Supporting information

Coordination Effect Enabled Palladium Catalyzed Regioselective *O*-Alkylation of 2-Pyridones

Zhiqiang Lu*a,b, Yanzhi Lia,b, Yi Rua, ShuJian Yanga, Chu Haoa, Mengke Zuoa, Rongkai Jiaoa,

Weilong Wu^a, Yan Zhou^a, Hui Yao*^b, Nianyu Huang*^b, Yuqin Fu*^a

^a College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China

^b Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast

(China National Light Industry), College of Biological and Pharmaceutical Sciences, Yichang,

China Three Gorges University, 443002, P. R. China

Table of Contents

1. General Considerations

2. Experimental Section

- **2.1.** Synthesis of 3a: 4-((4,6-dimethylpyrimidin-2-yloxy)methyl)benzonitrile
- **2.2.** Synthesis of 3a-1: 4-((5-nitropyridin-2-yloxy)methyl)benzonitrile
- **2.3.** Synthesis of 3a-2: 4-((5-nitropyridin-2-yloxy)methyl)benzonitrile
- **2.4.** Synthesis of 3a-3: 4-((4,6-dimethylpyrimidin-2-yloxy)methyl)benzonitrile
- **2.5.** Synthesis of 3a-4: 4-(((6-fluoropyridin-2-yl)oxy)methyl)benzonitrile
- **2.6.** Synthesis of 3a-5: 2-((4-cyanobenzyl)oxy)-4,6-dimethylnicotinonitrile
- **2.7. Synthesis of 3a-6:** *4-((3-bromo-5-(trifluoromethyl)pyridin-2-yloxy)methyl)* benzonitrile
- **2.8.** Synthesis of 3a-7: 4-((4-methylquinolin-2-yloxy)methyl)benzonitrile
- **2.9.** Synthesis of 3b-1: 3-((5-nitropyridin-2-yloxy)methyl)benzonitrile
- **2.9.** Synthesis of 3b-1: 3-((5-nitropyridin-2-yloxy)methyl)benzonitrile
- **2.10.** Synthesis of 3b-2: 3-((3-nitropyridin-2-yloxy)methyl)benzonitrile
- 2.11. Synthesis of 3b-3: 3-((6-chloropyridin-2-yloxy)methyl)benzonitrile
- 2.12. Synthesis of 3b-4: 2-(3-cyanobenzyloxy)-4,6-dimethylnicotinonitrile
- **2.13.** Synthesis of 3b-5: 3-((6-fluoropyridin-2-yloxy)methyl)benzonitrile
- **2.14.** Synthesis of 3b-6: 3-((4-methylquinolin-2-yloxy)methyl)benzonitrile
- **2.15.** Synthesis of 3b-7: 3-((6-methylpyridin-2-yloxy)methyl)benzonitrile
- 2.16. Synthesis of 3b-8: 3-((pyridin-2-yloxy)methyl)benzonitrile
- **2.17.** Synthesis of 3c-1: 2-(4-tert-butylbenzyloxy)-6-chloropyridine
- 2.18. Synthesis of 3d-1: 2-chloro-6-(4-methylbenzyloxy)pyridine
- 2.19. Synthesis of 3e-1: 2-(benzyloxy)-6-chloropyridine
- 2.20. Synthesis of 3e-2: 2-(benzyloxy)-3-nitropyridine
- 2.21. Synthesis of 3e-3: 2-(benzyloxy)-5-nitropyridine
- **2.22.** Synthesis of 3e-4: 2-(benzyloxy)-6-methylpyridine
- 2.23. Synthesis of 3e-5: 2-(benzyloxy)-6-fluoropyridine
- 2.24. Synthesis of 3e-6: 2-(benzyloxy)-3-bromo-5-(trifluoromethyl)pyridine
- **2.25.** Synthesis of 3e-7: 2-(benzyloxy)pyridine

S2

S2

- 2.26. Synthesis of 3e-8: 2-(benzyloxy)-4-methylquinoline
- 2.27. Synthesis of 3f-1: 2-(4-bromobenzyloxy)-6-chloropyridine
- **2.28.** Synthesis of 3g-1: 2-chloro-6-(2,6-dichlorobenzyloxy)pyridine
- 2.29. Synthesis of 3h-1: 2-chloro-6-(4-nitrobenzyloxy)pyridine
- 2.30. Synthesis of 3i-1: 2-(benzhydryloxy)-6-chloropyridine
- 2.31. Synthesis of 3i-2: 2-(benzhydryloxy)-3-nitropyridine
- 2.32. Synthesis of 3i-3: 2-(benzhydryloxy)-6-nitropyridine
- 2.33. Synthesis of 3i-4: 2-(benzhydryloxy)-6-methylpyridine
- **2.34.** Synthesis of 3i-5: 2-(benzhydryloxy)-6-fluoropyridine
- **2.35.** Synthesis of 3i-6: 2-(benzhydryloxy)-3-bromo-5-(trifluoromethyl)pyridine
- 2.36. Synthesis of 3i-7: 2-(benzhydryloxy)-5-nitropyridine
- **2.37.** Synthesis of 3i-8: 2-(benzhydryloxy)-4,6-dimethylnicotinonitrile
- **2.38.** Synthesis of 3i-9: 2-(benzhydryloxy)-4-methylquinoline
- 2.39. Synthesis of 3j-1: 2-(9H-fluoren-9-yloxy)-6-chloropyridine
- 2.40. Synthesis of 3e-9: benzyl 6-(benzyloxy)nicotinate
- 2.41. Synthesis of 4a: 3-((3-hydroxy-2-oxopyridin-1(2H)-yl)methyl)benzonitrile
- **2.42.** Synthesis of 4b: 1-benzyl-3-hydroxypyridin-2(1H)-one
- **2.43.** Synthesis of 4c: 4-((3-hydroxy-2-oxopyridin-1(2H)-yl)methyl)benzonitrile
- **2.44.** Synthesis of 3m: 2-((4-bromobenzyl)oxy)-6-methylpyridine
- **2.45.** Synthesis of 3n: 2-(allyloxy)-6-chloropyridine
- 2.46. Synthesis of 30: 2-chloro-6-(prop-2-yn-1-yloxy)pyridine
- 2.47. Synthesis of 3p: 2-butoxy-6-methylpyridine
- **2.48.** Synthesis of 3q: 5-(((6-chloropyridin-2-yl)oxy)methyl)picolinonitrile

S21

S64

3. NMR Spectra

- 4. X-ray data determation
 - 4.1 X-ray data of compound 4a
 - 4.2 X-ray data of compound 3i-8
 - 4.3 X-ray data of compound 3j-1

1. General information

1.1 Materials

All manipulations are carried out under a nitrogen atmosphere by using standard Schlenk techniques unless otherwise stated. Solvent such as DCM/Toluene are distilled under nitrogen from sodium-benzophenone. All other starting materials are obtained commercially as analytical-grade from Innochem. Reagent Co., Ltd (BeiJing, China) and used without further purification.

Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on The German Bruker AVANCE III 400 MHz plus. spectrometer as indicated. Carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on The Bruker AVANCE III 400 MHz plus (100 MHz) spectrometer as indicated. The chemical shifts of ¹H and ¹³C NMR were relative to TMS. Coupling constants (*J*) are reported in Hz with the following splitting abbreviations: s = singlet, d = doublet, t = triplet, m = multiple, dd= double doublet. The melting point was determined on Shanghai INESA Physico-Optical Instrument Co., Ltd., SGWX-4 Melting-point Apparatus with Microscope. Thermo Scientific TM Q ExactiveTM (ESI mode) was employed for High resolution mass spectra determination.

The X-ray diffraction data were collected at 290 K on an Oxford Diffraction Gemini with MoK α radiation (λ =0.71073Å). Crystalline powder of compounds (**4a**, **3i-8**, **3j-1**) suitable for X-ray structural analysis is obtained by slow evaporation of their ether acetate/PE mixed solutions. A crystal with approximate dimensions of 0.1 × 0.1 × 0.1 mm³, 0.18 × 0.18 × 0.18 mm³, 0.1 × 0.1 × 0.1 mm³ respectively for **4a**, **3i-8**, **3j-1**) is mounted on a glass fiber for diffraction experiment. The Olex2 program was used as an interface, together with the SHELXT and SHELXL programs to solve the structures. All non-H atoms are refined anisotropically. Positions of hydrogen atoms were located geometrically and refined using a riding model. Crystallographic data for the structure in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplemental publication (CCDC No. is 2100786; 2100848, 2100785 respectively).

2. Experimental Section

General experimental procedure:

All the reaction was run following the same procedure: mixture the compound of hydroxylpyridine (0.25 mmol, 1 equiv) and the benzyl bromide (0.25 mmol, 1 equiv) in solvent of 1 mL toluene to the Schlenk tube, then add with Pd(OAc)₂ (5 mol%), DPPPent (5.5 mol%), silver carbonate (1.1 equiv) under N₂ atmosphere, then heating the reaction system to at 60 °C for about 12 hours. When the reaction finished, filtered and concentrated under reduced pressure. Subject the reaction mixture to the column directly, run the column by PE/EA eluent system in appropriate ratio, the ideal product will be obtained.

	Me N OH N + Me 1a	Pd(OAc) ₂ /DPPPent (5 mol % / 5.5 mol %) silver additive (1.1 equiv) toluene, 60 °C, 12 h	Me N O CN Me N Me 3a
Entry		Silver Additive	Yield % ^a
1		AgO	45
2		AgNO ₃	51
3		AgOAc	64
4		AgOTf	25

Table S1 The silver additive test in the optimization reaction condition

Reaction conditions: 1a (0.25 mmol), 2a (0.25 mmol), toluene (1 mL), Pd(OAc)₂ (5 mol %), DPPPent(5.5 mol %),

silver (1.1 equiv), 12 h, 60 °C, under nitrogen atmosphere. a Isolated yields were provided.

Scheme S1-1 Extensive substrate scope exploring with respect to other general halide

derivatives.^a

^aThe reaction were performed with **1** (0.25 mmol), **2n-2q** (0.25 mmol), $Pd(OAc)_2$ (5 mol %), DPPPent (5.5 mol %) and Ag₂CO₃ (1.1 equiv) in toluene (1 mL) at 60 °C for 12 h under N₂ atmosphere. Isolated yields were provided.

Scheme S1-2 Scale-up experiment.^a

^aThe reaction were performed with **1a** (8 mmol), **2a** (8 mmol), $Pd(OAc)_2$ (5 mol %), DPPPent (5.5 mol %) and Ag_2CO_3 (1.1 equiv) in toluene (1 mL) at 60 °C for 12 h under N₂ atmosphere. Isolated yields were provided.

Scheme S2 Rational-Designed Substrates for N-Alkylation and Control Experiments.

2.1. Synthesis of 3a: 4-((4,6-dimethylpyrimidin-2-yloxy)methyl)benzonitrile

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) 7.65 (d, J = 8.3 Hz, 2H), 7.59 (d, J = 8.1 Hz, 2H), 6.71 (s, 1H), 5.46 (s, 2H), 2.41 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 164.5, 142.5, 132.3, 128.3, 119.0, 114.7, 111.6, 67.6, 24.0. IR (KBr): 2228 (s), 1602 (s), 1507 (m), 1340 (s), 1109 (s), 856 (w), 816 (s), 642 (m), 576 (m), 546 (s). m.p.: 117.0 -117.8 °C. HRMS(ESI-TOF) m/z: [M + H]⁺: calcd. for [C₁₄H₁₃N₃O + H]⁺ 240.1137; found 240.1139.

2.2. Synthesis of 3a-1: 4-((pyridin-2-yloxy)methyl)benzonitrile

To run the reaction followed the above general procedure, and the gray solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 4.8 Hz, 1H), 7.66 (d, *J* = 7.9 Hz, 2H), 7.61 (d, *J* = 7.5 Hz, 1H), 7.55 (d, *J* = 7.9 Hz, 2H), 6.98 – 6.89 (m, 1H), 6.84 (d, *J* = 8.3 Hz, 1H), 5.45 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 183.1, 145.0, 143.2, 139.1, 132.4, 128.0, 119.0, 117.6, 111.5, 111.4, 66.3. IR (KBr): 1560 (vs), 1541 (s), 1508 (s), 1458 (m), 1339 (m), 1140 (w). m.p.: 54.3 - 55.5 °C.

2.3. Synthesis of 3a-2: 4-((5-nitropyridin-2-yloxy)methyl)benzonitrile

To run the reaction followed the above general procedure, and the yellow solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 9.08 (s, 1H), 8.41 (d, *J* = 8.1 Hz, 1H), 7.69 (d, *J* = 7.0 Hz, 2H), 7.57 (d, *J* = 7.3 Hz, 2H), 6.94 (d, *J* = 8.9 Hz, 1H), 5.56 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 144.8, 141.5, 140.0, 134.5, 132.5, 128.4, 118.7, 112.2, 111.6, 68.0. IR (KBr): 2230 (s), 1607 (s), 1579 (vs), 1507 (s), 1472 (s), 1458 (s), 1407 (m), 1346 (s), 1319 (m), 1115 (m), 988 (s), 895 (m), 823 (m). m.p.: 158.7 -159.7 °C. HRMS(ESI-TOF) m/z: [M + H]⁺: calcd. for [C₁₃H₉N₃O₃ + H]⁺ 256.0722; found 256.0716.

2.4. Synthesis of 3a-3: 4-((3-nitropyridin-2-yloxy)methyl)benzonitrile

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 8.40 (dd, *J* = 4.8, 1.8 Hz, 1H), 8.34 (dd, *J* = 7.9, 1.8 Hz, 1H), 7.69 (d, *J* = 8.3 Hz, 2H), 7.63 (d, *J* = 8.3 Hz, 2H), 7.11 (dd, *J* = 7.9, 4.8 Hz, 1H), 5.64 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 155.6, 151.8, 141.6, 135.5, 132.6, 127.8, 118.8, 117.5, 111.9, 94.1, 67.7. IR (KBr): 2920 (m), 1599 (s), 1572 (m), 1452 (vs), 1300 (s), 1243 (m), 1016 (m), 886 (w), 819 (w), 766 (m). m.p.: 156.1 - 157.9 °C. HRMS(ESI-TOF) m/z: [M +H]⁺: calcd. for [C₁₃H₉N₃O₃ + H]⁺ 256.0722; found 256.0714.

2.5. Synthesis of 3a-4: 4-((6-fluoropyridin-2-yloxy)methyl)benzonitrile

To run the reaction followed the above general procedure, and the colorless crystal was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.68 (m, 1H), 7.66 (d, *J* = 3.8 Hz, 2H), 7.55 (d, *J* = 8.2 Hz, 2H), 6.70 (dd, *J* = 8.0, 1.1 Hz, 1H), 6.52 (dd, *J* = 7.8, 2.4 Hz, 1H), 5.40 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.4, 163.2, 143.1, 142.3, 132.4, 128.2, 118.8, 111.8, 107.5, 100.9, 67.0. IR (KBr): 2955 (w), 2944 (w), 2227 (s), 1602 (vs), 1570 (s), 1559 (s), 1508 (m), 1445 (s), 1373 (w), 1315 (s), 1228 (s), 1018 (m), 1016 (m), 795 (m), 548 (s). m.p.: 122.3 - 122.7 °C.

2.6. Synthesis of 3a-5: 2-((4-cyanobenzyl)oxy)-4,6-dimethylnicotinonitrile

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 8.3 Hz, 2H), 7.59 (d, *J* = 8.3 Hz, 2H), 6.74 (s, 1H), 5.53 (s, 2H), 2.47 (s, 3H), 2.44 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 162.5, 153.1, 148.3, 144.2, 141.0, 124.7, 123.7, 117.1, 109.4, 92.1, 66.7, 29.7, 27.4. IR (KBr): 2925 (m), 2223 (m), 1600 (m), 1338 (m), 1340 (m), 1156 (m), 1108 (m), 1021 (w), 862 (w), 823 (m).

White solid , m.p.: 162.2 - 163.5 °C.

2.7. Synthesis of 3a-6: 4-((3-bromo-5-(trifluoromethyl)pyridin-2-yloxy)methyl)

benzonitrile

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 1H), 8.07 (d, *J* = 1.8 Hz, 1H), 7.69 (d, *J* = 8.2 Hz, 2H), 7.60 (d, *J* = 8.2 Hz, 2H), 5.56 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 161.2, 143.3, 141.6, 139.1, 132.5, 127.8, 124.3, 121.8, 118.7, 112.0, 107.5, 68.1. IR (KBr): 2946 (w), 2922 (w), 1606 (s), 1487 (s), 1448 (s), 1407 (s), 1317 (vs), 1156 (s), 1051 (s), 931 (m), 818 (m), 756 (m), 639 (m), 549 (s). White solid, m.p.: 126.8 - 128.4 °C. HRMS(ESI-TOF) m/z: [M + Na]⁺: calcd. for [C₁₄H₈N₃BrF₃N₂O + Na]⁺ 378.9670; found 378.9657.

2.8. Synthesis of 3a-7: 4-((4-methylquinolin-2-yloxy)methyl)benzonitrile

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 7.89 (dd, *J* = 8.3, 1.2 Hz, 1H), 7.86 – 7.81 (m, 2H), 7.75 (d, *J* = 8.1 Hz, 1H), 7.67 – 7.57 (m, 2H), 7.52 – 7.39 (m, 2H), 6.84 (d, *J* = 0.8 Hz, 1H), 5.57 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 161.2, 147.5, 144.2, 139.4, 132.4, 131.6, 131.5, 129.6, 129.3, 127.9, 125.8, 124.3, 123.9, 113.0, 66.0, 19.0. IR (KBr): 2928 (w), 2230 (m), 1655 (m), 1560 (s), 1508 (s), 1457 (s), 1395 (w), 1338 (m), 1185 (m), 1059 (m), 853 (w), 811 (w), 756 (m). White solid, m.p.: 206.1 - 208.8 °C. HRMS(ESI-TOF) m/z: [M + H]⁺: calcd. for [C₁₈H₁₄N₂O + H]⁺ 275.1184; found 275.1161.

2.9. Synthesis of 3b-1: 3-((5-nitropyridin-2-yloxy)methyl)benzonitrile

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 9.08 (s, 1H), 8.41 (d, *J* = 6.7 Hz, 1H), 7.77 (s, 1H), 7.70 (d, *J* = 6.2 Hz, 1H), 7.64 (d, *J* = 6.3 Hz, 1H), 7.53 (d, *J* = 7.2 Hz, 1H), 6.94 (d, *J* = 8.8 Hz, 1H), 5.53 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 144.8, 140.0, 137.8, 134.5, 132.4, 132.0, 131.6, 129.6, 118.6, 113.0, 111.6, 67.8. IR (KBr): 2937 (m), 1654 (w), 1615 (s), 1581 (s), 1560 (m), 1490 (s), 1454 (s), 1350 (vs), 1316 (m), 1115 (w), 1033 (m), 843 (s), 792 (m). m.p.: 127.7 - 129.5 °C. HRMS(ESI-TOF) m/z: [M + H]⁺: calcd. for [C₁₃H₉N₃O₃ + H]⁺ 256.0722; found 256.0724.

2.10. Synthesis of 3b-2: 3-((3-nitropyridin-2-yloxy)methyl)benzonitrile

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 8.40 (d, *J* = 2.7 Hz, 1H), 8.33 (d, *J* = 6.9 Hz, 1H), 7.78 (m, 2H), 7.62 (d, *J* = 7.0 Hz, 1H), 7.51 (t, *J* = 7.4 Hz, 1H), 7.17 – 7.05 (m, 1H), 5.61 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 155.6, 151.7, 137.8, 135.5, 134.2, 131.9, 131.1, 129.6, 118.8, 117.4, 112.8, 67.5. IR (KBr): 2960 (w), 2880 (w), 2360 (m), 1636 (m), 1559 (s), 1507 (m), 1458 (s), 1315 (m), 1055 (s), 972 (m), 668 (m). m.p.: 178.6 - 180.2 °C. HRMS(ESI-TOF) m/z: [M + H]⁺: calcd. for [C₁₃H₉N₃O + H]⁺ 256.0722; found 256.0721.

2.11. Synthesis of 3b-3: 3-((6-chloropyridin-2-yloxy)methyl)benzonitrile

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 7.77 (s, 1H), 7.69 (d, J = 7.8 Hz, 1H), 7.62 (d, J = 7.7 Hz, 1H), 7.57 (t, J = 7.9 Hz,

1H), 7.49 (t, J = 7.7 Hz, 1H), 6.95 (d, J = 7.5 Hz, 1H), 6.75 (d, J = 8.2 Hz, 1H), 5.39 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 162.7, 148.3, 141.1, 138.4, 132.3, 131.6, 131.4, 129.4, 118.8, 117.1, 112.7, 109.4, 66.8. IR (KBr): 2935 (w), 2835 (w), 2357 (w), 1556 (w), 1540 (w), 1506 (w), 1373 (w), 1250 (m), 1230 (m), 1125 (m), 1061 (m), 826 (w). m.p.: 187.2 - 188.4 °C. HRMS(ESI-TOF) m/z: [M + H]⁺: calcd. for [C₁₃H₉ClN₂O + H]⁺ 245.0482; found 245.0464.

2.12. Synthesis of 3b-4: 2-(3-cyanobenzyloxy)-4,6-dimethylnicotinonitrile

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 7.2 Hz, 2H), 7.38 (t, J = 7.3 Hz, 2H), 7.32 (d, J = 7.1 Hz, 1H), 6.70 (s, 1H), 5.48 (s, 2H), 2.45 (s, 3H), 2.44 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.1, 160.7, 154.9, 138.3, 132.2, 131.7, 131.4, 129.5, 118.7, 118.3, 114.5, 112.7, 94.3, 66.9, 24.7, 24.57. IR (KBr): 2380 (w), 2310 (w), 1604 (s), 1560 (vs), 1541 (s), 1508 (vs), 1458 (s), 1419 (m), 1339 (m). m.p.: 173.2 - 175.3 °C. HRMS(ESI-TOF) m/z: [M + H]⁺: calcd. for [C₁₆H₁₃N₃O + H]⁺ 264.1137; found 264.1141.

2.13. Synthesis of 3b-5: 3-((6-fluoropyridin-2-yloxy)methyl)benzonitrile

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 7.76 (s, 1H), 7.68 (m, 2H), 7.62 (d, J = 6.0 Hz, 1H), 7.50 (d, J = 6.8 Hz, 1H), 6.71 (d, J = 7.0 Hz, 1H), 6.53 (d, J = 5.3 Hz, 1H), 5.37 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.4, 162.1, 143.1, 138.5, 132.2, 131.7, 131.5, 129.4, 118.8, 112.8, 107.5, 100.4, 66.8. IR (KBr): 1869 (m),1628 (s), 1560 (s), 1507 (s), 1470 (m), 1457 (m), 1290 (w), 1216 (m), 1069 (m), 1041 (m), 818 (w). m.p.: 189.9 - 191.6 °C. HRMS(ESI-TOF) m/z:

 $[M + H]^+$: calcd. for $[C_{13}H_9FN_2O + H]^+$ 229.0777; found 229.0782.

2.14. Synthesis of 3b-6: 3-((4-methylquinolin-2-yloxy)methyl)benzonitrile

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.1 Hz, 1H), 7.87 – 7.79 (m, 2H), 7.75 (d, J = 7.8 Hz, 1H), 7.69 – 7.56 (m, 2H), 7.48 (t, J = 7.7 Hz, 1H), 7.43 (t, J = 7.6 Hz, 1H), 6.84 (s, 1H), 5.57 (s, 2H), 2.65 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.2, 147.5, 146.4, 139.4, 132.4, 132.0, 131.5, 129.6, 129.3, 127.9, 125.8, 124.3, 123.9, 119.0, 112.9, 112.7, 66.0, 18.89. IR (KBr): 2229 (w), 1615 (s), 1560 (s), 1506 (s), 1456 (vs), 1340 (s), 1195 (m), 1056 (w), 753 (w). m.p.: 116.8 - 117.7 °C. HRMS(ESI-TOF) m/z: [M + H]⁺: calcd. for [C₁₈H₁₄N₂O + H]⁺ 275.1184; found 275.1170.

2.15. Synthesis of 3b-7: 3-((6-methylpyridin-2-yloxy)methyl)benzonitrile

To run the reaction followed the above general procedure, and the liquid product was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.75 (m, 1H), 7.69 (d, *J* = 7.8 Hz, 1H), 7.59 (dt, *J* = 7.7, 1.5 Hz, 1H), 7.48 (q, *J* = 8.0 Hz, 2H), 6.75 (d, *J* = 7.2 Hz, 1H), 6.61 (d, *J* = 8.2 Hz, 1H), 5.40 (s, 2H), 2.44 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.5, 156.3, 139.6, 139.2, 132.3, 131.5, 131.4, 129.3, 119.0, 116.6, 116.5, 107.7, 66.0, 24.3. IR (KBr): 1865 (m),1653 (m), 1648 (m), 1600 (m), 1559 (s), 1534 (vs), 1444 (m), 1312 (w), 1252 (w), 1213 (m), 1056 (s), 835 (s). HRMS(ESI-TOF) m/z: [M + Na]⁺: calcd. for [C₁₄H₁₂N₂O + Na]⁺ 247.0847; found 247.0806.

2.16. Synthesis of 3b-8: 3-((pyridin-2-yloxy)methyl)benzonitrile

To run the reaction followed the above general procedure, and the liquid product was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 2.2 Hz, 1H), 7.74 (s, 1H), 7.66 (d, *J* = 6.9 Hz, 1H), 7.62 – 7.51 (m, 2H), 7.45 (t, *J* = 7.4 Hz, 1H), 6.89 (d, *J* = 4.8 Hz, 1H), 6.82 (d, *J* = 8.0 Hz, 1H), 5.40 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.0, 146.9, 139.2, 139.0, 132.0, 131.3, 131.2, 129.3, 118.9, 117.4, 112.6, 111.3, 66.0. IR (KBr): 2373 (w), 2223 (w), 1611 (s), 1560 (s), 1541 (m), 1508 (s), 1472 (m), 1386 (m), 772 (w), 686 (w). HRMS(ESI-TOF) m/z: [M + H]⁺: calcd. for [C₁₃H₁₀N₂O + H]⁺ 211.0871; found 211.0877.

2.17. Synthesis of 3c-1: 2-(4-tert-butylbenzyloxy)-6-chloropyridine

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 7.52 (t, *J* = 7.8 Hz, 1H), 7.47 – 7.30 (m, 4H), 6.91 (d, *J* = 7.5 Hz, 1H), 6.70 (d, *J* = 8.2 Hz, 1H), 5.32 (s, 2H), 1.33 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 163.4, 151.3, 148.4, 140.8, 133.7, 128.4, 125.6, 116.6, 109.6, 68.4, 34.7, 31.5. IR (KBr): 2964 (s), 1750 (m), 1682 (s), 1654 (s), 1588 (s), 1560 (vs), 1508 (s), 1438 (s), 1362 (w), 1298 (vs), 1260 (m), 1162 (s), 998 (s), 918 (m), 793 (s). m.p.: 79.6 - 81.2 °C. HRMS(ESI-TOF) m/z: [M + H]⁺: calcd. for [C₁₆H₁₈CINO + H]⁺ 276.1155; found 276.1141. **2.18. Synthesis of 3d-1:** *2-chloro-6-(4-methylbenzyloxy)pyridine*

To run the reaction followed the above general procedure, and the liquid product was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 7.2 Hz, 1H), 7.35 (d, *J* = 6.2 Hz, 2H), 7.20 (t, *J* = 11.1 Hz, 2H), 6.89 (d, *J*

= 6.9 Hz, 1H), 6.67 (d, J = 7.7 Hz, 1H), 5.31 (s, 2H), 2.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.4, 148.4, 140.7, 138.0, 133.7, 129.3, 128.6, 116.5, 109.6, 68.4, 21.3. IR (KBr): 2967 (m), 2920 (m), 1590 (s), 1558 (s), 1440 (s), 1362 (m), 1300 (s), 1262 (w), 1159 (m), 1136 (m), 1072 (m), 919 (m), 731 (w). HRMS(ESI-TOF) m/z: [M + H]⁺: calcd. for [C₁₃H₁₂ClNO + H]⁺ 234.0686; found 234.0696.

2.19. Synthesis of 3e-1: 2-(benzyloxy)-6-chloropyridine

To run the reaction followed the above general procedure, and the liquid product was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 7.6 Hz, 1H), 7.49 – 7.44 (m, 2H), 7.43 – 7.30 (m, 3H), 6.91 (dd, *J* = 7.5 Hz, 0.6 Hz, 1H), 6.71 (dd, *J* = 8.2, 0.6 Hz, 1H), 5.36 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.4, 148.4, 140.8, 136.7, 128.7, 128.4, 128.2, 116.7, 109.6, 68.5. IR (KBr): 2377 (w), 2310 (w), 1588 (s), 1560 (m), 1508 (m), 1541 (m), 1458 (m), 1419 (w), 1339 (w). HRMS(ESI-TOF) m/z: [M + Na]⁺: calcd. for [C₁₂H₁₀ClNO + NH₄]⁺ 237.0789; found 237.0779.

2.20. Synthesis of 3e-2: 2-(benzyloxy)-3-nitropyridine

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, *J* = 2.5 Hz, 1H), 8.27 (d, *J* = 6.7 Hz, 1H), 7.50 (d, *J* = 6.5 Hz, 2H), 7.37 (d, *J* = 7.0 Hz, 2H), 7.30 (t, *J* = 16.4 Hz, 1H), 7.04 (dd, *J* = 7.2, 4.6 Hz, 1H), 5.58 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 156.1, 151.7, 136.1, 135.2, 134.2, 128.6, 128.1, 127.7, 116.8, 68.9. IR (KBr): 1604 (vs), 1571 (s), 1518 (vs), 1435 (s), 1355 (s), 1305 (s), 1249 (m), 1152 (w), 1092 (m), 1018 (m), 886 (w), 731 (s). m.p.: 42.8 - 43.2 °C. **2.21. Synthesis of 3e-3:** *2-(benzyloxy)-5-nitropyridine*

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 9.09 (d, J = 2.6 Hz, 1H), 8.36 (dd, J = 9.1, 2.7 Hz, 1H), 7.46 (d, J = 7.1 Hz, 2H), 7.42 – 7.34 (m, 3H), 6.87 (d, J = 9.1 Hz, 1H), 5.49 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 144.8, 139.7, 136.0, 134.1, 128.8, 128.8, 128.3, 111.6, 69.3. IR (KBr): 1601 (s), 1578 (s), 1507 (s), 1481 (s), 1451 (s), 1400 (s), 1342 (s), 1315 (s), 1275 (s), 1113 (s), 1018 (s), 828 (m), 685 (s). m.p.: 103.5 - 104.3 °C.

2.22. Synthesis of 3e-4: 2-(benzyloxy)-6-methylpyridine

To run the reaction followed the above general procedure, and the liquid compoundwas obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 7.46 (m, 3H), 7.36 (m, 2H), 7.31 (d, *J* = 5.9 Hz, 1H), 6.71 (d, *J* = 6.2 Hz, 1H), 6.58 (d, *J* = 7.5 Hz, 1H), 5.36 (s, 2H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.2, 156.3, 139.0, 137.7, 128.5, 128.2, 127.8, 116.0, 107.7, 67.5, 24.3. IR (KBr): 2380 (w), 2305 (w), 1603 (m), 1560 (s), 1505 (s), 1456 (m), 1419 (m), 1339 (w), 502 (w).

2.23. Synthesis of 3e-5: 2-(benzyloxy)-6-fluoropyridine

To run the reaction followed the above general procedure, and the white solid compound was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.59 (m, 1H), 7.45 (s, 2H), 7.42 – 7.27 (m, 3H), 6.66 (d, J = 6.8 Hz, 1H), 6.48 (d, J = 5.1 Hz, 1H), 5.33 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.5, 162.9, 142.8, 136.7, 128.7, 128.2, 107.6, 100.5, 100.1, 68.4. IR (KBr): 2925 (s), 2852 (m), 2360 (w), 1559 (s), 1458 (m), 1380 (m), 1370 (m), 1172 (m), 1122 (s),

1029 (s), 832 (m), 666 (m). m.p.: 119.2 - 121.4 °C.

2.24. Synthesis of 3e-6: 2-(benzyloxy)-3-bromo-5-(trifluoromethyl)pyridine

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 8.38 (m, 1H), 8.07 – 8.01 (m, 1H), 7.52 – 7.45 (m, 2H), 7.44 – 7.30 (m, 3H), 5.51 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 162.0, 143.4, 143.2, 138.9, 138.8, 136.2, 128.7, 128.3, 127.8, 107.6, 69.4. IR (KBr): 2946 (w), 2922 (w), 1606 (s), 1487 (s), 1448 (s), 1407 (s), 1317 (vs), 1251 (w), 1120 (m), 915 (s), 648 (m). m.p.: 49.0 - 50.9 °C.

2.25. Synthesis of 3e-7: 2-(benzyloxy)pyridine

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 7.59 (s, 1H), 7.47 (m, 2H), 7.40 – 7.23 (m, 3H), 6.86 (d, *J* = 28.3 Hz 2H), 5.38 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.8, 147.0, 138.8, 137.5, 128.6, 128.1, 128.0, 117.1, 111.5, 67.7. IR (KBr): 2220 (vs), 1596 (vs), 1559 (vs), 1508 (s), 1457 (s), 1340 (vs), 1155 (m), 1092 (s), 993 (m), 848 (w), 699 (s). m.p.: 98.3 - 101.2 °C.

2.26. Synthesis of 3e-8: 2-(benzyloxy)-4-methylquinoline

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 7.86 (t, *J* = 7.7 Hz, 2H), 7.61 (dd, *J* = 11.7, 4.6 Hz, 1H), 7.51 (d, *J* = 7.3 Hz, 2H), 7.41 – 7.34 (m, 3H), 7.31 (t, *J* = 7.3 Hz, 1H), 6.81 (s, 1H), 5.53 (s, 2H), 2.59 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.8, 147.0, 146.6, 137.6, 129.4, 128.9, 128.5, 128.3,

127.9, 125.6, 123.9, 123,8, 113.2, 67.5, 18.8. IR (KBr): 2935 (w), 2242 (w), 1603 (m), 1482 (m), 1451 (m), 1408 (m), 1322 (vs), 1253 (s), 1163 (m), 1128 (m), 1058 (m), 935 (w), 795 (w). HRMS(ESI-TOF) m/z: $[M + H]^+$: calcd. for $[C_{17}H_{15}NO +H]^+$ 250.1232; found 250.1243.

2.27. Synthesis of 3f-1: 2-(4-bromobenzyloxy)-6-chloropyridine

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.47 (m, 3H), 7.38 – 7.31 (m, 2H), 6.93 (dd, J = 7.5, 0.7 Hz, 1H), 6.0 (dd, J = 8.2, 0.7 Hz, 1H), 5.31 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.1, 148.4, 140.9, 135.8, 131.8, 130.1, 122.2, 116.9, 109.5, 67.6. IR (KBr): 1606 (s), 1520 (m), 1110 (s), 1410 (w), 1407 (s), 1362 (m), 1309 (vs), 1156 (m), 1038 (w), 919 (m), 788 (m). m.p.: 182.6 - 185.3 °C.

2.28. Synthesis of 3g-1: 2-chloro-6-(2,6-dichlorobenzyloxy)pyridine

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 7.54 (t, *J* = 7.4 Hz, 1H), 7.36 (d, *J* = 7.6 Hz, 2H), 7.26 – 7.19 (m, 1H), 6.95 (d, *J* = 7.1 Hz, 1H), 6.69 (d, *J* = 7.8 Hz, 1H), 5.59 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.3, 148.4, 140.8, 137.3, 132.2, 130.6, 128.6, 116.9, 109.4, 63.7. IR (KBr): 1614 (m), 1598 (s), 1569 (s), 1508 (m), 1460 (s), 1435 (s), 1361 (m), 1299 (m), 1259 (m), 1163 (w), 992 (w), 788 (m). m.p.: 111.5 - 112.3 °C. HRMS(ESI-TOF) m/z: [M + H]⁺: calcd. for [C₁₂H₈Cl₃NO + H]⁺ 287.9750; found 287.9738.

2.29. Synthesis of 3h-1: 2-chloro-6-(4-nitrobenzyloxy)pyridine

To run the reaction followed the above general procedure, and the yellow solid product was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, *J* = 8.2 Hz, 2H), 7.60 (dd, *J* = 21.4, 7.9 Hz, 3H), 6.96 (d, *J* = 7.3 Hz, 1H), 6.77 (d, *J* = 8.0 Hz, 1H), 5.48 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 162.7, 148.5, 147.7, 144.3, 141.2, 128.4, 123.9, 117.3, 109.5, 66.9. IR (KBr): 2925 (s), 1600 (m), 1559 (m), 1500 (m), 1342 (s), 1300 (m), 1260 (w), 1163 (s), 1108 (w), 1078 (m), 1029 (s), 845 (m). m.p.: 97.5 - 98.0 °C. HRMS(ESI-TOF) m/z: [M + H]⁺: calcd. for [C₁₂H₉ClN₂O₃ + H]⁺ 265.0380; found 265.0365.

2.30. Synthesis of 3i-1: 2-(benzhydryloxy)-6-chloropyridine

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 7.46 (dd, J = 13.6, 7.6 Hz, 5H), 7.38 – 7.29 (m, 5H), 7.25 (s, 1H), 7.23 – 7.21 (m, 1H), 6.83 (d, J = 7.5 Hz, 1H), 6.75 (d, J = 8.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 158.1, 140.9, 140.8, 138.4, 132.2, 127.7, 127.3, 116.7, 109.7, 78.3. IR (KBr): 2346 (w), 1615 (m), 1487 (s), 1562 (s), 1508 (s), 1458 (m), 1386 (w), 1229 (s), 743 (w), 698 (m). m.p.: 122.8 - 123.4 °C.

2.31. Synthesis of 3i-2: 2-(benzhydryloxy)-3-nitropyridine

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follows: ¹H NMR (400 MHz, CDCl₃) δ 8.31 (dd, *J* = 4.8, 1.6 Hz, 1H), 8.26 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.55 (d, *J* = 7.5 Hz, 4H),

7.42 (s, 1H), 7.34 (t, J = 7.5 Hz, 4H), 7.25 (t, J = 7.3 Hz, 2H), 6.98 (dd, J = 7.9, 4.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 155.4, 151.7, 140.7, 135.3, 134.3, 128.7, 127.9, 127.1, 116.9, 79.5. IR (KBr): 2926 (w), 2855 (m), 2358 (w), 1605 (m), 1541 (s), 1520 (m), 1446 (w), 818 (m). HRMS(ESI-TOF) m/z: [M + Na]⁺: calcd. for [C₁₈H₁₄N₂O₃ + Na]⁺ 329.0902; found 329.0907.

2.32. Synthesis of 3i-3: 2-(benzhydryloxy)-6-nitropyridine

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 8.33 (dt, *J* = 6.4, 3.2 Hz, 1H), 8.31 – 8.26 (m, 1H), 7.55 (ddd, *J* = 7.3, 5.1, 2.8 Hz, 4H), 7.43 (s, 1H), 7.35 (ddd, *J* = 7.8, 4.6, 1.4 Hz, 4H), 7.26 – 7.23 (m, 2H), 7.00 (dd, *J* = 7.9, 4.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 155.4, 151.7, 140.7, 135.4, 128.7, 128.0, 127.1, 116.9, 79.5, 77.4. IR (KBr): 2926 (w), 2855 (m), 2358 (w), 1617 (m), 1541 (s), 1520 (m), 1456 (m), 1252 (w), 1035 (w), 818 (m). m.p.: 190.5 - 193.8 °C. HRMS(ESI-TOF) m/z: [M + Na]⁺: calcd. for [C₁₈H₁₄N₂O₃ + Na]⁺ 329.0902; found 329.0907.

2.33. Synthesis of 3i-4: 2-(benzhydryloxy)-6-methylpyridine

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.40 (m, 5H), 7.35 – 7.29 (m, 4H), 7.27 (s, 1H), 7.25 – 7.21 (m, 1H), 7.20 – 7.08 (m, 1H), 6.65 (dd, J = 10.9, 7.7 Hz, 2H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.4, 156.3, 142.0, 139.0, 128.4, 128.3, 127.5, 116.1, 108.0, 77.3, 24.4. IR (KBr): 2920 (m), 1599 (s), 1572 (m), 1452 (vs), 1290 (m), 1232 (m), 1150 (w), 1035 (m), 793 (s), 704 (s). m.p.: 54.0 - 55.6 °C. HRMS(ESI-TOF) m/z: [M + H]⁺: calcd. for

 $[C_{19}H_{17}NO + H]^+$ 276.1388; found 276.1374.

2.34. Synthesis of 3i-5: 2-(benzhydryloxy)-6-fluoropyridine

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 7.64 (q, J = 8.1 Hz, 1H), 7.47 – 7.42 (m, 4H), 7.36 – 7.31 (m, 4H), 7.31 – 7.26 (m, 2H), 7.15 (s, 1H), 6.73 (dd, J = 7.9, 1.6 Hz, 1H), 6.43 (dd, J = 7.8, 2.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 163.3, 142.9, 142.8, 141.0, 128.6, 127.8, 127.4, 107.9, 100.9, 100.5, 78.5. IR (KBr): 2925 (w), 2855 (w), 2360 (w), 1616 (m), 1559 (s), 1508 (w), 1458 (w), 1507 (m), 1456 (w), 1228 (m), 1019 (w). m.p.: 86.7 - 88.3 °C. HRMS(ESI-TOF) m/z: [M + Na]⁺: calcd. for [C₁₈H₁₄FNO + Na]⁺ 302.0957; found 302.0937.

2.35. Synthesis of 3i-6: 2-(benzhydryloxy)-3-bromo-5-(trifluoromethyl)pyridine

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 8.31 (s, 1H), 8.01 (s, 1H), 7.50 (d, J = 6.5 Hz, 4H), 7.33 (d, J = 7.0 Hz, 4H), 7.30 – 7.22 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.1, 143.3, 140.7, 138.9, 128.7, 128.0, 127.1, 121.7, 121.3, 107.9, 79.9. IR (KBr): 2925 (w), 2855 (w), 2360 (w), 1616 (m), 1559 (s), 1508 (w), 1458 (w), 1400 (s), 1350 (m), 1200 (w), 1140 (w), 1090 (m). HRMS(ESI-TOF) m/z: [M + NH₄]⁺: calcd. for [C₁₉H₁₃BrF₃NO + NH₄]⁺ 425.0471; found 425.0458.

2.36. Synthesis of 3i-7: 2-(benzhydryloxy)-5-nitropyridine

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 9.02 (d, J = 2.8 Hz, 1H), 8.36 (dd, J = 9.2, 2.8 Hz, 1H), 7.46 – 7.41 (m, 4H), 7.37 – 7.33 (m, 5H), 7.32 – 7.28 (m, 2H), 6.97 (d, J = 9.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 144.9, 140.3, 139.7, 134.3, 128.7, 128.2, 127.3, 111.9, 79.8. IR (KBr): 2923 (w), 2960 (m), 2850 (m), 1460 (m), 1456 (m), 1345 (w), 1312 (w), 1112 (w), 836 (w), 699 (w). m.p.: 88.2 - 89.8 °C.

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 6.7 Hz, 4H), 7.38 – 7.28 (m, 5H), 7.25 (d, *J* = 5.3 Hz, 2H), 6.63 (s, 1H), 2.42 (s, 3H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.1, 160.6, 154.6, 141.0, 128.6, 127.8, 127.2, 117.9, 115.1, 94.6, 78.5, 24.6, 20.2. IR (KBr): 2365 (s), 2325 (s), 2225 (m), 1600 (s), 1559 (s), 1458 (m), 1438 (m), 1386 (s), 1348 (m), 1155 (m), 1093 (s), 1005 (m), 862 (w), 753 (w). m.p.: 100.1 - 101.8 °C. HRMS(ESI-TOF) m/z: [M + Na]⁺: calcd. for [C₂₁H₁₈N₂O + Na]⁺ 337.1317; found337.1359.

2.38. Synthesis of 3i-9: 2-(benzhydryloxy)-4-methylquinoline

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.79 (m, 2H), 7.63 – 7.57 (m, 1H), 7.51 – 7.46 (m, 2H), 7.34 (d, J = 4.4 Hz,

8H), 7.32 – 7.27 (m, 2H), 6.88 (s, 1H), 2.16 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.9, 151.5, 150.4, 140.3, 136.0, 132.6, 130.2, 128.6, 128.4, 128.1, 127.2, 123.2, 93.8, 77.4, 24.1. m.p.: 60.8 - 61.3 °C. IR (KBr): 2942 (w), 1494 (m), 1455 (m), 1372 (m), 1237 (vs), 1119 (w), 1025 (w), 742 (w), 701 (s), 546 (m). HRMS(ESI-TOF) m/z: [M + H]⁺: calcd. for [C₂₃H₁₉NO + H]⁺ 326.1545; found 326.1594.

2.39. Synthesis of 3j-1: 2-(9H-fluoren-9-yloxy)-6-chloropyridine

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 7.78 – 7.50 (m, 6H), 7.40 (t, *J* = 6.9 Hz, 2H), 7.26 (d, *J* = 7.2 Hz, 2H), 7.01 (d, *J* = 7.2 Hz, 1H), 6.71 (d, *J* = 7.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 163.6, 148.4, 142.9, 141.2, 129.5, 127.9, 126.2, 120.1, 117.0, 110.1, 77.5, 77.0. IR (KBr): 1624 (s), 1560 (vs), 1541 (s), 1508 (vs), 1457 (s), 1339 (m), 1162 (m), 1011 (m), 921 (w), 742 (m). m.p.: 101.2 - 101.9 °C. HRMS(ESI-TOF) m/z: [M + Na]⁺: calcd. for [C₁₈H₁₂ClNO + Na]⁺ 316.0505; found 316.0540.

2.40. Synthesis of 3e-9: 4-(((6-fluoropyridin-2-yl)oxy)methyl)benzonitrile

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 8.90 (d, J = 2.3 Hz, 1H), 8.20 (dd, J = 8.7, 2.4 Hz, 1H), 7.45 (ddd, J = 7.6, 5.8, 1.6 Hz, 4H), 7.42 – 7.31 (m, 6H), 6.82 (d, J = 8.7 Hz, 1H), 5.45 (s, 2H), 5.36 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 165.4, 150.3, 139.9, 136.8, 136.0, 128.8, 128.7, 128.5, 128.3, 128.2, 127.2, 119.9, 111.1, 68.4, 66.8. m.p.: 122.2 - 124.4 °C. IR (KBr): 2382 (w), 2343 (w), 1692 (vs), 1607 (s), 1587 (s), 1558 (s), 1506 (s), 1456 (m), 1285

(w), 1252 (w), 1079 (m), 871 (w), 753 (m), 525 (w).

2.41. Synthesis of 4a: 3-((3-hydroxy-2-oxopyridin-1(2H)-yl)methyl)benzonitrile

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 7.6 Hz, 1H), 7.55 (d, J = 9.4 Hz, 2H), 7.47 (t, J = 7.7 Hz, 1H), 6.93 (s, 1H), 6.84 (d, J = 7.1 Hz, 2H), 6.21 (t, J = 7.1 Hz, 1H), 5.20 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 158.8, 147.0, 137.6, 132.4, 132.0, 131.4, 129.9, 126.6, 118.5, 114.1, 113.2, 107.7, 52.1. IR (KBr): 1683 (s), 1570 (s), 1524 (vs), 1437 (s), 1348 (s), 1303 (s), 1189 (m), 1083 (m), 982 (s), 758 (s), 696 (s). m.p.: 184.3 - 186.7 °C. HRMS(ESI-TOF) m/z: [M + Na]⁺: calcd. for [C₁₃H₁₀N₂O₂ + Na]⁺ 249.0640; found 249.0678.

2.42. Synthesis of 4b: 1-benzyl-3-hydroxypyridin-2(1H)-one

To run the reaction followed the above general procedure, and the black solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.30 (m, *J* = 13.2 Hz, 5H), 7.18 (br, 1H), 6.81 (dd, *J* = 12.2, 6.8 Hz, 2H), 6.13 (d, *J* = 6.2 Hz, 1H), 5.19 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 158.9, 146.9, 136.0, 129.0, 128.3, 128.2, 126.8, 113.8, 107.1, 52.5. m.p.: 136.9-138.3 °C. IR (KBr): 2382 (w), 2310 (w), 1680 (vs), 1490 (vs), 872 (m), 853 (s), 714 (m).

2.43. Synthesis of 4c: 4-((3-hydroxy-2-oxopyridin-1(2H)-yl)methyl)benzonitrile

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ

7.65 (d, J = 8.0 Hz, 2H), 7.38 (d, J = 8.0 Hz, 2H), 6.86 (s, 1H), 6.84 (s, 1H), 6.22 (t, J = 7.1 Hz, 1H), 5.23 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 158.9, 147.0, 141.2, 132.9, 128.5, 126.7, 114.0, 112.3, 107.6, 52.3. IR (KBr): 1660 (vs), 1570 (s), 1524 (vs), 1437 (s). m.p.: 137.8 - 139.4 °C. HRMS(ESI-TOF) m/z: [M + H]⁺: calcd. for [C₁₃H₁₀N₂O₂ + H]⁺ 227.0821; found 227.0869.

2.44. Synthesis of 3m: 2-((4-bromobenzyl)oxy)-6-methylpyridine

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.43 (m, 3H), 7.34 (d, J = 8.3 Hz, 2H), 6.73 (d, J = 7.2 Hz, 1H), 6.58 (d, J = 8.2 Hz, 1H), 5.31 (s, 2H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.8, 156.2, 138.9, 136.7, 131.5, 129.8, 121.6, 116.1, 107.6, 77.3, 77.0, 76.7, 66.5, 24.1. IR (KBr): 1955 (m), 1612 (m), 1551 (s), 1410 (m), 1213 (m), 1016 (m). m.p.: 28.9-30.1 °C. HRMS(ESI-TOF) m/z: [M + H]⁺: calcd. for [C₁₃H₁₂BrNO + H]⁺ 278.0181; found 278.0144.

2.45. Synthesis of 3n: 2-(allyloxy)-6-chloropyridine

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 7.52 (t, *J* = 7.8 Hz, 1H), 6.90 (d, *J* = 7.5 Hz, 1H), 6.68 (d, *J* = 8.2 Hz, 1H), 6.16 – 5.99 (m, 1H), 5.41 (dd, *J* = 17.2, 1.5 Hz, 1H), 5.27 (dd, *J* = 10.4, 1.3 Hz, 1H), 4.88 – 4.78 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.2, 148.4, 140.8, 133.0, 118.2, 116.5, 109.4, 67.4. IR (KBr): 2913 (w), 2357 (m), 2314 (m), 1683 (s), 1559 (s), 1506 (s), 1456 (s), 1260 (m). HRMS(ESI-TOF) m/z: [M + H]⁺: calcd. for [C₈H₈CINO + H]⁺ 170.0367; found 170.0349.

2.46. Synthesis of 30: 2-chloro-6-(prop-2-yn-1-yloxy)pyridine

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 7.55 (s, 1H), 6.95 (d, *J* = 7.5 Hz, 1H), 6.73 (d, *J* = 8.2 Hz, 1H), 4.97 (d, *J* = 2.4 Hz, 2H), 2.50 (t, *J* = 2.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.1, 148.3, 141.0, 117.3, 109.5, 78.6, 74.9, 54.3. IR (KBr): 2918 (w), 1589 (s), 1438 (vs), 1360 (m), 1293 (s), 1163 (s). HRMS(ESI-TOF) m/z: [M + H]⁺: calcd. for [C₈H₆CINO + H]⁺ 168.0211; found 168.0051.

2.47. Synthesis of 3p: 2-butoxy-6-methylpyridine

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: 1H NMR (400 MHz, CDCl₃) δ 7.50 (dd, J = 8.2, 7.5 Hz, 1H), 6.87 (dd, J = 7.5, 0.7 Hz, 1H), 6.63 (dd, J = 8.2, 0.7 Hz, 1H), 4.28 (t, J = 6.6 Hz, 2H), 1.74 (ddt, J = 8.9, 7.7, 6.5 Hz, 2H), 1.51 – 1.40 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) 163.8, 148.5, 140.5, 116.0, 109.1, 66.4, 31.0, 19.4, 13.9. IR (KBr): 2968 (s), 1592 (s), 1442 (vs), 1299 (s), 1162 (s). HRMS(ESI-TOF) m/z: [M + H]⁺: calcd. for [C₉H₁₂CINO + H]⁺ 186.0680; found 186.0509.

2.48. Synthesis of 3q:5-(((6-chloropyridin-2-yl)oxy)methyl)picolinonitrile

To run the reaction followed the above general procedure, and the white solid was obtained, the data of the final compound as follow: ¹H NMR (400 MHz, CDCl₃) δ 8.82 (s, 1H), 7.94 (d, *J* = 10.0 Hz, 1H), 7.72 (d, *J* = 8.0 Hz, 1H), 7.61 – 7.52 (m, 1H), 6.97 (d, *J* = 7.5 Hz, 1H), 6.75 (d, *J* = 8.2 Hz, 1H), 5.47 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 162.3, 150.8, 148.4, 141.3, 136.6, 136.5, 133.3, 128.3, 117.5, 117.3, 109.5,

64.8. m.p.: 111.6-112.0 °C. IR (KBr): 2922 (w), 2236 (m), 1607 (s), 1591 (s), 1567 (s), 1435 (vs), 1389 (s), 1328 (m), 1308 (s). HRMS(ESI-TOF) m/z: $[M + H]^+$: calcd. for $[C_{12}H_8CIN_3O + H]^+$ 246.0429; found 246.0235.

3a-1¹H NMR

3a-1 ¹³C NMR

3a-3 ¹³C NMR

3a-4 ¹H NMR

3a-4 ¹³C NMR

3a-5¹³C NMR

3a-6¹³C NMR

3a-7 ¹H NMR

3a-7¹³C NMR

3b-1 ¹H NMR

3b-1 ¹³C NMR

3b-2 ¹³C NMR

3b-3 ¹³C NMR

3b-4 ¹H NMR

3b-4 ¹³C NMR

3b-5 ¹³C NMR

3b-6 ¹H NMR

3b-6 ¹³C NMR

3b-7 ¹³C NMR

3b-8 ¹³C NMR

3c-1 ¹H NMR

3c-1 ¹³C NMR

3d-1 ¹³C NMR

3e-1 ¹³C NMR

3e-2 ¹³C NMR

3e-3 ¹³C NMR

3e-4 ¹H NMR

3e-4 ¹³C NMR

3e-5 ¹H NMR

3e-5 ¹³C NMR

3e-6 ¹H NMR

3e-6 ¹³C NMR

3e-7 ¹H NMR

3e-7 ¹³C NMR

3e-8 ¹H NMR

3e-8 ¹³C NMR

3f-1 ¹³C NMR

3g-1 ¹³C NMR

3h-1 ¹H NMR

3h-1 ¹³C NMR

3i-1 ¹³C NMR

3i-2 ¹H NMR

3i-2 ¹³C NMR

3i-3 ¹³C NMR

3i-4 ¹³C NMR

3i-5 ¹³C NMR

3i-6 ¹H NMR

3i-6 ¹³C NMR

3i-7¹³C NMR

3i-8 ¹H NMR

3i-8 ¹³C NMR

3i-9 ¹³C NMR

3j-1 ¹³C NMR

3e-9 ¹³C NMR

4

- 12000

LYZ-15#.1.fid PROTON CDC13 {E:\HuangNY} HuangNY 24

4b ¹H NMR

4c ¹³C NMR

4. X-ray data determation

4.1 X-ray data of compound 4a

Identification code	LZQ20210731-1
Empirical formula	C ₁₁ H ₁₀ NO
Formula weight	172.20
Temperature/K	293(2)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	7.4761(3)
b/Å	18.2940(7)
c/Å	8.6517(4)
α/°	90
β/°	109.547(5)
γ/°	90
Volume/Å ³	1115.08(9)
Z	5
ρ _{calc} g/cm ³	1.282
µ/mm ⁻¹	0.083
F(000)	455.0
Crystal size/mm ³	0.1 × 0.1 × 0.1
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	6.636 to 56.714
Index ranges	-9 ≤ h ≤ 9, -22 ≤ k ≤ 24, -11 ≤ l ≤ 11
Reflections collected	25758
Independent reflections	2621 [R _{int} = 0.0343, R _{sigma} = 0.0235]
Data/restraints/parameters	2621/0/155
Goodness-of-fit on F ²	1.156
Final R indexes $[I > = 2\sigma (I)]$	R ₁ = 0.0552, wR ₂ = 0.1175
Final R indexes [all data]	R ₁ = 0.0705, wR ₂ = 0.1228
Largest diff. peak/hole / e Å $^{-3}$	0.18/-0.25

4.2 X-ray data of compound 3i-8

Table 1	Crystal	data	and	structure	refinemen	t for	3i-8.
	•/						

Identification code	LZQ20210801-1		
Empirical formula	C ₁₁ H ₁₀ NO		
Formula weight	172.20		
Temperature/K	293(2)		
Crystal system	triclinic		
Space group	P-1		
a/Å	8.2919(3)		
b/Å	8.7725(4)		
c/Å	13.1099(5)		
α/°	101.494(3)		
β/°	94.001(3)		
γ/°	110.869(4)		
Volume/Å ³	862.81(6)		
Z	4		
ρ _{calc} g/cm³	1.326		
µ/mm⁻¹	0.086		
F(000)	364.0		
Crystal size/mm ³	0.18 × 0.18 × 0.18		
Radiation	ΜοΚα (λ = 0.71073)		
20 range for data collection/°	6.624 to 56.932		
Index ranges	-11 ≤ h ≤ 11, -11 ≤ k ≤ 11, -17 ≤ l ≤ 17		
Reflections collected	20397		
Independent reflections	3916 [R _{int} = 0.0380, R _{sigma} = 0.0269]		
Data/restraints/parameters	3916/0/219		
Goodness-of-fit on F ²	1.113		
Final R indexes [I>=2σ (I)]	R ₁ = 0.0608, wR ₂ = 0.1432		
Final R indexes [all data]	R ₁ = 0.0763, wR ₂ = 0.1527		
Largest diff. peak/hole / e Å ⁻³ 0.17/-0.30			

4.3 X-ray data of compound 3j-1

Identification code	LZQ20210731-2
Empirical formula	C ₁₁ H ₁₀ NOCl _{0.08}
Formula weight	174.93
Temperature/K	293(2)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	10.7326(5)
b/Å	16.1644(7)
c/Å	9.2583(5)
α/°	90
β/°	115.115(7)
γ/°	90
Volume/Å ³	1454.33(15)
Z	13
ρ _{calc} g/cm ³	2.596
µ/mm ⁻¹	0.212
F(000)	1200.0
Crystal size/mm ³	0.1 × 0.1 × 0.1
Radiation	ΜοΚα (λ = 0.71073)
2Θ range for data collection/°	6.556 to 56.826
Index ranges	$-13 \le h \le 13$, $-19 \le k \le 20$, $-11 \le l \le 12$
Reflections collected	16965
Independent reflections	3254 [R _{int} = 0.0302, R _{sigma} = 0.0261]
Data/restraints/parameters	3254/0/190
Goodness-of-fit on F ²	1.056
Final R indexes $[I>=2\sigma (I)]$	R ₁ = 0.0498, wR ₂ = 0.1093
Final R indexes [all data]	R ₁ = 0.0727, wR ₂ = 0.1215
Largest diff. peak/hole / e Å ⁻³	0.16/-0.36

Table 1	Crystal	data	and	structure	refineme	nt for	3i-1.
	Ciystai	uuuu	ana	Suucuit	1 cmicine	10 101	U I I