Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Supplementary Information 1

Doubleisomerization / cycloisomerization / aromatization of 1-(allyloxy)-2-(cyclopropylmethyl)benzenes to give 2-ethyl-3isopropylbenzofurans using multitasking single rhodium catalyst

Yuta Sato^a, Tsuyoshi Matsuzaki^b, Tsunayoshi Takehara^b, Makoto Sako^a, Takeyuki Suzuki^b, Mitsuhiro Arisawa^{*, a}.

^a Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan

^b Comprehensive Analysis Center, SANKEN, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047,

Japan

Contents

NOE experiment for structure determination of 2a	S2
NMR time-course experiment (conversion from 2a' to 2a)	S3
1.3 mmol scale experiment	S 4
Preparation of 1a'-1x	S4-S12
Preparation of 2a-2u	S12-18
Preparation of 4-6 and 1a'-3a'	S18-S21
References	S21-22

General

¹ H-NMR spectra were recorded in CDCl₃ at 25 °C unless otherwise noted, at 300, 400 or 500 MHz, with TMS as an internal standard. ¹³C-NMR spectra were recorded in CDCl₃ at 25 °C unless otherwise noted, at 300, 400 or 500MHz with TMS or CDCl₃ as an internal standard. ¹⁹F NMR spectra were recorded in CDCl₃ at 25 °C unless otherwise noted, at 376 MHz, with C₆H₅CF₃ as an internal standard.

NOE measurements for structure determination of 2a

Figure S1. Result of NOE measurement.

To determine the structure of compound 2a, NOE measurements were performed. First, we irradiated the hydrogen peak of the isopropyl group (H_a). Next, we irradiated the hydrogen peak of the 5-position of benzofuran (H_b). Since there was a correlation between H_a and H_b in both measurements, it was determined that the isopropyl group was substituted at the 3-position of benzofuran.

NMR time-course experiment (conversion from 2a' to 2a)

a) With 10 mol% of RhCl(PPh_3)_3 and 10 mol% of AgOTf

b) Without catalyst

Figure S2 NMR time-course experiment (conversion from 2a' to 2a)

Scheme S1 1.3 mmol scale experiment

M

$$\begin{array}{c} AgOTr(10 mol%) \\ AgOTr(10 mol%) \\ \hline \\ p \text{-xylene (0.1 M)} \\ 150 \text{ }^{\circ}\text{C} \\ 24 \text{ h} \end{array} \qquad \begin{array}{c} MeO \\ \hline \\ MeO \\ \hline \\ 2h(74\%) \end{array}$$

To a stirred solution of 1-(allyloxy)-2-(cyclopropylmethyl)benzene **1'** 280 mg 1.3mmol) in *p*-xylene (0.1 M), degassed with N₂ bubbling, was added RhCl(PPh₃)₃ (120 mg, 0.13mmol) and AgOTf (33 mg, 0.13 mmol) under an N₂ atmosphere. The reaction mixture was refluxed (120 °C) for 24 h. Then, the mixture was filtered through short silica gel column chromatography and concentrated in vacuo to remove the solvent. The obtained residue was purified by flash column chromatography on silica gel to give 2-ethyl-3-isopropylbenzofurans **2h** (211 mg 74%).

Preparation of 1a'-1x

• Typical procedure A for the preparation of compounds 1a'-1n'

(Allyloxy)benzene were prepared according to the known literature. ¹⁻⁴ (Allyloxy)benzenes were put in a vial (Anton Paar). The sealed vial was then heated at 250 °C under microwave irradiation for 30 min. After cooling to room temperature, the residue was separated by column chromatography on silica gel (*n*-hexane/AcOEt = 10/1) to afford the corresponding allyl phenol. To a round-bottom flask containing allyl phenol and diiodomethane (3.0 eq.) in DCM (0.2M) was slowly added diethyl zinc (3.0 eq, 1.6 M in hexane) at 0 °C. The mixture was stirred at 30 °C for 10 h. Afterwards, sat. NH4Cl and 1 *N* HCl was added to quench the reaction. The organic compounds were extracted with AcOEt. The combined organic phase was washed with brine and dried over anhydrous Na₂SO₄. After evaporation, the residue was purified by column chromatography on silica gel (*n*-hexane/AcOEt = 10/1) to afford 2-(cyclopropylmethyl)phenol.

To a round-bottom flask containing the above obtained 2-(cyclopropylmethyl)phenol and K₂CO₃ (2.0 eq.) in CH₃CN (0.5 M) was added allyl bromide (4.0 eq.). The reaction mixture was stirred at 60 °C for 3 h. The mixture was filtered through glass filter with AcOEt, and filtrate was concentrated under reduced pressure. The crude residue was purified by column chromatography on silica gel using *n*-hexane/AcOEt = 20/1) as an eluent to afford 1-(allyloxy)-2-(cyclopropylmethyl)benzene.

Compound 1a'

Following the typical procedure, A, (allyloxy)benzene 1 (2.86 g, 22.2 mmol) was converted to **1a**' (3.2 g, 80%) after column chromatography on silica gel (*n*-hexane/

AcOEt = 20/1). Colorless oil.; ¹H-NMR (300 MHz, CDCl₃) δ : 7.29 (d, *J* = 7.2 Hz, 1H), 7.17 (dd, *J* = 7.6, 7.6 Hz, 1H), 6.91 (dd, *J* = 7.4, 7.4 Hz, 1H), 6.83 (d, *J* = 8.3 Hz, 1H), 6.13-6.01 (m, 1H), 5.43 (ddt *J* = 17.2, 1.7, 1.4 Hz, 1H), 5.27 (ddt, *J* = 10.5, 1.7, 1.4 Hz, 1H), 4.55 (d, *J* = 5.2 Hz, 2H), 2.57 (d, *J* = 6.9 Hz, 2H), 1.11-0.98 (m, 1H), 0.52-0.46 (m, 2H), 0.19 (td, *J* = 4.8, 4.8 Hz, 2H); ¹³C-NMR (75 MHz, CDCl₃) δ : 156.3, 133.6, 130.9, 129.5, 126.8, 120.5, 116.8, 111.3, 68.6, 34.5, 10.6, 4.6; HRMS (APCI) calcd for C₁₃H₁₇O (M+H)⁺: 189.1279, found: 189.1275

Compound 1b'

Following the typical procedure A, 1-(allyloxy)-3-fluorobenzene ² (2.42 g, 16 mmol) was converted to **1b**' (730 mg, 25%) after column chromatography on silica gel (*n*-hexane/ AcOEt = 20/1). Colorless oil.; ¹H-NMR (400 MHz, CDCl₃) δ : 7.12-7.08 (m, 1H), 6.70-6.57 (m, 2H), 6.10-6.01 (m, 1H), 5.43 (ddt, J = 17.4, 1.8, 1.8 Hz, 1H), 5.28 (ddt, J = 10.5, 1.4, 1.4 Hz, 1H), 4.56 (ddd, J = 3.2, 1.5, 1.5 Hz, 2H), 2.62-2.60 (m, 2H), 1.07-1.00 (m, 1H), 0.41-0.37 (m, 2H), 0.25-0.21 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃) δ : 161.7 (¹ $J_{CF} = 242.5$ Hz), 157.6 (³ $J_{CF} = 9.6$ Hz), 133.2, 126.9 (³ $J_{CF} = 10.5$ Hz), 118.2 (² $J_{CF} = 19.2$ Hz), 117.1, 107.9 (² $J_{CF} = 23.0$ Hz), 107.2, 69.1, 27.0, 10.9, 4.5; ¹⁹F-NMR (376 MHz, CDCl₃) δ : -117.7; HRMS (APCI) calcd for C₁₃H₁₆FO (M+H)⁺: 207.1185, found: 207.1178

Compound 1c'

Following the typical procedure A, 1-(allyloxy)-3-chlorobenzene ³ (1.70 g, 10.1 mmol) was converted to **1c'** (540 mg, 24%) after column chromatography on silica gel (*n*hexane/AcOEt = 20/1). Colorless oil.; ¹ H-NMR (300 MHz, CDCl₃) δ : 7.07 (dd, J = 8.18.1 Hz, 1H), 6.98 (dd, J = 7.9, 1.0 Hz, 1H), 6.75 (dd, J = 8.3, 1.0 Hz, 1H), 6.11-5.98 (m, 1H), 5.42 (ddt J =17.5, 1.7, 1.4 Hz, 1H), 5.28 (ddt J = 10.7, 1.7, 1.4 Hz, 1H), 4.54 (ddd, J = 3.3, 1.7, 1.7 Hz, 2H), 2.77 (d, J =6.9 Hz, 2H), 1.16-1.03 (m, 1H), 0.42-0.34 (m, 2H), 0.32-0.27 (m, 2H); ¹³C-NMR (75 MHz, CDCl₃) δ : 157.4, 134.9, 133.1, 129.3, 127.0, 121.8, 117.2, 110.0, 69.0, 31.1, 10.4, 4.3; HRMS (APCI) calcd for C₁₃H₁₆ClO (M+H)⁺: 223.0890, found: 223.0884

Compound 1d'

Following the typical procedure A, 1-(allyloxy)-3-methoxybenzene ³ (1.70 g, 10.4 mmol) was converted to **1d'** (720 mg, 32%) after column chromatography on silica gel (*n*-hexane/AcOEt = 10/1). Colorless oil.; ¹ H-NMR (500 MHz, CDCl₃) δ : 7.11 (dd, *J* =

8.3, 8.3 Hz 1H), 6.56 (d, J = 8.6 Hz, 1H), 6.53 (d, J = 8.0 Hz, 1H), 6.09-6.02 (m, 1H), 5.42 (ddt, J = 17.4, 1.4, 1.4 Hz, 1H), 5.25 (ddt, J = 10.5, 1.4, 1.4 Hz, 1H), 4.54 (dd, J = 3.2, 1.7, 1.7 Hz, 2H), 3.81 (s, 3H), 2.62 (d, J = 6.3 Hz, 2H), 1.07-0.99 (m, 1H), 0.36-0.32 (m, 2H), 0.23 (td, J = 5.3, 3.8 Hz, 2H); ¹³C-NMR (125 MHz, CDCl₃) δ : 158.4, 157.2, 133.7, 126.6, 119.1, 116.7, 104.9, 103.8, 68.9, 55.6, 27.2, 10.9, 4.4; HRMS

(APCI) calcd for C₁₄H₁₉O₂ (M+H)⁺: 219.1385, found: 219.1378

Compound 1e'

Following the typical procedure A, 1-(allyloxy)-4-fluorobenzene² (1.3 g, 8.5 mmol) was converted to **1e**' (820 mg, 46%) after column chromatography on silica gel (*n*-hexane/AcOEt = 20/1). Colorless oil.; ¹ H-NMR (300 MHz, CDCl₃) δ : 7.05 (dd, *J* =

9.3, 3.1 Hz, 1H), 6.83 (ddd, J = 8.6, 8.3, 3.1 Hz, 1H), 6.74 (dd J = 9.0, 4.8 Hz, 1H), 6.05 (m, 1H), 5.41 (ddt, J = 17.2, 1.7, 1.7 Hz, 1H), 5.27 (ddt, J = 10.7, 1.4, 1.4 Hz, 1H), 4.50 (d, J = 4.8 Hz, 2H), 2.54 (d, J = 6.9 Hz, 2H), 1.06-0.96 (m, 1H), 0.52 (m, 2H), 0.19 (td J = 5.2, 4.8 Hz, 2H); ¹³C-NMR (75 MHz, CDCl₃) δ : 157.1 (¹ J_{CF} = 237.7 Hz), 152.3 (⁴ J_{CF} = 1.9 Hz), 133.4, 132.9 (³ J_{CF} = 6.7 Hz), 117.1, 116.1 (² J_{CF} = 23.0 Hz), 112.1 (³ J_{CF} = 8.6 Hz), 69.3, 34.2, 10.1, 4.6; ¹⁹F-NMR (376 MHz, CDCl₃) –124.7; HRMS (APCI) calcd for C₁₃H₁₆FO (M+H)⁺: 207.1185, found: 207.1178

Compound 1f'

Following the typical procedure A, 1-(allyloxy)-4-chlorobenzene ⁴ (1.13 g, 6.7 mmol) was converted to **1f**' (735 mg, 53%) after column chromatography on silica gel (*n*-hexane/AcOEt = 20/1). Colorless oil.; ¹ H-NMR (300 MHz, CDCl₃) δ : 7.27

(d, J = 4.1 Hz, 1H), 7.11 (dd, J = 8.7, 2.7 Hz, 1H), 6.74 (d, J = 8.7 Hz, 1H), 6.04 (m, 1H), 5.41 (dd, J = 17.4, 1.4 Hz, 1H), 5.28 (dd, J = 10.5, 1.4 Hz, 1H), 4.52 (d, J = 4.6 Hz, 2H), 2.53 (d, J = 6.9 Hz, 2H), 1.05-0.95 (m, 1H), 0.52 (m, 2H), 0.19 (td, J = 5.0, 4.9 Hz, 2H); ¹³C-NMR (75 MHz, CDCl₃): 154.8, 133.1, 132.9, 129.3, 126.4, 125.3, 117.2, 112.4, 68.9, 34.2, 10.2, 4.7; HRMS (APCI) calcd for C₁₃H₁₆ClO (M+H)⁺: 223.0890, found: 223.0883

Compound 1g'

Following the typical procedure A, 1-(allyloxy)-4-bromobenzene ⁵ (1.05 g, 5.3 mmol) was converted to **1g**' (821 mg, 58%) after column chromatography on silica gel (*n*-hexane/AcOEt = 20/1). Colorless oil.; ¹ H-NMR (500 MHz, CDCl₃) δ : 7.40

(d, J = 2.9 Hz, 1H), 7.25 (dd, J = 9.2, 1.7 Hz, 1H), 6.69 (d, J = 8.6 Hz, 1H), 6.07-6.00 (m, 1H), 5.40 (ddt, J = 17.2, 1.7, 1.7 Hz, 1H), 5.28 (ddt, J = 10.3, 1.7, 1.7 Hz, 1H), 4.51 (d, J = 5.2 Hz, 2H), 2.52 (d, J = 6.9 Hz, 2H), 0.53-0.50 (m, 2H), 0.19 (td, J = 5.2, 4.6 Hz, 2H); ¹³C-NMR (125 MHz, CDCl₃): 155.4, 133.3, 133.1, 132.1, 129.4, 117.2, 112.9, 112.8, 68.8, 34.2, 10.2, 4.7; HRMS (APCI) calcd for C₁₃H₁₆BrO (M+H)⁺: 267.0385, found: 267.0378

Compound 1h'

Following the typical procedure A, 1-(allyloxy)-4-methoxybenzene 4 (1.32 g, 8.0 mmol) was converted to **1h**' (746 mg, 43%) after column chromatography on silica

gel (*n*-hexane/AcOEt = 10/1). Colorless oil.; ¹ H-NMR (300 MHz, CDCl₃) δ : 6.91 (d, *J* = 3.1 Hz, 1H), 6.77 (d, *J* = 8.9 Hz, 1H), 6.68 (dd, *J* = 8.9, 3.1 Hz, 1H), 6.12-5.99 (m, 1H), 5.41 (ddt *J* = 17.2, 1.7, 1.7 Hz, 1H), 5.25 (ddt *J* = 10.7, 1.7, 1.4 Hz, 1H), 4.49 (ddd, *J* = 3.3, 1.7, 1.7 Hz, 2H), 3.78 (s, 3H), 2.54 (d, *J* = 6.9 Hz, 2H), 1.09-0.96 (m, 1H), 0.53-0.47 (m, 2H), 0.20 (td, *J* = 5.2, 4.0 Hz, 2H); ¹³C-NMR (75 MHz, CDCl₃): 153.6, 150.6, 133.9, 132.4, 116.8, 116.1, 112.4, 110.4, 69.5, 55.6, 34.5, 10.5, 4.6; HRMS (APCI) calcd for C₁₄H₁₉O₂ (M+H)⁺: 219.1385, found: 219.1378

Compound 1i'

Following the typical procedure A, 1-(allyloxy)-4-methylbenzene ⁴ (800 mg, 5.4 mmol) was converted to **1i'** (451 mg, 41%) after column chromatography on silica gel (*n*-hexane/AcOEt = 20/1). Colorless oil.; ¹ H-NMR (400 MHz, CDCl₃) δ : 7.09

(d, J = 1.8 Hz, 1H), 6.96 (dd, J = 8.2, 1.8 Hz, 1H), 6.73 (d, J = 8.2 Hz, 1H), 6.00-6.12 (1H), 5.41 (ddt, J = 17.4, 1.8, 1.4 Hz, 1H), 5.25 (ddt, J = 10.5, 1.8, 1.4 Hz, 1H), 4.52 (ddd, J = 3.3, 1.7, 1.7 Hz, 2H), 2.53 (d, J = 6.9 Hz, 2H), 2.29 (s, 3H), 1.08-0.98 (m, 1H), 0.50-0.46 (m, 2H), 0.19 (td, J = 5.0 Hz, 4.6 Hz, 2H); ¹³C-NMR (100 MHz, CDCl₃): 154.2, 133.8, 130.7, 130.4, 129.6, 127.0, 116.7, 111.4, 68.8, 34.5, 20.6, 10.7, 4.7; HRMS (APCI) calcd for C₁₄H₁₉O (M+H)⁺: 203.1436, found: 203.1430

Compound 1j'

Following the typical procedure A, 1-(allyloxy)-3-fluorobenzene ² (2.42 g, 16 mmol) was converted to **1j**' (966 mg, 30%) after column chromatography on silica gel (*n*-hexane/AcOEt = 20/1). Colorless oil.; ¹ H-NMR (400 MHz, CDCl₃) δ : 7.20 (dd *J* = 7.8, 7.8 Hz, 1H), 6.65-6.55 (m, 2H), 6.05 (m, 1H), 5.43 (ddt, *J* = 17.4, 1.8, 1.4 Hz, 1H), 5.29 (dd, *J* = 11.7, 1.4 Hz, 1H), 4.52 (d, *J* = 5.0 Hz, 2H), 2.51 (d, *J* = 6.9 Hz, 2H), 1.03-0.96 (m, 1H), 0.48 (m, 2H), 0.17 (td, *J* = 5.0 Hz, 4.6 Hz, 2H); ¹³C-NMR (100 MHz, CDCl₃): 161.9 (¹ *J*_{CF} = 242.3 Hz), 157.0 (³ *J*_{CF} = 8.6 Hz), 132.9, 129.8 (³ *J*_{CF} = 9.6 Hz), 126.4 (⁴ *J*_{CF} = 2.9 Hz), 117.3, 106.4 (² *J*_{CF} = 21.1 Hz), 99.6 (² *J*_{CF} = 24.9 Hz), 68.8, 33.9, 10.6, 4.6; ¹⁹F-NMR (376 MHz, CDCl₃): -115.7 MHz; HRMS (APCI) calcd for C₁₃H₁₆FO (M+H)⁺: 207.1185, found: 207.1179

Compound 1k'

Following the typical procedure A, 1-(allyloxy)-3-chlorobenzene ³ (1.70 g, 10.1 mmol) was converted to **1k'** (782 mg, 31%) after column chromatography on silica gel (*n*-hexane/AcOEt = 20/1). Colorless oil.; ¹ H-NMR (300 MHz, CDCl₃) δ : 7.19 (d, *J* = 8.3 Hz, 1H), 6.88 (dd, *J* = 8.3, 2.1 Hz, 1H), 6.80 (d, *J* = 2.1 Hz, 1H), 6.10-5.98 (m, 1H), 5.42 (ddt, *J* = 17.2, 1.7, 1.4 Hz, 1H), 5.29 (ddt, *J* = 10.5, 1.4, 1.4 Hz, 1H), 4.51 (ddd, *J* = 3.3, 1.5, 1.5 Hz, 2H), 2.51 (d, *J* = 6.7 Hz, 2H), 1.06-0.93 (m, 1H), 0.51-0.45 (m, 2H), 0.17 (td, *J* = 5.2 Hz, 4.5 Hz, 2H); ¹³C-NMR (75 MHz, CDCl₃): 156.8, 132.9, 131.9, 130.2, 129.4, 120.4, 117.3, 111.9, 68.8, 34.0, 10.4, 4.6; HRMS (APCI) calcd for C₁₃H₁₆ClO

(M+H)⁺: 223.0890, found: 223.0882

Compound 11'

Following the typical procedure A, 1-(allyloxy)-3-methoxybenzene⁴ (1.3 g, 7.92 mmol) was converted to 11' (920 mg, 53%) after column chromatography on silica MeO gel (*n*-hexane/AcOEt = 20/1). Colorless oil.; ¹H-NMR (400 MHz, CDCl₃) δ : 7.17 (d, J = 7.8 Hz, 1H), 6.50-6.44 (m, 2H), 6.11-6.01 (m, 1H), 5.43 ddt, J = 17.4, 1.4, 1.4 Hz, H), 5.27 (ddt, J = 10.5, 1.4, 1.4 Hz, 1H), 4.5 5-4.51 (m, 2H), 3.82-3.75 (m, 3H), 2.55-2.49 (m, 2H), 1.06-0.96 (m, 1H), 0.52-0.44 (m, 2H), 0.17 (td, J=5.0 Hz, 4.6 Hz, 2H); ¹³C-NMR (100 MHz, CDCl₃): 158.9, 157.1, 133.4, 129.7, 123.3, 117.0, 104.0, 99.5, 68.6, 55.3, 33.8, 10.8, 4.6; HRMS (APCI) calcd for C14H19O2 (M+H)+: 219.1385, found: 219.1377

Compound 1m'

Following the typical procedure A, 1-(allyloxy)-2-methoxybenzene⁴ (1.3 g, 7.92 mmol) was converted to 1m' (920 mg, 53%) after column chromatography on silica gel (nhexane/AcOEt = 20/1). Colorless oil.; ¹H-NMR (400 MHz, CDCl₃) δ : 7.01 (dd, J = 8.0, 8.0 Hz, 1H), 6.93 (dd, J = 7.3, 1.4 Hz, 1H), 6.79 (dd, J = 8.0, 1.6 Hz, 1H), 6.15-6.05 (m, 1H), 5.38 (dd, J = 7.3, 1.4 Hz, 1H), 6.79 (dd, J = 8.0, 1.6 Hz, 1H), 6.15-6.05 (m, 1H), 5.38 (dd, J = 7.3, 1.4 Hz, 1.16.9, 1.8 Hz, 1H), 5.22 (dd, *J* = 10.3, 1.6 Hz, 1H), 4.48 (ddd, 6.0, 1.4, 1.4 Hz), 3.85 (s, 3H), 2.56 (d, *J* = 7.3 Hz, 2H), 1.05-0.95 (m, 1H), 0.51-0.47 (m, 2H), 0.20 (td, J=5.5, 3.7 Hz, 2H); ¹³C-NMR (100 MHz, CDCl₃): 152.6, 145.7, 136.2, 134.5, 123.7, 121.6, 117.0, 110.0, 73.6, 55.7, 34.4, 11.2, 4.7; HRMS (APCI) calcd for C₁₄H₁₉O₂ (M+H)⁺: 219.1385, found: 219.1378

Compound 1n'

Following the typical procedure A, 1-(allyloxy)-2-methylmbenzene⁴ (1.3 g, 8.77 mmol) was converted to 1n' (1.0 g, 58%) after column chromatography on silica gel (nhexane/AcOEt = 20:1). Colorless oil.; ¹ H-NMR (400 MHz, CDCl₃) δ : 7.22 (d, J = 7.3

Hz, 1H), 7.06-6.97 (m, 2H), 6.16-6.06 (m, 1H), 5.44 (dd, *J* = 17.4, 1.4 Hz, 1H), 5.26 (d, *J* = 10.5 Hz, 1H), 4.30 (d, J = 5.5 Hz, 2H), 2.57 (d, J = 6.9 Hz, 2H), 2.30 (s, 3H), 1.06-0.96 (m, 1H), 0.52 (m, 2H), 0.21 (td, 2H), 0.21 (t J = 5.0, 4.6 Hz, 2H); ¹³C-NMR (100 MHz, CDCl₃): 155.5, 135.2, 134.1, 130.9, 129.0, 127.4, 123.9, 116.9, 73.4, 34.3, 16.5, 11.1, 4.8; HRMS (APCI) calcd for C14H19O (M+H)+: 203.1436, found: 203.1429

Compound 1o

To a solution of 2-(cyclopropylmethyl)phenol (750 mg, 5.1 mmol), which is an intermediate in the preparation of 1a', and K₂CO₃ (1.4 g, 2.0 eq.) in CH₃CN (10 mL,

0.5 M), crotyl chloride (2.0 mL, 4.0 eq.) was added. The reaction mixture was stirred at 60 °C for 10 h The mixture was filtered through glass filter with AcOEt, and filtrate was concentrated under reduced pressure. The crude residue was purified by column chromatography on silica gel (*n*-hexane/AcOEt = 20/1) to afford 1-(but-2-en-1-yloxy)-2-(cyclopropylmethyl)benzene (**10**) (960mg, 94%). Colorless oil (E:Z = 4:1).; ¹ H-NMR (400 MHz, CDCl₃) δ : 7.28 (dd, J = 7.7, 7.7 Hz, 1H), 7.16 (ddd, J = 7.7, 7.7, 1.6 Hz, 1H), 6.90 (ddd, J = 7.6, 7.6, 1.0 Hz, 1H), 6.85 (dd, J = 7.6, 7.6 Hz, 1H), 5.90-5.67 (m, 2H), 4.61-4.46 (m, 2H), 2.55 (d, J = 6.9 Hz, 2H), 1.77-1.72 (m, 3H), 1.10-0.97 (m, 1H), 0.52-0.45 (m, 2H), 0.19 (td, J = 5.0, 4.8 Hz, 2H); ¹³C-NMR (100 MHz, CDCl₃): 156.5, 130.9, 129.4, 129.4, 127.9, 126.8, 126.5, 126.2, 120.3, 111.3, 111.2, 68.6, 63.8, 34.4, 17.9, 10.5, 4.7; HRMS (APCI) calcd for C₁4H₁₉O (M+H)⁺: 203.1436, found: 203.1428

Compound 1p

To a solution of 2-(cyclopropylmethyl)phenol (750 mg, 5.1 mmol), which is an intermediate in the preparation of **1a'**, and K₂CO₃ (1.4 g, 2.0 eq.) in CH₃CN (10 mL, 0.5 M), dibrormoethane (1.8 mL, 4.0 eq.) was added. The solution was stirred at 60 °C for 10 h. The mixture was filtered through glass filter with ethyl acetate, and filtrate was concentrated under reduced pressure. The clued residue was dissolved in THF (25 mL) and *t*-BuOK (860 mg, 1.5eq.) was added. The mixture was filtered through glass filter with AcOEt, and filtrate was concentrated under reduced pressure. The clued residue was purified by column chromatography on silica gel (*n*-hexane/AcOEt = 20/1) to afford 1-(cyclopropylmethyl)-2-(vinyloxy)benzene (**1p**) (712 mg, 81 %). Colorless oil.; ¹ H-NMR (400 MHz, CDCl₃) δ : 7.34 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.19 (ddd, *J* = 7.8, 7.8, 1.8 Hz, 1H), 7.06 (ddd, *J* = 7.4, 7.4, 1.2 Hz, 1H), 6.95 (dd, *J* = 8.0, 1.1 Hz, 1H), 6.62 (dd, *J* = 14.0, 6.2 Hz, 1H), 4.64 (dd, *J* = 14.0, 1.6 Hz, 1H), 4.37 (dd, *J* = 6.2, 1.6 Hz, 1H), 2.55 (d, *J* = 6.9 Hz, 2H), 1.06-0.96 (m, 1H), 0.52-0.48 (m, 2H), 0.20 (td, *J* = 5.3, 4.3 Hz, 2H); ¹³C-NMR (100 MHz, CDCl₃): 154.4, 149.1, 132.4, 130.0, 127.1, 123.4, 116.8, 93.9, 34.2, 10.8, 4.7; HRMS (APCI) calcd for C₁₂H₁₅O (M+H)⁺: 175.1123, found: 175.1117

Compound 1q

To a solution of 2-(cyclopropylmethyl)phenol (750 mg, 5.1 mmol), which is an intermediate in the preparation of **1a'**, and K₂CO₃ (1.4 g, 2.0 eq.) in CH₃CN (10 mL, 0.5 M), 3-chloro-2-methylpropene (988 μ L, 2.0 eq.) was added. The reaction mixture

was stirred at 60 °C for 10 h. The mixture was filtered through glass filter with AcOEt, and filtrate was concentrated under reduced pressure. The crude residue was purified by column chromatography on silica gel (*n*-hexane/AcOEt = 20/1) to afford 1-(cyclopropylmethyl)-2-((2-methylallyl)oxy)benzene (**1q**) (935 mg, 91%). Colorless oil.; ¹ H-NMR (400 MHz, CDCl₃) δ : 7.29 (dd, *J* = 7.4, 1.5 Hz, 1H), 7.16 (ddd, *J* = 7.8, 7.8, 1.6 Hz, 1H), 6.91 (ddd, *J* = 7.4, 7.4, 0.8 Hz, 1H), 6.83 (d, *J* = 8.3 Hz, 1H), 5.11 (s, 1H), 4.98 (s, 1H), 4.43 (s, 2H), 2.58 (d, *J* = 6.9 Hz, 2H), 1.84 (s, 3H), 1.10-0.99 (m, 1H), 0.52-0.46 (m, 2H), 0.19 (td, *J* = 5.2, 4.4Hz, 2H); ¹³C-NMR (100 MHz, CDCl₃): 156.4, 141.2, 130.8, 129.5, 126.8, 120.4, 112.1, 111.1, 71.4, 34.4, 19.5, 10.5, 4.6; HRMS (APCI) calcd for C₁₄H₁₉O (M+H)⁺: 203.1436, found: 203.1429

Compound 1r

To a stirred solution of 2-(cyclopropylmethyl)phenol (760 mg, 5.1 mmol), which is an intermediate in the preparation of 1a', in THF (5.1 mL, 0.1 M) was added

DABCO (57.5 mg, 10 mol%) and methyl propiolate (474 mg, 1.05 equiv). The mixture was stirred at ambient temperature for 2 h. The mixture was diluted with AcOEt and washed with water and brine. The combined organic layer was dried over Na₂SO₄, filtered, and concentrated. The residue was purified by flash column chromatography on silica gel (*n*-hexane/AcOEt = 10 /1) to give compound **1r** (869 mg, 73%). Colorless oil.; ¹ H-NMR (300 MHz, CDCl₃); 7.78 (d, J = 12.4 Hz, 1H), 7.38 (d, J = 7.2 Hz, 1H), 7.27-7.22 (m, 1H), 7.19-7.14 (m, 1H), 7.00 (d, J = 7.9 Hz, 1H), 5.44 (d, J = 12.4 Hz, 1H), 3.72 (s, 3H), 2.52 (d, J = 6.9 Hz, 2H), 1.01-0.90 (m, 1H), 0.54-0.48 (m, 2H), 0.19 (td, J = 4.8 Hz, 4.1 Hz, 2H); ¹³C-NMR (100 MHz, CDCl₃): 167.8, 160.2, 153.5, 132.9, 130.4, 127.5, 125.3, 118.2, 100.9, 51.3, 34.2, 10.7, 4.7; HRMS (APCI) calcd for C₁₄H₁₇O₃ (M+H)⁺: 233.1178, found: 233.1171

Compound 1s

Following the typical procedure A, *N*-(2-allylphenyl)-4-methylbenzenesulfonamide ⁶ (1.1 g, 3.8 mmol) was converted to **1s** (1.2 g, 89%) after column chromatography on silica gel (*n*-hexane/AcOEt = 10 /1). Colorless oil.; ¹ H-NMR (400 MHz, CDCl₃) δ :

7.62-7.55 (m, 3H), 7.27 (m, 3H), 7.03 (ddd, J = 7.6, 7.6, 1.3 Hz, 1H), 6.52 (dd, J = 7.9, 1.0 Hz, 1H), 5.79-5.65 (m, 1H), 5.00-4.92 (m, 2H), 4.30 (dd, J = 14.1, 5.8 Hz, 1H), 3.83 (dd, J = 13.9, 7.7 Hz, 1H), 2.79-2.63 (m, 2H), 2.40-2.49 (3H), 1.02-0.94 (m, 1H), 0.58-0.54 (m, 2H), 0.26-0.19 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): 144.0, 143.4, 137.4, 135.9, 132.4, 129.5, 129.4, 128.4, 128.0, 127.9, 126.0, 119.4, 54.9, 35.2, 21.6, 10.4, 5.1, 4.9; HRMS (APCI) calcd for C₂₀H₂₄NO₂S (M+H)⁺: 342.1528, found: 342.1521

Compound 1t

To a solution of *N*-(2-allylphenyl)-4-methylbenzenesulfonamide (750 mg, 5.1 mmol), which is an intermediate in the preparation of **1s**, and $K_2CO_3(1.4 \text{ g}, 2.0 \text{ eq.})$ in CH₃CN (10 mL, 0.5 M), crotyl chloride (2.0 mL, 4.0 eq.) was added. The reaction mixture

was stirred at 60 °C for 10 h The mixture was filtered through glass filter with AcOEt, and filtrate was concentrated under reduced pressure. The crude residue was purified by column chromatography on silica gel (*n*-hexane/ AcOEt = 20/1) to afford 1-(but-2-en-1-yloxy)-2-(cyclopropylmethyl)benzene (**1t**) (960mg, 94%). White solid (E:Z = 4:1).; m.p.: 66-67 °C.; ¹ H-NMR (400 MHz, CDCl₃) δ : 7.61-7.55 (m, 3H), 7.29-7.24 (m, 3H), 7.03 (ddd, J = 7.7, 7.7, 1.5 Hz, 1H), 6.53 (m, 1H), 5.50-5.30 (m, 2H), 4.32-4.21 (m, 1H), 3.97-3.74 (m, 1H), 2.70 (m, 2H), 2.44 (m, 3H), 1.52-1.37 (m, 3H), 1.02-0.94 (m, 1H), 0.60-0.51 (m, 2H), 0.27-0.14 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): 144.1, 143.3, 137.5, 136.2, 135.9, 130.8, 129.4, 129.4, 129.3, 128.2, 128.0, 127.6, 126.0, 125.0, 123.9, 54.2, 48.1, 35.2, 21.6, 17.6, 12.6, 10.4, 5.1, 4.9; HRMS (APCI) calcd for C₂₁H₂₆NO₂S (M+H)⁺: 356.1684, found: 356.1682

Compound 1u

To a solution of *N*-(2-allylphenyl)-4-methylbenzenesulfonamide (750 mg, 5.1 mmol), which is an intermediate in the preparation of **1s**, and K_2CO_3 (1.4 g, 2.0 eq.) in CH₃CN (10 mL, 0.5 M), 3-chloro-2-methylpropene (988 μ L, 2.0 eq.) was added. The reaction

mixture was stirred at 60 °C for 10 h. The mixture was filtered through glass filter with AcOEt, and filtrate was concentrated under reduced pressure. The crude residue was purified by column chromatography on silica gel (*n*-hexane/AcOEt = 20/1) to afford 1-(cyclopropylmethyl)-2-((2-methylallyl)oxy)benzene (**1u**) (935 mg, 91%). White solid.; m.p.: 94-96 °C.; ¹ H-NMR (400 MHz, CDCl₃) δ : 7.65 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.54 (ddd, *J* = 8.5, 8.5, 1.8 Hz, 2H), 7.29-7.24 (m, 3H), 7.05 (ddd, *J* = 7.6, 7.6, 1.2 Hz, 1H), 6.57 (dd, *J* = 7.8, 1.4 Hz, 1H), 4.71 (s, 1H), 4.54 (s, 1H), 4.24 (d, *J* = 13.7 Hz, 1H), 3.73 (d, *J* = 13.3 Hz, 1H), 2.69 (m, 2H), 2.44 (s, 3H), 1.80 (s, 3H), 0.99-0.91 (m, 1H), 0.60-0.54 (m, 2H), 0.28-0.16 (m, 2H); ¹³C-NMR (100 MHz, CD₃OD): 144.0, 143.8, 139.9, 137.6, 135.6, 129.3, 129.1, 128.0, 127.8, 127.8, 125.9, 115.3, 58.2, 34.8, 20.2, 19.5, 10.1, 4.4, 4.0; HRMS (APCI) calcd for C₂₁H₂₆NO₂S (M+H)⁺: 356.1684, found: 356.1682

Compound 1v

Following the typical procedure A, 2-(3-methylbut-2-en-1-yl)phenol⁷ (1.1 g, 3.8 mmol) was converted to 1v (1.2 g, 89%) after column chromatography on silica gel (*n*-hexane/AcOEt = 10 :1). Colorless oil.; ¹ H-NMR (500 MHz, CDCl₃) δ : 7.28 (d, J = 7.4

Hz, 1H), 7.16 (dd, J = 8.0, 8.0 Hz, 1H), 6.92 (d, J = 14.9 Hz, 1H), 6.83 (d, J = 8.0 Hz, 1H), 6.07 (m, 1H), 5.43 (dd, J = 17.5, 1.4 Hz, 1H), 5.27 (dd, J = 10.6, 1.4 Hz, 1H), 4.55 (d, J = 5.2 Hz, 2H), 2.72-2.63 (m, 2H), 1.09 (d, J = 4.0 Hz, 6H), 0.84 (dt, J = 14.5, 6.7 Hz, 1H), 0.46 (q, J = 4.2 Hz, 1H), 0.09 (t, J = 4.9 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃); 156.2, 133.6, 131.4, 129.0, 126.6, 120.5, 116.8, 111.1, 68.6, 29.4, 27.5, 23.7, 20.0, 19.7, 15.7; HRMS (APCI) calcd for C₁₅H₂₁O (M+H)⁺: 217.1592, found: 217.1589

Compound 1w

To a round-bottom flask containing 2-((2,2-difluorocyclopropyl)methyl)phenol⁸ (296 mg, 1.6 mmol) and K₂CO₃ (444 mg, 3.2 mmol) in CH₃CN (3.2 mL) was added allyl bromide (1.4 mL, 6.4 mmol). The reaction mixture was stirred at 60 °C for 3 h. The

mixture was filtered through glass filter with AcOEt, and filtrate was concentrated under reduced pressure. The crude residue was purified by column chromatography on silica gel (*n*-hexane/AcOEt = 10/1) to afford **1w** (330 mg, 93%). Colorless oil.; ¹ H-NMR (400 MHz, CDCl₃) δ : 7.23-7.16 (m, 2H), 6.95-6.89 (m, 1H), 6.85 (d, J = 8.3 Hz, 1H), 6.13-6.01 (m, 1H), 5.42 (ddt, *J* = 17.5, 1.7, 1.4 Hz, 1H), 5.28 (ddt, *J* = 10.7, 1.4, 1.4 Hz, 1H), 4.56 (td, *J* = 3.3, 1.5 Hz, 2H), 2.81 (dd, *J* = 7.0, 2.0 Hz, 2H), 1.96-1.80 (m, 1H), 1.45-1.34 (m, 1H), 1.11-1.01 (m, 1H); ¹³C-NMR (75 MHz, CDCl₃) δ : 156.3, 133.4, 129.6, 128.3, 127.6, 120.7, 117.1 (t, ¹*J*_{CF} = 284 Hz), 111.4, 68.6, 27.4, 27.4, 22.3 (t, ²*J*_{FC} = 11 Hz), 16.2 (t, ²*J*_{FC} = 11 Hz); ¹⁹F-NMR (376 MHz,

CDCl₃): -128.6 (dd, ${}^{2}J_{FF} = 157$ Hz, ${}^{3}J_{HF} = 17.4$ Hz), -144.7 (dd, ${}^{2}J_{FF} = 148$ Hz, ${}^{3}J_{HF} = 17.4$ Hz); HRMS (APCI) calcd for C₁₃H₁₅F₂O (M+H)⁺: 225.1091, found: 225.1088

To a round-bottom flask containing 2-((2,2-dichlorocyclopropyl)methyl)phenol⁹ (312

Compound 1x

mg, 1.44 mmol) and K₂CO₃ (695 mg, 2.9 mmol) in CH₃CN (2.9 mL) was added allyl bromide (1.4 mL, 5.8 mmol). The reaction mixture was stirred at 60 °C for 3 h. The mixture was filtered through glass filter with AcOEt, and filtrate was concentrated under reduced pressure. The crude residue was purified by column chromatography on silica gel (*n*-hexane/AcOEt = 10/1) as an eluent to afford 1x (340 mg, 92%). Colorless oil.; ¹ H-NMR (400 MHz, CDCl₃) δ : 7.27 (dd, J = 7.3, 1.4 Hz, 1H), 7.22 (ddd, J = 7.8, 7.8, 1.8 Hz, 1H), 6.94 (ddd, J = 7.6, 7.6 Hz, 1.1 Hz, 1H), 6.86 (d, J = 7.8 Hz, 1H), 6.12-6.03 (m, 1H), 5.42 (ddt J = 16.9, 1.8, 1.4 Hz, 1H), 5.29 (ddt J = 10.5, 1.8, 1.4 Hz, 1H), 4.57 (td, J = 10.5, 1.8, 1.4 Hz, 1H), 4.57 (td, J = 10.5, 1.8, 1.4 Hz, 1.43.3, 1.7 Hz, 2H), 2.99-2.84 (m, 2H), 2.00-1.92 (m, 1H), 1.61 (dd, *J* = 10.5, 6.9 Hz, 1H), 1.25 (t, *J* = 7.3 Hz, 1H): ¹³C-NMR (100 MHz, CDCl₃): 156.3, 133.3, 129.7, 128.0, 127.6, 120.7, 117.2, 111.3, 68.6, 61.7, 30.7, 30.3, 26.7; HRMS (APCI) calcd for C₁₃H₁₅Cl₂O (M+H)⁺: 257.0500, found: 257.0499

Preparation of 2a-2u

• Typical procedure B for the preparation of compounds 2a-2u

To a stirred solution of 1-(allyloxy)-2-(cyclopropylmethyl)benzene 1' (1.0 eq.) in p-xylene (0.1 M), degassed with N₂ bubbling, was added RhCl(PPh₃)₃ (10 mol%) and AgOTf (10 mol%) under an N₂ atmosphere. The reaction mixture was refluxed (120 °C) for 24 h. Then, the mixture was filtered through short silica gel column chromatography and concentrated in vacuo to remove the solvent. The obtained residue was purified by flash column chromatography on silica gel to give 2-ethyl-3-isopropylbenzofurans 2.

Compound 2a

Following the typical procedure B, 1a' (30.0 mg, 0.159 mmol) was converted to 2a (26.4 mg, 88%) after flash column chromatography on silica gel (n-hexane/CH₂Cl₂ = 10/1). Colorless oil.; ¹H-NMR (500 MHz, CDCl₃) δ: 7.62-7.59 (m, 1H), 7.41-7.39 (m, 1H), 7.22-7.15 (m, 2H), 3.13-3.06 (m, 1H), 2.77 (q, J = 7.5 Hz, 2H), 1.40 (d, J = 7.3 Hz, 6H), 1.29 (t, J = 7.5 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ : 154.2, 154.0, 128.4, 122.7, 121.6, 120.1, 119.1, 110.8, 25.3, 22.5, 20.0, 13.5, 13.4; HRMS (APCI) calcd for C₁₃H₁₇O (M+H)⁺: 189.1279, found: 189.1279

Compound 2a'

From the typical procedure B, the temperature condition was lowered to 100 °C and the reaction was stopped after 12 h, 1a' (30.0 mg, 0.159 mmol) was converted to 2a (26.7 mg, 89%) after flash column chromatography on silica gel (*n*-hexane/CH₂Cl₂ = 10/1).
Colorless oil (erythro/threo = 7/3).; ¹H-NMR (500 MHz, CDCl₃) δ: 7.15-7.03 (m, 2H), 6.87-6.76 (m, 2H), 4.89-4.82 (m, 2H), 4.61-4.43 (m, 1H), 3.95-3.77 (m, 1H), 1.83-1.65 (m, 2H), 1.63 (s, 1H), 1.50-1.55 (2H), 1.10-1.03 (m, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ: 159.7, 144.7, 143.4, 130.1, 128.9, 128.4, 125.5, 124.9, 120.5, 120.2, 114.0, 113.3, 109.6, 109.3, 88.4, 88.3, 56.2, 52.9, 28.6, 23.6, 21.0, 18.9, 11.3, 9.7; HRMS (APCI) calcd for C₁₃H₁₇O (M+H)⁺: 189.1279, found: 189.1276

Compound 2b

Following the typical procedure B, **1b'** (30.0 mg, 0.145 mmol) was converted to **2b** (19.8 mg, 66%) after flash column chromatography on silica gel (*n*-hexane/CH₂Cl₂ = 10/1). Colorless oil.; ¹H-NMR (300 MHz, CDCl₃) δ : 7.20-7.09 (m, 2H), 6.89-6.83 (m, 1H),

3.17-3.06 (m, 1H), 2.76 (q, J = 7.6 Hz, 2H), 1.33 (dd, J = 7.1, 1.2 Hz, 6H), 1.28 (t, J = 7.6 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ : 156.3 (⁴ $J_{CF} = 2.4$ Hz), 155.3 (¹ $J_{CF} = 235.1$ Hz), 154.1, 123.4 (³ $J_{CF} = 7.2$ Hz), 118.7 (³ $J_{CF} = 4.8$ Hz), 116.8 (² $J_{CF} = 20.4$ Hz), 108.1 (² $J_{CF} = 21.6$ Hz), 106.9 (³ $J_{CF} = 3.6$ Hz), 24.9, 22.6 (⁴ $J_{CF} = 3.6$ Hz), 20.0, 13.4; ¹⁹F-NMR (283 MHz, CDCl₃): -119.1; HRMS (APCI) calcd for C₁₃H₁₄FO (M-H)⁻: 205.1029, found: 205.1024

Compound 2d

Following the typical procedure B, **1d'** (30.0 mg, 0.137mmol) was converted to **2d** (25.2 mg, 84%) after flash column chromatography on silica gel (*n*-hexane/CH₂Cl₂ = 5/1). Pale-yellow oil.; ¹H-NMR (300 MHz, CDCl₃) δ : 7.11 (dd, *J* = 8.1 Hz, 8.1 Hz, 1H), 7.01

 $(d, J = 8.3 \text{ Hz}, 1\text{H}), 6.61 (d, J = 7.9 \text{ Hz}, 1\text{H}), 3.92 (s, 3\text{H}), 3.25-3.16 (m, 1\text{H}), 2.74 (q, J = 7.5 \text{ Hz}, 2\text{H}), 1.32 (d, J = 6.9 \text{ Hz}, 6\text{H}), 1.24 (t, J = 7.6 \text{ Hz}, 3\text{H}); {}^{13}\text{C-NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta: 155.5, 153.5, 153.0, 123.5, 119.8, 118.2, 104.0, 102.9, 55.1, 25.2, 22.8, 20.3, 13.6; HRMS (APCI) calcd for C₁₄H₁₇O₂ (M–H)⁻: 217.1229, found: 217.1223$

Compound 2e

Following the typical procedure B, **1e'** (30.0 mg, 0.145 mmol) was converted to **2e** (25.8 mg, 86%) after flash column chromatography on silica gel (*n*-hexane/CH₂Cl₂ = 10/1). Colorless oil.; 7.28 (m, 2H), 7.23 (dd, J = 9.1, 2.6 Hz, 1H), 6.89 (ddd, J = 9.1,

9.1 Hz, 2.6 Hz, 1H), 3.09-3.00 (m, 1H), 2.74 (q, J = 7.6 Hz, 2H), 1.36 (d, J = 7.2 Hz, 6H), 1.27 (t, J = 7.6 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ : 158.5 (¹ $J_{CF} = 235.8$ Hz), 156.2, 150.3, 129.1 (³ $J_{CF} = 10.5$ Hz), 119.5 (⁴ $J_{CF} = 3.8$ Hz), 111.1 (³ $J_{CF} = 9.6$ Hz), 110.0 (² $J_{CF} = 25.9$ Hz), 105.8 (² $J_{CF} = 24.9$ Hz), 25.2, 22.3, 20.1, 13.2; ¹⁹F-NMR (376 MHz, CDCl₃) δ : -22.9; HRMS (APCI) calcd for C₁₃H₁₄FO (M–H)⁻: 205.1029, found: 205.1023

Compound 2f

Following the typical procedure B, **1f**' (30.0 mg, 0.135 mmol) was converted to **2f** (22.8 mg, 76%) after flash column chromatography on silica gel (*n*-hexane/CH₂Cl₂ = 10/1). Colorless oil.; ¹H-NMR (500 MHz, CDCl₃) δ : 7.54 (d, *J* = 2.3 Hz, 1H), 7.29 (d, *J* = 8.6 Hz, 1H), 7.13 (dd, *J* = 8.6, 2.3 Hz, 1H), 3.09-3.00 (m, 1H), 2.74 (q, *J* = 7.6 Hz, 2H), 1.36 (d, *J* = 7.4 Hz, 6H), 1.27 (t, *J* = 7.7 Hz, 3H); ¹³C-NMR (125 MHz, CDCl₃) δ : 156.0, 152.6, 129.9, 127.2, 122.9, 119.8, 119.1, 111.8, 25.3, 22.5, 20.2, 13.3; HRMS (APCI) calcd for C₁₃H₁₆ClO (M+H)⁺: 223.0890, found: 223.0885

Compound 2g

Following the typical procedure B, **1g**' (30.0 mg, 0.135 mmol) was converted to **2g** (17.7 mg, 59%) after flash column chromatography on silica gel (*n*-hexane/CH₂Cl₂ = 10/1). Colorless oil.; ¹H-NMR; 7.69 (d, J = 1.0 Hz, 1H), 7.29-7.22 (m, 2H), 3.09-

2.99 (m, 1H), 2.74 (q, J = 7.6 Hz, 2H), 1.36 (d, J = 7.2 Hz, 6H), 1.27 (t, J = 7.4 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ : 155.7, 152.8, 130.5, 125.4, 122.7, 118.9, 114.7, 112.2, 25.1, 22.4, 20.0, 13.2; HRMS (APCI) calcd for C₁₃H₁₄BrO (M–H)⁻: 265.0228, found: 265.0224

Compound 2h

Following the typical procedure B, **1h'** (30.0 mg, 0.137 mmol) was converted to **2h** (24.0 mg, 80%) after flash column chromatography on silica gel (*n*-hexane/CH₂Cl₂ = 10/1). Colorless oil.; ¹H-NMR (300 MHz, CDCl₃) δ : 7.26 (s, 1H), 7.06 (d, *J* = 2.8

Hz, 1H), 6.79 (dd, J = 8.8, 2.6 Hz, 1H), 3.85 (s, 3H), 3.10-3.01 (m, 1H), 2.73 (q, J = 7.5 Hz, 2H), 1.37 (d, J = 6.9 Hz, 6H), 1.26 (t, J = 7.6 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ : 155.4, 155.1, 149.2, 129.1, 119.3, 111.1, 110.5, 103.8, 56.2, 25.3, 22.5, 20.3, 13.4; HRMS (APCI) calcd for C₁₄H₁₇O₂ (M–H)⁻: 217.1229,

found: 217.1224

Compound 2i

Following the typical procedure B, 1i' (30.0 mg, 0.148 mmol) was converted to 2i (22.5 mg, 75%) after flash column chromatography on silica gel (n-hexane/CH₂Cl₂ = 10/1). Colorless oil.; ¹H-NMR (300 MHz, CDCl₃) δ : 7.37 (s, 1H), 7.25 (d, J = 8.3

Hz, 1H), 6.99 (dd, J = 8.3, 1.4 Hz, 1H), 3.10-3.01 (m, 1H), 2.73 (q, J = 7.6 Hz, 2H), 2.43 (s, 3H), 1.38 (d, J = 8.3, 1.4 Hz, 1H), 3.10-3.01 (m, 1H), 2.73 (q, J = 7.6 Hz, 2H), 2.43 (s, 3H), 1.38 (d, J = 8.3, 1.4 Hz, 1H), 3.10-3.01 (m, 1H), 2.73 (q, J = 7.6 Hz, 2H), 2.43 (s, 3H), 1.38 (d, J = 8.3, 1.4 Hz, 1H), 3.10-3.01 (m, 1H), 2.73 (q, J = 7.6 Hz, 2H), 2.43 (s, 3H), 1.38 (d, J = 8.3, 1.4 Hz, 1H), 3.10-3.01 (m, 1H), 2.73 (q, J = 7.6 Hz, 2H), 2.43 (s, 3H), 1.38 (d, J = 8.3, 1.4 Hz, 1H), 3.10-3.01 (m, 1H), 2.73 (q, J = 7.6 Hz, 2H), 2.43 (s, 3H), 1.38 (d, J = 8.3, 1.4 Hz, 1H), 3.10-3.01 (m, 1H), 3. J = 7.2 Hz, 6H), 1.26 (t, J = 7.6 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ : 154.4, 152.5, 131.0, 128.6, 123.9, 120.2, 118.9, 110.4, 25.4, 22.6, 21.6, 20.2, 13.5; HRMS (APCI) calcd for C₁₄H₁₇O (M-H)⁻: 201.1279, found: 201.1275

Compound 2j

Following the typical procedure B, 1j' (30.0 mg, 0.145 mmol) was converted to 2j (27.3 mg, 91%) after flash column chromatography on silica gel (*n*-hexane/CH₂Cl₂ = 10/1). Colorless oil.; ¹H-NMR (300 MHz, CDCl₃) δ : 7.47 (dd, J = 8.6, 5.5 Hz, 1H), 7.10 (dd, J = 9.3, 2.4 Hz, 1H), 6.95-6.88 (m, 1H), 3.10-3.01 (m, 1H), 2.73 (q, J = 7.6 Hz, 2H), 1.37 (d, J = 6.9 Hz, 6H), 1.27 (t, J = 7.6 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ : 160.0 (¹ $J_{CF} = 240.6$ Hz), 154.9, 154.0 $({}^{3}J_{CF} = 13.4 \text{ Hz}), 124.6, 120.1 ({}^{3}J_{CF} = 9.6 \text{ Hz}), 118.9, 109.6 ({}^{2}J_{CF} = 24.0 \text{ Hz}), 98.6 ({}^{2}J_{CF} = 25.9 \text{ Hz}), 25.2$ 22.5, 20.0, 13.3; ¹⁹F-NMR (376 MHz, CDCl₃) δ: -120.6; HRMS (APCI) calcd for C₁₃H₁₄FO (M-H)⁻: 205.1029, found: 205.1023

Compound 2k

Following the typical procedure B, 1k' (30.0 mg, 0.135 mmol) was converted to 2k (24.0 mg, 80%) after flash column chromatography on silica gel (n-hexane/CH₂Cl₂ = 10/1). Colorless oil.; ¹H-NMR (300 MHz, CDCl₃) δ: 7.47 (d, J = 8.3 Hz, 1H), 7.38 (d, J = 1.7 Hz, 1H), 7.13 (dd, J = 8.4, 1.9 Hz, 1H), 3.10-3.01 (m, 1H), 2.74 (q, J = 7.5 Hz, 2H), 1.36 (d, J = 7.2 Hz, 6H), 1.27 (t, J = 7.6 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ : 155.1, 154.2, 128.5, 127.1, 122.2, 120.5, 119.1, 111.3, 25.2, 22.5, 20.0, 13.2; HRMS (APCI) calcd for C13H14ClO (M-H)-: 221.0733, found: 221.0728

Compound 21

Following the typical procedure B, 1l' (30.0 mg, 0.137 mmol) was converted to 2l (27.9 mg, 93%) after flash column chromatography on silica gel (n-hexane/CH₂Cl₂ = 5/1). Colorless oil.; ¹H-NMR (500 MHz, CDCl₃) δ : 7.44 (d, J = 8.6 Hz, 1H), 6.95 MeO (d, J = 2.3 Hz, 1H), 6.80 (dd, J = 8.6, 2.3 Hz, 1H), 3.83 (s, 3H), 3.06-3.01 (m, 1H), 2.72 (q, J = 7.4 Hz, 2H),1.36 (d, J = 6.9 Hz, 6H), 1.26 (t, J = 7.4 Hz, 3H); ¹³C-NMR (125 MHz, CDCl₃) δ : 156.9, 154.9, 153.2, 121.8, 120.1, 118.9, 110.2, 95.9, 55.7, 25.3, 22.6, 20.0, 13.4; HRMS (APCI) calcd for $C_{14}H_{17}O_2$ (M–H)⁻: 217.1229, found: 217.1224

Compound 2m

ÓMe

Following the typical procedure B, **1m'** (30.0 mg, 0.137 mmol) was converted to **2m** (25.5 mg, 85%) after flash column chromatography on silica gel (*n*-hexane/CH₂Cl₂ = 5/1). Colorless oil.; ¹H-NMR (300 MHz, CDCl₃) δ : 7.19 (d, *J* = 7.9 Hz, 1H), 7.08 (dd, *J* = 7.9 Hz, 7.9 Hz, 1H), 6.71 (d, *J* = 7.6 Hz, 1H), 3.98 (s, 3H), 3.10-3.01 (m, 1H), 2.77 (q, *J* =

7.5 Hz, 2H), 1.36 (d, *J* = 6.9 Hz, 6H), 1.27 (t, *J* = 7.4 Hz, 3H); ¹³C -NMR (125 MHz, C₆D₆) δ 154.3, 146.1, 144.2, 130.6, 122.7, 119.7, 113.0, 106.0, 55.5, 25.6, 22.6, 20.2, 13.5; HRMS (APCI) calcd for C₁₄H₁₉O₂ (M+H)⁺: 219.1385, found: 219.1381

Compound 2n

Following the typical procedure B, **1n**' (30.0 mg, 0.148 mmol) was converted to **2n** (25.5 mg, 77%) after flash column chromatography on silica gel (*n*-hexane/CH₂Cl₂ = 10/1). Colorless oil.; ¹H-NMR (500 MHz, CDCl₃) δ : 7.42 (d, *J* = 8.0 Hz, 1H), 7.06 (dd, *J* = 7.4 Hz, 7.4 Hz, 1H), 6.99 (d, *J* = 6.9 Hz, 1H), 3.10-3.04 (m, 1H), 2.76 (q, *J* = 7.6 Hz, 2H),

2.48 (s, 3H), 1.38 (d, *J* = 6.9 Hz, 6H), 1.28 (t, *J* = 7.4 Hz, 3H); ¹³C-NMR (125 MHz, CDCl₃) δ: 153.9, 153.0, 127.8, 123.7, 121.6, 121.0, 119.3, 117.6, 25.3, 22.6, 20.1, 15.0, 13.5; HRMS (APCI) calcd for C₁₄H₁₇O (M–H)⁻: 201.1279, found: 201.1274

Compound 2o

Following the typical procedure B, **10** (30.0 mg, 0.148 mmol) was converted to **20** (26.1 mg, 87%) after flash column chromatography on silica gel (*n*-hexane/CH₂Cl₂ = 10/1). Colorless oil.; ¹H-NMR (500 MHz, CDCl₃) δ : 7.61-7.59 (m, 1H), 7.38 (dd, *J* =

6.7, 2.6 Hz, 1H), 7.21-7.13 (m, 2H), 3.12-3.03 (m, 1H), 2.71 (t, J = 7.4 Hz, 2H), 1.73 (td, J = 14.8, 7.2 Hz, 2H), 1.39 (d, J = 6.9 Hz, 6H), 0.96 (t, J = 7.4 Hz, 3H); ¹³C-NMR (75 MHz, CDCl₃) δ : 154.1, 152.9, 128.3, 122.7, 121.6, 120.1, 120.0, 110.8, 28.5, 25.4, 22.5, 21.9, 13.8; HRMS (APCI) calcd for C₁₄H₁₇O (M–H)⁻: 201.1279, found: 201.1275

Compound 2p

Following the typical procedure B, **10** (30.0 mg, 0.172 mmol) was converted to **20** (24.0 mg, 80%) after flash column chromatography on silica gel (*n*-hexane/CH₂Cl₂ = 10/1). Colorless oil.; ¹H-NMR (300 MHz, CDCl₃) δ : 7.58 (dd, *J* = 5.7, 3.3 Hz, 1H), 7.38-7.34 (m, 1H), 7.21-7.12 (m, 2H), 3.12-3.03 (m, 1H), 2.40 (s, 3H), 1.38 (d, *J* = 7.2 Hz, 6H); ¹³C-NMR (100 MHz, C₆D₆) δ : 154.5, 148.9, 128.6, 123.0, 121.9, 120.0, 119.8, 110.9, 25.4, 22.1, 11.8; HRMS (APCI) calcd for C12H13O (M-H)-: 173.0966, found: 173.0961

Compound 2q

Following the typical procedure B, 1q (30.0 mg, 0.148 mmol) was converted to 2q (27.0 mg, 90%) after flash column chromatography on silica gel (*n*-hexane/CH₂Cl₂ = 10/1). Colorless oil.; ¹H-NMR (300 MHz, CDCl₃) δ : 7.61-7.58 (m, 1H), 7.40 (dd, J = 7.1, 2.2Hz, 1H), 7.21-7.12 (m, 2H), 3.25-3.06 (m, 2H), 1.39 (d, J = 7.2 Hz, 6H), 1.32 (d, J = 6.9 Hz, 6H); ¹³C-NMR (75 MHz, CDCl₃) &: 157.2, 154.0, 128.4, 122.6, 121.5, 120.2, 117.9, 110.9, 26.4, 25.2, 22.6, 21.5; HRMS (APCI) calcd for C14H17O (M-H)-: 201.1279, found: 201.1274

Compound 2r

Following the typical procedure B, 1r (30.0 mg, 0.129 mmol) was converted to 2r CO₂Me (27.9 mg, 93%) after flash column chromatography on silica gel (n-hexane/CH2Cl2 = 10/1). Colorless oil.; ¹H-NMR (300 MHz, CDCl₃) δ : 7.62 (dd, J = 7.4, 1.2 Hz, 1H), 7.41 (dd, J = 7.4, 1.2 Hz, 1H), 7.23-7.15 (m, 2H), 3.79 (s, 2H), 3.71 (s, 3H), 3.12-3.03 (m, 1H), 1.39 (d, J = 7.2 Hz, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ: 169.6, 154.4, 144.4, 127.8, 123.7, 122.9, 122.0, 120.5, 111.2, 52.4, 32.9, 25.5, 22.2; HRMS (APCI) calcd for C14H17O3 (M+H)+: 233.1178, found: 233.1172

Compound 2s

Following the typical procedure B, 1s (30.0 mg, 0.088 mmol) was converted to 2s (19.2 mg, 64%) after flash column chromatography on silica gel (*n*-hexane/CH₂Cl₂ = 10/1). White solid.; m.p.: 122-123 °C.; ¹H-NMR (400 MHz, CDCl₃) δ: 8.20 (d, J = 8.2 Hz, 1H), 7.60 (d, J = 7.8 Hz, 1H), 7.56 (d, J = 7.3 Hz, 2H), 7.23-7.15 (m, 4H), 3.17-3.10 (m, 1H),

3.02 (q, J = 7.2 Hz, 2H), 2.33 (s, 3H), 1.35 (d, J = 6.9 Hz, 6H), 1.25 (t, J = 6.9 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) &: 144.3, 137.6, 137.1, 136.2, 129.6, 129.3, 126.1, 125.9, 123.5, 122.8, 120.0, 115.3, 25.9, 22.1, 21.5, 19.7, 15.8; HRMS (APCI) calcd for C₂₀H₂₄NO₂S (M+H): 342.1528, found: 342.1528

Compound 2t

Following the typical procedure B, 1t (30.0 mg, 0.088 mmol) was converted to 2t (15.0 mg, 50%) after flash column chromatography on silica gel (n-hexane/CH₂Cl₂ = 10/1). White solid.; m.p.: 116-117 °C.; ¹H-NMR (300 MHz, CDCl₃) δ: 8.19 (dd, J = 7.2, 1.7 Hz, 1H), 7.59 (dd, J = 6.7, 1.9 Hz, 1H), 7.54 (ddd, J = 8.5, 8.5, 1.9 Hz, 2H), 7.21 (dd,

J = 7.1, 1.5 Hz, 2H), 7.14 (d, J = 8.3 Hz, 2H), 3.17-3.07 (m, 1H), 2.95 (t, J = 7.7 Hz, 2H), 2.32 (s, 3H), 1.69 (td, J = 15.0, 7.5 Hz, 2H), 1.34 (d, J = 7.2 Hz, 6H), 0.98 (t, J = 7.4 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) 8: 144.2, 137.1, 136.2, 136.1, 129.6, 129.3, 126.6, 126.1, 123.4, 122.8, 120.1, 115.4, 28.2, 26.0, 24.3, 22.1,

Compound 2u

Following the typical procedure B, 1u (30.0 mg, 0.088 mmol) was converted to 2u (12.3 mg, 41%) after flash column chromatography on silica gel (*n*-hexane/CH₂Cl₂ = 10/1). White solid.; m.p.: 108-109 °C.; ¹H-NMR (400 MHz, CDCl₃) & 8.28 (dd, *J* = 8.7, 0.9 Hz, 1H), 7.63 (dd, *J* = 7.6, 1.1 Hz, 1H), 7.56 (dd, *J* = 8.4, 8.4, 1.9 Hz, 2H), 7.23 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.21-7.17 (m, 3H), 4.01-3.90 (m, 1H), 3.43-3.33 (m, 1H), 2.36 (s, 3H), 1.37 (d, J = 6.9 Hz, 6H), 1.21 (d, J = 6.9 Hz, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ: 144.3, 140.9, 137.4, 137.1, 129.7, 129.2, 126.2, 126.2, 123.4, 122.5, 120.5, 115.7, 26.1, 25.6, 21.8, 21.6, 21.5; HRMS (APCI) calcd for C₂₁H₂₆NO₂S (M+H): 356.1684, found: 356.1685.

Compound 4

To a solution of 2a' (37.8m mg, 0.201 mmol) and 2,6-lutidine (43 mg, 0.402 mmol) in $H_2O/1,4$ -dioxane = 1/3 (3 mL) was added potassium osmate(VI) dihydrate (3.7 mg, 0.01 mmol) and sodium periodate (172 mg, 0.803 mmol) at 0 °C. The mixture was stirred at

0 °C for 1 h. The mixture was diluted with AcOEt and the organic layer was washed with sat. Na₂S₂O₃ aq. and brine, dried over Na₂SO₄, filtered, and concentrated. The obtained residue was purified by column chromatography on silica gel (*n*-hexane/AcOEt = 10/1) to give the corresponding ketone (32 mg, 0.16 mmol, 82%). A solution of ketone and DDQ (42 mg, 0.19 mmol) in 0.8 mL of toluene was stirred at 100 °C for 24 h. Then the resulting reaction mixture was cooled to room temperature, filtered, and s concentrated. The resulting residue was purified by column chromatography on silica gel (*n*-hexane/AcOEt = 1/:1) to give 4 (23 mg, 73%). Colorless oil.; ¹H-NMR (300 MHz, CDCl₃) δ: 7.93-7.89 (m, 1H), 7.48-7.43 (m, 1H), 7.34-7.28 (m, 2H), 3.18 (q, J = 7.6 Hz, 2H), 2.65 (s, 3H), 1.36 (t, J = 7.6 Hz, 3H); ¹³C-NMR (100 MHz, C₆D₆) δ: 192.8, 167.1, 154.0, 126.7, 124.5, 124.1, 122.0, 117.0, 111.2, 30.8, 22.4, 11.9; HRMS (APCI) calcd for C₁₂H₁₃O₂ (M+H)⁺: 189.0916, found: 189.0910

Compound 5

A solution of 2a' (20 mg, 0.11 mmol) and NaHCO₃ (45 mg, 0.53 mmol) in DCM (1.1 mL) was treated with m-CPBA (822 mg, 0.13 mmol) at 0°C. After stirring for 2 h, the reaction mixture was quenched with 10% Na₂S₂O₄ aqueous solution (1 mL). The aqueous phase was extracted with diethyl ether (5 mL \times 3). The combined ether phase was washed

with saturated NaHCO₃ (2 mL \times 3) and brine (2 mL \times 1), dried with anhydrous Na₂SO₄, concentrated under vacuum to give the residue, purified by silica gel column chromatography (n-hexane/AcOEt, 10/1→3/1). 5 (17 mg, 0.11 mmol, 80% yield) as a colorless oil.; ¹H-NMR (400 MHz, CDCl₃) δ: 7.36 (dd J = 7.6, 0.7 Hz, 1H), 7.19 (ddd, J = 7.7, 7.7 Hz, 1.4 Hz, 1H), 6.92 (ddd, J = 7.4 Hz, 7.4 Hz, 1.0 Hz, 1H), 6.82 $(d, J = 7.6 \text{ Hz}, 1\text{H}), 4.60-4.53 \text{ (m, 1H)}, 2.87 \text{ (d}, J = 8.3 \text{ Hz}, 1\text{H}), 2.78-2.74 \text{ (m, 2H)}, 2.08-1.82 \text{ (m, 2H)}, 1.19 \text{ (t}, J = 7.4 \text{ Hz}, 3\text{H}), 1.01 \text{ (s, 3H)}; {}^{13}\text{C-NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta:159.3, 129.0, 128.4, 125.9, 120.9, 109.5, 87.5, 57.1, 54.0, 52.4, 23.8, 18.5, 11.7; HRMS (APCI) calcd for C₁₃H₁₇O₂ (M+H)⁺: 205.1229, found: 205.1225$

Compound 6

To a round-bottom flask containing 2r (23.2 mg, 0.099 mmol) in Et₂O (0.3 M) was slowly added methylmagnesium bromide (133 μ L, 3.0 M in Et₂O) at 0 °C. The mixture was stirred at ambient temperature for 2 h. The obtained residue was purified

by flash column chromatography on silica gel (*n*-hexane/AcOEt = 8/1) to give compound **6** (18.6 mg, 80%) as a colorless oil.; ¹H-NMR (400 MHz, CDCl₃) δ : 7.66 (dd, *J* = 6.9, 2.4 Hz, 1H), 7.42 (dd, *J* = 7.1, 1.9 Hz, 1H), 7.23-7.16 (m, 2H), 3.13-3.04 (m, 1H), 2.93 (s, 2H), 1.89 (br s, 1H), 1.40 (d, *J* = 6.9 Hz, 6H), 1.31 (s, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ : 154.4, 149.4, 127.6, 123.3, 122.7, 121.9, 120.6, 111.1, 71.2, 40.2, 29.4, 25.6, 22.4; HRMS (APCI) calcd for C₁₅H₁₉O (M–OH)⁻: 215.1436, found: 215.1433

• Preparation of standard compound 1a, 3a and 3a' for NMR experiment.

To a solution of **1a'** in CH₂Cl₂, RuHCl(CO)PPh₃ (5 mol%) was added and the reaction mixture was stirred at 40 °C for 1 h. After removal of the solvent, the residue was purified by column chromatography on silica gel (*n*-hexane/CH₂Cl₂ = 10/1) to afford **1a** (E/Z = 1/4).; ¹H-NMR (300 MHz, CDCl₃) δ : 7.31 (dd, J = 7.3, 1.4 Hz, 1H), 7.18 (ddd, J = 7.8, 7.8, 1.4 Hz, 1H), 7.00 (ddd, J = 7.4, 7.4, 1.2 Hz, 1H), 6.92 (dd, J = 8.2, 0.9 Hz, 1H), 6.40-6.34 (m, 1H), 5.34-4.82 (m, 1H), 2.57 (m, 2H), 1.73 (d, J = 6.9 Hz, 3H), 1.66 (dd, J = 6.8, 1.9 Hz, 0H), 1.08-1.00 (m, 1H), 0.52-0.48 (m, 2H), 0.23-0.19 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃) δ : 155.3, 142.7, 141.3, 131.5, 129.9, 129.8, 127.0, 126.9, 122.5, 122.3, 115.3, 114.5, 107.4, 106.8, 34.4, 34.3, 12.3, 10.8, 10.7, 9.4, 4.8, 4.6; HRMS (APCI) calcd for C₁₃H₁₇O (M+H): 189.1279, found: 189.1276

To a solution of phenol and K₂CO₃ in CH₃CN, 3-chloro-2-methylpropene was added and the reaction mixture was stirred at 60 °C for 8 h. The mixture was filtered through glass filter with AcOEt, and filtrate was concentrated under reduced pressure. The crude residue was put in a vial (Anton Paar). The sealed vial was then heated at 240 °C under microwave irradiation for 30 min. After cooling to room temperature, the residue was separated by column chromatography on silica gel (*n*-hexane/AcOEt = 10/1) to afford S2. To a round-bottom flask containing S2 and K2CO3 (2.0 eq.) in CH3CN (0.5 M) was added allyl bromide (4.0 eq.). The reaction mixture was stirred at 60 °C for 3 h. The mixture was filtered through glass filter with AcOEt, and filtrate was concentrated under reduced pressure. The crude residue was purified by column chromatography on silica gel (*n*-hexane/ AcOEt = 20/1) to afford S3. To a solution of S3 in CH₂Cl₂, RuHCl(CO)PPh₃ (5 mol%) was added and the reaction mixture was stirred at 40 °C for 1 h. After removal of the solvent, the residue was purified by column chromatography on silica gel (*n*-hexane/CH₂Cl₂ = 10/1) to afford **3a** (E/Z = 3/2). Colorless oil. ; ¹H-NMR (500 MHz, CDCl₃) δ : 7.24-7.21 (m, 1H), 7.17 (dd, J =7.7, 7.7 Hz, 1H), 7.01 (dd, J = 7.4, 7.4 Hz, 1H), 6.95-6.92 (m, 1H), 6.38-6.29 (m, 2H), 5.37-4.83 (m, 1H), 1.93 (dd, J = 4.6, 1.1 Hz, 3H), 1.81 (dd, J = 6.9, 1.1 Hz, 3H), 1.73 (dd, J = 6.9, 1.7 Hz, 2H), 1.66 (dd, J = 6.9, 1.7 Hz, 26.9, 1.7 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ: 154.9, 154.8, 142.5, 141.4, 136.1, 136.0, 130.6, 130.5, 128.4, 128.4, 127.2, 122.0, 121.9, 119.9, 115.4, 114.9, 107.8, 107.0, 26.6, 19.6, 12.3, 9.4; HRMS (APCI) calcd for C13H17O (M+H): 189.1279, found: 189.1276

To a solution of phenol and K₂CO₃ in CH₃CN, 3-chloro-2-methylpropene was added and the reaction mixture was stirred at 60 °C for 8 h. The mixture was filtered through glass filter with AcOEt, and filtrate was concentrated under reduced pressure. The crude residue was dissolved in DMF and put in a vial (Anton

Paar). The sealed vial was then heated at 240 °C under microwave irradiation for 30 min. After cooling to room temperature, the residue was separated by column chromatography on silica gel (*n*-hexane/AcOEt = 10/1) to afford **S4**. To a round-bottom flask containing **S4** and K₂CO₃ (2.0 eq.) in CH₃CN (0.5 M) was added allyl bromide (4.0 eq.). The reaction mixture was stirred at 60 °C for 3 h. The mixture was filtered through glass filter with AcOEt, and filtrate was concentrated under reduced pressure. The crude residue was purified by column chromatography on silica gel (*n*-hexane/AcOEt = 20/1) to afford **S5**. To a solution of **S5** in CH₂Cl₂, RuHCl(CO)PPh₃ (5 mol%) was added and the reaction mixture was stirred at 40 °C for 1 h. After removal of the solvent, the residue was purified by column chromatography on silica gel (*n*-hexane/CH₂Cl₂ = 10/1) to afford **3a**' (*E*/*Z* = 4/1). Colorless oil; ¹H-NMR (300 MHz, CDCl₃) &: 7.20-7.15 (m, 2H), 7.01-6.91 (m, 2H), 6.39-6.33 (m, 1H), 5.34-4.82 (m, 1H), 4.79-4.65 (m, 2H), 3.37 (d, *J* = 13.4 Hz, 2H), 1.73-1.63 (m, 6H); ¹³C-NMR (100 MHz, CDCl₃) &: 155.5, 144.7, 142.7, 141.3, 130.6, 129.2, 127.4, 122.5, 122.3, 115.7, 114.7, 111.5, 107.3, 106.7, 37.9, 37.7, 22.4, 12.3, 9.4; HRMS (APCI) calcd for C₁₃H₁₇O (M+H): 189.1279, found: 189.1275

References

 Hoang, G. T.; Walsh, D. J.; McGarry, K. A.; Anderson, C. B.; Douglas, C. J. Development and Mechanistic Study of Quinoline-Directed Acyl C-O Bond Activation and Alkene Oxyacylation Reactions. *J. Org. Chem.* 2017, *82*, 2972–2983.

(2) Gonzalez, C. M.; Pincock, J. A. Substituent Effects, Arrhenius Activation Parameters, and Rate Constants for the Photo-Claisen Rearrangement of Allyl Aryl Ethers. *Can. J. Chem.* **2008**, *86*, 686–690.

• Typical procedure A for the preparation of compounds 1a'-1n'

(3) Lin, Y. L.; Cheng, J. Y.; Chu, Y. H. Microwave-Accelerated Claisen Rearrangement in Bicyclic Imidazolium [b-3C-Im][NTf2] Ionic Liquid. *Tetrahedron* **2007**, *63*, 10949–10957.

(4) Amézquita-Valencia, M.; Alper, H. Regioselective Alkoxycarbonylation of Allyl Phenyl Ethers Catalyzed by Pd/Dppb under Syngas Conditions. *J. Org. Chem.* **2016**, *81*, 3860–3867.

(5) Minutolo, F.; Bellini, R.; Bertini, S.; Carboni, I.; Lapucci, A.; Pistolesi, L.; Prota, G.; Rapposelli, S.; Solati, F.; Tuccinardi, T.; Martinelli, A.; Stossi, F.; Carlson, K. E.; Katzenellenbogen, B. S.; Katzenellenbogen, J. A.; Macchia, M. Monoaryl-Substituted Salicylaldoximes as Ligands for Estrogen Receptor β. *J. Med. Chem.* **2008**, *51*, 1344–1351.

(6) Yamamoto, H.; Ho, E.; Namba, K.; Imagawa, H.; Nishizawa, M. Hg(OTf)2-BINAPHANE-Catalyzed Enantioselective Anilino Sulfonamide Allyl Alcohol Cyclization. *Chem. - A Eur. J.* **2010**, *16*, 11271–11274.

(7) Lu, Y.; Nakatsuji, H.; Okumura, Y.; Yao, L.; Ishihara, K. Enantioselective Halo-Oxy- and Halo-Azacyclizations Induced by Chiral Amidophosphate Catalysts and Halo-Lewis Acids. *J. Am. Chem. Soc.* **2018**, *140*, 6039–6043.

(8) Martinez, H.; Dolbier, W. R. Ste Ff En Eusterwiemann, Henry Martinez, and William R. Dolbier, Jr.;

Methyl 2,2-Difluoro-2-(fluorosulfonyl)acetate, a Difluorocarbene Reagent with Reactivity Comparable to That of Trimethylsilyl 2,2- Difluoro-2-(fluorosulfonyl)acetate (TFDA). J. Org. Chem. 2012, 77, 5461-5464.
(9) Guastavino, J. F.; Rossi, R. A. Synthesis of 1, 1-Bis (Trimethylstannyl) Cyclopropanes by the S 1 Mechanism Synthesis of 1, 1-Bis (Trimethylstannyl) Cyclopropanes by the SRN1 Mechanism. Organometallics 2009, 28, 2646–2649.