Electronic Supplementary Information (ESI)

Pd-Catalyzed Coupling of Benzyl Bromides with BMIDA-substituted N-Tosylhydrazones: Synthesis of *trans*-Alkenyl MIDA Boronates

Shichao Li,^a Muyao Li^a, Shu-Sen Li^a and Jianbo Wang^{ab*}

^aBeijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry

and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China.

^bThe State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China Email: <u>wangjb@pku.edu.cn</u>

CONTENTS

1. General	S2
2. General procedure for Pd-catalyzed synthesis of vinylboronates	S2
3. General procedure for Suzuki-Miyaura coupling of aryl bromides with boronate 2	alkenyl MIDA S3
4. Other transformation of alkenyl MIDA boronate 2	S3
5. Characterization data of the products	S3
6. References	S14
7. NMR spectra of the products	S15

1. General

All the Pd-catalyzed reactions were performed under nitrogen atmosphere in an oven-dried reaction tube. THF, toluene, dioxane was dried over Na with benzophenone-ketyl intermediate as indicator; MeCN was dried over CaH₂. For chromatography, 200-300 mesh silica gel (Qingdao, China) was employed. ¹H and ¹³C NMR spectra were recorded at 400 MHz and 100 MHz with Bruker ARX 400 spectrometer. Chemical shifts are reported in ppm using tetramethylsilane as internal standard when using CDCl₃, CD₃CN, (CD₃)₂CO as the solvent, and coupling constants (*J*) were in Hertz (Hz). IR spectra were recorded on Nicolet 5MX–S infrared spectrometer and were reported in terms of frequency of absorption (cm⁻¹). High-resolution mass spectra (HRMS) were obtained on a Bruker APEX IV FTMS instrument and a Bruker Solarix XR FTMS instrument by ESI. Benzyl bromides were bought and used directly without further purification. Pd₂dba₃ was purchased from Adamas, Inc. and Cs₂CO₃ and P(2-furyl)₃ were purchased from Energy Chemicals. These commercial chemicals were used without further purification. PE: petroleum ether; EA: ethyl acetate. S-Phos: 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl. Multiplicities are reported using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet.

BMIDA substituted *N*-tosylhydrozone **1** was synthesized according to literature¹

DMSO (0.23 mL, 3.21 mmol) was dissolved in CH₃CN (20 mL) under Ar atmosphere and the solution was cooled to -40 °C. (COCl)₂ (0.26 mL, 3.08 mmol) was added and the mixture was stirred for 15 min at -40 °C to -30 °C interval. A solution of hydroxymethyl MIDA boronate **1'** (500 mg, 2.67 mmol) in 1:1 mixture of DMSO-CH₃CN (5 mL) was added dropwise. The mixture was stirred at the same temperature interval for 30 min (Note: It is important to control specified temperature. Below -40 °C, the mixture starts to freeze, and above -30 °C, the yield decreases dramatically). NEt₃ (0.86 mL, 6.15 mmol) was added and the mixture was allowed to reach 0 °C during 40 min. At this point TsNHNH₂ (570 mg, 3.06 mmol) was added. The reaction mixture was stirred overnight at ambient temperature and evaporated. The residue was quenched with half-saturated NaCl/H₂O (30 mL) and extracted with EtOAc (3×30 mL). The product crystallized directly from reaction mixture after quenching with H₂O/EtOAc, BMIDA substituted *N*-tosylhydrozone **1** was obtained by recrystallization from CH₃CN/EtOAc.

2. General procedure for Pd-catalyzed synthesis of vinylboronates

N-tosylhydrozone **1** (35.3 mg, 0.1 mmol), Pd₂dba₃ (2.3 mg, 0.0025 mmol), P(2-furyl)₃ (4.6 mg, 0.02 mmol), Cs₂CO₃ (65.2 mg, 0.2 mmol) were weighed in a 10 mL oven-dried reaction flask. The flask was degassed in a vacuum and backfilled with N₂ three times, followed by the addition of dry degassed dioxane (1.5 mL). Then, benzyl bromides **2** (0.25 mmol, 2.5 equiv) was added using a micro-syringe successively. The reaction mixture was stirred at 80 °C with an oil bath under N₂ for 6 h. After the reaction, the mixture was allowed to cool to room temperature and filtered through flash column chromatography on silica gel (EA). Then, the solvent was evaporated in *vacuo* and the crude product was purified by preparative thin layer chromatography on silica gel (300–400 mesh) using ethyl acetate, which afforded product alkenyl boronates **3-31**.

3. General procedure for Suzuki-Miyaura coupling of aryl bromides with alkenyl MIDA boronate 2

In a 10 mL oven-dried reaction flask equipped with a stirring bar were placed with alkenyl MIDA boronate **2** (31.1 mg, 0.12 mmol, 1.2 equiv), $Pd(OAc)_2$ (1.1 mg, 0.005 mmol, 5 mol%), S-Phos (4.1 mg, 0.01 mmol, 10 mol%). The flask was degassed in a vacuum and backfilled with N₂ three times, followed by the addition of dry degassed dioxane (1 mL) and aryl bromides (0.1 mmol, 1 equiv). The mixture was stirred at room temperature for 15 min. Then, aq. K₃PO₄ (3.0 M, 0.25 mL, 7.5 equiv) was added. The flask was placed in a 60 °C oil bath with stirring for 10 h. After cooling to room temperature the mixture was stransferred to separatory funnel and was diluted with H₂O and ethyl acetate, the mixture was shaken and the phases were separated. The aqueous phase was extracted with ethyl acetate (3 × 5 mL). The combined organic fractions were dried over Na₂SO₄. The organic residue after filtration was concentrated and then purified by preparative thin layer chromatography on silica gel (300–400 mesh) using PE to give the corresponding product.

4. Other transformations of alkenyl MIDA boronate 3

The reaction of alkenyl MIDA boronate **3** with Olah's reagent,² m-CPBA,³ KHF₂⁴ was carried out according to the literature procedures.

5. Characterization data of the products

(*E*)-4-methyl-8-styryldihydro- $4\lambda^4$, $8\lambda^4$ -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxazaborole-2,6(3*H*,5 *H*)-dione (**3**)⁵

Yield: 19.7 mg (76%), white solid, $R_f = 0.26$ (EA); ¹H NMR (400 MHz, CD₃CN) δ 7.52 (d, J = 7.3 Hz, 2H), 7.35 (t, J = 7.3 Hz, 2H), 7.28 (t, J = 7.2 Hz, 1H), 6.95 (d, J = 18.2 Hz, 1H), 6.28 (d, J = 18.2 Hz, 1H), 3.99 (d, J = 17.0 Hz, 2H), 3.84 (d, J = 17.0 Hz, 2H),

2.81 (s, 3H); ¹³C{1H} NMR (100 MHz, CD₃CN) *δ* 169.0, 142.9, 138.7, 129.2, 128.6, 127.2, 62.0, 47.3.

(*E*)-4-methyl-8-(4-methylstyryl)dihydro- $4\lambda^4$, $8\lambda^4$ -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxazaborol e-2,6(3*H*,5*H*)-dione (**4**)⁵

Yield: 12.1 mg (48%), white solid, R_f = 0.26 (EA); ¹H NMR (400 MHz, CD₃CN) δ 7.40 (d, J = 8.1 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 6.90 (d, J = 18.2 Hz, 1H), 6.20 (d, J = 18.2 Hz, 1H), 3.98 (d, J = 16.9 Hz, 2H), 3.83 (d, J = 16.9 Hz, 2H), 2.80 (s, 3H), 2.32 (s, 3H); ¹³C{1H} NMR (100 MHz, CD₃CN)

 δ 169.1, 142.8, 138.7, 136.0, 129.8, 127.2, 62.0, 47.3, 20.8.

(*E*)-8-(4-(*tert*-butyl)styryl)-4-methyldihydro- $4\lambda^4$, $8\lambda^4$ -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxazab orole-2,6(3*H*,5*H*)-dione (**5**)⁵

Yield: 18.4 mg (58%), white solid, $R_f = 0.28$ (EA); ¹H NMR (400 MHz, CD₃CN) δ 7.48-7.38 (m, 4H), 6.91 (d, J = 18.2 Hz, 1H), 6.23 (d, J = 18.2 Hz, 1H), 3.98 (d, J = 17.0 Hz, 2H), 3.83 (d, J = 17.0 Hz, 2H), 2.80 (s, 3H), 1.30 (s, 9H); ¹³C{1H}

NMR (100 MHz, CD₃CN) *δ* 169.1, 151.8, 142.7, 136.0, 130.3, 127.0, 126.0, 61.9, 47.3, 34.8, 31.4.

(*E*)-8-(2-([1,1'-biphenyl]-4-yl)vinyl)-4-methyldihydro- λ^4 ,8 λ^4 -[1,3,2]oxazaborolo[2,3-*b*][1,3, 2]oxazaborole-2,6(3*H*,5*H*)-dione (**6**)⁵

Yield: 20.7 mg (62%), white solid, R_f = 0.23 (EA); ¹H NMR (400 MHz, CD₃CN) δ 7.67-7.59 (m, 6H), 7.46 (t, *J* = 7.5 Hz, 2H), 7.36 (t, *J* = 7.5 Hz, 1H), 7.00 (d, *J* = 18.3 Hz, 1H), 6.34 (d, *J* = 18.3 Hz, 1H), 4.01 (d, *J* = 17.0 Hz, 2H), 3.86 (d, *J* =

17.0 Hz, 2H), 2.83 (s, 3H); ¹³C{1H} NMR (100 MHz, CD₃CN) *δ* 169.1, 142.4, 141.0, 140.9, 137.9, 129.5, 128.1, 127.8, 127.6, 127.3, 62.0, 47.3.

(*E*)-4-methyl-8-(4-(trifluoromethoxy)styryl)dihydro- λ^4 ,8 λ^4 -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxazaborole-2,6(3*H*,5*H*)-dione (7)

Yield: 22.1 mg (64%), colorless oil, $R_f = 0.29$ (EA); ¹H NMR (400 MHz, CD₃CN) δ 7.60 (d, J = 8.3 Hz, 2H), 7.27 (d, J = 8.2 Hz, 2H), 6.96 (d, J = 18.2 Hz, 1H), 6.30 (d, J =18.3 Hz, 1H), 4.00 (d, J = 17.0 Hz, 2H), 3.85 (d, J = 17.1

Hz, 2H), 2.82 (s, 3H); ${}^{13}C{1H}$ NMR (100 MHz, CD₃CN) δ 169.0, 149.1, 141.3, 137.9,

128.8, 121.7, 121.1(q, ${}^{1}J_{CF}$ = 255.6 Hz), 62.1, 47.3; ${}^{19}F$ NMR (471 MHz, CD₃CN) δ -58.6 (s, 3F); HRMS (ESI, *m*/*z*): calcd for C₁₄H₁₇BF₃N₂O₅ [M+NH₄]⁺ 361.1183, found 361.1177; IR (film): 1260, 1288, 1292, 1735, 1744, 1765, 1778 cm⁻¹.

(*E*)-8-(4-methoxystyryl)-4-methyldihydro- λ^4 ,8 λ^4 -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxazaborol e-2,6(3*H*,5*H*)-dione (**8**)⁵

Yield: 11.0 mg (38%), white solid, $R_f = 0.27$ (EA); ¹H NMR (400 MHz, CD₃CN) δ 7.45 (d, J = 8.3 Hz, 2H), 7.13-6.80 (m, 3H), 6.10 (d, J = 18.2 Hz, 1H), 3.98 (d, J = 17.0 Hz, 2H), 3.83 (d, J = 17.2 Hz, 2H), 3.78 (s, 3H), 2.80 (s, 3H);

¹³C{1H} NMR (100 MHz, CD₃CN) δ 169.1, 160.3, 142.4, 131.5, 128.5, 114.5, 61.9, 55.5, 47.2.

(*E*)-8-(4-fluorostyryl)-4-methyldihydro- λ^4 ,8 λ^4 -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxazaborole-2,6(3*H*,5*H*)-dione (**9**)⁶

Yield: 16.7 mg (74%), colorless oil, $R_f = 0.25$ (EA); ¹H NMR (400 MHz, CD₃CN) δ 7.55-7.52 (m, 2H), 7.09 (t, J = 8.7 Hz, 2H), 6.93 (d, J = 18.3 Hz, 1H), 6.21 (d, J = 18.3 Hz, 1H), 3.99 (d, J = 17.0 Hz, 2H), 3.84 (d, J = 17.0 Hz, 2H), 2.81 (s, 3H);

¹³C{1H} NMR (100 MHz, CD₃CN) δ169.0, 163.1 (d, J = 244.8 Hz), 141.6, 129.0 (d, J = 8.0 Hz), 115.8 (d, J = 22.0 Hz), 62.0, 47.3; ¹⁹F NMR (471 MHz, CD₃CN) δ -115.8 (m, 1F).

(*E*)-8-(4-chlorostyryl)-4-methyldihydro- λ^4 ,8 λ^4 -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxazaborole-2,6(3*H*,5*H*)-dione (**10**)⁵

Yield: 20.9 mg (71%), colorless oil, $R_f = 0.25$ (EA); ¹H NMR (400 MHz, CD₃CN) δ 7.50 (d, J = 8.2 Hz, 2H), 7.36 (d, J = 8.3Hz, 2H), 6.92 (d, J = 18.2 Hz, 1H), 6.29 (d, J = 18.2 Hz, 1H), 4.00 (d, J = 17.0 Hz, 2H), 3.85 (d, J = 17.0 Hz, 2H), 2.81 (s,

3H); ¹³C{1H} NMR (100 MHz, CD₃CN) δ 169.0, 141.5, 137.5, 133.6, 129.1, 128.7, 62.0, 47.3.

(*E*)-8-(4-bromostyryl)-4-methyldihydro- λ^4 ,8 λ^4 -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxazaborole-2,6(3*H*,5*H*)-dione (**11**)⁵

Yield: 23.0 mg (73%), white solid, $R_f = 0.26$ (EA); ¹H NMR (400 MHz, CD₃CN) δ 7.51 (d, J = 8.2 Hz, 2H), 7.43 (d, J = 8.2Hz, 2H), 6.91 (d, J = 18.2 Hz, 1H), 6.30 (d, J = 18.2 Hz, 1H), 4.00 (d, J = 17.0 Hz, 2H), 3.84 (d, J = 17.0 Hz, 2H), 2.81 (s,

3H); ¹³C{1H} NMR (100 MHz, CD₃CN) δ 169.0, 141.6, 137.9, 132.1, 129.0, 121.8, 62.0, 47.3.

(*E*)-4-methyl-8-(4-(trifluoromethyl)styryl)dihydro- λ^4 ,8 λ^4 -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]ox azaborole-2,6(3*H*,5*H*)-dione (**12**)⁷

Yield: 20.6 mg (63%), white solid, $R_f = 0.27$ (EA); ¹H NMR (400 MHz, CD₃CN) δ 7.70-7.65 (m, 4H), 7.02 (d, J = 18.3 Hz, 1H), 6.45 (d, J = 18.3 Hz, 1H), 4.02 (d, J = 16.9 Hz, 2H), 3.86 (d, J = 17.0 Hz, 2H), 2.83 (s, 3H); ¹³C{1H} NMR (100

MHz, CD₃CN) δ 169.0, 142.5, 141.4, 130.3, 129.5 (q, *J* = 32.0 Hz), 126.0 (q, *J* = 4.0 Hz), 125.1 (q, *J* = 271.7 Hz), 62.1, 47.4; ¹⁹F NMR (471 MHz, CD₃CN) δ -63.0 (s, 3F).

(*E*)-4-methyl-8-(4-nitrostyryl)dihydro- λ^4 ,8 λ^4 -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxazaborole-2, 6(3*H*,5*H*)-dione (**13**)

Yield: 20.3 mg (67%), white solid, m.p.= 142-145 °C, $R_f = 0.22$ (EA); ¹H NMR (400 MHz, CD₃CN) δ 8.19 (d, J = 8.8 Hz, 2H), 7.71 (d, J = 8.5 Hz, 2H), 7.06 (d, J = 18.3 Hz, 1H), 6.54 (d, J = 18.3 Hz, 1H), 4.03 (d, J = 17.1 Hz, 2H), 3.87 (d,

J = 17.1 Hz, 2H), 2.84 (s, 3H); ¹³C{1H} NMR (100 MHz, CD₃CN) δ 169.2, 148.1, 145.2, 141.0, 128.2, 124.6, 62.4, 47.6; HRMS (ESI, *m/z*): calcd for C₁₃H₁₄BN₂O₆ [M+H]⁺ 305.0945, found 305.0939; IR (film): 1309, 1345, 1516, 1752, 1765, 1778 cm⁻¹.

(*E*)-4-(2-(4-methyl-2,6-dioxotetrahydro-2*H*- λ^4 ,8 λ^4 -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxazabor ol-8-yl)vinyl)benzonitrile (**14**)⁸

Yield: 20.1 mg (71%), colorless oil, $R_f = 0.21$ (EA); ¹H NMR (400 MHz, CD₃CN) δ 7.71-7.64 (m, 4H), 7.00 (d, J = 18.2 Hz, 1H), 6.47 (d, J = 18.2 Hz, 1H), 4.02 (d, J = 17.0 Hz, 2H), 3.86 (d, J = 17.0 Hz, 2H), 2.82 (s, 3H); ¹³C{1H} NMR (100 MHz, CD₃CN) δ 169.0, 143.0, 141.2, 133.1, 127.8, 119.4,

111.4, 62.1, 47.4.

methyl (*E*)-4-(2-(4-methyl-2,6-dioxotetrahydro-2*H*- λ^4 ,8 λ^4 -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]

 $oxazaborol-8-yl)vinyl)benzoate (15)^8$

Yield: 20.2 mg (64%), white solid, $R_f = 0.27$ (EA); ¹H NMR (400 MHz, CD₃CN) δ 7.97 (d, J = 8.4 Hz, 2H), 7.61 (d, J = 8.4 Hz, 2H), 7.01 (d, J = 18.3 Hz, 1H), 6.44 (d, J =18.2 Hz, 1H), 4.01 (d, J = 17.0 Hz, 2H), 3.87 (d, J = 17.0

Hz, 2H), 3.86 (s, 3H), 2.83 (s, 3H); ${}^{13}C{1H}$ NMR (100 MHz, CD₃CN) δ 169.0, 167.0, 143.1, 141.80, 130.2, 130.1, 127.3, 62.1, 52.2, 47.3.

(*E*)-8-(2-fluorostyryl)-4-methyldihydro- λ^4 ,8 λ^4 -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxazaborole-2,6(3*H*,5*H*)-dione (**16**)

Yield: 18.1 mg (65%), white solid, m.p. = 139-142 °C, $R_f = 0.29$ (EA); ¹H NMR (400 MHz, CD₃CN) δ 7.66 (td, J = 7.8, 1.7 Hz, 1H), 7.34-7.26 (m, 1H), 7.21-7.15 (m, 1H), 7.14-7.06 (m, 2H), 6.37 (d, J = 18.4 Hz, 1H), 4.01 (d, J = 17.0 Hz, 2H), 3.85 (d, J =

17.0 Hz, 2H), 2.83 (s, 3H); ¹³C{1H} NMR (100 MHz, CD₃CN) δ 169.0, 160.8 (d, J = 247.7 Hz), 134.4 (d, J = 4.4 Hz), 130.2 (d, J = 8.6 Hz), 128.0 (d, J = 3.5 Hz), 125.0 (d, J = 3.3 Hz), 116.2 (d, J = 22.3 Hz), 62.1, 47.4; ¹⁹F NMR (471 MHz, CD₃CN) δ -120.8 (m, 1F); HRMS (ESI, m/z): calcd for C₁₃H₁₇BFN₂O₄ [M+NH₄]⁺ 295.1265, found 295.1260; IR (film): 1032, 1763, 1779, 2035 cm⁻¹.

(*E*)-8-(2-chlorostyryl)-4-methyldihydro- λ^4 ,8 λ^4 -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxazaborole-2,6(3*H*,5*H*)-dione (**17**)⁸

Yield: 17.2 mg (59%), white solid, $R_f = 0.27$ (EA); ¹H NMR (400 MHz, CD₃CN) δ 7.73 (dd, J = 7.7, 1.7 Hz, 1H), 7.40 (dd, J = 7.8, 1.4 Hz, 1H), 7.35-7.23 (m, 3H), 6.32 (d, J = 18.1 Hz, 1H), 4.02 (d, J = 17.0 Hz, 2H), 3.86 (d, J = 17.0 Hz, 2H), 2.84 (s, 3H); ¹³C{1H}

NMR (100 MHz, CD₃CN) δ 169.0, 138.4, 136.5, 133.3, 130.1, 129.9, 127.8, 127.8, 62.1, 47.4.

 $(E) - 8 - (2 - bromostyryl) - 4 - methyldihydro-\lambda^4, 8\lambda^4 - [1,3,2] oxazaborolo [2,3-b] [1,3,2] oxazaborole - (2,3-b) - (2,3$

2,6(3*H*,5*H*)-dione (**18**)⁹ Yield: 22.4 mg (66%), colorless oil, $R_f = 0.28$ (EA); ¹H NMR (400 MHz, CD₃CN) δ 7.71 (dd, J = 7.8, 1.7 Hz, 1H), 7.59 (dd, J = 8.0, 1.3 Hz, 1H), 7.41-7.33 (m, 1H), 7.28-7.15 (m, 2H), 6.27 (d, J = 18.0 Hz, 1H), 4.02 (d, J = 17.0 Hz, 2H), 3.86 (d, J = 17.0 Hz, 2H), 2.84 (s, 3H); ¹³C{1H} NMR (100 MHz, CD₃CN) δ 169.0, 141.1, 138.3, 133.4, 130.2, 128.4, 128.0, 123.8, 62.1, 47.4.

(*E*)-4-methyl-8-(2-methylstyryl)dihydro- λ^4 ,8 λ^4 -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxazaborole -2,6(3*H*,5*H*)-dione (**19**)⁵

Yield: 8.4 mg (31%), white solid, $R_f = 0.26$ (EA); ¹H NMR (400 MHz, CD₃CN) δ 7.56 (d, J = 4.6 Hz, 1H), 7.21-7.17 (m, 4H), 6.15 (d, J = 18.1 Hz, 1H), 4.00 (d, J = 17.0 Hz, 2H), 3.85 (d, J = 17.0 Hz, 2H), 2.83 (s, 3H), 2.36 (s, 3H); ¹³C{1H} NMR (100 MHz,

CD₃CN) δ 169.0, 140.6, 137.9, 136.2, 130.8, 128.4, 126.7, 126.1, 62.0, 47.3, 19.4.

(*E*)-8-(3-fluorostyryl)-4-methyldihydro- λ^4 ,8 λ^4 -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxazaborole-2,6(3*H*,5*H*)-dione (**20**)¹⁰

Yield: 14.8 mg (53%), white solid, $R_f = 0.28$ (EA); ¹H NMR (400 MHz, CD₃CN) δ 7.43-7.22 (m, 3H), 7.02 (td, J = 8.2, 7.8, 2.4 Hz, 1H), 6.94 (d, J = 18.2 Hz, 1H), 6.33 (d, J = 18.2 Hz, 1H), 4.01 (d, J = 17.0 Hz, 2H), 3.85 (d, J = 17.0 Hz, 2H), 2.82 (s, 3H); ¹³C{1H} NMR (100 MHz, CD₃CN) δ 169.0, 163.7 (d, J = 243.1 Hz), 141. 6

(d, J = 2.2 Hz), 130.9 (d, J = 8.7 Hz), 123.4 (d, J = 2.9 Hz), 115.1 (d, J = 21.6 Hz), 113.3 (d, J = 22.1 Hz), 62.0, 47.3; ¹⁹F NMR (471 MHz, CD₃CN) δ -115.4 (m, 1F).

(*E*)-8-(3-chlorostyryl)-4-methyldihydro- λ^4 ,8 λ^4 -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxazaborole-2,6(3*H*,5*H*)-dione (**21**)⁵

Yield: 19.6 mg (67%), white solid, $R_f = 0.30$ (EA); ¹H NMR (400 MHz, CD₃CN) δ 7.55 (t, J = 1.9 Hz, 1H), 7.49-7.41 (m, 1H), 7.34 (t, J = 7.7 Hz, 1H), 7.28 (ddd, J = 7.9, 2.1, 1.3 Hz, 1H), 6.92 (d, J = 18.2 Hz, 1H), 6.34 (d, J = 18.2 Hz, 1H), 4.00 (d, J = 17.0 Hz, 2H), 3.84 (d, J = 16.9 Hz, 2H), 2.81 (s, 3H); ¹³C{1H} NMR (100

MHz, CD₃CN) δ 169.0, 141.3, 140.9, 134.6, 130.7, 128.3, 126.9, 125.8, 62.0, 47.3.

(*E*)-8-(3-bromostyryl)-4-methyldihydro- λ^4 ,8 λ^4 -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxazaborole-2,6(3*H*,5*H*)-dione (**22**)⁵

Yield: 25.1 mg (74%), white solid, $R_f = 0.25$ (EA); ¹H NMR (400 MHz, CD₃CN) δ 7.71 (t, J = 1.9 Hz, 1H), 7.48 (dt, J = 7.7, 1.4 Hz, 1H), 7.43 (ddd, J = 7.9, 2.0, 1.0 Hz, 1H), 7.27 (t, J = 7.8 Hz, 1H), 6.90 (d, J = 18.2 Hz, 1H), 6.33 (d, J = 18.2 Hz, 1H), 4.00 (d, J = 17.0 Hz, 2H), 3.84 (d, J = 17.0 Hz, 2H), 2.81 (s, 3H); ¹³C{1H}

NMR (100 MHz, CD₃CN) δ 169.0, 141.2, 141.1, 131.2, 131.0, 129.8, 126.2, 122.8, 62.0, 47.3.

(*E*)-3-(2-(4-methyl-2,6-dioxotetrahydro-2*H*- λ^4 ,8 λ^4 -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxazabor ol-8-yl)vinyl)benzonitrile (**23**)

Yield: 17.9 mg (63%), colorless oil, $R_f = 0.23$ (EA); ¹H NMR (400 MHz, CD₃CN) δ 7.88 (s, 1H), 7.79 (d, J = 7.9 Hz, 1H), 7.62 (d, J = 7.6 Hz, 1H), 7.51 (t, J = 7.7 Hz, 1H), 6.96 (d, J = 18.2 Hz, 1H), 6.41 (d, J = 18.3 Hz, 1H), 4.02 (d, J = 17.0 Hz, 2H), 3.85 (d, J = 17.1 Hz, 2H), 2.82 (s, 3H); ¹³C{1H} NMR (100 MHz, CD₃CN) δ

169.0, 140.6, 131.9, 131.6, 130.8, 130.2, 125.7, 119.3, 113.0, 62.1, 47.3; HRMS (ESI, m/z): calcd for C₁₄H₁₄BN₂O₄ [M+H]⁺ 285.1047, found 285.1041; IR (film): 1121, 1292, 1459, 1754, 1765, 2232 cm⁻¹.

(*E*)-4-methyl-8-(3-methylstyryl)dihydro- λ^4 ,8 λ^4 -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxazaborole -2,6(3*H*,5*H*)-dione (**24**)⁵

Yield: 17.0 mg (62%), white solid, $R_f = 0.30$ (EA); ¹H NMR (400 MHz, CD₃CN) δ 7.37-7.28 (m, 2H), 7.23 (t, J = 7.5 Hz, 1H), 7.10 (d, J = 7.2 Hz, 1H), 6.91 (d, J = 18.2 Hz, 1H), 6.26 (d, J = 18.2 Hz, 1H), 3.99 (d, J = 17.0 Hz, 2H), 3.84 (d, J = 17.0 Hz, 2H), 2.81 (s, 3H), 2.33 (s, 3H); ¹³C{1H} NMR (100 MHz, CD₃CN) δ 169.0,

143.0, 138.8, 138.7, 129.3, 129.0, 127.9, 124.3, 62.0, 47.3, 21.0.

(*E*)-8-(3-methoxystyryl)-4-methyldihydro- λ^4 ,8 λ^4 -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxazaborol e-2,6(3*H*,5*H*)-dione (**25**)¹⁰

Yield: 19.9 mg (69%), white solid, $R_f = 0.26$ (EA); ¹H NMR (400 MHz, CD₃CN) δ 7.26 (t, J = 7.9 Hz, 1H), 7.16-7.05 (m, 2H), 6.92 (d, J = 18.2 Hz, 1H), 6.85 (dd, J = 8.0, 2.5 Hz, 1H), 6.29 (d, J = 18.2 Hz, 1H), 4.00 (d, J = 17.0 Hz, 2H), 3.84 (d, J = 17.1 Hz, 2H),

3.79 (s, 3H), 2.81 (s, 3H); ${}^{13}C{1H}$ NMR (100 MHz, CD₃CN) δ 169.0, 160.6, 142.8, 140.2, 130.2, 119.7, 114.2, 112.4, 62.0, 55.4, 47.3.

(*E*)-4-methyl-8-(2-(naphthalen-2-yl)vinyl)dihydro- λ^4 ,8 λ^4 -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]ox azaborole-2,6(3*H*,5*H*)-dione (**26**)¹⁰

Yield: 19.2 mg (62%), white solid, $R_f = 0.30$ (EA); ¹H NMR (400 MHz, CD₃CN) δ 7.96-7.82 (m, 4H), 7.77 (d, J = 8.6 Hz, 1H), 7.49 (dq, J = 6.3, 4.2, 2.4 Hz, 2H), 7.12 (d, J = 18.2 Hz, 1H), 6.42 (d, J = 18.2 Hz, 1H), 4.02 (d, J = 17.0 Hz, 2H), 3.87 (d, J = 17.1 Hz, 2H), 2.85 (s, 3H); ¹³C{1H} NMR (100 MHz,

CD₃CN) *δ* 169.1, 142.9, 136.2, 134.1, 133.8, 130.3, 128.7, 128.6, 128.2, 127.4, 127.0, 126.7, 124.2, 62.1, 47.3.

(*E*)-4-methyl-8-(2-(thiophen-3-yl)vinyl)dihydro- λ^4 ,8 λ^4 -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxaz aborole-2,6(3*H*,5*H*)-dione (**27**)

Yield: 13.1 mg (49%), colorless oil, $R_f = 0.27$ (EA); ¹H NMR (400 MHz, CD₃CN) δ 7.36-7.35 (m, 3H), 6.95 (d, J = 18.2 Hz, 1H), 6.07 (d, J = 18.2 Hz, 1H), 3.98 (d, J = 17.0 Hz, 2H), 3.83 (d, J = 16.9 Hz, 2H), 2.81 (s, 3H); ¹³C{1H} NMR (100 MHz, CD₃CN) δ 169.0,

142.33, 136.9, 130.3, 126.9, 125.8, 123.9, 61.9, 47.3; HRMS (ESI, m/z): calcd for C₁₁H₁₃BNO₄S [M+H]⁺ 266.0658, found 266.0653; IR (film): 1028, 1295, 1343, 1769 cm⁻¹.

(*E*)-8-(2-bromo-5-fluorostyryl)-4-methyldihydro- λ^4 ,8 λ^4 -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxazaborole-2,6(3*H*,5*H*)-dione (**28**)

Yield: 22.1 mg (62%), colorless oil, $R_f = 0.29$ (EA); ¹H NMR (400 MHz, CD₃CN) δ 7.59 (dd, J = 8.8, 5.4 Hz, 1H), 7.47 (dd, J = 10.2, 3.1 Hz, 1H), 7.25-7.10 (m, 1H), 6.99 (td, J = 8.4, 3.0 Hz, 1H), 6.32 (d, J = 18.1 Hz, 1H), 4.03 (d, J = 17.0 Hz, 2H), 3.87 (d, J = 17.1 Hz, 2H), 2.84 (s, 3H); ¹³C{1H} NMR (100 MHz, CD₃CN) δ 168.9,

162.8 (d, J = 244.7 Hz), 150.2 (d, J = 8.3 Hz), 140.1, 134.9 (d, J = 8.3 Hz), 124.0 (d, J = 22.1 Hz), 117.1 (d, J = 23.1 Hz), 114.5 (d, J = 23.8 Hz), 62.1, 47.4; ¹⁹F NMR (471 MHz, CD₃CN) δ -116.3 (m, 1F); HRMS (ESI, *m/z*): calcd for C₁₃H₁₃BBrFNO₄ [M+H]⁺ 356.0105, found 356.0100; IR (film): 1298, 1460, 1338, 1467, 1754, 1765, 1777 cm⁻¹.

(*E*)-8-(3,5-dichlorostyryl)-4-methyldihydro- λ^4 ,8 λ^4 -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxazaborole-2,6(3*H*,5*H*)-dione (**29**)

Yield: 24.4 mg (75%), colorless oil, $R_f = 0.29$ (EA); ¹H NMR (400 MHz, CD₃CN) δ 7.48 (d, J = 1.8 Hz, 2H), 7.35 (t, J = 1.9Hz, 1H), 6.87 (d, J = 18.2 Hz, 1H), 6.39 (d, J = 18.2 Hz, 1H), 4.01 (d, J = 17.0 Hz, 2H), 3.85 (d, J = 17.1 Hz, 2H), 2.82 (s, 3H); ¹³C{1H} NMR (100 MHz, CD₃CN) δ 168.9, 150.3, 142.2,

139.9, 135.4, 127.8, 125.7, 62.1, 47.4; HRMS (ESI, *m/z*): calcd for C₁₃H₁₃BCl₂NO₄ [M+H]⁺ 328.0315, found 328.0309; IR (film): 1034, 1113, 1292, 1295, 1562, 1748, 1766 cm⁻¹.

(*E*)-8-(3,5-bis(trifluoromethyl)styryl)-4-methyldihydro- λ^4 ,8 λ^4 -[1,3,2]oxazaborolo[2,3-*b*][1,3, 2]oxazaborole-2,6(3*H*,5*H*)-dione (**30**)

Yield: 27.7 mg (70%), colorless oil, $R_f = 0.32$ (EA); ¹H NMR (400 MHz, CD₃CN) δ 8.08 (s, 2H), 7.88 (s, 1H), 7.08 (d, J =18.2 Hz, 1H), 6.56 (d, J = 18.2 Hz, 1H), 4.04 (d, J = 17.1 Hz, 2H), 3.87 (d, J = 17.0 Hz, 2H), 2.84 (s, 3H); ¹³C{1H} NMR (100 MHz, CD₃CN) δ 168.9, 150.3 (d, J = 8.1 Hz), 141.2,

139.7, 131.82 (q, J = 33.3 Hz), 127.51, 124.20 (q, J = 271.9 Hz), 121.74 (q, J = 3.8 Hz), 62.1, 47.4; ¹⁹F NMR (471 MHz, CD₃CN) δ -63.4 (s, 6F); HRMS (ESI, m/z): calcd for C₁₅H₁₃BF₆NO₄ [M+H]⁺ 396.0842, found 396.0836; IR (film): 1006, 1034, 1130, 1170, 1376, 1462, 1749, 1765 cm⁻¹.

(*E*)-8-(3,5-dimethylstyryl)-4-methyldihydro- λ^4 ,8 λ^4 -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxazabor ole-2,6(3*H*,5*H*)-dione (**31**)

Yield: 12.1 mg (42%), colorless oil, $R_f = 0.32$ (EA); ¹H NMR (400 MHz, CD₃CN) δ 7.14-7.11 (m, 2H), 6.94 (s, 1H), 6.86 (d, J = 18.2 Hz, 1H), 6.23 (d, J = 18.3 Hz, 1H), 3.98 (d, J = 16.9Hz, 2H), 3.83 (d, J = 16.9 Hz, 2H), 2.80 (s, 3H), 2.28 (s, 6H); ¹³C{1H} NMR (100 MHz, CD₃CN) δ 169.1, 143.2, 138.6,

130.2, 125.1, 62.0, 47.3, 20.9; HRMS (ESI, *m/z*): calcd for C₁₅H₁₉BNO₄ [M+H]⁺ 288.1407, found 288.1402; IR (film): 1044, 1400, 1510, 1624, 1772, 1777 cm⁻¹.

(E)-1,2-diphenylethene $(32)^{11}$

Yield: 18.0 mg (100%, 0.1 mmol scale), white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 7.5 Hz, 4H), 7.35 (t, J = 7.5 Hz, 4H), 7.25 (t, J = 7.5 Hz, 2H), 7.11 (s, 2H); ¹³C{1H} NMR (100 MHz, CDCl₃) δ 137.4, 128.7, 127.7, 126.6.

(E)-2-styrylfuran (33)¹²

Yield: 9.5 mg (56%, 0.1 mmol scale), white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 7.6 Hz, 2H), 7.40 (s, 1H), 7.34 (t, J = 7.5 Hz, 2H), 7.28-7.20 (m, 1H), 7.04 (d, J = 16.3 Hz, 1H), 6.90 (d, J = 16.3 Hz, 1H), 6.51-6.30 (m, 2H); ¹³C{1H} NMR (100 MHz, CDCl₃) δ 153.3, 142.2, 137.0, 128.7, 127.6, 127.2, 126.4, 116.6, 111.7, 108.6.

(*E*)-3-styrylthiophene $(34)^{13}$

Yield: 15.7 mg (84%, 0.1 mmol scale), white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 7.7 Hz, 2H), 7.36-7.31 (m, 4H), 7.29-7.21 (m, 2H), 7.12 (d, J = 16.3 Hz, 1H), 6.95 (d, J = 16.2 Hz, 1H); ¹³C{1H} NMR (100 MHz, CDCl₃) δ 140.2, 137.4, 132.9, 128.7, 127.5, 126.3, 126.2, 125.0, 122.9, 122.4.

8-(2,2-difluoro-1-phenylethyl)-4-methyldihydro- $4\lambda^4$, $8\lambda^4$ -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxazaborole-2,6(3*H*,5*H*)-dione (**35**)¹⁴

Yield: 18.5 mg (62%, 0.1 mmol scale), white solid; ¹H NMR (400 MHz, acetone- d_6) δ 7.40 (d, J = 7.5 Hz, 2H), 7.30 (t, J = 7.5 Hz, 2H), 7.23 (t, J = 7.2 Hz, 1H), 6.23 (td, J = 57.0, 4.7 Hz, 1H), 4.29 (d, J = 17.0 Hz, 1H), 4.22 (d, J = 17.0 Hz, 1H), 4.09 (d, J = 17.1 Hz, 1H), 3.57 (d, J = 17.0 Hz, 1H), 3.11 (s, 3H), 3.07-2.92 (m, 1H); ¹³C{1H} NMR (100 MHz,

Acetone- d_6) δ 168.2, 137.2 (d, J = 8.2 Hz), 131.2, 129.0, 127.1, 121.2 (d, J = 241.9, 239.9 Hz), 63.4, 63.0, 46.9 (d, J = 1.6 Hz).

4-methyl-8-(3-phenyloxiran-2-yl)dihydro- $4\lambda^4$, $8\lambda^4$ -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxazaborole-2,6(3H,5H)-dione (**36**)³

Yield: 64.4 mg (78%, 0.3 mmol scale), white solid; ¹H NMR (400 MHz, acetone- d_6) δ 7.36-7.30 (m, 5H), 4.35 (d, J = 17.2 Hz, 1H), 4.28 (d, J = 16.8 Hz, 1H), 4.18 (d, J = 17.2 Hz, 1H), 4.04 (d, J = 16.7 Hz, 1H), 3.81 (s, 1H), 3.34 (s, 3H), 2.46 (s, 1H); ¹³C{1H}

NMR (100 MHz, acetone- d_6) δ 168.6, 167.5, 139.3, 128.4, 127.8, 125.6, 62.1, 62.0, 55.7, 46.2.

2-(4-methyl-2,6-dioxotetrahydro-2H- $4\lambda^4$, $8\lambda^4$ -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxazaborol-8-y 1)-2-phenylacetaldehyde (**37**)³

Yield: 27.0 mg (98%, 0.1 mmol scale), white solid; ¹H NMR (400 MHz, acetone- d_6) δ 9.82 (d, J = 2.3 Hz, 1H), 7.38-7.32 (m, 4H), 7.27-7.22 (m, 1H), 4.30 (d, J = 13.0 Hz, 1H), 4.26 (d, J = 13.1 Hz, 1H), 4.15 (d, J = 16.9 Hz, 1H), 3.75 (d, J = 5.6 Hz, 1H), 3.72 (s, 1H), 3.19 (s, 3H);

¹³C{1H} NMR (100 MHz, acetone- d_6) δ 203.5, 167.5, 136.5, 129.8, 128.5, 126.2, 62.8, 62.5, 46.3.

(*E*)-trifluoro(styryl)- λ^4 -borane, potassium salt (**38**)⁴

Yield: 60.4 mg (58%, 0.5 mmol scale), white solid; ¹H NMR (400 MHz, acetone- d_6) δ 7.36-7.07 (m, 5H), 6.67 (d, J = 18.2 Hz, 1H), 6.33 (d, J = 18.5 Hz, 1H); ¹³C{1H} NMR (100 MHz, acetone- d_6) δ 141.0, 133.9, 128.1, 125.7, 125.6.

(E)-4,4,5,5-tetramethyl-2-styryl-1,3,2-dioxaborolane (**39**)⁴

Yield: 9.1 mg (40%, 0.1 mmol scale), colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.46 (m, 2H), 7.40 (d, J = 18.4 Hz, 1H), 7.32 (dt, J = 12.3, 7.0 Hz, 3H), 6.17 (d, J = 18.4 Hz, 1H), 1.32 (s, 12H); ¹³C{1H} NMR (100 MHz, CDCl₃) δ 149.5, 137.5, 128.9, 128.6, 127.1, 83.4, 24.8.

6. References

- 1 Y. M. Ivon, I. V. Mazurenko, Y. O. Kuchkovska, Z. V. Voitenko, O. O. Grygorenko, *Angew. Chem., Int. Ed.*, 2020, **59**, 18016-18022.
- 2 W.-X. Lv, Q. Li, J.-L. Li, Z. Li, E. Lin, D.-H. Tan, Y.-H. Cai, W.-X. Fan, H. Wang, *Angew. Chem., Int. Ed.*, 2018, **57**, 16544-16548.
- 3 Z. He, A. K. Yudin, J. Am. Chem. Soc., 2011, 133, 13770-13773.
- 4 Q. I. Churches, J. F. Hooper, C. A. Hutton, J. Org. Chem., 2015, 80, 5428-5435.
- 5 W.-Z. Lv, Y.-F. Zeng, Q. Li, Y. Chen, D.-H. Tan, L. Yang, H. Wang, *Angew. Chem.*, *Int. Ed.*, 2016, **55**, 10069-10073.
- 6 J. Li, M. D. Burke, J. Am. Chem. Soc., 2011, 133, 13774-13777.
- 7 K. Brak, J. A. Ellman, J. Org. Chem., 2010, 75, 3147-3150.
- 8 Y.-F. Zeng, W.-W. Ji, W.-X. Lv, Y. Chen, D.-H. Tan, Q. Li, H. Wang, *Angew. Chem.*, *Int. Ed.*, 2017, **56**, 14707-14711.
- 9 B. E. Uno, E. P. Gillis, M. D. Burke, *Tetrahedron*, 2009, **65**, 3130-3138.
- V. B. Corless, A. Holownia, H. Foy, R. Mendoza-Sanchez, S. Adachi, T. Dudding, A. K. Yudin, *Org. Lett.*, 2018, 20, 5300-5303.
- A. Modak, A. Deb, T. Patra, S. Rana, S. Maity, D. Maiti, *Chem. Commun.*, 2012, 48, 4253-4255.
- 12 V. G. Landge, V. Yadav, M. Subaramanian, P. Dangarh, E. Balaraman, *Chem. Commun.*, 2019, **55**, 6130-6133.
- 13 S. Ceyhan, Y. Cetinkaya, A. Akdag, M. Balci, *Tetrahedron*, 2016, 72, 6815-6824.
- 14 W.-X. Lv, Q. Li, J.-L. Li, Z. Li, E. Lin, D.-H. Tan, Y.-H. Cai, W.-X. Fan, H. Wang, *Angew. Chem., Int. Ed.*, 2018, **57**, 16544-16548.

7. NMR spectra of the products

(*E*)-4-methyl-8-styryldihydro- $4\lambda^4$, $8\lambda^4$ -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxazaborole-2, 6(3*H*,5*H*)-dione (**3**)

(*E*)-4-methyl-8-(4-methylstyryl)dihydro- $4\lambda^4$, $8\lambda^4$ -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxaz aborole-2,6(3H,5H)-dione (**4**)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

 $(E)-8-(4-(tert-butyl)styryl)-4-methyldihydro-4\lambda^4, 8\lambda^4-[1,3,2] \\ oxazaborolo[2,3-b][1,3,2] \\ oxazaborole-2, 6(3H,5H)-dione (5)$

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

(*E*)-8-(2-([1,1'-biphenyl]-4-yl)vinyl)-4-methyldihydro- λ^4 ,8 λ^4 -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxazaborole-2,6(3*H*,5*H*)-dione (**6**)

(*E*)-4-methyl-8-(4-(trifluoromethoxy)styryl)dihydro- λ^4 ,8 λ^4 -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxazaborole-2,6(3*H*,5*H*)-dione (**7**)

 $(E)-8-(4-\text{methoxystyryl})-4-\text{methyldihydro-}\lambda^4,8\lambda^4-[1,3,2]\text{oxazaborolo}[2,3-b][$

f1 (ppm)

 $(E)-8-(4-fluorostyryl)-4-methyldihydro-\lambda^4, 8\lambda^4-[1,3,2] oxazaborolo[2,3-b][1,3,2] oxazaborolo[2,3,2] oxazaborolo[2,3,2] oxaborolo[2,3,2] oxazabor$

-115.7 -115.8 -115.8 -115.8 -115.8 -115.8 -115.8

 $(E)-8-(4-\text{chlorostyryl})-4-\text{methyldihydro-}\lambda^4,8\lambda^4-[1,3,2]\text{oxazaborolo}[2,3-b][1,3,2]\text{oxaza borole-}2,6(3H,5H)-\text{dione}~(\textbf{10})$

(*E*)-8-(4-bromostyryl)-4-methyldihydro- λ^4 ,8 λ^4 -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxaza borole-2,6(3*H*,5*H*)-dione (**11**)

^{220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20} fl (ppm)

(*E*)-4-methyl-8-(4-(trifluoromethyl)styryl)dihydro- λ^4 ,8 λ^4 -[1,3,2]oxazaborolo[2,3-*b*][1, 3,2]oxazaborole-2,6(3*H*,5*H*)-dione (**12**)

 $(E)-4-methyl-8-(4-nitrostyryl)dihydro-\lambda^4, 8\lambda^4-[1,3,2] oxazaborolo[2,3-b][1,3,2] oxazaborole-2, 6(3H,5H)-dione~({\bf 13})$

 $(E)-4-(2-(4-\text{methyl-2,6-dioxotetrahydro-}2H-\lambda^4,8\lambda^4-[1,3,2]\text{oxazaborolo}[2,3-b][1,3,2]\text{oxazaborol-}8-yl)\text{vinyl}\text{benzonitrile} (\mathbf{14})$

methyl (*E*)-4-(2-(4-methyl-2,6-dioxotetrahydro- $2H-\lambda^4$, $8\lambda^4$ -[1,3,2]oxazaborolo[2,3-*b*] [1,3,2]oxazaborol-8-yl)vinyl)benzoate (**15**)

 $(E)-8-(2-fluorostyryl)-4-methyldihydro-\lambda^4, 8\lambda^4-[1,3,2] oxazaborolo[2,3-b][1,3,2] oxazaborole-2, 6(3H,5H)-dione (\mathbf{16})$

S31

-120.8 -120.8 -120.8 -120.8 -120.8

 $(E)-8-(2-\text{chlorostyryl})-4-\text{methyldihydro-}\lambda^4,8\lambda^4-[1,3,2]\text{oxazaborolo}[2,3-b][1,3,2]\text{oxaza borole-}2,6(3H,5H)-\text{dione}~(\textbf{17})$

^{220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20} fl (ppm)

(*E*)-4-methyl-8-(2-methylstyryl)dihydro- λ^4 ,8 λ^4 -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxaza borole-2,6(3*H*,5*H*)-dione (**19**)

^{220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} fl (ppm)

 $(E)-8-(3-fluorostyryl)-4-methyldihydro-\lambda^4, 8\lambda^4-[1,3,2] oxazaborolo[2,3-b][1,3,2] oxazaborole-2, 6(3H,5H)-dione (\bf 20)$

f1 (ppm) 210 200 190 160 150 -10

-115.3 -115.4 -115.4 -115.4 -115.4 -115.4

$(E)-8-(3-\text{chlorostyryl})-4-\text{methyldihydro-}\lambda^4,8\lambda^4-[1,3,2]\text{oxazaborolo}[2,3-b][1,3,2]\text{oxaza borole-}2,6(3H,5H)-\text{dione}~(\textbf{21})$

 $(E)-3-(2-(4-\text{methyl-2,6-dioxotetrahydro-}2H-\lambda^4,8\lambda^4-[1,3,2]\text{oxazaborolo}[2,3-b][1,3,2]\text{oxazaborol-}8-yl)\text{vinyl}\text{benzonitrile} (\textbf{23})$

 $(E)-8-(3-\text{methoxystyryl})-4-\text{methyldihydro-}\lambda^4,8\lambda^4-[1,3,2]\text{oxazaborolo}[2,3-b][1,3,2]\text{oxazaborole}-2,6(3H,5H)-\text{dione}~(\textbf{25})$

(*E*)-4-methyl-8-(2-(naphthalen-2-yl)vinyl)dihydro- λ^4 ,8 λ^4 -[1,3,2]oxazaborolo[2,3-*b*][1, 3,2]oxazaborole-2,6(3*H*,5*H*)-dione (**26**)

(*E*)-4-methyl-8-(2-(thiophen-3-yl)vinyl)dihydro- λ^4 ,8 λ^4 -[1,3,2]oxazaborolo[2,3-*b*][1,3, 2]oxazaborole-2,6(3*H*,5*H*)-dione (**27**)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

 $(E)-8-(2-bromo-5-fluorostyryl)-4-methyldihydro-\lambda^4, 8\lambda^4-[1,3,2] oxazaborolo[2,3-b][1,3,2] oxazaborole-2, 6(3H,5H)-dione (\textbf{28})$

 $(E)-8-(3,5-\text{dichlorostyryl})-4-\text{methyldihydro-}\lambda^4,8\lambda^4-[1,3,2]\text{oxazaborolo}[2,3-b][1,3,2]\text{oxazaborolo}[2,3-$

(*E*)-8-(3,5-bis(trifluoromethyl)styryl)-4-methyldihydro- λ^4 ,8 λ^4 -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxazaborole-2,6(3*H*,5*H*)-dione (**30**)

fl (ppm)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm)

 $(E)-8-(3,5-dimethylstyryl)-4-methyldihydro-\lambda^4,8\lambda^4-[1,3,2] oxazaborolo[2,3-b][1,3,2] oxazaborole-2,6(3H,5H)-dione ($ **31**)

f1 (ppm)

8-(2,2-difluoro-1-phenylethyl)-4-methyldihydro- $4\lambda^4$, $8\lambda^4$ -[1,3,2]oxazaborolo[2,3-*b*][1, 3,2]oxazaborole-2,6(3*H*,5*H*)-dione (**35**)

4-methyl-8-(3-phenyloxiran-2-yl)dihydro- $4\lambda^4$, $8\lambda^4$ -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxazaborole-2,6(3*H*,5*H*)-dione (**36**)

2-(4-methyl-2,6-dioxotetrahydro-2*H*-4 λ^4 ,8 λ^4 -[1,3,2]oxazaborolo[2,3-*b*][1,3,2]oxazaborol-8-yl)-2-phenylacetaldehyde (**37**)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

(*E*)-trifluoro(styryl)- λ^4 -borane, potassium salt (**38**)

¹H NMR (400 MHz, acetone- d_6)

$(E)\-4,4,5,5\-tetramethyl-2\-styryl-1,3,2\-dioxaborolane~({\bf 39})$

