62.3 (d, ²*J*_{P,P} = 25 Hz), 53.5 (d, ²*J*_{P,P} = 25 Hz). ¹⁹F{¹H} NMR (470.8 MHz, C₆D₆, 298 K): δ = - 64.3 (s). ¹¹B{¹H} NMR (160.5 MHz, C₆D₆, 298 K): δ = + 83.9 (Δ _{1/2} = 2900 Hz; BCy₂R).

[Ni^o(P₂B^{Cy₄})(PPh₃)₂] (3; C₉₈H₁₄₆B₄P₄Ni, M_W = 1550 g/mol): In the glovebox, [Ni^o(P₂B^{Cy₄})₂] (**1**) (35 mg, 0.018 mmol) and PPh₃ (9 mg, 0.036 mmol, 2 equivs.) were added to a 20 mL scintillation vial equipped with a stir bar and 4 mL of toluene. This mixture was stirred for 2 h and toluene removed *in-vauco*, providing crude complex **3** and free P₂B^{Cy₄} ligand in >99% conversion by ³¹P NMR spectroscopy. Efforts to separate **3** from "free" P₂B^{Cy₄} were unsuccessful. ¹H NMR (500 MHz, C₆D₆, 298 K): δ = 7.54-7.49 (m, 12H), 7.11-7.06 (m,

18H), 2.00 – 1.08 (multiple overlapping C(*sp*³)–H resonances). *Free PPh₃ also present at δ = 7.41-7.37 (m, 6H), 7.03-7.05 (m, 9H). ³¹P{¹H} NMR (202.5 MHz, C₆D₆, 298 K): δ = + 34.8 (t, ²*J*_{P,P} = 27 Hz; PPh₃), 19.7 (t, ²*J*_{P,P} = 27 Hz; P₂B^{Cy}₄). ¹¹B{¹H} NMR (160.5 MHz, C₆D₆, 298 K): δ = + 84.3 (Δ _{1/2} = 1800 Hz; BCy₂R). Compound **3** was not isolated and thus an elemental analysis was not performed.

[Ni^{II}(*dnppe*)(4-FC₆H₄)(I)] (4-F; C₂₀H₃₆FIP₂Ni, M_W = 543 g/mol): In the glovebox, [Ni⁰(COD)₂] (30 mg, 0.11 mmol) was added in one portion to a 20 mL scintillation vial equipped with a stir bar containing *dn*ppe (28 mg, 0.11 mmol, 1 equiv.) and 4fluoroiodobenzene (48 mg, 0.22 mmol, 2 equiv.) in 4 mL of

toluene. This mixture was stirred for 6 h and toluene was removed *in-vauco*, providing crude complex **4**-F, which was recrystallized from toluene (1 mL) layered with hexanes (1 mL) at -35 °C to provide orange crystals (23 mg, 40%). ¹H{³¹P} NMR (500 MHz, C₆D₆, **298 K)**: δ = 7.49 (app. t, ³*J*_{H,H} = 7.1 Hz, 2H, Ni-Ar_{ortho}), 6.99 (t, 2H, ³*J*_{HH} = 8.7 Hz; Ni-Ar_{meta}), 2.02 (m, 2H), 1.79 (m, 2H), 1.54 (m, 4H), 1.37 (m, 2H), 1.23 (m, 2H), 1.17 (m, 2H), 1.04 (m, 2H), 0.97 (t, 6H, ³*J*_{HH} = 7.2 Hz), 0.91 (m, 2H), 0.83 (m, 2H), 0.73 (t, 6H, ³*J*_{HH} = 7.2 Hz).

¹³C{¹H} NMR (125.8 MHz, C₆D₆, 298 K): δ = 162.5 (m), 137.7, 113.8 (m), 28.9 (d, *J*_{P,C} = 23.5 Hz), 27.5 (d, *J*_{P,C} = 30 Hz), 26.0 (m), 22.3 (m), 18.8, 18.3, 16.4 (d, *J*_{P,C} = 13.6 Hz), 16.1 (d, *J*_{P,C} = 15.0 Hz); one Ar-C under C₆D₆. ³¹P{¹H} NMR (202.5 MHz, C₆D₆, 298 K): δ = + 62.3 (d, ²*J*_{P,P} = 24 Hz), 52.3 (d, ²*J*_{P,P} = 24 Hz). ¹⁹F{¹H} NMR (470.8 MHz, C₆D₆, 298 K): δ = -124.4 (s). Anal. Calcd. for C₂₀H₃₆FIP₂Ni (543): C, 44.24; H, 6.68. Found: C, 45.11; H, 6.57.

[Ni^{II}(*dn*ppe)(C₆H₅)(I)] (4-H; C₂₀H₃₇IP₂Ni, M_W = 524 g/mol): In the glovebox, [Ni⁰(COD)₂] (30 mg, 0.11 mmol) was added in one portion to a 20 mL scintillation vial equipped with a stir bar containing *dn*ppe (28 mg, 0.11 mmol, 1 equiv.) and iodobenzene (44 mg, 0.22 mmol, 2 equiv.) in 4 mL of toluene. This mixture was

stirred for 6 h and toluene was removed *in-vauco*, providing crude complex 4-H as an orange powder, which was recrystallized from toluene (1 mL) layered with hexanes (1 mL) at –35 °C to provide orange crystals (26 mg, 46%). ¹H{³¹P} NMR (500 MHz, C₆D₆, **298 K)**: δ = 7.49 (app. t, ³J_{H,H} = 7.1 Hz, 2H, Ni-Ph_{ortho}), 6.99 (t, 2H, ³J_{HH} = 8.7 Hz; Ni-Ph_{meta}), 2.02 (m, 2H), 1.79 (m, 2H), 1.54 (m, 4H), 1.37 (m, 2H), 1.23 (m, 2H), 1.17 (m, 2H), 1.04 (m, 2H), 0.97 (t, 6H, ³J_{HH} = 7.2 Hz), 0.91 (m, 2H), 0.83 (m, 2H), 0.73 (t, 6H, ³J_{HH} = 7.2 Hz). ¹³C{¹H} NMR (125.8 MHz, C₆D₆, 298 K): δ = 161.2 (m), 137.8, 126.7 (d, *J*_{P,C} = 6 Hz), 122.2, 28.9 (d, *J*_{P,C} = 23.5 Hz), 27.6 (d, *J*_{P,C} = 30 Hz), 26.1 (m), 22.3 (m), 18.8, 18.4, 16.4 (d, *J*_{P,C} = 13.5 Hz), 16.1 (d, *J*_{P,C} = 15.0 Hz). ³¹P{¹H} NMR (470.8 MHz, C₆D₆, 298 K): δ = -124.4 (s).

[Au(PPh₃)(4-Pyr)] (5; C₂₃H₁₉AuNP, M_w = 537.1 g/mol): Prepared used a modified literature procedure.⁵ Outside the glovebox, [Br—Au(PPh₃)] (100 mg, 0.19 mmol, 1 equiv.), Cs₂CO₃ (121 mg, 0.37 mmol, 2 equivs.), and 4-pyridylboronic acid (46 mg, 0.37 mmol, 2 equivs.) were combined in a 10 mL reaction vessel. Approximately 5 mL of isopropanol was added and the solution was heated at 50 °C for 4 days, giving a colorless solution with some white solid on the sides of

the vessel. Next, volatiles were removed *in-vacuo* and the resulting white solid was extracted into toluene; crystallization from hexane-layered toluene at –35 °C overnight gave white crystals of **5** (75 mg, 75%). **¹H NMR (500 MHz, C₆D₆, 298 K):** δ = 8.88 (d, 2H, ³*J*_{H,H} = 5.4 Hz), 7.75 (d, 2H, ³*J*_{H,H} = 5.4 Hz), 7.35 (m, 6H; PPh₃), 6.98 (m, 3H; PPh₃), 6.93 (m, 6H; PPh₃). ¹³C{¹H} NMR (125 MHz, C₆D₆, 298 K): δ = 149.2, 136.2, 134.5 (d, *J*_{C,P} = 13.8 Hz),

⁵ D. V. Partyka, M. Zeller, A. D. Hunter, and T. G. Gray, Inorg. Chem. 2012, 51, 8394.

131.2, 129.2 (d, $J_{C,P}$ = 10.5 Hz); (two aryl signals not observed). ³¹P{¹H} NMR (161.9 MHz, C₆D₆, 298 K): δ = 42.9 (br). Anal. Calcd. for C₂₃H₁₉AuNP (537.4): C, 51.41; H, 3.56; N, 2.61. Found: C, 51.96; H, 3.85; N, 2.47.

 $[Ni(P_2B^{Cy_4}[(4-NC_5H_4)-Au(PPh_3)])_2]$ (6: C308H384Au8B8N8NiP12, Mw = 6291.1 g/mol): In the glovebox, $[Ni(P_2B^{Cy_4})_2]$ (1) (10 mg, 0.005) mmol, 1 equiv.) and $[(4-NC_5H_4)-Au(PPh_3)]$ (5) (22 mg, 0.04 mmol, 8 equivs.) were combined in a 20 mL scintillation vial equipped with a stir bar. Approximately 500 µL of THF was added and the solution was transferred into a J. Young NMR tube. This compound was not isolated. ¹H NMR (500 MHz, THF-d₈, 298 K): $\delta = 8.18$ (br, 16H; (4-NC₅H₄)-Au), 7.59 (m, 48H; PPh₃), 7.47 (m, 88H; PPh₃ (72H) + (4-NC₅H₄)-Au (16H)), 1.7 - 0.5 (overlapping C(*sp*³)—H resonances, 232 H). ³¹P{¹H} NMR (203

MHz, THF-d₈, 298 K): δ = 41.1 ([Au]-P), 35.1 ([Ni]-P). ¹¹B{¹H} NMR (160.5 MHz, THF-d₈, 193 K): δ = -4.1. Compound 6 was not isolated and thus an elemental analysis was not performed.

Reaction of 5 with 4-iodofluorobenzene: In the glovebox, $[Ni(P_2B^{cy_4}){[(4-NC_5H_4)-Au(PPh_3)]_2]}$ (6) (generated *in-situ* from $[Ni(P_2B^{cy_4})_2]$ (10 mg, 0.005 mmol, 1 equiv.) and $[(4-NC_5H_4)-Au(PPh_3)]$ (5) (21.6 mg, 0.04 mmol, 8 equivs.)) and 4-iodofluorobenzene (1 equiv.) were combined and dissolved in *ca*. 500 µL THF-ds. The mixture was transferred to a J. Young NMR tube, removed from the glovebox, and immediately analyzed by NMR spectroscopy. Cross-coupled product was not observed by ¹⁹F NMR spectroscopy. Compound **6** was found to decompose overnight.

Catalytic Reactivity Study: In the glovebox, ~ 10 mg of $[Ni^0(P_2B^{Cy_4})_2]$ (1) (0.005 mmol), 4fluoroiodobenzene (10 equivs.), and trifluorotoluene (1 equiv.) and were dissolved in *ca*. 500 µL C₆D₆ and stirred for 1 h. $[(4-CH_3OC_6H_4)-Au(PPh_3)]$ (~10 equivs.) was added and the mixture was transferred to a J. Young NMR tube. The reaction mixture was analyzed by ¹⁹F NMR spectroscopy after 18 h at room temperature indicating the formation of 4-fluoro-4'-methoxy-1,1'-biphenyl in 86% conversion.

Multinuclear NMR data:

Figure S1. 2-OCH₃, ¹H NMR, C₆D₆, 500 MHz, 298 K

Figure S2. 2-OCH₃, ³¹P{¹H} NMR, C₆D₆, 203 MHz, 298 K

Figure S3. 2-OCH₃, ¹¹B NMR, C₆D₆, 160.5 MHz, 298 K

Figure S4. 2-OCH₃, ¹³C{¹H} NMR, C₆D₆, 125 MHz, 298 K

Figure S5. Mixture of 2-CF₃ and free $P_2B^{Cy_4}$, ¹H NMR, C₆D₆, 500 MHz, 298 K

Figure S6. Mixture of **2-CF**₃ and free $P_2B^{Cy_4}$, ${}^{31}P{}^{1}H$ NMR, C_6D_6 , 203 MHz, 298 K (**free $P_2B^{Cy_4} \delta_P = 14.0 \text{ ppm}$)

Figure S7. Mixture of 2-CF₃ and free $P_2B^{Cy_{4, 19}}F_{1H}$ NMR, C₆D₆, 471 MHz, 298 K

Figure S8. 2-F + [(C₆H₅) – Au(PPh₃)], ¹H NMR, C₆D₆, 500 MHz, 298 K

Figure S9. 2-F **+ [(C₆H₅)**—**Au(PPh₃)]**, ³¹P{¹H} NMR, C₆D₆, 203 MHz, 298 K (# signals at δ_P = 35.9 and 20.8 ppm due to [Ni⁰(P₂B^{Cy₄})(PPh₃)₂])

Figure S10. 2-F + [(C₆H₅) – Au(PPh₃)], ¹⁹F{¹H} NMR, C₆D₆, 471 MHz, 298 K

Figure S11. 2-F + [(4-MeOC₆H₄) – Au(PPh₃)], ¹H NMR, C₆D₆, 500 MHz, 298 K

Figure S12. 2-F + [(4-MeOC₆H₄) – Au(PPh₃)], ³¹P{¹H} NMR, C₆D₆, 203 MHz, 298 K

Figure S13. 2-F + [(4-MeOC₆H₄) – Au(PPh₃)], ¹⁹F{¹H} NMR, C₆D₆, 471 MHz, 298 K

Figure S14. 2-F + [(4-FC₆H₄) – Au(PPh₃)], ¹H NMR, C₆D₆, 500 MHz, 298 K

Figure S15. 2-F + **[(4-FC₆H₄)** – **Au(PPh₃)]**, ³¹P{¹H} NMR, C₆D₆, 203 MHz, 298 K (# signals at δ_P = 35.9 and 20.8 ppm due to [Ni⁰(P₂B^{Cy}₄)(PPh₃)₂])

Figure S16. 2-F + [(4-CF₃C₆H₄) – Au(PPh₃)], ³¹P{¹H} NMR, C₆D₆, 203 MHz, 298 K

Figure S17. 3, ¹H NMR, C₆D₆, 500 MHz, 298 K (P₂B^{Cy₄} and free PPh₃ impurities present)

Figure S18. 3, ${}^{31}P{}^{1}H{}$ NMR, C₆D₆, 203 MHz, 298 K ($\delta_{P} = -6.1$ (PPh₃), 14.4 (P₂B^{Cy}₄), 38.2 ([Ni(P₂B^{Cy}₄)₂]))

Figure S19. Stacked plot showing presence of 3 in cross-coupling reactions, $^{31}P\{^{1}H\}$ NMR, C₆D₆, 203 MHz, 298 K

Figure S20. Mixture of 3 and free P₂B^{Cy}₄, ¹¹B NMR, C₆D₆, 160.5 MHz, 298 K

Figure S21. 4-F, ¹H NMR, C₆D₆, 500 MHz, 298 K

Figure S22. 4-F, ³¹P{¹H} NMR, C₆D₆, 203 MHz, 298 K

Figure S23. 4-F, ¹⁹F{¹H} NMR, C₆D₆, 471 MHz, 298 K

Figure S24. 4-F, ¹³C{¹H} NMR, C₆D₆, 125 MHz, 298 K

Figure S25. 4-H, ¹H NMR, C₆D₆, 500 MHz, 298 K

Figure S26. 4-H, ³¹P{¹H} NMR, C₆D₆, 203 MHz, 298 K

Figure S27. 4-H, ¹³C{¹H} NMR, C₆D₆, 125 MHz, 298 K

Figure S28. 4-F + [(C₆H₅) – Au(PPh₃)], ¹H NMR, C₆D₆, 500 MHz, 298 K

Figure S29. 4-F + **[(C₆H₅)** – **Au(PPh₃)]**, ³¹P{¹H} NMR, C₆D₆, 203 MHz, 298 K (# signals at $\delta_P = 35.3$ and 20.6 ppm due to [Ni⁰(d*n*ppe)(PPh₃)₂])

Figure S30. 4-F + [(C₆H₅) – Au(PPh₃)], ¹⁹F{¹H} NMR, C₆D₆, 471 MHz, 298 K

Figure S31. 5, ¹H NMR, C₆D₆, 500 MHz, 298 K

Figure S32. 5, ¹H NMR (expansion), C₆D₆, 203 MHz, 298 K

Figure S33. 5, ³¹P{¹H} NMR, C₆D₆, 203 MHz, 298 K

Figure S34. 5, ¹³C{¹H} NMR, C₆D₆, 125 MHz, 298 K

Figure S36. ¹H NMR, THF-d₈, 500 MHz, 298 K of **a**) [(4–NC₅H₄)–Au(PPh₃)] and **b**) [Ni(P₂B^{Cy}₄)₂] + 8 equivs. [(4–NC₅H₄)–Au(PPh₃)]

Figure S37. ¹H NMR, THF-d₈, 500 MHz, 298 K of **a**) [(4–NC₅H₄)–Au(PPh₃)] and **b**) [Ni(P₂B^{Cy}₄)₂] + 8 equivs. [(4–NC₅H₄)–Au(PPh₃)]

Figure S38. 6, ³¹P{¹H} NMR, THF-d₈, 203 MHz, 298 K

Figure S39. ³¹P{¹H} NMR, THF-d₈, 203 MHz, 298 K of a) [Ni(P₂B^{Cy}₄)₂], b) [(4-NC₅H₄)-Au(PPh₃)], and c) [Ni(P₂B^{Cy}₄)₂] + 8 equivs. [(4-NC₅H₄)-Au(PPh₃)]

Figure S40. 6, ¹¹B{¹H} NMR, THF-d₈, 160.5 MHz, 298 K (no signal at 298 K)

Figure S41. 6, ¹H NMR, THF-d₈, 500 MHz

Figure S42. 6, ${}^{31}\mathrm{P}\{{}^{1}\mathrm{H}\}$ NMR, THF-d_8, 203 MHz

Figure S43. 6, VT $^{\rm 31}\rm{P}\{^{1}\rm{H}\}$ NMR (baseline enhanced), THF-d_8, 203 MHz

Figure S44. 5, VT $^{11}B\{^{1}H\}$ NMR, THF-d_8, 160.5 MHz

Figure S45. 2-F + [(4-NC₅H₄) – Au(PPh₃)], ¹H NMR, C₆D₆, 500 MHz, 298 K

Figure S46. 2-F **+ [(4-NC**₅H₄) – **Au(PPh**₃)], ³¹P{¹H} NMR, C₆D₆, 203 MHz, 298 K (# signals at δ_P = 35.9 and 20.8 ppm due to [Ni⁰(P₂B^{Cy}₄)(PPh₃)₂])

Figure S47. 2-F + [(4-NC₅H₄) – Au(PPh₃)], ¹⁹F{¹H} NMR, C₆D₆, 471 MHz, 298 K

Figure S48. 2-OCH₃ + **[(4-NC**₅H₄) – Au(PPh₃)], ³¹P{¹H} NMR, C₆D₆, 203 MHz, 298 K (# signals at δ_P = 35.9 and 20.8 ppm due to [Ni⁰(P₂B^{Cy₄})(PPh₃)₂])

Yield Tables:

Table S2. 2-F + [(C₆H₅) – Au(PPh₃)]

^adetermined by ³¹P NMR spectroscopy using Ph₃P=O as an internal standard ^bdetermined by ¹⁹F NMR spectroscopy using $C_6H_5CF_3$ as an internal standard ^cNQ = not quantified

$(P_2B^{Cy}_4)Ni$ products OCH₃ C₆D₆, r.t. OCH₃ OCH₃ Ph₃ (P₂B^{Cy}₄)Ni $(P_2 B^{Cy}_4)Ni$ $(P_2B^{Cy}_4)Ni$ PPh₃ OCH₃ **2-**F 2-0CH3 3 **OCH**₃ time 29%^b 5%^b 7 min 31%^a 16%^a 14%^a NQ 6%^b 35 min 19%^a 0%^a 21%^a 31%^b NQ 60 min 0%^a 0%^a 21%^a 37%^b 9%^b NQ

Table S3. 2-F + [(4-CH₃OC₅H₄) – Au(PPh₃)]

^adetermined by ³¹P NMR spectroscopy using Ph₃P=O as an internal standard

^bdetermined by ¹⁹F NMR spectroscopy using C₆H₅CF₃ as an internal standard

^cNQ = not quantified

Table S4. 2-F + [(4-F₃CC₅H₄) – Au(PPh₃)]

^adetermined by ³¹P NMR spectroscopy using Ph₃P=O as an internal standard ^bdetermined by ¹⁹F NMR spectroscopy using $C_6H_5CF_3$ as an internal standard ^cNQ = not quantified

Table S5. 4-F + $[(C_5H_5) - Au(PPh_3)]$

^adetermined by ³¹P NMR spectroscopy using Ph₃P=O as an internal standard ^bdetermined by ¹⁹F NMR spectroscopy using $C_6H_5CF_3$ as an internal standard ^cNQ = not quantified

Table S6. 2-F + [(4-NC₅H₄) – Au(PPh₃)]

^adetermined by ³¹P NMR spectroscopy using Ph₃P=O as an internal standard

^bdetermined by ¹⁹F NMR spectroscopy using C₆H₅CF₃ as an internal standard

^cNQ = not quantified

^dThese products engage with the boron-rich secondary coordination sphere

<u>A note regarding yields</u>: Yields were determined by NMR spectroscopy using the standards noted in Tables 2-6. An initial time point of 7 min was chosen for all reactions to ensure consistent measurements – this represented the time that the sample could be most quickly introduced into the NMR instrument from the laboratory. As time progressed, the concentration of all [(diphosphine)Ni^{II}(C₆H₅R)(I)] species decreased, giving [(diphosphine)Ni⁰(PPh₃)₂]; only F-containing biaryls were quantified. During this period, the solution turned from orange to green (e.g., Figure S49). In all reactions, [Ni]_{tot} and [F]_{tot} are less than 100%, suggesting the formation of paramagnetic species; efforts to observe such species using CW X-band EPR spectroscopy were not successful.

Figure S49. NMR tube containing $4-F + [(C_5H_5) - Au(PPh_3)]$ after 60 mins, showing characteristic green color.

Crystallographic details:

All crystals were mounted on a mitegen loop. All measurements were made using graphitemonochromated Cu K_{α} (λ = 1.54178 Å) radiation on a Bruker D8 Venture diffractometer. The structures were solved by direct methods⁵ and refined by full-matrix least-squares procedures on F2 (SHELXL-2013)⁶ using the OLEX2 interface.⁷ All hydrogen atoms were placed in calculated positions. Non-hydrogen atoms were refined anisotropically. The dataset obtained for **5** contains a disordered toluene molecule, which was masked from the structure using OLEX2. The dataset obtained for **4-H** suffered from poor diffraction and is shown to confirm net connectivity only (**Figure S50**).

CCDC **2102983-2102984** contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

⁶ G.M. Sheldrick, Acta Cryst. 2008, A64, 112.

⁷ O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard and H.J. Puschmmann, *Appl. Cryst.* 2009, 42, 339.

Compound	4 -F	5	
Empirical formula	$C_{20}H_{36}FINiP_2$	C23H19AuNP	
Formula weight	543.04	537.33	
Temperature/K	170(2)	170(2)	
Crystal system	Triclinic	Triclinic	
Space group	P-1	<i>P</i> -1	
a/Å	8.5374(3)	11.6301(3)	
b/Å	9.2036(4)	12.1425(3)	
c/Å	17.4252(7)	24.6036(7)	
α/°	95.226(2)	82.9700(10)	
β/°	93.002(2)	86.1880(10)	
γ/°	116.8530(10)	68.0260(10)	
V/Å ³	1209.70(8)	3197.05(15)	
Z	2	6	
$ ho_{calc}/g/cm^{-3}$	1.491	1.675	
μ/ mm ⁻¹	12.489	13.706	
F(000)	552.0	1548.0	
Crystal size/ mm ³	$0.12\times0.11\times0.11$	$0.12\times0.1\times0.08$	
Radiation	$CuK\alpha (\lambda = 1.54178)$	$CuK\alpha$ (λ = 1.54178)	
2θ range for data collection/°	5.12 to 106.928	7.242 to 106.85	
	$\textbf{-8} \leq \textbf{h} \leq \textbf{8}, \textbf{-9} \leq \textbf{k} \leq \textbf{9}, \textbf{-18} \leq \textbf{l} \leq$	-11 \leq h \leq 12, -12 \leq k \leq 12, -25 \leq	
Index ranges	17	1≤25	
Reflections Collected	30539	82892	
	2837 [$R_{int} = 0.0383$, $R_{sigma} =$	7490 [R_{int} = 0.0540, R_{sigma} =	
Independent reflections	0.0178]	0.0310]	
Data/restraints/parameters	2837/0/230 7490/612/703		
Goodness-of-fit on F ²	1.146	1.146 1.016	
R [I>=2θ (I)] (R1, wR2)	$R_1 = 0.0241, wR_2 = 0.0564$	$R_1 = 0.0338$, $wR_2 = 0.0678$	
R (all data) (R1, wR2)	$R_1 = 0.0255, wR_2 = 0.0569$	$R_1 = 0.0504$, $wR_2 = 0.0748$	
Largest diff. peak/hole / (e Å-³)	0.25/-0.56	1.29/-0.97	

 Table S7. Crystallographic data for 4-F and 5

 $R1 = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|; wR2 = [\Sigma(w(F_{o}^{2} - F_{c}^{2})^{2}) / \Sigma w(F_{o}^{2})^{2}]^{1/2}$

Table S8. Select crystallographic data for 4-H (non-publishable).

Compound	4-H
Empirical formula	C20H37INiP2
Formula weight	525.04
Temperature/K	170(2)
Crystal system	Triclinic
Space group	<i>P</i> -1
a/Å	8.4462(10)
b/Å	9.2584(12)
c/Å	19.194(2)
α/°	87.871(8)
β/°	87.105(8)
γ/°	63.286(7)
V/Å ³	1338.9(3)
Z	2

Figure S50. Crystal structure of **4-H**. Hydrogens omitted for clarity, ellipsoids shown at 20% probability. This structure suffers from a high R1-value and provides a heavy-atom connectivity map only.

Computational details:

- DFT calculations were carried out using Gaussian16 Rev. C.01.⁸
- DLPNO-CCSD(T) calculations were carried out using ORCA 5.0.0.9
- All energies are quoted in kcal mol⁻¹.
- The B3LYP functional¹⁰ was used throughout, in combination with Grimme's D3 dispersion corrections¹¹ for geometry optimizations. Single point calculations were carried out using the M06 functional without any additional empirical dispersion corrections.¹²
- No symmetry constraints were used.
- Solvation using the SMD model in benzene solvent was included for single point calculations only.
- For optimization, the 6-31G(d) basis set ¹³ was used for H, C, and P, the LANL2DZ(d,p) basis set¹⁴ was used for I, and the LANL2TZ(f) basis set¹⁵ was used for Ni and Au.
- For single point calculations, the 6-311+G(d,p) basis set¹⁶ was used for all atoms except I, for which the LANL2DZ(d,p) basis set was employed, and Au, for which the LANL2TZ(f) basis set was used.
- The nature of all stationary points was confirmed using frequency calculations, with all minima having no imaginary frequencies and all transition states having one.
- DLPNO-CCSD(T) calculations were carried out with the TIGHTSCF and TIGHTPNO options; the cc-pVTZ-PP basis set and SK-MCDHF-RSC ECP were used for I and Au, and the cc-pVTZ basis set was used for all other atoms.

⁸ Gaussian 16, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.

⁹ a) Riplinger, C.; Pinski P.; Becker, U.; Valeev, E. F.; Neese, F. J. Chem. Phys. 2016, 144, 024109; b) Riplinger, C.; Sandhoefer, B.; Hansen, A.; Neese, F. J. Chem. Phys. 2013, 139, 134101.

¹⁰ a) Becke, A. D. J. Chem. Phys. **1993**, 98, 5648; b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B.: Condens. Mater. **1988**, 37, 785; c) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. **1994**, 98, 11623.

¹¹ Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104.

¹² Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157.

 ¹³ a) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J.A., *J. Chem. Phys.* **1982**, 77, 3654; b)
 Hariharan, P. C.; Pople, J. A. *Theoret. Chim. Acta* **1973**, 28, 213; c)
 Hehre, W. J.; Ditchfield, R.; Pople, J. A *J. Chem. Phys.* **1972**, 56, 2257.
 ¹⁴ Wadt, W. R.; Hay, P. J. *J. Chem. Phys.* **1985**, 82, 284.

¹⁵ A) Hay, P. J.; Wadt, W. R. J. Chem. Phys. **1985**, 82, 270; b) Roy, L. E.; Hay, P. J.; Martin, R. L. J. Chem. Theor. Comput. **2008**, 4, 1029; c) Ehlers, A. W.; Böhme, M.; Dapprich, S.; Gobbi, A.; Höllwarth, A.; Jonas, V.; Köhler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. Chem. Phys. Lett. **1993**, 208, 111.

¹⁶ Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. **1980**, 72, 650.

Table of Energies:

Species	B	3LYP-D3	M06	DLPNO- CCSD(T)	
	E	Hcorr	Gcorr	E	Ε
AuI(PPh ₃)	-1183.301179	0.298125	0.222054	-1182.840435	-1465.007618
Au(Ph)(PPh ₃)	-1403.497226	0.390922	0.305894	-1402.934127	-1401.272450
Au(C ₆ H ₄ F)(PPh ₃)	-1502.732241	0.383606	0.297008	-1502.176691	-1500.404828
Au(C ₆ H ₄ CF ₃)(PPh ₃)	-1740.540104	0.399427	0.304704	-1739.972200	-1737.937405
Au(C ₆ H ₄ OMe)(PPh ₃)	-1518.022450	0.426389	0.335638	-1517.427106	-1515.626179
Au(C5NH4)(PPh3)	-1419.536089	0.379140	0.294408	-1418.978738	-1417.301163
NiI(Ph)(d <i>n</i> ppe)	-1648.019566	0.567941	0.469253	-2986.391899	-3267.414617
NiI(C ₆ H ₄ F)(d <i>n</i> ppe)	-1747.253519	0.560635	0.459808	-3085.633817	-3366.546345
NiI(C ₆ H ₄ CF ₃)(d <i>n</i> ppe)	-1985.062790	0.576492	0.467954	-3323.430671	-3604.080115
NiI(C ₆ H ₄ OMe)(d <i>n</i> ppe)	-1762.543981	0.603402	0.498682	-3100.883782	-3381.767850
NiI(C5NH4)(dnppe)	-1983.489056	0.641276	0.534539	-3321.773812	-3318.840645
Ni(C ₆ H ₄ F)(Ph)(d <i>n</i> ppe)	-1967.448475	0.653001	0.546075	-3305.726973	-3302.809523
Ni(C ₆ H ₄ F)(C ₆ H ₄ CF ₃)(dnppe)	-2304.492639	0.661556	0.544522	-3642.766576	-3639.476009
Ni(C ₆ H ₄ F)(C ₆ H ₄ OMe)(dnppe)	-2081.972495	0.688364	0.575046	-3420.218386	-3417.161967
Ni(C ₆ H ₄ F)(C ₅ NH ₄)(dnppe)	-1983.489056	0.641276	0.534539	-3321.773812	-3318.840645

All values in the table are given in Hartrees.

XYZ Coordinates:

These data are available:

1) *via* IOChem-BD, for which the DOI is provided in the manuscript. This allows direct download of files suitable for important into GaussView or other computational chemistry/3D molecular visualization and editing packages.

2) As a separate supporting information file, in XYZ format, which can readily be imported into software such as ChemCraft, Avogadro, etc. or into a text editor to prepare input files for ORCA, Gaussian, etc

Summary of Data:

Figure S51. Summary of thermodynamics of transmetalation (kcal mol⁻¹). $\Delta G^{\circ}(CC)$ was calculated using DLPNO-CCSD(T), $\Delta G^{\circ}(DFT)$ was calculated using DFT.

In summary:

- Ar-for-Ar transmetalation is slightly downhill for Ar = Ph, 4-F₃CC₆H₄, 4- pyridyl, and a little uphill for 4-MeOC₆H₄;
- Ar-for-I transmetalation is always uphill;
- Ar-for-Ar is always most favourable;
- M06 and DLPNO-CCSD(T) continue to agree quite nicely all within 0.7 kcal/mol.