Supporting Information

Acid-Catalysed Iterative Generation of *o*-Quinone Methides for the Synthesis of Dioxabicyclo[3.3.1]nonanes: Total Synthesis of Myristicyclins A-B

Santosh J. Gharpure,* Jegadeesan S. and Dharmendra S. Vishwakarma Department of Chemistry, Indian Institute of Technology Bombay, Maharashtra 400076, India. Fax: +91-22-2576 7152; Tel: +91-22-2576 7171; E-mail: sjgharpure@iitb.ac.in

Table of Contents

General experimental

Melting points are recorded using Tempo melting point apparatus in capillary tubes and are uncorrected. IR spectra were recorded on Nicolet 6700 spectrophotometer and JASCO, FT/IR-4100 spectrophotometer. ¹H (400 and 500 MHz) and ¹³C (100 and 125MHz) spectra were recorded on Bruker Avance 400 and 500 spectrophotometers. The chemical shifts (δ ppm) and coupling constants (Hz) are reported in the standard fashion with reference to internal chloroform (at 7.26 ppm for ¹H and the central line 77.16 ppm for ¹³C of CDCl₃). In the ¹³C NMR spectra, the nature of the carbons (C, CH, CH₂ or CH₃) was determined by recording the DEPT-135 experiment and is given in parentheses. NOE spectrum was recorded in Bruker Avance 400 spectrophotometer. ¹H-¹H NOESY spectrum was recorded in Bruker Avance 500 spectrometer. High resolution mass measurements were carried out using Micro mass Q-ToF instrument using direct inlet mode. Analytical thin-layer chromatography (TLC) was performed on glass plates (7.5 x 2.5 and 7.5 x 5.0 cm) coated with Merck silica gel G containing 13% calcium sulphate as binder or on pr 0.2 mm thick Merck 60 F245 silica plates and various combinations of ethyl acetate and hexanes were used as eluent. Visualization of spots was accomplished by exposure to iodine vapour and KMnO4 stains. All compounds were purified using silica gel [Acme's silica gel (100-200 mesh)] chromatography (approximately 15-20 g per 1 g of the crude product) and gave spectroscopic data consistent with being \geq 95% the assigned structure. All small-scale dry reactions were carried out using standard syringe septum technique. Dry THF was obtained by distillation over sodium-benzophenone ketyl. dichloromethane, benzene, acetonitrile and chloroform were distilled from calcium hydride prior to use.

EXPERIMENTAL PROCEDURES AND SPECTRAL DATA

Note: In the cases wherein diastereomeric mixtures of products were obtained, the data for the major isomer have been mentioned and the diastereomeric ratio measured on the crude reaction mixture by ${}^{1}HNMR$.

Experimental procedure for the synthesis of bicyclic acetals

(6S*,12R*)-12H-6,12-methanodibenzo[d,g][1,3]dioxocine-1,3-diol (6a):

To a cold (0 °C) magnetically stirred solution of salicylaldehyde (**2a**) (87 μ L, 0.82 mmol), (±)camphor sulphonic acid (CSA) (9.5 mg, 0.04 mmol), in dry CH₃CN (8 mL), was added trimethyl orthoformate (136 μ L, 1.23mmol) and stirred for 10 min. Then the ethyl vinyl ether (EVE) (**3a**) (124 μ L, 1.23 mmol) was added slowly at 0 °C the resulting mixture was stirred at room temperature and then the phenol **5a** (155 mg, 1.23 mmol) in dry CH₃CN (2 mL), was slowly added at 0 °C the resulting mixture was stirred for 1h at 0 °C then slowly warmed to room temperature. After completion of the reaction (TLC control), the reaction mixture was carefully quenched with saturated sodium hydrogen carbonate solution (10 mL). The aqueous layer was extracted with diethyl ether (3 x 20 mL), the combined organic layer was washed with brine and dried over anhydrous sodium sulphate. Evaporation of the solvent and purification of the residue on silica gel column, using EtOAc:petroleum ether (from 1% to 25% ethyl acetate) as an eluent afforded the required bicyclic product **6a** (124 mg, 59%).

Physical appearance: Pale red foamy solid.

R_f: 0.4 (1: 3, EtOAc:petroleum ether).

IR (neat): 3341, 2854, 1626, 1599, 1427, 1221, 1135, 1107, 1121, 902, 753cm⁻¹.

¹H NMR (500 MHz, DMSO-*d*₆): δ 9.54 (s, 1H), 9.11 (s, 1H), 7.30-7.25 (m, 1H), 7.06 (td, J = 7.7, 1.6 Hz, 1H), 6.87-6.79 (m, 2H), 6.14-6.10 (m, 1H), 5.91 (d, J = 2.2 Hz, 1H), 5.76 (d, J = 2.2 Hz, 1H), 4.17 (q, J = 2.9 Hz, 1H), 2.10-2.00 (m, 2H).

¹³C NMR (125 MHz, DMSO-*d*₆, DEPT): δ156.7 (C), 154.7 (C), 151.8 (C), 151.0 (C), 128.1 (C), 127.8 (CH), 127.2 (CH), 120.6 (CH), 115.6 (CH), 105.4 (C), 95.7 (CH), 94.1 (CH), 91.6 (CH), 25.3 (CH₂), 23.2 (CH).

HRMS (ESI, M+Na⁺): m/z calcd. for C₁₅H₁₂NaO₄ 256.2585, found 256.2583.

(6S*,12R*)-9-(benzyloxy)-12H-6,12-methanodibenzo[d,g][1,3]dioxocine-1,3-diol (6b):

The reaction of salicylaldehyde (2b) (185 mg, 0.81 mmol), ethyl vinyl ether (EVE) (3a) (122 μ L, 1.22 mmol) and phenol 5a (153 mg, 1.22 mmol) in the presence of (±)-camphor sulphonic

acid (CSA) (9.5 mg, 0.04 mmol), trimethyl orthoformate (135 μ L, 1.22 mmol) in dry CH₃CN:MeOH [3/2v/v] (8 mL) at 0 °C to room temperature as described for the bicyclic product **6a** followed by purification on a silica gel column using EtOAc:petroleum ether (from 1% to 25% ethyl acetate) as eluent furnished the bicyclic product **6b** (211 mg, 72%).

Physical appearance: White solid.

m.p.: 88-90 °C

R_f: 0.3 (1: 3, EtOAc:petroleum ether).

IR (neat): 3485, 3064, 2939, 2863, 2245, 1954, 1636, 1457, 1265, 1192, 1055, 831, 762 cm⁻¹.

¹**H NMR (500 MHz, Methanol-***d*₄): δ7.37-7.17 (m, 6H), 6.49 – 6.43 (m, 2H), 5.97 (q, *J* = 2.0 Hz, 1H), 5.91 (d, *J* = 2.2 Hz, 1H), 5.85 (d, *J* = 2.3 Hz, 1H), 4.91 (s, 2H), 4.18 (q, *J* = 2.6 Hz, 1H), 2.00 (q, *J* = 3.2 Hz, 2H).

¹³C NMR (125 MHz, Methanol-*d*₄, DEPT): *δ*159.7 (C), 157.8 (C), 156.0 (C), 153.5 (C), 153.4 (C), 138.8 (C), 129.5 (CH), 129.5 (2 x CH), 128.9 (2 x CH), 128.6 (CH), 122.3 (C), 109.0 (CH), 108.2 (C), 103.6 (CH), 96.8 (CH), 95.7 (CH), 93.7 (CH), 71.1 (CH₂), 27.2 (CH₂), 24.7 (CH).

HRMS (ESI, M+Na⁺): m/z calcd. for C₂₂H₁₈NaO₅ 385.1046, found 385.1046.

(6R*,12R*)-8-methoxy-12H-6,12-methanodibenzo[d,g][1,3]dioxocine-1,3-diol (6c):

The reaction of salicylaldehyde (**2c**) (125 mg, 0.82 mmol), EVE (3**a**) (124 μ L, 1.23 mmol) and phenol **5a** (136 mg, 1.23 mmol) in presence of (±)-camphor sulphonic acid (CSA) (9.5 mg, 0.04 mmol) and trimethyl orthoformate (137 μ L, 1.23 mol) in dry CH₃CN (8 mL) at 0 °C to room temperature as described for the bicyclic product **6a** followed by purification on a silica gel column using EtOAc:petroleum ether (from 1% to 25% ethyl acetate) as eluent furnished the bicyclic product **6c** (175 mg, 74%).

Physical appearance: Pale red foamy solid.

R_f: 0.4 (1: 3, EtOAc:petroleum ether).

IR (neat): 3351, 2976, 2873, 1646, 1609, 1447, 1231, 1125, 1101, 906, 754cm⁻¹.

¹H NMR (400 MHz, Acetonitrile- d_3): δ 7.36 (s, 1H), 6.92 (dd, J = 7.6, 1.7 Hz, 1H), 6.85-6.71 (m, 1H), 6.12 (q, J = 2.0 Hz, 1H), 5.93 (s, 1H), 5.89 (s, 1H), 4.24 (q, J = 2.6 Hz, 1H), 3.77 (s, 3H), 2.11 (q, J = 2.7 Hz, 2H).

¹³C NMR (100 MHz, Acetonitrile-*d*₃, DEPT): δ157.5 (C), 155.2 (C), 153.4 (C), 148.9 (C), 141.4 (C), 129.7 (C), 121.7 (CH), 120.8 (CH), 111.2 (C), 107.5 (C), 96.6 (CH), 95.9 (CH), 93.1 (CH), 56.4 (CH₃), 26.1 (CH₂), 24.6 (CH).

HRMS (ESI, M+H⁺): m/z calcd. for C₁₆H₁₅O₅ 287.0914, found 287.0912.

(6S, *12R*)-12H-6,12-methanodibenzo[d,g][1,3]dioxocin-3-ol (6d):

The reaction of salicylaldehyde (2a) (87 μ L, 0.82 mmol), EVE (3a) (124 μ L, 1.23 mmol) and phenol 5b (1.23 mmol, 136 mg) in presence of (±)-camphor sulphonic acid (CSA) (9.5 mg, 0.04 mmol) and trimethyl orthoformate (136 μ L, 1.23 mmol) in dry CH₃CN (8 mL) at 0 °C to room temperature as described for the bicyclic product 6a followed by purification on a silica gel column using EtOAc:petroleum ether (from 1% to 25% ethyl acetate) as eluent furnished the bicyclic product 6d (150 mg, 76%).

Physical appearance: Pale red foamy solid.

R_f: 0.3 (1: 3, EtOAc:petroleum ether).

IR (neat): 3364, 2925, 1616, 1579, 1437, 1234, 1105, 1112, 911, 756cm⁻¹.

¹**H NMR (500 MHz, Methanol-***d*₄**):** δ 7.03 (dd, *J* = 7.4, 1.7 Hz, 1H), 6.97-6.83 (m, 2H), 6.69 (t, *J* = 7.7 Hz, 2H), 6.22 (h, *J* = 6.1, 4.2 Hz, 2H), 5.89 (q, *J* = 2.1 Hz, 1H), 3.69 (q, *J* = 2.6 Hz, 1H), 1.93 (q, *J* = 2.4 Hz, 2H).

¹³C NMR (125 MHz, Methanol-d₄, DEPT): δ158.2 (C), 153.0 (C), 152.3 (C), 129.4 (C), 129.2 (CH), 128.7 (CH), 128.6 (CH), 122.3 (CH), 119.9 (C), 117.2 (CH), 109.8 (CH), 104.1 (CH), 93.6 (CH), 32.1 (CH), 26.9 (CH₂).

HRMS (ESI, M+K⁺): m/z calcd. for C₁₅H₁₂KO₃ 279.0418, found 279.0411.

(6S*,12R*)-2,3-dimethoxy-12H-6,12-methanodibenzo[d,g][1,3]dioxocine (6e):

The reaction of salicylaldehyde (2a) (87 μ L, 0.82 mmol), EVE (3a) (124 μ L, 1.23 mmol) and phenol 5c (189 mg, 1.23 mmol) in the presence of (±)-camphor sulphonic acid (CSA) (9.5 mg 0.04 mmol) and trimethyl orthoformate (136 μ L, 1.23 mmol) in dry CH₃CN (8 mL) at 0 °C to room temperature followed by at 0 °C to room temperature as described for the bicyclic product 6a followed by purification on a silica gel column using EtOAc:petroleum ether

(from 1% to 25% ethyl acetate) as eluent furnished the bicyclic product **6e** (198 mg, 85%).

Physical appearance: White Solid

Rf: 0.4 (1: 3, EtOAc:petroleum ether).

IR (neat): 2936, 2878, 1636, 1599, 1427, 1221, 1135, 1107, 1121, 907, 765cm⁻¹.

¹**H NMR (500 MHz, Acetonitrile-***d*₃**):** δ 7.33 (dt, J = 7.4, 1.4 Hz, 1H), 7.11 (tt, J = 8.0, 1.4 Hz, 1H), 6.91 (tt, J = 7.5, 1.2 Hz, 1H), 6.87 (t, J = 4.0 Hz, 2H), 6.52 (d, J = 1.0 Hz, 1H), 6.12 (p, J = 2.1 Hz, 1H), 3.97 (d, J = 3.4 Hz, 1H), 3.77 (d, J = 1.1 Hz, 3H), 3.74 (d, J = 1.1 Hz, 3H), 2.23 (d, J = 1.1 Hz, 2H).

¹³C NMR (125 MHz, Acetonitrile-*d*₃, DEPT): δ152.2 (C), 150.0 (C), 145.6 (C), 144.9 (C),
128.9 (C), 128.8 (CH), 128.6 (CH), 122.2 (CH), 118.9 (C), 116.9 (CH), 112.2 (CH), 102.0 (CH), 93.3 (CH), 57.1 (CH₃), 56.5 (CH₃), 31.5 (CH), 26.4 (CH₂).

HRMS (ESI, M+Na⁺): m/z calcd. for C₁₇H₁₆NaO₄ 309.0941, found 309.0940.

1-((6S,12R*)-1,3-dihydroxy-9-methoxy-12H-6,12-methanodibenzo[d,g][1,3]dioxocin-4-yl)decan-1-one* (6f):

To a cold (0 °C) magnetically stirred solution of salicylaldehyde **2d** (99 mg, 0.66 mmol), (\pm)camphor sulphonic acid (CSA) (7.6 mg 0.04 mmol), in dry CH₃CN:MeOH [3:1v/v] (8 mL), was added trimethyl orthoformate (110 μ L, 0.99 mmol) and stirred for 10 min. Then the EVE (**3a**) (99 μ L, 0.99 mmol,) was added slowly at 0 °C the resulting mixture was stirred at room temperature and then the phenol **5d** (277 mg, 0.99 mmol,) in dry CH₃CN (2 mL), was slowly added at 0 °C the resulting mixture was stirred for 1h at 0 °C then slowly warmed to room temperature. After completion of the reaction (TLC control), the reaction mixture was carefully quenched with saturated sodium hydrogen carbonate solution (10 mL). The aqueous layer was extracted with diethyl ether (3 x 20 mL), the combined organic layer was washed with brine and dried over anhydrous sodium sulphate. Evaporation of the solvent and purification of the residue on silica gel column, using diethyl ether:petroleum ether (from 1% to 25% diethyl ether) as an eluent afforded the required bicyclic product **6f** and **6f**². The major regio isomer, **6f** (133 mg, 46%) and the minor **6f**² (64 mg, 22%).

Physical appearance: Pale brown sticky liquid.

R_f: 0.3 (1: 2.7:0.3, Et₂O: pet ether:MeOH).

IR (neat): 3341, 2925, 2854, 1699, 1656, 1599, 1427, 1261, 1135, 1107, 1121, 1045, 902, 753cm⁻¹.

¹**H NMR (400 MHz, Benzene-***d*₆**):** δ 14.58 (s, 1H), 6.67 (d, *J* = 2.5 Hz, 1H), 6.53 (dd, *J* = 8.4, 2.5 Hz, 1H), 6.23 (s, 1H), 5.91 (s, 1H), 5.73 (q, *J* = 2.1 Hz, 1H), 4.18 (q, *J* = 2.9 Hz, 1H), 3.24 (s, 3H), 3.01 (qt, *J* = 16.4, 7.4 Hz, 2H), 1.73 (p, *J* = 7.4 Hz, 2H), 1.63-1.53 (m, 2H), 1.34-1.28 (m, 12H), 0.92 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (100 MHz, Benzene-*d*₆, DEPT): δ 206.6 (C), 165.9 (C), 160.4 (C), 159.3 (C), 154.7 (C), 152.5 (C), 128.4 (CH), 120.2 (C), 108.6 (C), 107.2 (CH), 106.2 (C), 102.4 (CH), 97.5 (CH), 92.6 (CH), 55.3 (OCH₃), 45.0 (CH₂), 32.7 (CH₂), 30.5 (CH₂), 30.3 (CH₂), 30.1 (CH₂), 25.5 (CH₂), 25.4 (2 x CH₂), 23.7 (CH), 23.5 (CH₂), 14.8 (CH₃).

HRMS (ESI, M+Na⁺): m/z calcd. for C₂₆H₃₂NaO₆ 463.0291, found 463.0293.

Minordiastereomer:1-((6S*,12R*)-1,3-dihydroxy-9-methoxy-12H-6,12-methanodibenzo[d,g][1,3]dioxocin-2-yl)decan-1-one (6f'):

Physical appearance: Pale yellow sticky liquid.

R_f: 0.4 (1: 2.7:0.3, Et₂O: pet ether: MeOH).

IR (neat): 3361, 2945, 2875, 1708, 1676, 1599, 1427, 1243, 1135, 1107, 1121, 1065, 902, 753 cm⁻¹.

¹H NMR (500 MHz, Benzene-*d*₆): δ 14.94 (s, 1H), 7.51 (d, J = 8.4

Hz, 1H), 6.65 (d, *J* = 2.5 Hz, 1H), 6.47 (dd, *J* = 8.4, 2.5 Hz, 1H), 6.24 (s, 1H), 5.64 (s, 1H), 4.34 (d, *J* = 3.7 Hz, 1H), 3.21 (s, 3H), 3.04 (qt, *J* = 16.2, 7.3 Hz, 2H), 1.62 (dt, *J* = 13.2, 2.7 Hz, 2H), 1.54 (dt, *J* = 13.2, 2.8 Hz, 2H), 1.43-1.37 (m, 2H), 1.30 (m, 10H), 0.90 (t, *J* = 6.9 Hz, 3H).

¹³C NMR (125 MHz, Benzene-*d*₆, DEPT): δ 206.8 (C), 163.5 (C), 160.4 (C), 158.9 (C), 157.6 (C), 152.6 (C), 120.4 (CH), 108.8 (C), 108.4 (CH), 106.0 (C), 102.5 (CH), 95.4 (CH), 93.2 (CH), 55.2 (OCH₃), 44.7 (CH₂), 32.6 (CH₂), 30.5 (CH₂), 30.4 (CH₂), 30.3 (CH₂), 30.3 (CH₂), 30.1 (CH₂), 26.2 (CH₂), 25.4 (CH₂), 23.5 (CH), 23.4 (CH₂), 14.7 (CH₃).

HRMS (ESI, M+Na⁺): m/z calcd. for C₂₆H₃₂NaO₆ 463.0291, found 463.0293.

1-((6S*,12R*)-1,3-dihydroxy-12H-6,12-methanodibenzo[d,g][1,3]dioxocin-4-yl)decan-1one (6g):

To a cold (0 °C) magnetically stirred solution of salicylaldehyde (**2a**) (87 μ L, 0.82 mmol), (±)camphor sulphonic acid (CSA) (9.5 mg, 0.04 mmol), in dry CH₃CN (8 mL), was added trimethyl orthoformate (136 μ L, 1.23 mmol) and stirred for 10 min. Then the EVE (**3a**) (124 μ L, 1.23 mmol) was added slowly at 0 °C the resulting mixture was stirred at room temperature and then the phenol **5d** (345 mg, 1.23 mmol) in dry CH₃CN (2 mL), was slowly added at 0 °C the resulting mixture was stirred for 1h at 0 °C then slowly warmed to room temperature. After completion of the reaction (TLC control), the reaction mixture was carefully quenched with saturated sodium hydrogen carbonate solution (10 mL). The aqueous layer was extracted with diethyl ether (3 x 20 mL), the combined organic layer was washed with brine and dried over anhydrous sodium sulphate. Evaporation of the solvent and purification of the residue on silica gel column, using EtOAc:petroleum ether (from 1% to 20% ethyl acetate) as an eluent afforded the required bicyclic product **6g** and **6g**'. The major regioisomer, **6g** (185 mg, 55%) and the minor **6g'** (81 mg, 24%).

Physical appearance: Pale yellow semi solid.

R_f: 0.3 (1: 3, EtOAc:petroleum ether).

IR (neat): 3341, 2925, 2854, 1698, 1626, 1599, 1427, 1231, 1135,

1107, 1121, 1055, 902, 753cm⁻¹.

¹H NMR (500 MHz, Benzene-*d*₆): δ 14.57 (s, 1H), 7.52-7.46 (m, 1H), 7.02-6.90 (m, 1H), 6.88 (s, 1H), 6.85-6.79 (m, 1H), 6.04 (d, *J* = 7.1 Hz, 1H), 5.72 (s, 1H), 4.25 (d, *J* = 7.7 Hz, 1H), 3.10 (t, *J* = 5.7 Hz, 2H), 1.50 (d, *J* = 13.5 Hz, 2H), 1.31-1.26 (m, 2H), 0.93 (p, *J* = 6.7 Hz, 12H), 0.83 (s, 3H).

¹³C NMR (125 MHz, Benzene-*d*₆, DEPT): δ 206.7 (C), 165.8 (C), 160.1 (C), 154.8 (C), 151.7 (C), 122.0 (CH), 116.8 (CH), 106.9 (C), 105.9 (C), 97.5 (CH), 92.6 (CH), 44.9 (CH₂), 32.6 (CH₂), 30.4 (2 x CH₂), 30.3 (2 x CH₂), 30.1 (2 x CH₂), 25.6 (2 x CH₂), 25.0 (CH₂), 24.3 (CH), 23.4 (CH₂), 14.7 (CH₃).

HRMS (ESI, M+Na⁺): m/z calcd. for C₂₅H₃₀NaO₅ 433.1985, found 433.1985

Minordiastereomer1-((6S*,12R*)-1,3-dihydroxy-12H-6,12-methanodibenzo[d,g][1,3]dioxocin-2-yl)decan-1-one (6g'):

Physical appearance: Pale yellow sticky solid.

R_f: 0.4 (1: 3, EtOAc: pet ether).

IR (neat): 3356, 2945, 2874, 1703, 1626, 1599, 1428, 1251, 1135, 1107, 1121, 1045, 902, 753cm⁻¹.

1H), 5.77 (d, *J* = 2.6 Hz, 1H), 5.57 (s, 1H), 4.31 (d, *J* = 3.7 Hz, 1H), 3.09-2.90 (m, 2H), 1.73 (p, *J* = 7.3 Hz, 2H), 1.56 (dt, *J* = 13.1, 2.7 Hz, 1H), 1.51 (dt, *J* = 13.0, 2.7 Hz, 1H), 1.27 (m, 12H), 0.91 (t, *J* = 6.9 Hz, 3H).

¹³C NMR (125 MHz, Benzene-*d*₆, DEPT): δ 206.3 (C), 162.9 (C), 158.2 (C), 157.0 (C), 151.0 (C), 128.4 (CH), 127.7 (CH), 121.4 (CH), 116.0 (CH), 107.5 (C), 105.2 (C), 94.8 (CH), 92.5 (CH), 44.0 (CH₂), 31.9 (CH₂), 29.7 (CH₂), 29.6 (CH₂), 29.6 (CH₂), 29.4 (CH₂), 25.0 (CH₂), 24.7 (2 x CH₂), 23.4 (CH), 22.7 (CH₂), 14.0 (CH₃).

HRMS (ESI, M+Na⁺): m/z calcd. for C₂₅H₃₀NaO₅ 433.1985, found 433.1985.

(6S*,12R*)-methyl 1,3-dihydroxy-12H-6,12-methanodibenzo[d,g][1,3]dioxocine-13carboxylate (6h):

The reaction of salicylaldehyde (**2a**) (87 μ L, 0.82 mmol), ethyl aceto-acetate (**3b**) (133 μ L, 1.23 mmol) and phenol **5a** (155 mg, 1.23 mmol) in presence of (±)-camphor sulphonic acid (CSA) (9.5 mg, 0.04 mmol) and trimethyl orthoformate (136 μ L, 1.23 mmol) in dry CH₃CN (8 mL) at 0 °C to room temperature as described for the bicyclic product **6a** followed by purification on a silica gel column using EtOAc:petroleum ether (from 1% to 25% ethyl acetate) as eluent furnished the bicyclic product **6h** (180 mg, 68%).

Physical appearance: Pale brown sticky liquid.

R_f: 0.3 (1: 3, EtOAc:petroleum ether).

IR (neat): 3341, 2925, 2854, 1754, 1626, 1599, 1427, 1251, 1135, 1107, 1041, 902, 753cm⁻¹.

OMe

7

OMe

'OEt

¹H NMR (500 MHz, Methanol-*d*₄): δ 7.32 (dd, J = 15.5, 7.2 Hz, 2H), 7.01 (dd, J = 12.0, 4.9 Hz, 1H), 6.99-6.92 (m, 1H), 6.73 (s, 1H), 6.22 (s, 1H), 5.91 (d, J = 2.3 Hz, 1H), 4.66 (d, J = 2.4 Hz, 1H), 3.50 (s, 3H), 3.14 (t, J = 2.6 Hz, 1H).

¹³C NMR (125 MHz, Methanol-d₄, DEPT): δ170.9 (C), 158.4 (C), 156.5 (C), 153.3 (C), 152.3 (C), 129.6 (CH), 129.1 (C), 128.6 (CH), 122.3 (CH), 116.8 (CH), 105.6 (C), 97.2 (CH), 95.6 (CH), 93.1 (CH), 52.7 (OCH₃), 41.7 (CH), 28.2 (CH).

HRMS (ESI, M+Na⁺): m/z calcd. for C₁₇H₁₄NaO₆ 337.0683, found 337.0679.

(2S*,4R*)-2-ethoxy-4-(2,4,6-trimethoxyphenyl)chroman (7):

The reaction of salicylaldehyde (2a) (87 μ L, 0.82 mmol), EVE (3a) (124 μ L, 1.23 mmol) and trimethoxy benzene (5e) (207 mg, 1.23 mmol) in the presence of (±)-camphor sulphonic acid (CSA) (9.5 mg, 0.04 mmol) and trimethyl orthoformate (136 μ L, 1.23 mmol) in dry CH₃CN (8 mL) at 0 °C to room temperature as described for the bicyclic product 6a followed by purification on a silica gel column using EtOAc:petroleum ether (from 1% to 25% ethyl acetate) as eluent furnished the bicyclic product 7 (187 mg, 66%).

Physical appearance: White solid.

R_f: 0.5 (1: 2, EtOAc:petroleum ether).

IR (neat): 2925, 2854, 1626, 1599, 1427, 1221, 1135, 1107, 1121, 902, 753 cm⁻¹.

1H), 6.78-6.61 (m, 2H), 6.16 (s, 2H), 5.33 (t, *J* = 2.5 Hz, 1H), 5.22 (dp, *J* = 8.2, 2.7 Hz, 1H),

4.97-4.78 (m, 2H), 3.82 (s, 3H), 3.63 (s, 3H), 3.52 (s, 3H), 2.59 (dddd, *J* = 12.6, 9.8, 4.4, 2.0 Hz, 1H), 2.12-1.91 (m, 1H), 1.22 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*, DEPT): δ 160.2 (C), 160.1 (C), 159.8 (C), 153.5 (C), 127.3 (C), 127.3 (CH), 127.0 (CH), 126.3 (CH), 120.5 (CH), 102.3 (C), 98.7 (CH), 97.2 (CH), 91.5 (CH), 63.6 (CH₂), 56.2 (CH₃), 55.9 (CH₃), 55.4 (CH₃), 31.1 (CH₂), 25.7 (CH), 15.2 (CH₃).

HRMS (ESI, M+Na⁺): m/z calcd. for C₂₀H₂₄NaO₅ 433.1985, found 433.1985.

(6S*,12R*)-6-methyl-12H-6,12-methanodibenzo[d,g][1,3]dioxocine-1,3-diol (6j):

To a cold (0 °C) magnetically stirred solution of salicylaldehyde (**2a**) (87 μ L, 0.82 mmol), (±)camphor sulphonic acid (CSA) (9.5 mg, 0.04 mmol), in dry CH₃CN (8 mL), was added trimethyl orthoformate (280 μ L, 2.46 mmol) and stirred for 10 min. Then the ketone **8a** (92 μ L, 1.23 mmol) was added slowly at 0 °C the resulting mixture was stirred at room temperature. and then the phenol **5a** (155 mg, 1.23 mmol) in dry CH₃CN (2 mL), was slowly added at 0 °C the resulting mixture was stirred for 1h at 0 °C then slowly warmed to room temperature. After completion of the reaction (TLC control), the reaction mixture was carefully quenched with saturated sodium hydrogen carbonate solution (10 mL). The aqueous layer was extracted with diethyl ether (3 x 20 mL), the combined organic layer was washed with brine and dried over anhydrous sodium sulphate. Evaporation of the solvent and purification of the residue on silica gel column, using EtOAc:petroleum ether (from 1% to 15% ethyl acetate) as an eluent afforded the required bicyclic product **6j** (168 mg, 76%)

Physical appearance: white solid.

R_f: 0.3 (1: 3, EtOAc:petroleum ether).

IR (neat): 3341, 2925, 2854, 1626, 1599, 1427, 1221, 1135, 1107, 1121, 902, 753cm⁻¹.

¹**H NMR (500 MHz, Acetonitrile-***d*₃**):** δ7.30 (dd, *J* = 7.5, 1.7 Hz, 1H), 7.05 (td, *J* = 7.7, 1.7 Hz, 1H), 6.86-6.80 (m, 1H), 6.77 (dd, *J* = 8.1, 1.3 Hz, 1H), 5.90 (d, *J* = 2.2 Hz, 1H), 5.83 (d, *J* = 2.2 Hz, 1H), 4.27 (t, *J* = 3.1 Hz, 1H), 2.13 (d, *J* = 3.1 Hz, 2H), 1.76 (s, 3H).

¹³C NMR (125 MHz, Acetonitrile-*d*₃, DEPT): *δ*157.5 (C), 155.2 (C), 154.2 (C), 153.1 (C), 128.6 (CH), 128.4 (CH), 121.7 (CH), 116.6 (CH), 107.1 (2 x C), 99.1 (C), 96.4 (CH), 95.8 (CH), 31.6 (CH₂), 27.6 (CH₃), 27.0 (CH).

HRMS (ESI, M+Na⁺): m/z calcd. for C₁₆H₁₄NaO₄ 283.0784, found 283.0795.

(6R*,12R*)-6-phenyl-12H-6,12-methanodibenzo[d,g][1,3]dioxocine-1,3-diol (6k):

The reaction of salicylaldehyde (2a) (87 μ L, 0.82 mmol), ketone 8b (144 μ L, 1.23 mmol) and phenol 5a (155 mg, 1.23 mmol) in the presence of (±)-camphor sulphonic acid (CSA) (9.5 mg, 0.04 mmol) and trimethyl orthoformate (280 μ L, 2.46 mmol) dry CH₃CN (8 mL) at 0 °C to room temperature as described for the bicyclic product 6j followed by purification on a silica gel column using EtOAc:petroleum ether (from 1% to 25% ethyl acetate) as eluent furnished the bicyclic product 6k (215 mg, 79%).

Physical appearance: White solid.

Rf: 0.3 (1: 3, EtOAc:petroleum ether).

IR (neat): 3412, 2895, 2814, 1634, 1609, 1432, 1239, 1147, 1137, 1129, 904, 756cm⁻¹.

¹**H NMR (500 MHz, Acetonitrile**-*d*₃): δ 7.77-7.67 (m, 2H), 7.43 (dt, *J* = 12.8, 6.9 Hz, 3H), 7.41-7.34 (m, 1H), 7.10 (td, *J* = 7.7, 1.7 Hz, 1H), 6.93 (d, *J* = 8.1 Hz, 1H), 6.89 (t, *J* = 7.4 Hz, 1H), 6.01-5.95 (m, 2H), 4.35 (d, *J* = 3.2 Hz, 1H), 2.26 (t, *J* = 3.4 Hz, 2H).

¹³C NMR (125 MHz, Acetonitrile-*d*₃, DEPT): δ 157.7 (C), 155.4 (C), 154.3 (C), 153.2 (C), 142.8 (C), 129.8 (2 x CH), 129.4 (2 x CH), 128.7 (CH), 128.6 (CH), 126.7 (CH), 122.2 (CH), 116.9 (CH), 107.1 (2 x C), 99.8 (C), 96.9 (CH), 96.1 (CH), 33.8 (CH₂), 27.4 (CH).
HRMS (ESI, M+Na⁺): m/z calcd. For C₂₁H₁₆NaO₄ 355.0941, found 355.0944.

(6R*,12R*)-6-(p-tolyl)-12H-6,12-methanodibenzo[d,g][1,3]dioxocine-1,3-diol (6l):

The reaction of salicylaldehyde (2a) (87 μ L, 0.82 mmol), ketone 8c (165 μ L, 1.23 mmol) and phenol 8a (155 mg, 1.23 mmol) in the presence of (±)-camphor sulphonic acid (CSA) (9.5 mg, 0.04 mmol) and trimethyl orthoformate (280 μ L, 2.46 mmol) in dry CH₃CN (8 mL) at 0 °C to room temperature as described for the bicyclic product 6j followed by purification on a silica gel column using EtOAc:petroleum ether (from 1% to 25% ethyl acetate) as eluent furnished the bicyclic product 6l (213 mg, 75%).

Physical appearance: brown foamy solid.

R_f: 0.4 (1: 3, EtOAc:petroleum ether).

IR (neat): 3338, 2945, 2866, 1621, 1591, 1447, 1224, 1136, 1127, 1101, 902, 751cm⁻¹.

¹H NMR (500 MHz, Acetonitrile-*d*₃): δ7.57 (d, *J* = 7.8 Hz, 2H), 7.37

(d, *J* = 7.5 Hz, 1H), 7.24 (d, *J* = 7.8 Hz, 2H), 7.09 (t, *J* = 7.7 Hz, 1H), 7.01-6.68 (m, 2H), 5.99 (s, 2H), 4.35 (s, 1H), 2.35 (s, 3H), 2.25-2.15 (m, 2H).

¹³C NMR (125 MHz, Acetonitrile-*d*₃, DEPT): *δ*157.8 (C), 155.5 (C), 154.4 (C), 153.3 (C), 140.0 (C), 139.7 (C), 129.9 (CH), 128.8 (CH), 128.8 (C), 128.6 (2 x CH), 126.7 (CH), 122.1 (2 x CH), 116.9 (CH), 107.1 (C), 99.8 (C), 96.9 (CH), 96.1 (CH), 33.9 (CH₂), 27.5 (CH), 21.3 (CH₃).

HRMS (ESI, M+Na⁺): m/z calcd. For C₂₂H₁₈NaO₄ 369.1097, found 369.1092.

(6R*,12R*)-6-(4-methoxyphenyl)-12H-6,12-methanodibenzo[d,g][1,3]dioxocine-1,3-diol (6m):

The reaction of salicylaldehyde (2a) (87 μ L, 0.82 mmol), ketone 8d (185 mg, 1.23 mmol) and phenol 5a (155 mg, 1.23 mmol) in the presence of (±)-camphor sulphonic acid (CSA) (9.5 mg, 0.04 mmol) and trimethyl orthoformate (280 μ L, 2.46 mmol) in dry CH₃CN (8 mL) at 0 °C to room temperature as described for the bicyclic product 6j followed by purification on a silica gel column using EtOAc:petroleum ether (from 1% to 25% ethyl acetate) as eluent furnished the bicyclic product 6m (206 mg, 69%).

Physical appearance: Pale brown foamy solid.

R_f: 0.4 (1: 3, EtOAc:petroleum ether).

IR (neat): 3365, 2874, 1646, 1595, 1432, 1241, 1165, 1189, 909, 753 cm⁻¹.

¹H NMR (500 MHz, Acetonitrile-*d*₃): δ7.61 (d, *J* = 8.3 Hz, 2H), 7.35

(d, *J* = 7.4 Hz, 1H), 7.08 (d, *J* = 7.7 Hz, 1H), 6.96 (d, *J* = 8.3 Hz, 2H), 6.89 (t, *J* = 10.6 Hz, 2H), 5.96 (s, 2H), 4.33 (s, 1H), 3.79 (s, 3H), 2.24 (s, 2H).

¹³C NMR (125 MHz, Acetonitrile-*d*₃, DEPT): *δ* 161.0 (C) 157.6 (C), 155.3 (C), 154.4 (C), 153.2 (C), 135.0 (C), 128.7 (C), 128.7 (CH), 128.5 (CH), 128.1 (2 x CH), 122.1 (CH), 116.9 (CH), 114.5 (2 x CH), 107.1 (C), 99.7 (C), 96.8 (CH), 96.1 (CH), 56.1 (CH₃), 33.8 (CH₂), 27.5 (CH).

HRMS (ESI, M+Na⁺): m/z calcd. For C₂₂H₁₈NaO₅ 385.1046, found 385.1047.

(6R*,12R*)-6-(4-nitrophenyl)-12H-6,12-methanodibenzo[d,g][1,3]dioxocine-1,3-diol (6n):

The reaction of salicylaldehyde (2a) (87 μ L, 0.82 mmol), ketone 8f (135 mg, 1.23 mmol) and phenol 5a (155 mg, 1.23 mmol) in the presence of (±)-camphor sulphonic acid (CSA) (9.5 mg, 0.04 mmol), trimethyl orthoformate (280 μ L, 2.46 mmol) in dry CH₃CN (8 mL) at 0 °C to room temperature as described for the bicyclic product 6j followed by purification on a silica gel column using EtOAc:petroleum ether (from 1% to 25% ethyl acetate) as eluent furnished the bicyclic product **6n** (252 mg, 81%).

Physical appearance: Pale yellow solid.

R_f: 0.3 (1: 3, EtOAc:petroleum ether).

IR (neat): 3355, 2945, 2857, 1624, 1609, 1537, 1427, 1358, 1221, 1135, 1107, 1121, 908, 754cm⁻¹.

¹H NMR (400 MHz, Acetonitrile-d₃): δ8.25 (dq, J = 9.5, 2.6 Hz, 2H),

7.94-7.86 (m, 2H), 7.42-7.35 (m, 2H), 7.00-6.87 (m, 2H), 5.98 (s, 2H), 4.39 (t, *J* = 3.1 Hz, 1H), 2.27 (dd, *J* = 3.2, 1.9 Hz, 2H).

¹³C NMR (100 MHz, Acetonitrile-d₃, DEPT): δ157.7 (C), 155.3 (C), 153.8 (C), 152.7 (C),
149.2 (C), 128.8 (C), 128.7 (CH), 128.5 (CH), 128.2 (2 x CH), 124.8 (C), 124.5 (2 x CH),
122.5 (CH), 117.0 (CH), 106.9 (C), 99.3 (C), 97.1 (CH), 96.1 (CH), 33.3 (CH), 27.2 (CH₂).
HRMS (ESI, M+H⁺): m/z calcd. For C₂₁H₁₆O₆ 378.0972, found 378.1002.

(6*R**,12*R**)-6-(4-bromophenyl)-12*H*-6,12-methanodibenzo[d,g][1,3]dioxocine-1,3-diol (60):

The reaction of salicylaldehyde (2a) (87 μ L, 0.82 mmol), ketone 8e (163 mg, 1.23 mmol) and phenol 5a (155 mg, 1.23 mmol) in the presence of (±)-camphor sulphonic acid (CSA) (9.5 mg, 0.04 mmol), trimethyl orthoformate (280 μ L, 2.46 mmol) in dry CH₃CN (8 mL) at 0 °C to room temperature as described for the bicyclic product 6j followed by purification on a silica gel column using EtOAc:petroleum ether (from 1% to 25% ethyl acetate) as eluent furnished the bicyclic product 60 (246 mg, 73%).

Physical appearance: white solid.

R_f: 0.3 (1: 3, EtOAc:petroleum ether).

IR (neat): 3449, 2935, 2866, 1626, 1599, 1417, 1242, 1137, 1105, 1122, 905, 756 cm⁻¹.

¹H NMR (500 MHz, Methanol-d₄): δ7.60-7.52 (m, 4H), 7.42-7.37 (m,

1H), 7.10-7.03 (m, 1H), 6.90 (d, *J* = 8.1 Hz, 1H), 6.85 (t, *J* = 7.4 Hz, 1H), 5.97 (s, 2H), 4.36 (d, *J* = 3.1 Hz, 1H), 2.17 (d, *J* = 3.1 Hz, 2H).

¹³C NMR (125 MHz, Methanol-d₄, DEPT): δ158.2 (C), 156.2 (C), 154.3 (C), 153.4 (C), 142.8 (C), 132.5 (CH), 129.4 (2 x CH), 129.1 (CH), 129.0 (2 x CH), 128.5 (CH), 123.7 (C), 122.3 (CH), 117.0 (CH), 107.2 (C), 99.7 (C), 97.1 (CH), 95.8 (CH), 34.5 (CH₂), 28.0 (CH).
HRMS (ESI, M+K⁺): m/z calcd. For C₂₁H₁₅BrKO₄ 433.0093, found 433.0092.

(6S*,12R*)-ethyl 1,3-dihydroxy-6-methyl-12H-6,12-methanodibenzo[d,g][1,3]dioxocine-13-carboxylate (6p):

The reaction of salicylaldehyde (2a) (87 μ L, 0.82 mmol), ketone 8g (155.3 μ L, 1.23 mmol) and phenol 5a (155 mg, 1.23 mmol) in the presence of (±)-camphor sulphonic acid (CSA) (9.5 mg, 0.04 mmol), trimethyl orthoformate (280 μ L, 2.45 mmol) in dry CH₃CN (8 mL) at 0 °C to room temperature as described for the bicyclic product 6j followed by purification on a silica gel column using EtOAc:petroleum ether (from 1% to 25% ethyl acetate) as eluent furnished the bicyclic product 6p (214 mg, 76%).

Physical appearance: Pale red sticky liquid.

R_f: 0.4 (1:3, EtOAc:petroleum ether).

IR (neat): 3358, 2954, 2854, 1754, 1646, 1587, 1427, 1233, 1137, 1107, 1121, 906, 757cm⁻¹.

MeO

OMe

OMe

Me

9

¹H NMR (400 MHz, Benzene-*d*₆): δ 7.55 (td, *J* = 7.4, 1.6 Hz, 2H), 6.15 (d, *J* = 2.1 Hz, 1H), 6.10 (d, *J* = 2.1 Hz, 1H), 6.03 (s, 2H), 4.80 (d, *J* = 2.6 Hz, 1H), 3.69 (q, *J* = 7.3 Hz, 2H), 2.76 (d, *J* = 2.6 Hz, 1H), 2.05 (s, 3H), 0.78 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, Benzene-*d*₆, DEPT): δ 169.9 (C), 156.3 (C), 154.7 (C), 153.7 (C), 152.9 (C), 128.9 (CH), 125.2 (CH), 121.9 (CH), 116.8 (CH), 107.9 (C), 104.9 (C), 98.7 (C), 97.3 (CH), 96.9 (CH), 61.8 (CH₂), 45.1 (CH), 31.4 (CH), 26.4 (CH₃), 14.1 (CH₃).

HRMS (ESI, M+H⁺): m/z calcd. For C₁₉H₁₉O₆ 343.1176, found 343.1177.

2-methoxy-2-methyl-4-(2,4,6-trimethoxyphenyl)chroman (9):

The reaction of salicylaldehyde (2a) (87 μ L, 0.82 mmol), ketone 8a (92 μ L, 1.23 mmol) and trimethoxy benzene (5e) (207 mg, 1.23 mmol) in the presence of (±)-camphor sulphonic acid (CSA) (9.5 mg, 0.04 mmol), trimethyl orthoformate (272 μ L, 2.46 mmol) in dry CH₃CN (8 mL) at 0 °C to room temperature as described for the bicyclic product 6j followed by purification on a silica gel column using EtOAc:petroleum ether (from 1% to 25% ethyl acetate) as eluent furnished the bicyclic product 9 (216 mg, 76%).

Physical appearance: White foamy solid.

m.p.: 88-90 °C

R_f: 0.6 (1: 3, EtOAc:petroleum ether).

IR (neat): 2936, 1581, 1368, 1221, 1185, 1132, 1042, 731cm⁻¹.

¹H NMR (500 MHz, Benzene-*d*₆): δ 7.14 (d, J = 17.1 Hz, 1H), 7.08-7.01

(m, 2H), 6.78 (td, J = 7.5, 1.5 Hz, 1H), 6.20 (d, J = 2.3 Hz, 1H), 6.09 (d, J = 2.3 Hz, 1H), 5.55

(dd, J = 12.7, 6.1 Hz, 1H), 3.40 (d, J = 1.7 Hz, 3H), 3.34 (s, 3H), 3.23-3.16 (m, 3H), 3.02 (s, 3H), 2.76 (t, J = 12.8 Hz, 1H), 2.20 (dd, J = 12.9, 6.1 Hz, 1H), 1.45 (d, J = 1.7 Hz, 3H). ¹³C NMR (125 MHz, Benzene-*d*₆, DEPT): δ 161.0 (C), 160.8 (C), 160.4, (C) 153.1 (C), 128.6 (C), 127.9 (CH), 126.9 (CH), 121.2 (CH), 117.3 (CH), 113.2 (C), 99.5 (C), 92.9 (CH), 91.4 (CH), 55.8 (CH₃), 55.5 (CH₃), 55.1 (CH₃), 49.0 (CH₃), 37.6 (CH₂), 28.2 (CH), 23.7 (CH₃). HRMS (ESI, M+Na⁺): m/z calcd. for C₂₀H₂₄NaO₅ 367.1516, found 367.1517.

A Gram Scale Total Synthesis of Myristicyclins A and B

1-((6S,12R*)-9-(benzyloxy)-1,3-dihydroxy-12H-6,12-methanodibenzo[d,g][1,3]dioxocin-4-yl)decan-1-one* (6r):

To a cold (0 °C) magnetically stirred solution of salicylaldehyde **2b** (1.03 g, 5.69 mmol), (\pm)camphor sulphonic acid (CSA) (66 mg, 0.28 mmol), in dry CH₃CN:MeOH [3:1v/v] (40 mL), was added trimethyl orthoformate (945 µL, 8.54 mmol) and stirred for 10 min. Then the ethyl vinyl ether (**3a**) (811 µL, 8.54 mmol) was added slowly at 0 °C the resulting mixture was stirred at room temperature and then the phenol **5d** (2.393 g, 8.54 mmol) in dry CH₃CN (10 mL), was slowly added at 0 °C the resulting mixture was stirred for 1h at 0 °C then slowly warmed to room temperature. After completion of the reaction (TLC control), the reaction mixture was carefully quenched with saturated sodium hydrogen carbonate solution (10 mL). The aqueous layer was extracted with diethyl ether (3 x 40 mL), the combined organic layer was washed with brine and dried over anhydrous sodium sulphate. Evaporation of the solvent and purification of the residue on silica gel column, using diethyl ether: pet ether (from 1% to 25% diethyl ether) as an eluent afforded the required bicyclic product **6r** and **6r**' the major regioisomer **6r** (1.294 g, 44%) and the minor **6r**' (509 mg, 17%).

Physical appearance: white foamy solid.

R_f: 0.3 (1: 2.7:0.3, Et₂O: pet ether: MeOH).

IR (neat): 3341, 2925, 2854, 1696, 1626, 1599, 1427, 1249, 1135, 1107, 1121, 1055, 903, 755cm⁻¹.

¹H NMR (500 MHz, Benzene-*d*₆): δ 14.75 (s, 1H), 14.69

(s, 1H), 7.45 (d, *J* = 8.4 Hz, 2H), 7.31-7.22 (m, 2H), 7.10 (d, *J* = 7.4 Hz, 1H), 6.90-6.86 (m, 2H), 6.84 (d, *J* = 2.5 Hz, 1H), 6.03 (s, 1H), 5.81 (t, *J* = 2.1 Hz, 1H), 4.74 (s, 2H), 4.26 (q, *J* = 2.7 Hz, 1H), 3.17-3.00 (m, 2H), 1.47 (s, 2H), 1.44-1.37 (m, 2H), 1.07-1.02 (m, 12H), 0.99 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (125 MHz, Benzene-*d*₆, DEPT): δ 206.7 (C), 165.8 (C), 159.6 (C), 159.6 (C), 154.7
(C), 152.5 (C), 137.7 (C), 129.0 (2x CH), 128.6 (2 x CH), 128.0 (CH), 120.5 (C), 109.4 (CH),

107.3 (C), 106.1 (C), 103.5 (CH), 97.6 (CH), 92.7 (CH), 70.5 (CH2), 45.0 (CH2), 32.7 (CH2), 30.5 (CH₂), 30.3 (CH₂), 30.1 (2 x CH₂), 25.6 (CH₂), 25.3 (2 x CH₂), 23.7 (CH), 23.5 (CH₂), 14.8 (CH₃).

HRMS (ESI, M+H⁺): m/z calcd. for C₃₂H₃₇O₆ 517,2585 found 517.2579.

Minordiastereomer1-((6S*,12R*)-9-(benzyloxy)-1,3-dihydroxy-12H-6,12-methanodibenzo[d,g][1,3]dioxocin-2-yl)decan-1-one (6r'):

Physical appearance: white solid.

R_f: 0.3 (1: 2.7:0.3, Et₂O: pet ether: MeOH).

IR (neat): 3401, 2965, 2834, 1705, 1636, 1589, 1447, 1231, 1135, 1107, 1121, 1049, 902, 753cm⁻¹.

¹**H NMR (500 MHz, Benzene**-*d*₆): δ 14.84 (s, 1H), 7.49 (d, *J* = 8.4 Hz, 1H), 7.08 (t, *J* = 7.4 Hz, 2H), 7.04 (d, *J* = 7.3 Hz, 3H), 6.74 (s, 1H), 6.56 (d, *J* = 8.4 Hz, 1H), 5.76 (s, 1H), 5.44 (s, 1H), 4.62 (s, 2H), 4.30 (s, 1H), 2.98 (qt, *J* = 16.3, 7.5 Hz, 2H), 1.73 (p, *J* = 7.2 Hz, 2H), 1.58 (d, *J* = 13.2 Hz, 1H), 1.51 (d, *J* = 13.2 Hz, 1H), 1.33 (t, *J* = 8.2 Hz, 2H), 1.28 (d, *J* = 23.4 Hz, 10H), 0.91 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (125 MHz, Benzene-*d*₆, DEPT): δ 206.9 (C), 163.5 (C), 159.5 (C), 158.4 (C), 157.6 (C), 152.5 (C), 137.9 (C), 129.5 (2 x CH), 129.0 (CH), 128.6 (2 x CH), 128.0 (C), 120.6 (C), 109.3 (CH), 108.9 (C), 105.8 (C), 103.5 (CH), 95.4 (CH), 93.2 (CH), 70.4 (CH2), 44.7 (CH2), 32.6 (CH₂), 30.4 (CH₂), 30.3 (CH₂), 30.3 (CH₂), 30.1 (CH₂), 26.0 (CH₂), 25.4 (CH₂), 23.5 (CH), 23.4 (CH₂), 14.7 (CH₃).

HRMS (ESI, M+Na⁺): m/z calcd. for C₃₂H₃₆NaO₆ 539.2404, found 539.2407.

1-((6S,12R*)-1,3,9-trihydroxy-12H-6,12-methanodibenzo[d,g][1,3]dioxocin-4-yl)decan-1-one* (1a):¹

To a magnetically stirred solution of Benzyl ether **6r** (1.29 g) in dry THF:MeOH [1:1v/v] (18 mL), was added Pd(OH)₂/C (10%) and stirred for 1.5h, at rt in an atmosphere of hydrogen created by evacuative displacement of air by hydrogen (balloon) and then the catalyst was filtered off through a celite pad. Evaporation of the solvent and purification of the residue on silica gel column, using ethyl acetate: pet ether as an eluent afforded the required bicyclic product myristicyclins A (**1a**) (1.006g, 96%).

Physical appearance: Pale red solid.

R_f: 0.3 (1: 2.7:0.3, EtOAc: petroleum ether:MeOH).

IR (neat): 3341, 2935, 2844, 1699, 1629, 1597, 1457, 1261, 1135, 1107, 1121, 1048, 902, 756cm⁻¹.

¹**H NMR (500 MHz, Methanol-***d*₄**):** δ 6.96 (d, J = 8.4 Hz, 1H), 6.14 (d, J = 6.8 Hz, 2H), 6.00 (s, 1H), 5.74 (s, 1H), 4.05 (d, J = 3.8 Hz, 1H), 3.06-2.56 (m, 2H), 1.87 (qt, J = 13.2, 2.8 Hz, 2H), 1.45 (hept, J = 6.7 Hz, 2H), 1.30-0.99 (m, 12H), 0.71 (t, J = 6.8 Hz, 3H).

¹³C NMR (125 MHz, Methanol-*d*₄, DEPT): δ207.1 (C), 165.9 (C), 162.8 (C), 158.1 (C), 155.3 (C), 152.9 (C), 129.6 (CH), 120.2 (C), 109.6 (CH), 108.7 (C), 105.3 (C), 103.9 (CH), 97.2 (CH), 93.6 (CH), 45.4 (CH₂), 33.2 (CH₂), 30.8 (2 x CH₂), 30.8 (CH₂), 30.6 (CH₂), 26.5 (2 x CH₂), 24.3 (CH), 23.9 (CH₂), 14.6 (CH₃).

HRMS (ESI, M+Na⁺): m/z calcd. for C₂₅H₃₀NaO₆ 449.1936, found 449.1934

Reported ^a	Synthesized
7.19 (d, J = 9.0 Hz, 1H)	6.96 (d, $J = 8.4$ Hz, 1H),
6.30 (m, 2H)	6.14 (d, J = 6.8 Hz, 2H),
6.19 (s, 1H)	6.00 (s, 1H),).
5.81 (s, 1H)	5.74 (s, 1H),
4.28 (s, 1H)	4.05 (d, $J = 3.8$ Hz, 1H),
3.04- 2.95 (m, 2H)	3.06 – 2.56 (m, 2H)
2.10 (d, J = 13.0 Hz, 1H)	1.87 (d, $J = 13.2$ Hz, 1H)
2.05 (d, J = 13.0 Hz 1H)	1.83 (d, $J = 13.3$ Hz, 1H)
1.66 (m, 2H)	1.45 (m, 2H),
1.40-1.31 (m, 12H)	1.30 – 0.99 (m, 12H),
0.91 (t, J = 7.0 Hz, 3H)	0.71 (t, $J = 6.8$ Hz, 3H

Comparison of ¹H NMR spectral data of myristicyclins A (1a) in CD₃OD

Comparison of ¹³C NMR spectral data of myristicyclins A (1a) in CD₃OD

Positions	Reported ^a	Synthesized	Positions	Reported ^a	Synthesized
16	206.9	207.1	13	97.1	97.2
12	165.8	165.9	9	93.5	93.6
14	162.8	162.8	17	45.2	45.4
3	158	158.1	23	33.1	33.2
10	155.1	155.3	19	30.7	30.8
5	152.8	152.9	20-22	30.6	30.8
1	129.4	129.6	8	26.4	30.6
6	120.1	120.2	18	26.4	26.5
11	109.5	109.6	7	23.8	24.3
2	108.7	108.7	24	23.7	23.9
15	105.2	105.3	25	14.4	14.6
4	103.8	103.9			

^a Ireland, C. M. and coworkers, Org. Lett. 2014, 16, 346.

1-((6S,12R*)-1,3,9-trihydroxy-12H-6,12-methanodibenzo[d,g][1,3]dioxocin-2-yl)decan-1-one* (1b):¹

To a magnetically stirred solution of benzyl ether **6r'** (509 mg) in dry THF:MeOH [1:1v/v] (18 mL), was added Pd(OH)₂/C (10%) and stirred for 1.5h at rt in an atmosphere of hydrogen created by evacuative displacement of air by hydrogen (balloon) and then the catalyst was filtered off through a celite pad. Evaporation of the solvent and purification of the residue on silica gel column, using ethyl acetate: pet ether as an eluent afforded the required bicyclic

product myristicyclins B (1b) (0.376g, 91%).

Physical appearance: Pale red solid.

R_f: 0.4 (1: 2.7:0.3, EtOAc: petroleum ether: MeOH).

IR (neat): 3361, 2936, 2825, 1705, 1636, 1595, 1427, 1221, 1129, 1108, 1121, 1066, 906, 759cm⁻¹.

¹**H** NMR (500 MHz, Methanol-*d*₄): δ 6.99 (d, *J* = 8.2 Hz, 1H), 6.17-6.10 (m, 2H), 5.87 (s, 1H), 5.69 (s, 1H), 4.04 (s, 1H), 2.87 (p, *J* = 8.8, 7.7 Hz, 2H), 1.92 (d, *J* = 13.4 Hz, 1H), 1.87 (d, *J* = 13.2 Hz, 1H), 1.46 (q, *J* = 7.6 Hz, 2H), 1.11 (s, 12H), 0.72 (t, *J* = 6.9 Hz, 3H).

¹³C NMR (125 MHz, Methanol-*d*₄, DEPT): δ208.3 (C), 163.7 (C), 162.3 (C), 158.7 (C), 158.6 (C), 153.0 (C), 129.7 (CH), 120.2 (C), 109.6 (CH), 108.2 (C), 106.6 (C), 103.9 (CH), 95.5 (CH), 94.0 (CH), 45.1 (CH₂), 33.2 (CH₂), 30.8 (2 x CH₂), 30.6 (CH₂), 27.2 (CH₂), 26.3 (2 x CH₂), 24.0 (CH), 23.9 (CH₂), 14.6 (CH₃).

HRMS (ESI, M+H⁺): m/z calcd. for C₂₅H₃₁O₆ 427.2115, found 427.2112.

Reported ^a	Synthesized		
7.16 (d, <i>J</i> = 8.2Hz, 1H)	6.99 (d, J = 8.2 Hz, 1H)		
6.27 (m, 2H)	6.17 (m, 2H)		
6.04 (brs, 1H)	5.87 (s, 1H)		
5.77 (s, 1H)	5.69 (s, 1H),		
4.22 (brs, 1H)	4.04 (s, 1H)		
3.09, (t, J = 7.5 Hz, 2H)	2.87 (t, $J = 7.7$ Hz, 2H)		
2.09 (dd, J = 12.0, 2.5 Hz, 1H)	1.92 (d, J = 13.4 Hz, 1H),		
2.07 (dd, <i>J</i> = 12.0, 2.5 HZ 1H)	1.87 (d, $J = 13.2$ Hz, 1H),		
1.61 (m, 2H)	1.46 (m, 2H),		
1.32-1.25 (m, 12H)	1.11 (m, 12H),		
0.90 (t, J = 9.8 Hz, 3H)	0.72 (t, J = 9.6 Hz, 3H)		

Comparison of ¹H NMR spectral data of myristicyclins B (1b) in CD₃OD

 $HO_{12} = 10^{-19} = 21^{-23} Me$ $HO_{12} = 14^{-10} OH$ $HO_{12} = 10^{-10} OH$ $HO_{12} = 10^{-10} OH$

Comparison of ¹³C NMR spectral data of myristicyclins B (1b) in CD₃OD

Positions	Reported ^a	Synthesized	Positions	Reported ^a	Synthesized
16	208.2	208.3	15	98*	95.5
14	164*	163.7	9	93.8	94.0
12	161.2	162.3	17	45	45.1
10	158.5	158.7	23	33	33.2
3	157.9	158.6	19	30.6	30.8
5	152.8	153.0	20-22	30.4	30.6
1	129.5	129.7	8	27	27.2
6	120	120.2	18	26.1	26.3
2	109.5	109.6	7	23.8	24.0
11	108.2	108.2	24	23.7	23.9
4	103.8^	106.6	25	14.4	14.6
13	103.4	103.9			

^a Ireland and co-workers Org. Lett. 2014, 16, 346

S32

14.841

X-Ray crystallographic analysis and data

Crystal data and structure refinement for bicyclic acetal 6j

Identification code		6j	
Solvent		Pet. Ether: ⁱ PrOH	
CCDC		2097413	
Bond precision:	C-C = 0.0061 A	Wavelength= 1.54184	
Cell:	a=5.3663(2) alpha= 90	b=7.4309(3) beta= 90	c=32.7640(14) gamma= 90
Temperature:	150 K		
	Calculated	Reported	
Volume	1306.51(9)	1306.52(10)	
Space group	P 21 21 21	P 21 21 21	
Hall group	P 2ac 2ab	-P P 2ac 2ab	
Moiety formula	C16 H14 O4, H2 O	C16 H14 O4, H2 O	
Sum formula	C16 H16 O5	C16 H16 O5	
Mr	288.29	288.29	
Dx, g cm-3	1.466	1.466	
Z	4	4	
Mu (mm-1)	0.909	0.909	
F000	608.0	608.0	
F000'	610.08		
h,k,l max	6,8,38	6,8,38	
Nref	2231[1352]	2231[1352]	
Tmin,Tmax	0.840,0.968	0.528,1.000	
Tmin'	0.835		
Correction method=	NUMERICAL		
Data completeness =	1.64/0.99	Theta(max)= 64.994	
R(reflections) =	0.0534(1825)	wR2(reflections)= 0.1347(2219)	
S = 1.023	Npar = 196		

Crystal data and structure refinement for doubly linked flavan 60

Identification code		60	
Solvent		Pet. Ether:MeOH	
CCDC		2097414	
Bond precision:	C-C = 0.0093 A	Wavelength= 0.71073	
Cell:	a= 20.6534(16) alpha= 90	b= 5.5621(6) beta= 92.131(7)	c= 17.0891(15) gamma= 90
Temperature:	150 K		
	Calculated	Reported	
Volume	1961.8(3)	1961.8(3)	
Space group	P 21/c	P 1 21/c 1	
Hall group	-P 2ybc	-P 2ybc	
Moiety formula	C21 H15 Br O4, 0.5(C6 H6)	C21 H15 Br O4, C3 H3	
Sum formula	C24 H18 Br O4	C24 H18 Br O4	
Mr	450.28	450.29	
Dx, g cm-3	1.525	1.525	
Ζ	4	4	
Mu (mm-1)	2.124	2.124	
F000	916.0	916.0	
F000'	915.26		
h,k,l max	24,6,20	24,6,20	
Nref	3463	3460	
Tmin,Tmax	0.792,0.936	0.694,1.000	
Tmin'	0.792		
Correction method=	NUMERICAL		
Data completeness =	0.999	Theta(max)= 24.999	
R(reflections) =	0.0663(2036)	wR2(reflections)= 0.2376(3460)	
S = 1.061	Npar = 264		

Crystal data and structure refinement for cassiaflavan 9

Identification code		9	
Solvent		Pet. Ether:Ethylacetate	
CCDC		2097415	
Bond precision:	C-C = 0.0041 A	Wavelength= 0.71073	
Cell:	a=7.4157(3)	b=9.0593(5)	c= 26.5028(14)
	alpha=) 90	beta=90	gamma= 90
Temperature:	100 K		
	Calculated	Reported	
Volume	1780.49(15)	1780.49(15)	
Space group	P 21 21 21	P 21 21 21	
Hall group	P 2ac 2ab	P 2ac 2ab	
Moiety formula	C20 H24 O5	0.5(C20 H24 O5)	
Sum formula	C20 H24 O5	C10 H12 O2.50	
Mr	344.39	172.20	
Dx, g cm-3	1.285	1.285	
Z	4	8	
Mu (mm-1)	0.092	0.092	
F000	736.0	736.0	
F000'	736.40		
h,k,l max	8,10,31	8,10,31	
Nref	3125[1828]	3114	
Tmin,Tmax	0.979,0.990	0.851,1.000	
Tmin'	0.975		
Correction method=	NUMERICAL		
Data completeness =	1.70/1.00	Theta(max)= 24.993	
R(reflections) =	0.0414(2880)	wR2(reflections)= 0.1007(3114)	
S = 1.036	Npar = 230		

Crystal data and structure refinement for doubly linked flavan 6r'

Identification code		6r'	
Solvent		Pet. Ether:Ethylacetate	
CCDC		2097423	
Bond precision:	C-C = 0.0087 A	Wavelength= 1.54184	
Cell:	a= 14.4688(7) alpha= 90	b= 8.0297(5) beta= 90	c= 46.845(3) gamma= 90
Temperature:	150 K		
	Calculated	Reported	
Volume	5442.5(6)	5442.4(6)	
Space group	Pbca	P b c a	
Hall group	-P 2ac 2ab	-P 2ac 2ab	
Moiety formula	C32 H36 O6	C32 H36 O6	
Sum formula	C32 H36 O6	C32 H36 O6	
Mr	516.61	516.61	
Dx, g cm-3	1.261	1.261	
Z	8	8	
Mu (mm-1)	0.694	0.694	
F000	2208.0	2208.0	
F000'	2214.75		
h,k,l max	17,9,55	17,9,55	
Nref	4634	4618	
Tmin,Tmax	0.905,0.986	0.031,1.000	
Tmin'	0.870		
Correction method=	NUMERICAL		
Data completeness =	0.997	Theta(max)= 64.998	
R(reflections) =	0.0917(2095)	wR2(reflections)= 0.3225(4618)	
S = 1.000	Npar = 346		

Reference:

Lu, Z.; Van Wagoner, R. M.; Pond, C. D.; Pole, A. R.; Jensen, J. B.; Blankenship, D. A.; Grimberg, B. T.; Kiapranis, R.; Matainaho, T. K.; Barrows, L. R.; Ireland, C. M., Myristicyclins A and B: Antimalarial Procyanidins from Horsfieldia spicata from Papua New Guinea. *Org. Lett.* 2014, *16* (2), 346.