Supporting Information

Chemical Control of Supramolecular Organizations in Tetrapyridylporphyrin Thin Films

Kazutaka Tomita,[†] Nobutaka Shioya, [†]Takafumi Shimoaka,[†] Masayuki Wakioka[†] and Takeshi Hasegawa^{*†}

[†]Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

Corresponding Author

*Give contact information for the author(s) to whom correspondence should be addressed.

E-mail: <u>htakeshi@scl.kyoto-u.ac.jp</u>

Experimental

Film Preparation

Silicon wafers were purchased from Valqua FFT Inc. (Tokyo, Japan). The wafers were cut into a rectangular shape of $40 \times 20 \text{ mm}^2$, and cleaned by sonication in pure water, ethanol, acetone, and 1,2-dichloroethane, sequentially. Physical vapor-deposition was performed to obtain metallated tetrapyridylporphyrin (MTPyP) films under a base pressure of 2.0×10^{-3} Pa using a Sanyu Electron (Tokyo, Japan) SVC-700TM vacuum deposition system. The film thickness and the average deposition rate were determined to be 50 nm and 2.0 nm min⁻¹, respectively, by a quartz crystal microbalance. During the deposition, the substrate temperature was maintained at 200 °C.

2D-GIXD Measurements

Two-dimensional grazing incidence X-ray diffraction (2D-GIXD) measurements were performed by using a Rigaku (Tokyo, Japan) SmartLab diffractometer equipped with a two-dimensional image detector, HyPix-3000. 3 kW sealed X-ray tube, was operated at 40 kV and 50 mA (2 kW) generating Cu K α ($\lambda = 0.15418$ nm) radiation. The incident angle to the sample was set to be 0.20°. The diffraction spots were indexed by comparing with simulated patterns of uniaxially oriented crystallites (Fig. S1), which were calculated from the lattice parameters of the known bulk structures (Table S1).^{1–3} Diffraction intensities were not simulated.

Fig. S1 Simulated 2D-GIXD patterns of the (a) form I, (b) II, and (c) III structures and schematics of their orientation. The simulated patterns are obtained by assuming that the (200), (40-2), and (010) planes of the form I, II, and III structures are parallel to the substrate, respectively.

	Form I	Form II	Form III
Reference No.	[1]	[2]	[3]
CCDC No.	179299	749711	1275315
Empirical Formula	$C_{40}H_{24}N_8Fe$	$C_{40}H_{26}N_8$	C44H30N4
Formula Weight / g mol ⁻¹	672.52	618.69	614.73
Space Group	Cmca	Сс	<i>P</i> -1
Polymorph	Orthorhombic	Monoclinic	Triclinic
Lattice Constant / nm	1.818	1.360	0.644
	1.378	2.087	1.042
	1.376	1.145	1.241
	90	90	96.05
Lattice Constant / °	90	116.27	99.14
	90	90	101.12
Lattice Volume / nm ³	3.447	2.914	0.7988
Ζ	4	4	1
Density / g cm ⁻³	1.296	1.410	1.278

Table S1 The crystal parameters of the Form I, II and III structures.

IR pMAIRS Measurements

Infrared p-polarized multiple-angle incidence resolution spectrometry (IR pMAIRS) measurements were performed by using a Thermo Fischer Scientific Co., Ltd. (Madison, WI, USA) Magna 550 spectrometer. The substrate was set on a MAIRS automatic analysis accessory (TN 10-1500). The incident light was p-polarized thorough a germanium wire-grid linear polarizer (090-1500) provided by PIKE Technologies (Madison, WI, USA). The transmitted light was detected by using a mercury cadmium telluride (MCT) detector cooled by liquid nitrogen. The incidence angle was varied in 5° intervals from 9° to 44°, which is the optimum condition when using a silicon substrate.⁴ The signal accumulation was 500 times for each angle. The resulting single beam spectra were used for generating the pMAIRS in-plane (IP) and out-of-plane (OP) spectra, corresponding to the spectra obtained by normal-incidence transmission and reflection–absorption measurements, respectively.⁵

Atomic Force Microscopy Measurements

Atomic force microscopy (AFM) images were obtained in the dynamic force mode by using a Seiko Instruments (Chiba, Japan) Nanocute-NanoNavi IIs system attached on an antivibration stage. The force constant and resonance frequency of the silicon cantilever were 14 Nm⁻¹ and 118 kHz, respectively.

Fig. S2 AFM topographic images of (a) FeTPyP, (b) CoTPyP, (c) NiTPyP, and (d) CuTPyP films. The values of root means square (RMS) roughness are noted below the images.

Density Functionalized Theory Calculation

Geometry optimization was carried out for CuTPyP. All calculations were performed without any symmetry constraints using B3LYP level of density functional theory.⁷ The 6-31G* basis set was used for all atoms.⁸ Gaussian 16 program package was used for all calculations.⁹ The optimized geometry of CuTPyP exhibited no imaginary frequency. The calculated vibrational frequencies were scaled by 0.9613, which is customary for the B3LYP method.^{10–14} Calculated vibrational wavenumbers were summarized in Table S2. The calculated data were consistent with the experimental values (Fig. S3 and Table S2).

Fig. S3 IR ATR spectra of powder (a) FeTPyP, (b) CoTPyP, (c) NiTPyP, and (d) CuTPyP, and a calculated IR spectrum (B3LYP/6-31G*) of (e) CuTPyP.

Vibration Frequency / cm ⁻¹							
FeTPyP	СоТРуР	NiTPyP	CuTPyP	CuTPyP Calculated	Vibration Mode		
718	710	716	718	717	γ(С−H) _{рог} , γ(С−H) _{ру}		
795	797	704	795	800	ү(С-Н)ру		
810	808	/94					
787	791	801	801	806	γ(С−H) _{рог} , γ(С−H) _{ру}		
992	993	1006	1004	986	ν(ring) _{por} , γ(C-H) _{py}		
1073	1067	1070	1072	1066	ү(С-Н) _{ру}		
1082	1081	1085	1082	1092	δ(C-H) _{por}		
1209	1207	1215	1210	1196	δ(C-H) _{por}		
1352	1351	1355	1349	1337	δ (C-H) _{por} , δ (C-H) _{py}		
1408	1409	1405	1403	1397	δ(C-H) _{py}		
1543	1544	1547	1545	1527	δ(C-H) _{py} , ν(ring) _{por}		
1595	1596	1505	1594	1573	v(ring) _{py}		
1612	1604	1393					
γ(С-Н);	C-H out-of-plane deformation						
δ(С-Н);	(C–H in-plane deformation					
ν(С-Н);	(C-H stretching					
v(C=C);	(C=C stretching					
v(ring);	2	aromatic ring stretching					
por;	I	porphyrin					
ру;	I	oyridyl group					

Table S2 Band assignment of IR ATR spectra of powder MTPyPs.

High-Resolution Mass Spectroscopy Measurements

High-resolution mass (HRMS) spectra were recorded on a Bruker (Billerica, MA, USA) solariX Fourier transform ion-cyclotron resonance mass spectrometer in the matrix-assisted laser desorption/ionization (MALDI) mode.

IR ATR measurements

IR attenuated total reflection (ATR) spectra of MTPyP powder samples were obtained by using a Thermo Fischer Scientific Co., Ltd. Nicolet 6700 spectrometer equipped with a Spectra-Tech Foundation Thunder Dome attachment with a Ge prism. The signals were detected by a deuterated triglycine sulfate (DTGS) detector and accumulated 500 times.

UV-Vis Spectroscopy Measurements

UV-Vis absorption spectra were recorded on a Jasco (Tokyo, Japan) V-630 spectrometer using a 1 cm cell. Saturated solutions of MTPyP ($< \sim 10^{-6}$ M) in chloroform were prepared and used for the measurements.

Fig. S4 UV-Vis spectra of MTPyPs (M = Fe, Co, Ni, Cu) in CHCl₃.

Preparation of Tetra(4-pyridyl)porphyrin-M(II) (MTPyP; M = Fe, Co, Ni, Cu).

Scheme S1. Preparation of MTPyP (M = Fe, Co, Ni, Cu)

MTPyP were prepared according to the literature⁶ with some modifications (Scheme S1). A typical procedure is as follows. Tetra(4-pyridyl)porphyrin (H₂TPyP; 248 mg, 0.40 mmol) and Fe(CH₃CO₂)₂ (176 mg, 1.0 mmol, 2.5 equiv/H₂TPyP) were added to a mixed solvent of dimethylformamide (DMF) (20 mL) and AcOH (20 mL). The resulting suspension was stirred under reflux overnight, giving a homogeneous solution. The solution was cooled to room temperature to precipitate a dark purple crystalline solid. The solid was collected by filtration, washed with water, and dried at 150 °C under vacuum to give FeTPyP (265 mg, 95% yield).

CoTPyP, NiTPyP, and CuTPyP were similarly prepared using Co(CH₃CO₂)₂·4H₂O (2.5 equiv/H₂TPyP), Ni(CH₃CO₂)₂·4H₂O (3.8 equiv/H₂TPyP), and Cu(CH₃CO₂)₂·H₂O (2.5 equiv/H₂TPyP), respectively, in place of Fe(CH₃CO₂)₂. The products were characterized by elemental analysis, high-resolution mass spectrometry (HRMS), IR ATR spectroscopy (Fig. S3), and UV-Vis spectroscopy (Fig. S4). The IR ATR spectra showed that the products contained no raw materials and no organic solvents such as DMF and acetic acid. The characterization data for MTPyP are as follows.

FeTPyP: HRMS (MALDI, *m/z*) Calcd for C₄₀H₂₄N₈Fe: 672.14678 ([M]⁺). Found: 672.14593. Anal. Calcd for C₄₀H₂₄N₈Fe·H₂O: C, 69.57; H, 3.80; N, 16.23%. Found: C, 69.10; H, 3.59; N, 16.13%. IR (ATR): ν = 1612, 1595, 1543, 1408, 1352, 1209, 1082, 1073, 992, 810, 801, 795, 718 cm⁻¹. UV-vis (CHCl₃): λ _{max} = 414 nm (Soret-band).

CoTPyP: dark red crystalline solid (83% yield). HRMS (MALDI, m/z) Calcd for C₄₀H₂₄N₈Co: 675.14504 ([M]⁺). Found: 675.14506. Anal. Calcd for C₄₀H₂₄N₈Co·4H₂O: C, 64.25; H, 4.31; N, 14.99%. Found: C, 63.56; H, 4.18; N, 14.04%. IR (ATR): ν = 1604, 1596, 1544, 1409, 1351, 1207, 1081, 1067, 993, 808, 791, 797, 710 cm⁻¹. UV-vis (CHCl₃): λ_{max} = 408 nm (Soret-band).

NiTPyP: dark red crystalline solid (74% yield). HRMS (MALDI, m/z) Calcd for C₄₀H₂₄N₈Ni: 674.14719 ([M]⁺). Found: 674.14611. Anal. Calcd for C₄₀H₂₄N₈Ni·3H₂O: C, 65.86; H, 4.15; N, 15.37%. Found: C, 65.83; H, 3.58; N, 15.24%. IR (ATR): ν = 1595, 1547, 1405, 1355, 1215, 1085, 1070, 1006, 801, 794, 716 cm⁻¹. UV-vis (CHCl₃): λ_{max} = 415 nm (Soret-band).

CuTPyP: dark purple crystalline solid (>99% yield). HRMS (MALDI, m/z) Calcd for C₄₀H₂₄N₈Cu: 679.14144 ([M]⁺). Found: 679.14039. Anal. Calcd for C₄₀H₂₄N₈Cu·H₂O: C, 68.80; H 3.75; N, 16.05%. Found: C, 68.35; H, 3.64; N, 15.57%. IR (ATR): ν = 1594, 1545, 1403, 1349, 1210, 1082, 1072, 1004, 801, 795, 718 cm⁻¹. UV-vis (CHCl₃): λ_{max} = 414 nm (Soret-band).

References

(1) L. Pan, S. Kelly, X. Huang and J. Li, Chem. Commun., 2002, 2, 2334–2335.

(2) S. Lipstman and I. Goldberg, Acta Crystallogr. Sect. C Cryst. Struct. Commun., 2009, 65, 447–452.

(3) S. J. Silvers and A. Tulinsky, J. Am. Chem. Soc., 1967, 89, 3331-3337.

(4) N. Shioya, S. Norimoto, N. Izumi, M. Hada, T. Shimoaka and T. Hasegawa, *Appl. Spectrosc.*, 2017, **71**, 901–910.

(5) T. Hasegawa and N. Shioya, Bull. Chem. Soc. Jpn., 2020, 93, 1127-1138.

(6) A. D. Becke, J. Chem. Phys., 1993, 98, 1372–1377.

(7) G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Al-Laham, W. A. Shirley and J. Mantzaris, *J. Chem. Phys.*, 1988, **89**, 2193–2218.

(8) Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

(9) X. X. Zhang, M. Bao, N. Pan, Y. X. Zhang and J. Z. Jiang, *Chinese J. Chem.*, 2004, **22**, 325–332.

(10) Y. Atalay, F. Yakuphanoglu and M. Sekerci, *Spectrochim. Acta - Part A Mol. Biomol. Spectrosc.*, 2006, **65**, 964–968. (11) Ö. Alver, C. Parlak and M. Şenyel, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 2007, 67, 793–801.

(12) T. U. Rahman, M. Arfan, T. Mahmood, W. Liaqat, M. A. Gilani, G. Uddin, R. Ludwig, K. Zaman, M. I. Choudhary, K. F. Khattak and K. Ayub, *Spectrochim. Acta - Part A Mol. Biomol. Spectrosc.*, 2015, **146**, 24–32.

(13) X. Zhang, Y. Zhang and J. Jiang, Vib. Spectrosc., 2003, 33, 153–161.

(14) J. M. S. Lopes, R. N. Sampaio, A. S. Ito, A. A. Batista, A. E. H. Machado, P. T. Araujo and N. M. B. Neto, *Spectrochim. Acta - Part A Mol. Biomol. Spectrosc.*, 2019, **215**, 327–333.