Csp³–H Monofluoroalkenylation via Stereoselective C–F Bond Cleavage

Ying Hu, Xing chen Liu, Zhouyang Ren, Binjing Hu and Jie Li*

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Ren-Ai Road 199, Suzhou 215123, People's Republic of China

* E-mail: jjackli@suda.edu.cn

Contents

General Remarks
Optimization Studies
Additional Experiments
Representative ProceduresS-15
Characterization Data of Products 2, 3–32, 37, 38–42······S-16
References S-40
NMR Spectra-S-41

General Remarks

Unless otherwise indicated, all reactions were carried out with magnetic stirring and in flamedried glassware under argon. Syringes used to transfer reagents and solvents were purged with N₂ prior to use. The following starting materials were synthesized according to previously described methods: N-aryl amines 1^[1], gem-difluoroalkenes 2^[2] Other chemicals were obtained from commercial sources and were used without further purification. Yields refer to isolated compounds, estimated to be > 95% pure as determined by ¹H-NMR and GC-analysis. Reactions were monitored by gas chromatography (GC and GC-MS) or thin layer chromatography (TLC). TLC were performed using aluminum plates covered with SiO₂ (Merck 60, F-254) and visualized by UV detection. Purification via column chromatography was performed using Merck silica gel 60 (40-63 mm 230-400 mesh ASTM from Merck). THF was continuously refluxed and freshly distilled from sodium benzophenone ketyl under nitrogen. Melting points were measured using a Büchi B-540 apparatus and are uncorrected. NMR spectra were recorded in CDCl₃ and chemical shifts (δ) are reported in parts per million (ppm). Mass spectra and highresolution mass spectra (HR-MS) were recorded using electro ionization (EI) except where otherwise noted. GCs were recorded on machines of the type Hewlett-Packard 6890 (Hewlett Packard, 5% phenylmethylpolysiloxane; length: 15 m, diameter: 0.25 mm; film thickness: 0.25 μm).

Optimization Studies

entry	modified conditions	yield (%) ^[b]
1	none	56
2	PC2 instead of PC1	43
3	PC3 instead of PC1	38
4	w/o NiCl ₂ and L1	12
5	w/o NiCl ₂ and L1, DMF instead of MeCN	40 (40) ^[c]
6	DMF instead of MeCN	78
7	NMP instead of MeCN	43 (14) ^[c]
8	DCE instead of MeCN	49
9	1,4-dioxane instead of MeCN	46
10	L2 instead of L1	56 ^[d]
11	L3 instead of L1	60 ^[d]
12	L4 instead of L1	39 ^[d]
13	KOAc instead of NaHCO ₃	trace ^[d]
14	K ₂ HPO ₄ c instead of NaHCO ₃	19 ^[d]
15	Na ₂ CO ₃ instead of NaHCO ₃	67 ^[d]
16	NiBr ₂ (dtbbpy) instead of NiCl ₂ and L1	80 ^[d,e]
17	w/o PC1 and light	o ^[d]

[[]a] General reaction conditions: 1a (0.50 mmol, 2.0 equiv), 2a (0.25 mmol, 1.0 equiv), NiCl₂ (5.0 mol %), ligand (6.0 mol %), NaHCO₃ (0.50 mmol, 2.0 equiv), anhydrous MeCN (1.0 mL), blue LED (40w, 450–465 nm), 23 °C, 16 h. [b] Isolated yield.
[c] Yield of the diaminomethylated product in the parenthess. [d] DMF as the solvent. [e] 3 h.

Additional Experiments

Scheme S2. Mechanistic studies for C–F bond activation.

Procedure for scheme S2a:

(*up*) To a suspension of $[Ir(dF(CF_3)ppy)_2(dtbbpy)][PF_6]$ (0.01 equiv, 2.8 mg), dtbbpyNiBr₂ (0.05 equiv, 5.4 mg), NaHCO₃ (2 equiv, 42 mg) in anhydrous DMF (1 mL) was added **1a** (0.5 mmol, 2 equiv, 60.5 mg), **2a** (0.25 mmol, 1 equiv, 56.5 mg), and TEMPO (0.25 mmol, 1 equiv, 39 mg), then the reaction mixture was stirred at 25 °C for 3 h with *Blue LED* (40 W, 450–465 nm) under an atmosphere of N₂.

(down) To a suspension of $[Ir(dF(CF_3)ppy)_2(dtbbpy)][PF_6]$ (0.01 equiv, 2.8 mg), dtbbpyNiBr₂ (0.05 equiv, 5.4 mg), NaHCO₃ (2 equiv, 42 mg) in anhydrous DMF (1 mL) was added **1a** (0.5 mmol, 2 equiv, 60.5 mg), **2a** (0.25 mmol, 1 equiv, 56.5 mg), and **33** (0.25 mmol, 1 equiv, 45 mg), then the reaction mixture was stirred at 25 °C for 3 h with *Blue LED* (40 W, 450–465 nm) under an atmosphere of N₂. Thereafter, the reaction mixture was evaporated *in vacuo* and the remaining residue was purified by column chromatography on silica gel (PE/EtOAc 100:1) to isolate **34** (21 mg).

N-(3,3-Diphenylpropyl)-N-methylaniline (34)

¹H-NMR (400 MHz, CDCl₃): δ = 7.32 – 7.26 (m, 5H), 7.25 (s, 2H), 7.18 (ddd, *J* = 11.5, 6.5, 3.6 Hz, 5H), 6.66 (t, *J* = 7.2 Hz, 1H), 6.57 (d, *J* = 8.4 Hz, 2H), 3.92 (t, *J* = 7.8 Hz, 1H), 3.32 – 3.21 (m, 2H), 2.87 (s, 3H), 2.32 (dd, *J* = 15.3, 7.7 Hz, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ = 149.3, 144.7, 129.3, 128.7, 127.9, 126.5, 116.2, 112.4, 51.4, 49.1, 38.4, 32.2. HR-MS (EI) m/z calcd for C₂₂H₂₃N [M+H⁺] 302.1903, found 302.1908.

Procedure for scheme S2b:

To a suspension of $[Ir(dF(CF_3)ppy)_2(dtbbpy)][PF_6]$ (0.01 equiv, 2.8 mg), dtbbpyNiBr₂ (0.05 equiv, 5.4 mg), NaHCO₃ (2 equiv, 42 mg) in anhydrous DMF (1 mL) was added **1c** (0.5 mmol, 2 equiv, 100 mg), **2a** (0.25 mmol, 1 equiv, 56.5 mg), then the reaction mixture was stirred at 25 °C for 3 h with *Blue LED* (40 W, 450–465 nm) under an atmosphere of N₂. The reaction mixture was evaporated *in vacuo* and the remaining residue was purified by column chromatography on silica gel (PE/EtOAc 100:1) to isolate **5** (75 mg, 74%).

To a suspension of $[Ir(dF(CF_3)ppy)_2(dtbbpy)][PF_6]$ (0.01 equiv, 2.8 mg), dtbbpyNiBr₂ (0.05 equiv, 5.4 mg), NaHCO₃ (2 equiv, 42 mg) in anhydrous DMF (1 mL) was added **1c** (0.5 mmol, 2 equiv, 100 mg), **33** (0.25 mmol, 1 equiv, 64 mg), then the reaction mixture was stirred at 25 °C for 3 h with *Blue LED* (40 W, 450–465 nm) under an atmosphere of N₂. The reaction mixture was evaporated *in vacuo* and the remaining residue was purified by column chromatography on silica gel (PE/EtOAc 100:1) to isolate **36** (38 mg, 35%).

tert-Butyl 2-benzyl-3,3-difluoroacrylate (35)

The general procedure **TP1** was followed using *tert*-butyl 3-oxobutanoate (20 mmol) and alkyl bromide (25 mmol). Purification by column chromatography (PE/EtOAc 100:1) yielded **35** (1.8 g, 65%) as an oil. ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.34 - 7.09$ (m, 5H), 3.53 (t, J = 2.2 Hz, 2H), 1.41 (s, 9H). ¹³C-NMR (100 MHz, CDCl₃): $\delta = 163.6$ (dd, J = 12.6, 7.4 Hz), 161.7 (d, J = 294.7 Hz), 158.6 (d, J = 294.8 Hz), 138.8 (T, J = 2.4 Hz), 128.5, 128.4, 126.6, 90.1 (dd, J = 294.7 Hz), 158.6 (d, J = 294.8 Hz), 138.8 (T, J = 2.4 Hz), 128.5, 128.4, 126.6, 90.1 (dd, J = 294.7 Hz), 158.6 (d, J = 294.8 Hz), 138.8 (T, J = 2.4 Hz), 128.5, 128.4, 126.6, 90.1 (dd, J = 294.7 Hz), 158.6 (d, J = 294.8 Hz), 138.8 (T, J = 2.4 Hz), 128.5, 128.4, 126.6, 90.1 (dd, J = 294.7 Hz), 158.6 (d, J = 294.8 Hz), 138.8 (T, J = 2.4 Hz), 128.5, 128.4, 126.6, 90.1 (dd, J = 294.7 Hz), 158.6 (d, J = 294.8 Hz), 138.8 (T, J = 2.4 Hz), 128.5, 128.4, 126.6, 90.1 (dd, J = 294.7 Hz), 158.6 (d, J = 294.8 Hz), 138.8 (T, J = 2.4 Hz), 128.5, 128.4, 126.6, 90.1 (dd, J = 294.7 Hz), 158.6 (d, J = 294.8 Hz), 138.8 (T, J = 2.4 Hz), 128.5, 128.4, 126.6, 90.1 (dd, J = 294.8 Hz), 138.8 (T, J = 2.4 Hz), 128.5, 128.4, 126.6, 90.1 (dd, J = 2.4 Hz), 128.5, 128.4, 126.6, 90.1 (dd, J = 2.4 Hz), 128.5, 128.4, 126.6, 90.1 (dd, J = 2.4 Hz), 128.5, 128.4, 126.6, 90.1 (dd, J = 2.4 Hz), 128.5, 128.4, 126.6, 90.1 (dd, J = 2.4 Hz), 128.5, 128.4, 126.6, 90.1 (dd, J = 2.4 Hz), 128.5, 128.4, 126.6, 90.1 (dd, J = 2.4 Hz), 128.5, 128.4, 126.6, 90.1 (dd, J = 2.4 Hz), 128.5, 128.4, 126.6, 90.1 (dd, J = 2.4 Hz), 128.5, 128.4, 126.6, 90.1 (dd, J = 2.4 Hz), 128.5, 128.4, 126.6, 90.1 (dd, J = 2.4 Hz), 128.5, 128.4, 126.6, 90.1 (dd, J = 2.4 Hz), 128.5, 128.4, 128.5, 128.4, 128.5, 128.4, 128.5, 128.4, 128.5, 128.5, 128.5, 128.4, 128.5

21.0, 5.7 Hz), 82.0, 30.5, 28.1. ¹⁹F-NMR (376 MHz, CDCl₃): δ = -70.99 (s), -74.74 (d, *J* = 9.2 Hz). HR-MS (EI) m/z calcd for C₁₄H₁₆F₂O₂ [M+H⁺] 255.1191, found 255.1190.

tert-Butyl (E)-2-benzyl-4-[(4-bromophenyl)(methyl)amino]-3-fluorobut-2-enoate (36)

The general procedure **TP2** was followed using **N-aryl amines** (0.5 mmol) and *gem-***difluoroalkenes** (0.25 mmol) for 3 h. Purification by column chromatography (PE/EtOAc 100:1) yielded **36** (38 mg, 35%) as an oil. ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.34 - 7.08$ (m, 7H), 6.75 – 6.56 (m, 2H), 4.61 (d, J = 19.0 Hz, 2H), 3.62 (d, J = 3.3 Hz, 2H), 3.02 (s, 3H), 1.39 (s, 9H). ¹³C-NMR (100 MHz, CDCl₃): $\delta = 166.1$ (d, ³ $J_{C-F} = 18.2$ Hz), 166.0 (d, ¹ $J_{C-F} = 271.9$ Hz), 148.1, 139.3 (d, ⁴ $J_{C-F} = 1.6$ Hz), 131.9, 128.5, 128.4, 126.3, 117.2 (d, ² $J_{C-F} = 18.3$ Hz), 114.5, 109.4, 82.0, 50.9 (d, ² $J_{C-F} = 23.2$ Hz), 39.6 (d, ⁴ $J_{C-F} = 1.4$ Hz), 31.6 (d, ⁴ $J_{C-F} = 7.4$ Hz), 28.1. ¹⁹F-NMR (376 MHz, CDCl₃): $\delta = -94.37$ (s). HR-MS (EI) m/z calcd for C₂₂H₂₅BrFNO₂ [M+H⁺] 434.1125, found 434.1129.

Procedure for scheme S2c:

To a suspension of $[Ir(dF(CF_3)ppy)_2(dtbbpy)][PF_6]$ (0.01 equiv, 3.2 mg), NaHCO₃ (2 equiv, 46 mg) in anhydrous DMF (1 mL) was added **1a** (0.54 mmol, 2 equiv, 66 mg), **6** (0.27 mmol, 1 equiv, 108 mg), and then the reaction mixture was stirred at 25 °C for 16 h with *Blue LED* (40 W, 450–465 nm) under an atmosphere of N₂. The reaction mixture was evaporated *in vacuo* and the remaining residue was purified by column chromatography on silica gel (PE/EtOAc 20:1) to afford **37** (103 mg, 76%; *E*:*Z* = 1:1.3), .

Procedure for scheme S2d:

To a suspension of $[Ir(dF(CF_3)ppy)_2(dtbbpy)][PF_6]$ (0.01 equiv, 2.8 mg), dtbbpyNiBr₂ (0.05 equiv, 5.4 mg), NaHCO₃ (2 equiv, 42 mg) in anhydrous DMF (1 mL) was added **1a** (0.5 mmol, 2 equiv, 60.5 mg), **2a** (0.25 mmol, 1 equiv, 56.5 mg), and then the reaction mixture was stirred at 25 °C for 3 h with *Blue LED* (40 W, 450–465 nm) under an atmosphere of N₂. The reaction conversion was analyzed by GC.

Procedure for scheme S2e:

To a suspension of $[Ir(dF(CF_3)ppy)_2(dtbbpy)][PF_6]$ (0.01 equiv, 2.8 mg), dtbbpyNiBr₂ (0.05 equiv, 5.4 mg), NaHCO₃ (2 equiv, 42 mg) in anhydrous DMF (1 mL) was added **43** (0.5 mmol, 2 equiv, 74 mg), **2a** (0.25 mmol, 1 equiv, 56.5 mg), and then the reaction mixture was stirred at 25 °C for 3 h with *Blue LED* (40 W, 450–465 nm) under an atmosphere of N₂.

Procedure for scheme S2f:

To a suspension of $[Ir(dF(CF_3)ppy)_2(dtbbpy)][PF_6]$ (0.01 equiv, 2.8 mg), dtbbpyNiBr₂ (0.05 equiv, 5.4 mg), NaHCO₃ (2 equiv, 42 mg) in anhydrous DMF (1 mL) was added **1a** (0.5 mmol, 2 equiv, 60.5 mg), **2a** (0.25 mmol, 1 equiv, 56.5 mg), **46** (0.25 mmol, 1 equiv, 40.5 mg), and then the reaction mixture was stirred at 25 °C for 3 h with *Blue LED* (40 W, 450–465 nm) under an atmosphere of N₂.

In a nitrogen filled glove box, a 25 mL schlenk tube containing a stirring bar was charged with Ni(COD)2 (27.6 mg, 0.1 mmol, 1.0 equiv), 4,4'-di-*tert*-butyl-2,2'-bipyridine (dtbbpy, 26.8 mg, 0.1 mmol, 1.0 equiv) and dry THF (1 mL) giving a dark purple mixture which was stirred for 12 hours at 25 °C. Ethyl 3,3-difluoro-2-(naphthalen-2-yl)acrylate (26.2 mg, 0.1 mmol, 0.1 equiv) and NaI (30 mg, 0.2 mmol, 2.0 equiv) were added. After sealing this vessel with plug, it was taken out of the glovebox, then stirred at 70 °C for additional 6 h. After cooling the reaction mixture to room temperature, this tube was transferred into the glovebox, then solvent was completely removed to afford crude solid. The obtained solid dissolved in DCM for HR-MS analysis.

Fluorescence Quenching Experiments:

The test conditions for quenching reactions (I_0 and I are respective fluorescence intensities in the absence and presence of the quenchers):

[Ir]: 4.5 mg [Ir(dF(CF₃)ppy)₂(dtbbpy)][PF₆] dissolved in 50 mL DMF

Quenchers:

22.6 mg of 2a dissolved in 25 mL DMF.

20 mg of S5 dissolved in 25 mL DMF.

48.6 mg of dtbbpy • NiBr₂ dissolved in 25 mL DMF.

8.4 mg of NaHCO₃ dissolved in 25 mL DMF.

Procedure:

Prepared solution containing [Ir], Quenchers and DMF were added to a cuvette as the following table:

	[Ir]	quenchers	DMF	Total volume
a	1 mL	0 mL	3 mL	4 mL
b	1 mL	0.25 mL	2.75 mL	4 mL
с	1 mL	0.5 mL	2.5 mL	4 mL
d	1 mL	0.75 mL	2.25 mL	4 mL
e	1 mL	1 mL	2 mL	4 mL

Stern-Volmer experiments were conducted with a fixed excitation wavelength of 365 nm.

Figure S-1. Fluorescence quenching experiments with 2a

Figure S-2. Stern-Volmer plots of 2a

Figure S-3. Fluorescence quenching experiments with S5

Figure S-4. Stern-Volmer plots of S5

Figure S-5. Fluorescence quenching experiments with *dtbbpy*·*NiBr*₂

Figure S-6. Stern-Volmer plots of NiBr₂(dtbbpy)

Figure S-7. Fluorescence quenching experiments with NaHCO3

Figure S-8. Stern-Volmer plots of NaHCO3

Inference: Fluorescence quenching was only observed for [Ir] given that substrate S5 and $dtbbpy \cdot NiBr_2$ were present.

Quantum Yield Measurement

The measured method was designed according to a published procedure by Ackermann with slight modifications ^[3].

Preparation of potassium ferrioxalate solution:

295 mg of solid potassium ferrioxalate, 140 μ L H₂SO₄ were diluted with H₂O to a finale volume of 50 mL.

Preparation of buffer solution:

4.95 g NaOAc and 1 mL H_2SO_4 were diluted with H_2O to a finale volume of 100 mL. Using the same setup as for catalytic reactions 0.7 mL of the potassium ferrioxalate solution were irradiated for 20 sec. The sample solution was added to of 1.4 mL of the buffer solution containing 10 mg 1,10-phenanthroline. The solution was diluted with H_2O to a finale volume of 3.5 mL. Subsequently the absorbance of this solution was determined at 510 nm. The same procedure was followed for a nonirradiated sample.

Calculation Number of Photons:

Abs of Fe²⁺ (at 510 nm) = 5.455 (after irradiation of 20 sec) Abs of Fe²⁺ (at 510 nm) = 0.043 (no irradiation) Δ Abs of Fe²⁺ (at 510 nm) = 5.455-0.043 = 5.412

$$[Fe^{2^+}] = \frac{Abs \text{ of } Fe^{2^+}(at 510 \text{ nm})}{e_{510\text{ nm}} \text{ X } 1}$$

$$[Fe^{2^+}] = \frac{5.412}{11100M^{-1}cm^{-1} \times 1} = 4.876 \times 10^{-4} M$$

with quantum yield of 0.9 for the absorption of Fe^{3+} :

$$n_{(photons)} = 1.897 \times 10^{-6}$$

$$n_{(photons)} = 9.485 \times 10^{-8} \text{ mol/s}$$

The initial rate of the alkenylation was determined to be 9.614 imes 10⁻⁹ mol/s.

Quantum Yield =
$$\frac{n_{\text{product}} / \text{s}}{n_{\text{photons}} / \text{s}} = \frac{9.614 \times 10^{-9}}{9.485 \times 10^{-8}} = 0.101$$

Determination Initial Rate:

Product formation was monitored by GC using dodecane as internal standard.

Time in s	1200	2400	3600	4800	6000
Yield by GC [%]	27.7	34.6	39.7	43.5	46.4
N(product) x 10 ⁻⁵	6.92893	8.65212	9.92194	10.86836	11.58935

Representative Procedures

Typical procedure 1 (TP1) for the synthesis of gem-difluoroalkenes 2^[2]:

Step 1: To a solution of *t*-BuOK (21 mmol) in THF (40 mL) was added ethyl acetoacetate (20 mmol) at 0 °C. Then the solution was stirred for 30min, and alkyl bromide (25 mmol) in THF (10 mL) was added. The resulting mixture was heated under reflux conditions (85 °C) overnight. The mixture was quenched with saturated aqueous NH_4Cl , then the aqueous layer was extracted with ethyl acetate and the organic phase was washed with water. Afterwards the organic phase was dried over Na_2SO_4 , filtered and the solvent was removed under reduced pressure. The remaining residue was purified by column chromatography on silica gel to yield desired product.

Step 2: The previous product and *p*-ABSA (1.5 equiv.) were dissolved in CH_3CN (30 mL), then DBU (1.5 equiv.) was added dropwise at ambient temperature. After stirring for 5h, the reaction mixture was extracted with ethyl acetate and the organic phase was washed with water. Afterwards the organic phase was dried over Na_2SO_4 , filtered and the solvent was removed under reduced pressure. The remaining residue was purified by column chromatography on silica gel to yield desired product.

Step 3: To an oven-dried 100 mL flask equipped with a stir bar was added NaI (2.2 equiv.), the solid was heated at 60 °C under vacuo for 30 min to remove H_2O . Then NaI was cooled down to room temperature followed by the addition of the product of the Step 2, and TMSCF₃ (2.4 equiv.) in 48 mL anhydrous THF under argon. The resulting mixture was heated at 60 °C with an oil bath for 5 h with sharp stirring. After cooling to room temperature, the reaction mixture was extracted with Et₂O three times, washed with H₂O then brine (80 mL), dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel to afford *gem*-difluoroalkenes.

Typical Procedure 2 (*TP2*) for the Nickel- and Photoredox-Catalyzed Stereoselective Monofluoroalkenylation:

To a suspension of $[Ir(dF(CF_3)ppy)_2(dtbbpy)][PF_6]$ (0.01 equiv), dtbbpyNiBr₂ (0.05 equiv), NaHCO₃ (2.0 equiv) in anhydrous DMF was added N-aryl amines **1** (0.5 mmol, 2.0 equiv) and *gem*-difluoroalkenes **2** (0.25 mmol, 1.0 equiv), then the reaction mixture was stirred at 25 °C for 6 h with *Blue LED* (40 W, 450–465 nm) under an atmosphere of N₂. The solvent was evaporated in vacuo and the remaining residue was purified by column chromatography on silica gel (PE/EtOAc) to yield products 3-32, 37.

Typical Procedure 3 (*TP3*) for the Photoredox-Catalyzed Twofold Csp²–F Bond-Diaminomethylation:

To a suspension of $[Ir(dF(CF_3)ppy)_2(dtbbpy)][PF_6]$ (0.01 equiv), NaHCO₃ (2.0 equiv) in anhydrous DMF was added N-aryl amines 1 (0.75 mmol, 3.0 equiv) and *gem*-difluoroalkenes 2 (0.25 mmol, 1.0 equiv), then the reaction mixture was stirred at 25 °C for 6 h with *Blue LED* (40 W, 450–465 nm) under an atmosphere of N₂. The solvent was evaporated in vacuo and the remaining residue was purified by column chromatography on silica gel (PE/EtOAc) to yield products **38–42**.

EtO₂C

Diethyl 2-(difluoromethylene)octanedioate (2g)

The general procedure **TP1** was followed using ethyl acetoacetate (21 mmol) and alkyl bromide (25.2 mmol). Purification by column chromatography (PE/EtOAc 50:1) yielded **2g** (1.37 g, 81%) as an oil. ¹H-NMR (400 MHz, CDCl₃): δ = 4.24 (q, *J* = 7.1 Hz, 2H), 4.13 (q, *J* = 7.1 Hz, 2H), 2.29 (t, *J* = 7.5 Hz, 2H), 2.26 – 2.19 (m, 2H), 1.64 (dt, *J* = 15.2, 7.5 Hz, 2H), 1.51 – 1.43 (m, 2H), 1.36 (dd, *J* = 8.9, 6.3 Hz, 2H), 1.30 (t, *J* = 7.1 Hz, 3H), 1.25 (t, *J* = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) : δ = 173.8, 165.0 (dd, *J* = 13.3, 7.7 Hz), 160.0 (dd, *J* = 309.9, 294.6 Hz), 88.9 (dd, *J* = 23.3, 4.9 Hz), 61.2, 60.3, 34.3, 28.6, 28.3, 24.7, 24.4, 14.4, 14.3. ¹⁹F-NMR (376 MHz, CDCl₃) : δ = -69.71 (s), -74.55 (s). HR-MS (EI) m/z calcd for C₁₃H₂₀F₂O₄ [M+H⁺] 279.1402, found 279.1412.

Ethyl 2-(difluoromethylene)-5-(4-fluorophenoxy)pentanoate (2h)

The general procedure **TP1** was followed using ethyl acetoacetate (10 mmol) and alkyl bromide (12 mmol) for Purification by column chromatography (PE/EtOAc 50:1) yielded **2h** (0.8 g, 79%) as an oil. ¹H-NMR (400 MHz, CDCl₃): δ = 7.00 – 6.90 (m, 2H), 6.85 – 6.78 (m, 2H), 4.22 (q, *J* = 7.1 Hz, 2H), 3.92 (dd, *J* = 7.7, 4.5 Hz, 2H), 2.44 (ddt, *J* = 8.3, 6.2, 2.4 Hz, 2H), 1.98 –

1.90 (m, 2H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): $\delta = 164.9$ (dd, J = 13.3, 7.5 Hz), 160.0 (dd, J = 310.2, 295.5 Hz), 158.6, 156.2, 155.1 (d, J = 1.9 Hz), 115.9 (d, J = 22.9 Hz), 115.5 (d, J = 7.9 Hz), 88.4 (dd, J = 23.2, 5.8 Hz), 67.6, 61.3, 28.2, 21.6, 14.2. ¹⁹F-NMR (376 MHz, CDCl₃): $\delta = -68.89$ (s), -73.84 (s), -124.10 – -124.23 (m). HR-MS (EI) m/z calcd for C₁₄H₁₅F₃O₃ [M+H⁺] 289.1046, found 289.1046.

Ethyl 5-cyano-2-(difluoromethylene)pentanoate (2i)

The general procedure **TP2** was followed using ethyl acetoacetate (10 mmol) and alkyl bromide (12 mmol). Purification by column chromatography (PE/EtOAc 20:1) yielded **2i** (0.7g, 85%) as a oil. ¹H-NMR (400 MHz, CDCl₃): δ = 4.23 (q, *J* = 7.1 Hz, 2H), 2.40 – 2.34 (m, 4H), 1.84 (dd, *J* = 14.9, 7.3 Hz, 2H), 1.29 (t, *J* = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ = 164.3 (dd, *J* = 13.0, 7.7 Hz), 160.1 (dd, *J* = 311.3, 296.0 Hz), 119.1, 87.4 (dd, *J* = 22.5, 6.4 Hz), 61.4, 24.4, 23.7, 16.6, 14.1. ¹⁹F-NMR (376 MHz, CDCl₃): δ = -67.57 (s), -72.72 (dd, *J* = 5.1, 2.4 Hz). HR-MS (EI) m/z calcd for C₉H₁₁F₂NO₂ [M+H⁺] 204.0831, found 204.0831.

Ethyl 6-acetoxy-2-(difluoromethylene)hexanoate (2j)

The general procedure **TP1** was followed using ethyl acetoacetate (10 mmol) and alkyl bromide (12 mmol). Purification by column chromatography (PE/EtOAc 20:1) yielded **2j** (0.65g, 83%) as an oil. ¹H-NMR (400 MHz, CDCl₃): $\delta = 4.24$ (q, J = 7.1 Hz, 2H), 4.07 (dd, J = 7.9, 5.2 Hz, 2H), 2.50 – 2.22 (m, 2H), 2.04 (s, 3H), 1.65 (dd, J = 10.2, 4.8 Hz, 2H), 1.53 (dd, J = 9.3, 6.4 Hz, 2H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): $\delta = 171.3$, 164.9 (dd, J = 13.4, 7.3 Hz), 160.0 (dd, J = 310.3, 294.7 Hz), 88.7 (dd, J = 23.2, 5.4 Hz), 64.2, 61.2, 28.1, 25.1, 24.3, 21.1, 14.3. ¹⁹F-NMR (376 MHz, CDCl₃): $\delta = -69.16$ (s), -74.11 (s). HR-MS (EI) m/z calcd for C₁₁H₁₆F₂O₄ [M+H⁺] 251.1089, found 251.1091.

CO₂Et

Ethyl 2-(difluoromethylene)-4-(4-fluorophenyl)butanoate (2k)

The general procedure **TP1** was followed using ethyl acetoacetate (10 mmol) and alkyl bromide (12 mmol). Purification by column chromatography (PE/EtOAc 200:1) yielded **2k** (0.97g, 90%) as an oil. ¹H-NMR (400 MHz, CDCl₃): δ = 7.13 (ddd, *J* = 8.7, 5.6, 2.8 Hz, 2H), 7.01 – 6.95 (m, 2H), 4.40 – 4.19 (m, 2H), 2.86 – 2.65 (m, 4H), 1.36 – 1.29 (m, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ = 164.6, 163.0, 160.6, 135.5, 130.1, 130.1, 119.9 (dd, *J* = 8.6, 6.4 Hz), 115.6 (s), 115.4, 62.3, 34.2, 28.6, 14.2. ¹⁹F-NMR (376 MHz, CDCl₃): δ = -66.34 (s), -68.26 (t, *J* = 9.3 Hz), -116.31 – -117.37 (m). HR-MS (EI) m/z calcd for C₁₃H₁₃F₃O₂ [M+H⁺] 259.0940, found 259.0949.

Ethyl 2-(difluoromethylene)-4-(thiophen-3-yl)butanoate (2l)

The general procedure **TP1** was followed using ethyl acetoacetate (20 mmol) and alkyl bromide (25 mmol). Purification by column chromatography (PE/EtOAc 100:1) yielded **2l** (1.75g, 78%) as an oil. ¹H-NMR (400 MHz, CDCl₃): δ = 7.25 (dd, *J* = 4.7, 2.8 Hz, 1H), 6.95 (dd, *J* = 5.9, 3.9 Hz, 2H), 4.23 (q, *J* = 7.1 Hz, 2H), 2.89 – 2.74 (m, 2H), 2.54 (ddd, *J* = 9.5, 4.6, 2.2 Hz, 2H), 1.30 (t, *J* = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ = 164.8 (dd, *J* = 13.2, 7.7 Hz), 160.1 (dd, *J* = 310.2, 295.4 Hz), 141.1, 128.2, 125.6, 120.9, 88.4 (dd, *J* = 23.1, 5.6 Hz), 61.3, 29.2, 26.0, 14.3. ¹⁹F-NMR (376 MHz, CDCl₃): δ = -69.00 (d, *J* = 2.7 Hz), -73.83 (d, *J* = 3.2 Hz). HR-MS (EI) m/z calcd for C₁₁H₁₂F₂O₂S [M+H⁺] 247.0599, found 247.0599.

Ethyl 2-(difluoromethylene)-5-(4-methoxyphenoxy)pentanoate (2m)

The general procedure **TP1** was followed using ethyl acetoacetate (10 mmol) and alkyl bromide (12 mmol). Purification by column chromatography (PE/EtOAc 50:1) yielded **2m** (0.87g, 73%) as an oil. ¹H-NMR (400 MHz, CDCl₃): $\delta = 6.82$ (s, 4H), 4.22 (q, J = 7.1 Hz, 2H), 3.91 (t, J = 6.1 Hz, 2H), 3.76 (s, 3H), 2.44 (dd, J = 9.9, 4.8 Hz, 2H), 1.96 – 1.89 (m, 2H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): $\delta = 164.9$ (dd, J = 13.0, 7.5 Hz), 160.0 (dd, J = 310.0, 295.2 Hz), 154.0, 153.2, 115.6 (2C), 114.7 (2C), 88.5 (dd, J = 23.0, 5.6 Hz), 67.7, 61.2, 55.8,

28.3, 21.6, 14.3. ¹⁹F-NMR (376 MHz, CDCl₃): δ = -69.02 (d, *J* = 2.4 Hz), -73.83 (d, *J* = 2.5 Hz). HR-MS (EI) m/z calcd for C₁₅H₁₈F₂O₄ [M+H⁺] 301.1246, found 301.1251.

Benzyl 1-(2-(ethoxycarbonyl)-3,3-difluoroallyl)piperidine-4-carboxylate (2n)

The general procedure **TP1** was followed using ethyl acetoacetate (15 mmol) and alkyl bromide (18 mmol). Purification by column chromatography (PE/EtOAc 10:1) yielded **2n** (1.62g, 70%) as an oil. ¹H-NMR (400 MHz, CDCl₃): δ = 7.43 – 7.27 (m, 5H), 5.12 (s, 2H), 4.34 – 4.21 (m, 2H), 4.19 (d, *J* = 13.8 Hz, 2H), 2.74 (t, *J* = 11.0 Hz, 2H), 2.19 (dd, *J* = 4.2, 2.3 Hz, 2H), 1.65 (d, *J* = 12.5 Hz, 3H), 1.30 (t, *J* = 7.1 Hz, 3H), 1.15 (d, *J* = 10.4 Hz, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ = 165.0 (dd, *J* = 13.2, 7.4 Hz), 160.3 (dd, *J* = 310.5, 294.9 Hz), 155.4, 137.0, 128.6 (2C), 128.1, 128.0 (2C), 87.0 (dd, *J* = 23.3, 5.7 Hz), 67.1, 61.3, 44.2 (2C), 35.4, 31.6, 31.2 (2C), 14.3. ¹⁹F-NMR (376 MHz, CDCl₃): δ = -68.40 (d, *J* = 2.3 Hz), -72.71 (s). HR-MS (EI) m/z calcd for C₁₉H₂₃F₂NO₄ [M+H⁺] 368.1668, found 368.1674.

Ethyl 2-(difluoromethylene)-4-(1,3-dioxan-2-yl)butanoate (20)

The general procedure **TP1** was followed using ethyl acetoacetate (10 mmol) and alkyl bromide (12 mmol). Purification by column chromatography (PE/EtOAc 20:1) yielded **20** (0.98g, 70%) as an oil. ¹H-NMR (400 MHz, CDCl₃): $\delta = 4.52$ (t, J = 5.1 Hz, 1H), 4.24 (q, J = 7.1 Hz, 2H), 4.10 (ddd, J = 11.7, 4.9, 1.1 Hz, 2H), 3.74 (ddd, J = 7.5, 6.7, 1.4 Hz, 2H), 2.43 – 2.28 (m, 2H), 2.15 – 1.81 (m, 2H), 1.78 – 1.67 (m, 2H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): $\delta = 164.9$ (dd, J = 13.4, 7.7 Hz), 159.8 (dd, J = 309.5, 295.2 Hz), 101.5, 88.6 (dd, J = 23.2, 5.8 Hz), 67.0 (2C), 61.2, 33.8, 25.9, 19.5, 14.3. ¹⁹F-NMR (376 MHz, CDCl₃): $\delta = -69.40$ (s), -74.01 (s). HR-MS (EI) m/z calcd for C₁₁H₁₆F₂O₄ [M+H⁺] 251.1089, found 251.1093.

Ethyl (E)-2-benzyl-3-fluoro-4-[methyl(phenyl)amino]but-2-enoate (3)

The general procedure **TP2** was followed using **N-aryl amines** (0.5 mmol) and *gem***difluoroalkenes** (0.25 mmol) for 3 h. Purification by column chromatography (PE/EtOAc 100:1) yielded **3** (65.4 mg, 80%) as an oil. ¹H-NMR (400 MHz, CDCl₃): δ = 7.23 (ddd, *J* = 9.7, 5.7, 2.0 Hz, 4H), 7.16 (t, *J* = 8.4 Hz, 3H), 6.77 (dd, *J* = 17.2, 7.8 Hz, 3H), 4.68 (d, *J* = 18.3 Hz, 2H), 4.19 (q, *J* = 7.1 Hz, 2H), 3.68 (d, *J* = 3.5 Hz, 2H), 3.03 (s, 3H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ = 167.8 (d, ¹*J*_{C-F} = 275.4 Hz), 166.8 (d, ³*J*_{C-F} = 18.5 Hz), 149.1, 139.2, 129.2, 128.5, 128.3, 126.2, 117.3, 115.4 (d, ²*J*_{C-F} = 19.7 Hz), 112.8, 61.1, 51.1 (d, ²*J*_{C-F} = 22.7 Hz), 39.1, 31.2 (d, ³*J*_{C-F} = 7.1 Hz), 14.1. ¹⁹F-NMR (376 MHz, CDCl₃): δ = -90.57 (s). HR-MS (EI) m/z calcd for C₂₀H₂₂FNO₂ [M+H⁺] 328.1707, found 328.1710.

Ethyl (*E*)-2-benzyl-3-fluoro-4-[methyl(*p*-tolyl)amino]but-2-enoate (4)

The general procedure **TP2** was followed using **N-aryl amines** (0.5 mmol) and **gemdifluoroalkenes** (0.25 mmol) for 6 h. Purification by column chromatography (PE/EtOAc 100:1) yielded **4** (51 mg, 59%) as an oil. ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.27 - 7.10$ (m, 5H), 7.05 (d, J = 8.4 Hz, 2H), 6.72 (t, J = 5.7 Hz, 2H), 4.64 (d, J = 18.6 Hz, 2H), 4.18 (q, J = 7.1 Hz, 2H), 3.67 (d, J = 3.5 Hz, 2H), 3.00 (s, 3H), 2.26 (s, 3H), 1.24 (t, J = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): $\delta = 168.0$ (d, ¹ $J_{C-F} = 274.6$ Hz), 166.9 (d, ³ $J_{C-F} = 18.5$ Hz), 147.1, 139.2 (d, ⁴ $J_{C-F} = 2.0$ Hz), 129.7, 128.5, 128.3, 126.6, 126.2, 115.4 (d, ² $J_{C-F} = 19.7$ Hz), 113.1, 61.0, 51.4 (d, ² $J_{C-F} = 22.5$ Hz), 39.3 (d, ⁴ $J_{C-F} = 1.3$ Hz), 31.2 (d, ³ $J_{C-F} = 7.1$ Hz), 20.3, 14.1. ¹⁹F-NMR (376 MHz, CDCl₃): $\delta = -90.20$ (s), -104.81 (s). HR-MS (EI) m/z calcd for C₂₁H₂₄FNO₂ [M+H⁺] 342.1864, found 342.1869.

Ethyl (E)-2-benzyl-4-[(4-bromophenyl)(methyl)amino]-3-fluorobut-2-enoate (5)

The general procedure **TP2** was followed using **N-aryl amines** (0.5 mmol) and **gem-difluoroalkenes** (0.25 mmol) for 3 h. Purification by column chromatography (PE/EtOAc 100:1) yielded **5** (75 mg, 74%) as an oil. ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.32 - 7.27$ (m, 2H), 7.26 – 7.20 (m, 2H), 7.20 – 7.09 (m, 3H), 6.69 – 6.62 (m, 2H), 4.66 (d, J = 18.3 Hz, 2H), 4.19 (q, J = 7.1 Hz, 2H), 3.67 (d, J = 3.5 Hz, 2H), 3.01 (s, 3H), 1.24 (t, J = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): $\delta = 167.3$ (d, ¹ $J_{C-F} = 274.1$), 166.7 (d, ³ $J_{C-F} = 18.6$ Hz), 165.9, 148.0, 139.0 (d, ⁴ $J_{C-F} = 1.7$ Hz), 131.8, 128.4, 128.3, 126.3, 115.7 (d, ² $J_{C-F} = 19.6$ Hz), 114.4, 109.4, 61.1, 51.0 (d, ² $J_{C-F} = 22.6$ Hz), 39.4, 31.2 (d, ⁴ $J_{C-F} = 7.0$ Hz), 14.1. ¹⁹F-NMR (376 MHz, CDCl₃): $\delta = -91.10$ (s). HR-MS (EI) m/z calcd for C₂₀H₂₁BrFNO₂ [M+H⁺] 406.0812, found 406.0817.

Ethyl (E)-2-benzyl-4-(diphenylamino)-3-fluorobut-2-enoate (6)

The general procedure **TP3** was followed using **N-aryl amines** (0.5 mmol) and **gemdifluoroalkenes** (0.25 mmol) for 4 h. Purification by column chromatography (PE/EtOAc 100:1) yielded **6** (50 mg, 51%) as a colorless oil. ¹H-NMR (400 MHz, CDCl₃): δ = 7.29 – 7.23 (m, 4H), 7.19 (dt, *J* = 14.3, 6.8 Hz, 3H), 7.06 (dd, *J* = 12.7, 7.6 Hz, 6H), 6.98 (t, *J* = 7.3 Hz, 2H), 5.10 (d, *J* = 15.7 Hz, 2H), 4.14 (q, *J* = 7.1 Hz, 2H), 3.66 (d, *J* = 3.4 Hz, 2H), 1.20 (t, *J* = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ = 167.4 (d, ¹*J*_{C-F} = 274.3 Hz), 166.68 (d, ³*J*_{C-F} = 18.5 Hz), 147.6, 139.1 (d, ⁴*J*_{C-F} = 1.8 Hz), 129.3, 128.4, 128.3, 126.1, 121.9, 121.0, 115.4 (d, ²*J*_{C-F} = 20.1 Hz), 61.0, 50.8 (d, ²*J*_{C-F} = 22.3 Hz), 31.3 (d, ³*J*_{C-F} = 6.8 Hz), 14.1. ¹⁹F-NMR (376 MHz, CDCl₃): δ = -90.27 (s). HR-MS (EI) m/z calcd for C₂₅H₂₄FNO₂ [M+H⁺] 390.1846, found 390.1849.

$$F_{3}C$$

Ethyl (*E*)-2-benzyl-3-fluoro-3-{1-[4-(trifluoromethyl)phenyl]pyrrolidin-2-yl}acrylate (7) The general procedure TP2 was followed using N-aryl amines (0.5 mmol) and gemdifluoroalkenes (0.25 mmol) for 3 h. Purification by column chromatography (PE/EtOAc 50:1) yielded 7 (61 mg, 58%) as a colorless oil. ¹H-NMR (400 MHz, CDCl₃): δ = 7.44 (d, *J* = 8.6 Hz, 2H), 7.28 – 7.18 (m, 3H), 7.15 (t, *J* = 10.8 Hz, 2H), 6.64 (t, *J* = 21.2 Hz, 2H), 5.62 (dd, *J* = 27.8, 8.4 Hz, 1H), 4.24 (p, *J* = 7.0 Hz, 2H), 3.79 – 3.60 (m, 2H), 3.60 – 3.53 (m, 1H), 3.46 (dt, *J* = 20.3, 10.3 Hz, 1H), 2.56 – 2.35 (m, 1H), 2.26 – 2.08 (m, 3H), 1.27 (t, *J* = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ = 170.4 (d, ¹*J*_{C-F} = 275.2 Hz), 166.7 (d, ²*J*_{C-F} = 18.4 Hz), 148.8, 139.0 (d, ⁴*J*_{C-F} = 2.0 Hz), 128.4, 128.3, 126.4 (q, ³*J*_{C-F} = 3.7 Hz), 126.3, 125.2 (q, ¹*J*_{C-F} = 271.2 Hz), 118.1 (q, ²*J*_{C-F} = 32.6 Hz), 114.5 (d, ²*J*_{C-F} = 7.1 Hz), 24.1, 14.1. ¹⁹F-NMR (376 MHz, CDCl₃): δ = -60.88 (s), -98.49 (d, *J* = 27.6 Hz). HR-MS (EI) m/z calcd for C₂₃H₂₃F₄NO₂ [M+H⁺] 422.1738, found 422.1738.

Ethyl (*E*)-4-[2-(2-benzyl-3-ethoxy-1-fluoro-3-oxoprop-1-en-1-yl)pyrrolidin-1-yl]benzoate (8)

The general procedure **TP2** was followed using **N-aryl amines** (0.5 mmol) and **gem-difluoroalkenes** (0.25 mmol) for 2.5 h. Purification by column chromatography (PE/EtOAc 50:1) yielded **8** (93 mg, 87%) as a colorless oil. ¹H-NMR (400 MHz, CDCl₃): δ = 7.89 (t, *J* = 5.8 Hz, 2H), 7.26 – 7.20 (m, 2H), 7.17 (t, *J* = 5.0 Hz, 1H), 7.13 (t, *J* = 6.9 Hz, 2H), 6.60 (d, *J* = 8.9 Hz, 2H), 5.61 (ddd, *J* = 27.4, 8.4, 2.6 Hz, 1H), 4.32 (q, *J* = 7.1 Hz, 2H), 4.20 (q, *J* = 7.1 Hz, 2H), 3.66 (qd, *J* = 14.8, 3.5 Hz, 2H), 3.60 – 3.54 (m, 1H), 3.52 – 3.41 (m, 1H), 2.50 – 2.35 (m, 1H), 2.27 – 2.03 (m, 3H), 1.36 (t, *J* = 7.1 Hz, 3H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ = 170.5 (d, ¹*J*_{C-F} = 275.1 Hz), 167.1, 166.8 (d, ³*J*_{C-F} = 18.5 Hz), 150.1, 139.1 (d, ⁴*J*_{C-F} = 2.0 Hz), 131.4, 128.5, 128.4, 126.3, 118.2, 114.5 (d, ²*J*_{C-F} = 20.4 Hz), 111.5, 61.2, 60.2, 56.9 (d, ²*J*_{C-F} = 21.7 Hz), 48.9, 32.2 (d, ⁴*J*_{C-F} = 1.6 Hz), 31.4 (d, ⁴*J*_{C-F} = 7.1 Hz), 24.2, 14.6, 14.2. ¹⁹F-NMR (376 MHz, CDCl₃) δ = -98.29 (s). HR-MS (EI) m/z calcd for C₂₅H₂₈FNO₄ [M+H⁺] 426.2075, found 426.2075.

Ethyl (E)-2-benzyl-3-fluoro-3-(1-phenylpyrrolidin-2-yl)acrylate (9)

The general procedure **TP2** was followed using **N-aryl amines** (0.5 mmol) and **gem-difluoroalkenes** (0.25 mmol) for 5 h. Purification by column chromatography (PE/EtOAc 100:1) yielded **9** (62 mg, 70%) as an oil. ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.25 - 7.08$ (m, 7H), 6.70 (t, J = 7.3 Hz, 1H), 6.63 (d, J = 7.9 Hz, 2H), 5.50 (ddd, J = 27.4, 8.4, 2.6 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 3.65 (qd, J = 14.7, 3.5 Hz, 2H), 3.52 (td, J = 8.3, 4.0 Hz, 1H), 3.41 (dd, J = 15.8, 7.1 Hz, 1H), 2.45 – 2.33 (m, 1H), 2.25 – 1.99 (m, 3H), 1.23 (t, J = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): $\delta = 171.7$ (d, ¹ $J_{C-F} = 276.1$ Hz), 167.0 (d, ³ $J_{C-F} = 18.3$ Hz), 146.9, 139.4 (d, ⁴ $J_{C-F} = 2.0$ Hz), 129.3, 128.6, 128.4, 126.2, 116.6, 114.0 (d, ² $J_{C-F} = 20.5$ Hz), 112.3, 61.1, 56.9 (d, ² $J_{C-F} = 21.7$ Hz), 48.8, 32.3 (d, ⁴ $J_{C-F} = 2.0$ Hz), 31.5, 24.3, 14.2. ¹⁹F-NMR (376 MHz, CDCl₃): $\delta = -97.43$ (d, J = 27.3 Hz). HR-MS (EI) m/z calcd for C₂₂H₂₄FNO₂ [M+H⁺] 354.1864, found 354.1866.

Ethyl (E)-2-benzyl-3-fluoro-3-[1-(4-fluorophenyl)pyrrolidin-2-yl]acrylate (10)

The general procedure **TP2** was followed using **N-aryl amines** (0.5 mmol) and **gem-difluoroalkenes** (0.25 mmol) for 2 h. Purification by column chromatography (PE/EtOAc 100:1) yielded **10** (48 mg, 51%) as a colorless oil. ¹H-NMR (400 MHz, CDCl₃): δ = 7.24 – 7.13 (m, 3H), 7.09 (d, *J* = 7.1 Hz, 2H), 6.95 – 6.85 (m, 2H), 6.60 – 6.51 (m, 2H), 5.47 (ddd, *J* = 28.1, 8.4, 2.8 Hz, 1H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.64 (ddd, *J* = 35.2, 14.7, 3.5 Hz, 2H), 3.48 (td, *J* = 8.2, 4.4 Hz, 1H), 3.36 (dd, *J* = 15.4, 7.0 Hz, 1H), 2.48 – 2.32 (m, 1H), 2.19 (ddd, *J* = 15.0, 11.8, 7.8 Hz, 1H), 2.13 – 2.03 (m, 2H), 1.26 – 1.20 (m, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ = 171.5 (d, ¹*J*_{C-F} = 276.0 Hz), 167.0 (d, ³*J*_{C-F} = 18.5 Hz), 155.5 (d, ¹*J*_{C-F} = 234.4 Hz), 143.4 (d, ⁴*J*_{C-F} = 1.2 Hz), 139.3 (d, ⁴*J*_{C-F} = 7.3 Hz), 61.1, 57.2 (d, ²*J*_{C-F} = 21.7 Hz), 49.3, 32.2 (d, ⁴*J*_{C-F} = 1.5 Hz), 31.5 (d, ⁴*J*_{C-F} = 7.2 Hz), 24.4, 14.2. ¹⁹F-NMR (376 MHz, CDCl₃): δ = -98.26 (s), -129.58 (s). HR-MS (EI) m/z calcd for C₂₂H₂₃F₂NO₂ [M+H⁺] 372.1770, found 372.1770.

Ethyl (*E*)-2-benzyl-3-[1-(3,4-dichlorophenyl)pyrrolidin-2-yl]-3-fluoroacrylate (11) The general procedure **TP2** was followed using **N-aryl amines** (0.5 mmol) and **gemdifluoroalkenes** (0.25 mmol) for 3 h. Purification by column chromatography (PE/EtOAc 100:1) yielded **11** (91 mg, 86%) as a colorless oil. ¹H-NMR (400 MHz, CDCl₃): δ = 7.22 (dt, *J* = 14.4, 8.2 Hz, 4H), 7.13 (d, *J* = 7.2 Hz, 2H), 6.77 (d, *J* = 2.8 Hz, 1H), 6.49 (dd, *J* = 8.9, 2.8 Hz, 1H), 5.54 (ddd, *J* = 28.4, 8.4, 2.8 Hz, 1H), 4.23 (q, *J* = 7.2 Hz, 2H), 3.69 (ddd, *J* = 40.3, 14.8, 3.4 Hz, 2H), 3.50 (td, *J* = 8.4, 4.5 Hz, 1H), 3.39 (dd, *J* = 15.6, 7.0 Hz, 1H), 2.50 – 2.33 (m, 1H), 2.24 – 2.08 (m, 3H), 1.26 (t, *J* = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ = 170.2 (d, ¹*J*_{C-F} = 275.1 Hz), 166.9 (d, ³*J*_{C-F} = 18.4 Hz), 146.2, 139.1, 132.9, 130.6, 128.5, 128.4, 126.4, 119.4, 114.9 (d, ²*J*_{C-F} = 20.4 Hz), 113.9, 112.1, 61.3, 56.8 (d, ²*J*_{C-F} = 21.8 Hz), 49.0, 32.0 (d, ⁴*J*_{C-F} = 1.6 Hz), 31.4 (d, ⁴*J*_{C-F} = 7.2 Hz), 24.3, 14.2. ¹⁹F-NMR (376 MHz, CDCl₃): δ = -99.40 (s). HR-MS (EI) m/z calcd for C₂₂H₂₂Cl₂FNO₂ [M+H⁺] 422.1084, found 422.1089.

Ethyl (E)-2-benzyl-3-fluoro-3-[1-(3-fluorophenyl)pyrrolidin-2-yl]acrylate (12)

The general procedure **TP2** was followed using **N-aryl amines** (0.5 mmol) and **gem-difluoroalkenes** (0.25 mmol) for 8 h. Purification by column chromatography (PE/EtOAc 100:1) yielded **12** (53 mg, 57%) as a colorless oil. ¹H-NMR (400 MHz, CDCl₃): δ = 7.25 – 7.15 (m, 2H), 7.11 (dd, *J* = 13.9, 7.0 Hz, 4H), 6.43 – 6.35 (m, 2H), 6.33 (t, *J* = 2.3 Hz, 1H), 5.49 (ddd, *J* = 27.6, 8.4, 2.7 Hz, 1H), 4.20 (q, *J* = 7.1 Hz, 2H), 3.66 (qd, *J* = 14.7, 3.5 Hz, 2H), 3.50 (td, *J* = 8.4, 4.1 Hz, 1H), 3.39 (dd, *J* = 15.9, 7.1 Hz, 1H), 2.48 – 2.34 (m, 1H), 2.19 (dq, *J* = 7.6, 4.8 Hz, 1H), 2.14 – 2.01 (m, 2H), 1.23 (t, *J* = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ = 171.0 (d, ¹*J*_{C-F} = 275.4 Hz), 166.9 (d, ³*J*_{C-F} = 18.6 Hz), 164.2 (d, ¹*J*_{C-F} = 242.3 Hz), 148.5 (d, ³*J*_{C-F} = 10.9 Hz), 139.3, 130.3 (d, ³*J*_{C-F} = 10.3 Hz), 128.5, 128.4, 126.3, 114.4 (d, ²*J*_{C-F} = 20.5 Hz), 108.1 (d, ⁴*J*_{C-F} = 2.1 Hz), 103.1 (d, ²*J*_{C-F} = 21.7 Hz), 99.5 (d, ²*J*_{C-F} = 26.0 Hz), 61.2, 57.0 (d, ²*J*_{C-F} = 21.7 Hz), 49.0, 32.2 (d, ⁴*J*_{C-F} = 1.8 Hz), 31.5 (d, ⁴*J*_{C-F} = 7.1 Hz), 24.2, 14.2. ¹⁹F-NMR

 $(376 \text{ MHz}, \text{CDCl}_3): \delta = -98.27 \text{ (s)}, -112.69 \text{ (s)}. \text{ HR-MS (EI) } \text{m/z calcd for } \text{C}_{22}\text{H}_{23}\text{F}_2\text{NO}_2 \text{ [M+H^+]}$ 372.1770, found 372.1770.

Ethyl (E)-2-benzyl-3-[1-(4-chlorophenyl)azepan-2-yl]-3-fluoroacrylate (13)

The general procedure **TP2** was followed using **N-aryl amines** (0.5 mmol) and **gemdifluoroalkenes** (0.25 mmol) for 5 h. Purification by column chromatography (PE) yielded **13** (75 mg, 72%) as a colorless oil. ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.27 - 7.21$ (m, 3H), 7.20 – 7.11 (m, 4H), 6.60 (d, J = 9.0 Hz, 2H), 5.29 (ddd, J = 27.4, 11.9, 5.7 Hz, 1H), 4.21 (q, J = 7.1Hz, 2H), 3.66 (dd, J = 12.9, 9.1 Hz, 3H), 3.51 (dd, J = 15.9, 11.5 Hz, 1H), 2.40 – 2.27 (m, 1H), 2.04 – 1.93 (m, 1H), 1.93 – 1.83 (m, 2H), 1.77 (d, J = 14.2 Hz, 1H), 1.59 (d, J = 9.4 Hz, 1H), 1.35 (dd, J = 14.7, 7.5 Hz, 2H), 1.24 (t, J = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): $\delta =$ 172.0 (d, ¹ $_{C-F} = 274.9$ Hz), 166.9, 166.7, 147.5, 139.4 (d, ⁴ $_{JC-F} = 1.9$ Hz), 129.2, 128.5, 126.3, 120.9, 113.2 (d, ² $_{JC-F} = 20.7$ Hz), 112.4, 61.2, 57.5 (d, ² $_{JC-F} = 20.6$ Hz), 46.1 (d, ⁴ $_{JC-F} = 3.2$ Hz), 33.0 (d, ⁴ $_{JC-F} = 2.1$ Hz), 31.2 (d, ⁴ $_{JC-F} = 7.3$ Hz), 29.8, 28.4, 26.5, 14.2. ¹⁹F-NMR (376 MHz, CDCl₃): $\delta = -101.20$ (s). HR-MS (EI) m/z calcd for C₂₄H₂₇ClFNO₂ [M+H⁺] 416.1787, found 416.1797.

Ethyl (E)-2-benzyl-3-fluoro-3-(1-methylindolin-2-yl)acrylate (14)

The general procedure **TP2** was followed using **N-aryl amines** (0.5 mmol) and **gemdifluoroalkenes** (0.25 mmol) for 3 h. Purification by column chromatography (PE/EtOAc 100:1) yielded **14** (45 mg, 53%) as a colorless oil. ¹H-NMR (400 MHz, CDCl₃): δ = 7.31 – 7.15 (m, 5H), 7.14 – 7.02 (m, 2H), 6.69 (t, *J* = 7.3 Hz, 1H), 6.48 (d, *J* = 7.8 Hz, 1H), 5.11 (dt, *J* = 27.6, 9.4 Hz, 1H), 4.19 – 4.10 (m, 2H), 3.76 (qd, *J* = 14.6, 3.4 Hz, 2H), 3.21 (ddd, *J* = 36.8, 15.6, 9.4 Hz, 2H), 2.76 (s, 3H), 1.20 (t, *J* = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ = 166.8 (d, ³*J*_{C-F} = 17.8 Hz), 166.5 (d, ¹*J*_{C-F} = 272.7 Hz), 152.5, 139.2 (d, ⁴*J*_{C-F} = 1.9 Hz), 128.6, 127.9, 126.5, 124.2, 118.4, 117.0 (d, ²*J*_{C-F} = 20.3 Hz), 107.4, 64.1 (d, ²*J*_{C-F} = 22.4 Hz), 61.3, 34.3, 32.8 (d, ${}^{4}J_{C-F} = 1.0 \text{ Hz}$), 31.9 (d, ${}^{4}J_{C-F} = 6.7 \text{ Hz}$), 14.2. ¹⁹F-NMR (376 MHz, CDCl₃): $\delta = -102.55$ (s). HR-MS (EI) m/z calcd for C₂₁H₂₂FNO₂ [M+H⁺] 340.1707, found 340.1707.

Ethyl (E)-2-benzyl-3-(5-bromo-1-methylindolin-2-yl)-3-fluoroacrylate (15)

The general procedure **TP2** was followed using **N-aryl amines** (0.5 mmol) and **gem-difluoroalkenes** (0.25 mmol) for 5 h. Purification by column chromatography (PE/EtOAc 100:1) yielded **15** (42 mg, 40%) as a colorless oil. ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.31 - 7.24$ (m, 2H), 7.23 - 7.09 (m, 5H), 6.34 (dd, J = 22.6, 9.4 Hz, 1H), 5.17 (dt, J = 27.9, 9.1 Hz, 1H), 4.15 (q, J = 7.0 Hz, 2H), 3.75 (qd, J = 14.5, 2.8 Hz, 2H), 3.24 (dd, J = 15.9, 9.6 Hz, 1H), 3.13 (dd, J = 15.9, 8.8 Hz, 1H), 2.73 (s, 3H), 1.21 (t, J = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): $\delta = 166.6$ (d, ³ $J_{C-F} = 17.6$ Hz), 166.1 (d, ¹ $J_{C-F} = 272.9$ Hz), 151.6, 139.0 (d, ⁴ $J_{C-F} = 1.9$ Hz), 130.4, 130.1, 128.6, 128.6, 127.2, 126.5, 117.2 (d, ² $J_{C-F} = 20.1$ Hz), 109.8, 108.4, 63.9 (d, ² $J_{C-F} = 22.5$ Hz), 61.3, 33.9, 32.5, 31.8 (d, ⁴ $J_{C-F} = 6.7$ Hz), 14.2. ¹⁹F-NMR (376 MHz, CDCl₃): $\delta = -103.32$ (s). HR-MS (EI) m/z calcd for C₂₁H₂₁BrFNO₂ [M+H⁺] 418.0812, found 418.0823.

Ethyl (*E*)-2-(3-chlorobenzyl)-3-fluoro-4-[methyl(phenyl)amino]but-2-enoate (16) The general procedure **TP2** was followed using **N-aryl amines** (0.5 mmol) and **gemdifluoroalkenes** (0.25 mmol) for 3 h. Purification by column chromatography (PE/EtOAc 100:1) yielded **16** (46 mg, 51%) as a colorless oil. ¹H-NMR (400 MHz, CDCl₃): δ = 7.28 – 7.21 (m, 2H), 7.15 (d, *J* = 5.1 Hz, 3H), 7.01 (dd, *J* = 6.8, 3.2 Hz, 1H), 6.77 (dd, *J* = 12.6, 7.8 Hz, 3H), 4.69 (d, *J* = 18.2 Hz, 2H), 4.21 (q, *J* = 7.1 Hz, 2H), 3.64 (d, *J* = 3.4 Hz, 2H), 3.04 (s, 3H), 1.26 (t, *J* = 7.1 Hz, 3H). ¹³C-NMR (CDCl₃, 100 MHz): δ = 168.5 (d, ¹*J*_{C-F} = 275.1 Hz), 166.7 (d, ³*J*_{C-F} = 18.4 Hz), 149.1, 141.4 (d, ⁴*J*_{C-F} = 2.1 Hz), 134.2, 129.7, 129.3, 128.8, 126.8, 126.6, 117.6, 114.9 (d, ²*J*_{C-F} = 19.6 Hz), 112.9, 61.3, 51.2 (d, ²*J*_{C-F} = 22.2 Hz), 39.4, 31.1 (d, 4*J*_{C-F} = 7.3 Hz), 14.2. ¹⁹F-NMR (376 MHz, CDCl₃): δ = -89.46 (s). HR-MS (EI) m/z calcd for C₂₀H₂₁CIFNO₂ [M+H⁺] 362.1318, found 362.1318.

Ethyl (*E*)-3-fluoro-4-[methyl(phenyl)amino]-2-(naphthalen-1-ylmethyl)but-2-enoate (17) The general procedure **TP2** was followed using **N-aryl amines** (0.5 mmol) and **gemdifluoroalkenes** (0.25 mmol) for 3.5 h. Purification by column chromatography (PE/EtOAc 50:1) yielded **17** (51 mg, 54%) as a colorless oil. ¹H-NMR (400 MHz, CDCl₃): δ = 8.09 – 8.02 (m, 1H), 7.83 (dd, *J* = 6.6, 2.7 Hz, 1H), 7.69 (d, *J* = 8.2 Hz, 1H), 7.52 – 7.44 (m, 2H), 7.37 – 7.29 (m, 1H), 7.25 (t, *J* = 8.0 Hz, 2H), 7.18 (d, *J* = 7.1 Hz, 1H), 6.82 (d, *J* = 8.3 Hz, 2H), 6.78 (t, *J* = 7.3 Hz, 1H), 4.70 (d, *J* = 18.6 Hz, 2H), 4.17 – 4.08 (m, 4H), 3.06 (s, 3H), 1.12 (t, *J* = 7.1 Hz, 3H). ¹³C-NMR (100 Hz, CDCl₃): δ = 167.5 (d, ¹*J*_{C-F} = 273.4 Hz), 167.1 (d, ³*J*_{C-F} = 18.5 Hz), 149.2, 134.6 (d, ⁴*J*_{C-F} = 1.8 Hz), 133.9, 132.1, 129.3, 128.8, 127.1, 126.1, 125.6, 125.5, 123.6 (d, ⁴*J*_{C-F} = 1.1 Hz), 117.5, 115.0 (d, ²*J*_{C-F} = 19.5 Hz), 113.0, 61.2, 51.2 (d, ²*J*_{C-F} = 22.8 Hz), 39.4 (d, ⁴*J*_{C-F} = 1.2 Hz), 28.3 (d, ⁴*J*_{C-F} = 7.6 Hz), 14.2. ¹⁹F-NMR (376 MHz, CDCl₃): δ = -91.21 (s). HR-MS (EI) m/z calcd for C₂₄H₂₄FNO₂ [M+H⁺] 378.1864, found 378.1864.

Ethyl (*E*)-2-{1-fluoro-2-[methyl(phenyl)amino]ethylidene}undecanoate (18)

The general procedure **TP2** was followed using **N-aryl amines** (0.5 mmol) and **gemdifluoroalkenes** (0.25 mmol) for 4 h. Purification by column chromatography (PE/EtOAc 100:1) yielded **18** (58 mg, 64%) as an oil. ¹H-NMR (400 MHz, CDCl₃): δ = 7.22 (dd, *J* = 8.6, 7.3 Hz, 2H), 6.74 (dd, *J* = 16.6, 7.9 Hz, 3H), 4.57 (d, *J* = 18.3 Hz, 2H), 4.26 (q, *J* = 7.1 Hz, 2H), 3.00 (s, 3H), 2.31 (td, *J* = 7.8, 3.7 Hz, 2H), 1.34 (dt, *J* = 14.3, 7.2 Hz, 5H), 1.24 (s, 12H), 0.87 (t, *J* = 6.8 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ = 167.5 (d, ³*J*_{C-F} = 19.1 Hz), 166.6 (d, ¹*J*_{C-F} = 272.4 Hz), 149.2, 129.1, 117.2, 116.4 (d, ²*J*_{C-F} = 20.5 Hz), 112.7, 60.9, 51.1 (d, ²*J*_{C-F} = 23.3 Hz), 38.9 (d, ⁴*J*_{C-F} = 1.2 Hz), 31.9, 29.5, 29.3, 29.2, 28.8 (d, ⁴*J*_{C-F} = 1.6 Hz), 25.5 (d, ⁴*J*_{C-F} = 6.4 Hz), 22.7, 14.2, 14.1. ¹⁹F-NMR (376 MHz, CDCl₃): δ = -92.80 (s). HR-MS (EI) m/z calcd for C₂₂H₃₄FNO₂ [M+H⁺] 364.2646, found 364.2650.

Diethyl (E)-2-{1-fluoro-2-[methyl(phenyl)amino]ethylidene}octanedioate (19)

The general procedure **TP2** was followed using **N-aryl amines** (0.5 mmol) and **gemdifluoroalkenes** (0.25 mmol) for 4 h. Purification by column chromatography (PE/EtOAc 50:1) yielded **19** (59 mg, 62%) as an oil. ¹H-NMR (400 MHz, CDCl₃): δ = 7.25 – 7.19 (m, 2H), 6.74 (dd, *J* = 14.1, 7.6 Hz, 3H), 4.58 (d, *J* = 18.3 Hz, 2H), 4.26 (q, *J* = 7.1 Hz, 2H), 4.11 (q, *J* = 7.1 Hz, 2H), 3.00 (s, 3H), 2.32 (td, *J* = 7.6, 3.7 Hz, 2H), 2.24 (t, *J* = 7.6 Hz, 2H), 1.65 – 1.53 (m, 2H), 1.46 – 1.36 (m, 2H), 1.36 – 1.19 (m, 8H). ¹³C-NMR (100 MHz, CDCl₃): δ = 173.9, 167.5 (d, ³*J*_{C-F} = 19.4 Hz), 167.02 (d, ¹*J*_{C-F} = 272.4 Hz), 149.3, 129.2, 117.3, 116.2 (d, ²*J*_{C-F} = 20.4 Hz), 112.8, 61.1, 60.3, 51.3, 51.1, 39.1 (d, ⁴*J*_{C-F} = 0.9 Hz), 34.4, 28.8, 28.5 (d, ⁴*J*_{C-F} = 1.1 Hz), 25.4 (d, ⁴*J*_{C-F} = 6.5 Hz), 24.8, 14.4. ¹⁹F-NMR (376 MHz, CDCl₃): δ = -92.28 (t, *J* = 18.4 Hz). HR-MS (EI) m/z calcd for C₂₁H₃₀FNO₄ [M+H⁺] 380.2232, found 380.2236.

Ethyl (*E*)-2-[2-(1,3-dioxan-2-yl)ethyl]-3-fluoro-4-[methyl(phenyl)amino]but-2-enoate (20) The general procedure TP2 was followed using N-aryl amines (0.5 mmol) and gemdifluoroalkenes (0.25 mmol) for 5 h. Purification by column chromatography (PE/EtOAc 100:1) yielded 20 (51 mg, 58%) as an oil. ¹H-NMR (400 MHz, CDCl₃): δ = 7.22 (dd, *J* = 8.7, 7.3 Hz, 2H), 6.74 (dd, *J* = 15.9, 7.8 Hz, 3H), 4.60 (d, *J* = 18.1 Hz, 2H), 4.38 (t, *J* = 5.2 Hz, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 4.03 (dd, *J* = 10.8, 4.9 Hz, 2H), 3.62 (td, *J* = 12.3, 2.3 Hz, 2H), 3.01 (s, 3H), 2.43 (td, *J* = 7.7, 3.6 Hz, 2H), 2.02 (ddd, *J* = 17.7, 12.6, 7.6 Hz, 1H), 1.69 (dd, *J* = 12.8, 7.4 Hz, 2H), 1.33 (t, *J* = 7.1 Hz, 3H), 1.27 (dt, *J* = 13.3, 1.5 Hz). ¹³C-NMR (100 MHz, CDCl₃): δ = 167.5 (d, ¹*J*_{C-F} = 273.7 Hz), 167.32 (d, ³*J*_{C-F} = 18.9 Hz), 149.2, 129.2, 117.3, 115.6 (d, ²*J*_{C-F} = 20.2 Hz), 112.8, 101.8, 66.9, 61.1, 51.2 (d, ²*J*_{C-F} = 22.9 Hz), 39.3, 34.1 (d, ⁴*J*_{C-F} = 1.3 Hz), 25.9, 20.4 (d, ⁴*J*_{C-F} = 7.3 Hz), 14.4. ¹⁹F-NMR (376 MHz, CDCl₃): δ = -91.21 (t, *J* = 18.1 Hz). HR-MS (EI) m/z calcd for C₁₉H₂₆FNO₄ [M+H⁺] 352.1919, found 352.1919.

Ethyl (*E*)-2-{1-fluoro-2-[methyl(phenyl)amino]ethylidene}-5-(4-methoxyphenoxy)pentan oate (21)

The general procedure **TP2** was followed using **N-aryl amines** (0.5 mmol) and **gemdifluoroalkenes** (0.25 mmol) for 6 h. Purification by column chromatography (PE/EtOAc 100:1) yielded **21** (58 mg, 58%) as a colorless oil. ¹H-NMR (400 MHz, CDCl₃): δ = 7.22 (t, *J* = 7.8 Hz, 2H), 6.88 – 6.69 (m, 7H), 4.60 (d, *J* = 18.1 Hz, 2H), 4.22 (p, *J* = 7.0 Hz, 2H), 3.83 (t, *J* = 6.4 Hz, 2H), 3.76 (s, 3H), 2.99 (s, 3H), 2.58 – 2.46 (m, 2H), 1.91 – 1.83 (m, 2H), 1.31 (t, *J* = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ = 167.6 (d, ¹*J*_{C-F} = 273.4 Hz), 167.3 (d, ³*J*_{C-F} = 19.1 Hz), 153.8, 153.2, 149.1, 129.3, 129.0 (d, ³*J*_{C-F} = 19.9 Hz), 117.4, 115.5, 114.7, 112.8, 67.9, 61.1, 55.9, 51.2 (d, ²*J*_{C-F} = 22.8 Hz), 39.2, 28.6 (d, ⁴*J*_{C-F} = 1.2 Hz), 22.44 (d, ⁴*J*_{C-F} = 6.9 Hz), 14.3. ¹⁹F-NMR (376 MHz, CDCl₃): δ = -91.13 (s). HR-MS (EI) m/z calcd for C₂₃H₂₈FNO₄ [M+H⁺] 402.2075, found 402.2075.

Ethyl (*E*)-3-fluoro-4-[methyl(phenyl)amino]-2-[2-(thiophen-3-yl)ethyl]but-2-enoate (22) The general procedure TP2 was followed using N-aryl amines (0.5 mmol) and gemdifluoroalkenes (0.25 mmol) for 5 h. Purification by column chromatography (PE/EtOAc 100:1) yielded 22 (45 mg, 52%) as a colorless oil. ¹H-NMR (400 MHz, CDCl₃): δ = 7.24 – 7.18 (m, 3H), 6.89 (dd, *J* = 8.0, 3.8 Hz, 2H), 6.75 (t, *J* = 8.2 Hz, 3H), 4.58 (d, *J* = 18.3 Hz, 2H), 4.23 (q, *J* = 7.1 Hz, 2H), 2.97 (s, 3H), 2.76 – 2.71 (m, 2H), 2.64 (dd, *J* = 8.0, 3.2 Hz, 2H), 1.32 (t, *J* = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ = 167.65 (d, ¹*J*_{C-F} = 273.7 Hz), 167.24 (d, ³*J*_{C-F} = 19.1 Hz), 149.2, 141.6, 129.3, 128.4, 125.4, 120.7, 117.4, 115.5 (d, ²*J*_{C-F} = 20.7 Hz), 112.8, 61.1, 51.2 (d, ²*J*_{C-F} = 22.8 Hz), 39.1, 29.6, 26.8 (d, ⁴*J*_{C-F} = 6.3 Hz), 14.4. ¹⁹F-NMR (376 MHz, CDCl₃): δ = -91.07 (s). HR-MS (EI) m/z calcd for C₁₉H₂₂FNO₂S [M+H⁺] 348.1428, found 348.1430.

Ethyl (*E*)-4-{2-[2-(ethoxycarbonyl)-1-fluoro-4-(4-fluorophenyl)but-1-en-1-yl]pyrrolidin-1 -yl}benzoate (23)

The general procedure **TP2** was followed using **N-aryl amines** (0.5 mmol) and **gemdifluoroalkenes** (0.25 mmol) for 7.5 h. Purification by column chromatography (PE/EtOAc 50:1) yielded **23** (64 mg, 56%) as a colorless oil. ¹H-NMR (400 MHz, CDCl₃): δ = 7.91 (d, J = 8.7 Hz, 2H), 7.09 (dd, J = 8.3, 5.6 Hz, 2H), 6.93 (t, J = 8.7 Hz, 2H), 6.57 (d, J = 8.8 Hz, 2H), 5.49 (ddd, J = 27.2, 8.5, 2.5 Hz, 1H), 4.41 – 4.23 (m, 4H), 3.56 – 3.49 (m, 1H), 3.44 (dd, J = 16.5, 7.8 Hz, 1H), 2.73 – 2.67 (m, 2H), 2.65 – 2.57 (m, 2H), 2.35 (dq, J = 12.4, 8.6 Hz, 1H), 2.08 (dt, J = 13.9, 6.8 Hz, 2H), 2.01 – 1.92 (m, 1H), 1.37 (dd, J = 12.3, 7.1 Hz, 6H). ¹³C-NMR (100 MHz, CDCl₃): δ = 170.4 (d, ¹ J_{C-F} = 274.8 Hz), 167.1, 166.9, 161.5 (d, ¹ J_{C-F} = 243.5 Hz), 150.0, 136.8 (d, ⁴ J_{C-F} = 3.1 Hz), 131.4, 130.1 (d, ⁴ J_{C-F} = 7.9 Hz), 118.1, 115.1 (d, ² J_{C-F} = 21.2 Hz), 114.0 (d, ² J_{C-F} = 20.9 Hz), 111.3, 61.2, 60.3, 56.8 (d, ² J_{C-F} = 22.0 Hz), 48.8, 34.3, 32.2 (d, ⁴ J_{C-F} = 1.7 Hz), 27.7 (d, ⁴ J_{C-F} = 5.6 Hz), 24.0, 14.6, 14.4. ¹⁹F-NMR (376 MHz, CDCl₃): δ = -97.99 (s), -117.44 (s). HR-MS (EI) m/z calcd for C₂₆H₂₉F₂NO₄ [M+H⁺] 458.2137, found 458.2140.

Ethyl (E)-5-cyano-2-{1-fluoro-2-[methyl(phenyl)amino]ethylidene}pentanoate (24)

The general procedure **TP2** was followed using **N-aryl amines** (0.5 mmol) and **gem-difluoroalkenes** (0.25 mmol) for 3.5 h. Purification by column chromatography (PE/EtOAc 10:1) yielded **24** (46 mg, 60%) as a colorless oil. ¹H-NMR (400 MHz, CDCl₃): δ = 7.26 (t, *J* = 7.9 Hz, 2H), 6.82 – 6.76 (m, 3H), 4.66 (d, *J* = 18.3 Hz, 2H), 4.32 (q, *J* = 7.1 Hz, 2H), 3.05 (s, 3H), 2.49 (td, *J* = 7.3, 3.7 Hz, 2H), 2.24 (t, *J* = 7.3 Hz, 2H), 1.80 (p, *J* = 7.3 Hz, 2H), 1.38 (t, *J* = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ = 168.8 (d, ¹*J*_{C-F} = 275.0 Hz), 166.8 (d, ³*J*_{C-F} = 18.9 Hz), 148.9, 129.3, 119.5, 117.7, 114.2 (d, ²*J*_{C-F} = 19.6 Hz), 112.9, 61.4, 51.3 (d, ²*J*_{C-F} = 22.6 Hz), 39.5 (d, ⁴*J*_{C-F} = 1.3 Hz), 24.8 (d, ⁴*J*_{C-F} = 1.6 Hz), 24.7 (d, ⁴*J*_{C-F} = 7.1 Hz), 16.6, 14.4.

¹⁹F-NMR (376 MHz, CDCl₃): δ = -89.27 (s). HR-MS (EI) m/z calcd for C₁₇H₂₁FN₂O₂ [M+H⁺] 305.1660, found 305.1665.

Ethyl (*E*)-5-cyano-2-{2-[(3,4-dichlorophenyl)(methyl)amino]-1-fluoroethylidene}pentano ate (25)

The general procedure **TP2** was followed using **N-aryl amines** (0.5 mmol) and **gem-difluoroalkenes** (0.25 mmol) for 6.5 h. Purification by column chromatography (PE/EtOAc 10:1) yielded **25** (47 mg, 44%) as a colorless oil. ¹H-NMR (400 MHz, CDCl₃): δ = 7.20 (d, *J* = 8.9 Hz, 1H), 6.67 (d, *J* = 2.8 Hz, 1H), 6.42 (dd, *J* = 8.9, 2.8 Hz, 1H), 5.42 (ddd, *J* = 28.3, 8.6, 2.8 Hz, 1H), 4.37 – 4.27 (m, 2H), 3.44 (td, *J* = 8.5, 4.4 Hz, 1H), 3.39 – 3.31 (m, 1H), 2.46 (dtd, *J* = 11.0, 7.4, 3.5 Hz, 2H), 2.40 – 2.34 (m, 1H), 2.25 (q, *J* = 7.2 Hz, 2H), 2.07 (ddd, *J* = 14.9, 7.2, 3.8 Hz, 3H), 1.77 (tq, *J* = 13.8, 6.9 Hz, 2H), 1.37 (t, *J* = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ = 170.8 (d, ¹*J*_{C-F} = 275.8 Hz), 166.7 (d, ³*J*_{C-F} = 18.6 Hz), 146.1, 132.9, 130.7, 119.4 (d, ⁴*J*_{C-F} = 7.4 Hz), 113.8, 113.7, 113.6, 111.9, 61.6, 56.8 (d, ²*J*_{C-F} = 22.0 Hz), 49.0, 31.8 (d, ⁴*J*_{C-F} = 1.1 Hz), 24.8, 24.7, 24.2 (d, ⁴*J*_{C-F} = 0.8 Hz), 16.7, 14.4. ¹⁹F-NMR (377 MHz, CDCl₃): δ = -98.07 (s). HR-MS (EI) m/z calcd for C₁₉H₂₁Cl₂FN₂O₂ [M+H⁺] 399.1037, found 399.1048.

Benzyl (*E*)-4-{2-(ethoxycarbonyl)-3-fluoro-4-[methyl(phenyl)amino]but-2-en-1-yl}piperi dine-1-carboxylate (26)

The general procedure **TP2** was followed using **N-aryl amines** (0.5 mmol) and **gemdifluoroalkenes** (0.25 mmol) for 3.5 h. Purification by column chromatography (PE/EtOAc 10:1) yielded **26** (78 mg, 66%) as a colorless oil. ¹H-NMR (400 MHz, CDCl₃): δ = 7.35 (d, *J* = 3.0 Hz, 5H), 7.21 (t, *J* = 7.8 Hz, 2H), 6.74 (t, *J* = 9.1 Hz, 3H), 5.11 (s, 2H), 4.61 (d, *J* = 18.4 Hz, 2H), 4.27 (q, *J* = 7.1 Hz, 2H), 4.06 (d, *J* = 35.8 Hz, 2H), 3.01 (s, 3H), 2.71 (d, *J* = 24.0 Hz, 3H), 2.27 (dd, J = 6.2, 3.9 Hz, 2H), 1.61 – 1.47 (m, 4H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): $\delta = 167.8$ (d, ¹ $J_{C-F} = 272.2$ Hz), 167.4 (d, ³ $J_{C-F} = 19.1$ Hz), 155.4, 149.0, 137.1, 129.2, 128.6, 128.1, 128.0, 117.6, 114.3 (d, ² $J_{C-F} = 20.1$ Hz), 113.0, 67.1, 61.2, 51.4 (d, ² $J_{C-F} = 23.0$ Hz), 44.2, 39.4 (d, ⁴ $J_{C-F} = 1.1$ Hz), 35.8 (d, ⁴ $J_{C-F} = 1.8$ Hz), 32.1 (d, ⁴ $J_{C-F} = 5.4$ Hz), 19.3, 14.4. ¹⁹F-NMR (376 MHz, CDCl₃): $\delta = -89.60$ (s). HR-MS (EI) m/z calcd for C₂₇H₃₃FN₂O₄ [M+H⁺] 469.2497, found 469.2497.

Ethyl (*E*)-2-{[1-(4-chlorophenyl)azepan-2-yl]fluoromethylene}-5-cyanopentanoate (27) The general procedure **TP2** was followed using **N-aryl amines** (0.5 mmol) and **gemdifluoroalkenes** (0.25 mmol) for 4.5 h. Purification by column chromatography (PE/EtOAc 10:1) yielded **27** (57 mg, 58%) as a colorless oil. ¹H-NMR (400 MHz, CDCl₃): δ = 7.15 (d, *J* = 9.1 Hz, 2H), 6.57 (d, *J* = 9.1 Hz, 2H), 5.24 (ddd, *J* = 27.5, 11.9, 5.5 Hz, 1H), 4.35 (q, *J* = 7.1 Hz, 2H), 3.68 – 3.42 (m, 2H), 2.50 (d, *J* = 3.4 Hz, 2H), 2.35 – 2.25 (m, 3H), 2.04 – 1.94 (m, 2H), 1.88 (dd, *J* = 17.0, 9.4 Hz, 2H), 1.84 – 1.79 (m, 2H), 1.59 (s, 3H), 1.39 (t, *J* = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ = 172.7 (d, ¹*J*_{C-F} = 275.4 Hz), 166.7 (d, ³*J*_{C-F} = 19.1 Hz), 147.4, 129.2, 121.0, 119.5, 112.2 112.0 (d, ²*J*_{C-F} = 20.5 Hz), 61.5, 57.4 (d, ²*J*_{C-F} = 20.5 Hz), 46.0 (d, ⁴*J*_{C-F} = 3.2 Hz), 32.9, 29.8, 28.3, 26.5, 24.9 (d, ⁴*J*_{C-F} = 1.6 Hz), 24.5 (d, ⁴*J*_{C-F} = 7.3 Hz), 16.8, 14.4. ¹⁹F-NMR (376 MHz, CDCl₃): δ = -99.81 (s). HR-MS (EI) m/z calcd for C₂₁H₂₆ClFN₂O₂ [M+H⁺] 393.1740, found 393.1743.

Ethyl (*E*)-2-[(5-bromo-1-methylindolin-2-yl)fluoromethylene]-4-(thiophen-3-yl)butano-at e (28)

The general procedure **TP2** was followed using **N-aryl amines** (0.5 mmol) and **gemdifluoroalkenes** (0.25 mmol) for 5 h. Purification by column chromatography (PE/EtOAc 100:1) yielded **28** (42 mg, 38%) as a colorless oil. ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.25 - 7.22$ (m, 1H), 7.16 (d, J = 8.3 Hz, 1H), 7.11 (s, 1H), 6.94 (d, J = 3.9 Hz, 2H), 6.28 (d, J = 8.3 Hz, 1H), 5.02 (dt, J = 27.6, 9.2 Hz, 1H), 4.24 – 4.17 (m, 2H), 3.08 (ddd, J = 65.6, 15.9, 9.2 Hz, 2H), 2.80 (d, J = 7.1 Hz, 2H), 2.72 (dd, J = 15.7, 8.1 Hz, 2H), 2.63 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): $\delta = 167.0$ (d, ${}^{3}J_{C-F} = 18.1$ Hz), 165.8 (d, ${}^{1}J_{C-F} = 272.2$ Hz), 151.6, 141.3, 130.4, 130.2, 128.4, 127.1, 125.5, 120.9, 116.8 (d, ${}^{2}J_{C-F} = 20.2$ Hz), 109.7, 108.3, 64.0 (d, ${}^{2}J_{C-F} = 22.7$ Hz), 61.3, 33.8, 32.4, 29.4 (d, ${}^{4}J_{C-F} = 1.5$ Hz), 27.1 (d, ${}^{4}J_{C-F} = 5.9$ Hz), 14.3. ¹⁹F-NMR (376 MHz, CDCl₃): $\delta =$ -104.00 (s). HR-MS (EI) m/z calcd for C₂₀H₂₁BrFNO₂S [M+H⁺] 438.0533, found 438.0532.

Ethyl (*E*)-6-acetoxy-2-[(1,5-dimethylindolin-2-yl)fluoromethylene]hexanoate (29)

The general procedure **TP2** was followed using **N-aryl amines** (0.5 mmol) and **gemdifluoroalkenes** (0.25 mmol) for 5 h. Purification by column chromatography (PE/EtOAc 50:1) yielded **29** (21 mg, 22%) as a colorless oil. ¹H-NMR (400 MHz, CDCl₃): $\delta = 6.90$ (d, J = 8.5 Hz, 2H), 6.40 (d, J = 7.7 Hz, 1H), 4.90 (dt, J = 27.1, 9.5 Hz, 1H), 4.26 – 4.18 (m, 2H), 4.07 (t, J = 6.5 Hz, 2H), 3.13 (qd, J = 15.5, 9.5 Hz, 2H), 2.71 (s, 3H), 2.50 – 2.40 (m, 2H), 2.25 (s, 3H), 2.04 (s, 3H), 1.74 – 1.62 (m, 2H), 1.53 (dt, J = 14.8, 7.3 Hz, 2H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): $\delta = 171.3$, 167.3 (d, ${}^{3}J_{C-F} = 18.1$ Hz), 165.8 (d, ${}^{1}J_{C-F} = 270.8$ Hz), 150.4, 128.2, 128.0, 127.9, 125.1, 117.2 (d, ${}^{2}J_{C-F} = 20.7$ Hz), 107.6, 64.7 (d, ${}^{2}J_{C-F} = 22.8$ Hz), 64.3, 61.2, 34.9, 32.8, 28.3, 25.8 (d, ${}^{4}J_{C-F} = 6.2$ Hz), 25.3 (d, ${}^{4}J_{C-F} = 1.3$ Hz), 21.1, 20.9, 14.3. ¹⁹F-NMR (376 MHz, CDCl₃): $\delta = -103.93$ (s). HR-MS (EI) m/z calcd for C₂₁H₂₈FNO₄ [M+H⁺] 378.2075, found 378.2075.

Ethyl (*E*)-2-[(1,1'-biphenyl)-4-yl]-3-fluoro-4-[methyl(phenyl)amino]but-2-enoate (30) The general procedure TP2 was followed using N-aryl amines (0.5 mmol) and gemdifluoroalkenes (0.25 mmol) for 6 h. Purification by column chromatography (PE/EtOAc 100:1) yielded 30 (28 mg, 28%) as a colorless oil. ¹H-NMR (400 MHz, CDCl₃): δ =7.57 (dd, *J*

= 10.3, 8.0 Hz, 3H), 7.43 (t, J = 7.6 Hz, 2H), 7.33 (dd, J = 11.2, 7.8 Hz, 3H), 7.25 (t, J = 8.0 Hz, 3H), 6.83 (d, J = 8.3 Hz, 2H), 6.77 (t, J = 7.3 Hz, 1H), 4.66 (d, J = 16.7 Hz, 2H), 4.27 (q, J = 7.1 Hz, 2H), 3.07 (s, 3H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): $\delta = 167.1$ (d, ³ $J_{C-F} = 19.4$ Hz), 165.7 (d, ¹ $J_{C-F} = 273.2$ Hz), 149.2, 140.8 (d, ⁴ $J_{C-F} = 4.9$ Hz), 130.9 (d, J = 1.0 Hz), 130.1, 130.0, 129.3, 128.9, 127.6, 127.2, 126.9, 117.7, 117.5 (d, ² $J_{C-F} = 17.9$ Hz), 113.0, 61.7, 51.8 (d, ² $J_{C-F} = 23.7$ Hz), 39.2 (d, ⁴ $J_{C-F} = 1.0$ Hz), 14.3. ¹⁹F-NMR (376 MHz, CDCl₃): $\delta = -92.35$ (s). HR-MS (EI) m/z calcd for C₂₅H₂₄FNO₂ [M+H⁺] 390.1864, found 390.1865.

Ethyl (*E*)-3-fluoro-2-(4-methoxyphenyl)-4-[methyl(phenyl)amino]but-2-enoate (31)

The general procedure **TP2** was followed using **N-aryl amines** (0.5 mmol) and **gemdifluoroalkenes** (0.25 mmol) for 8 h. Purification by column chromatography (PE/EtOAc 100:1) yielded **31** (30 mg, 35%) as a colorless oil. ¹H-NMR (400 MHz, CDCl₃): δ = 7.24 (dd, J = 9.4, 6.5 Hz, 2H), 7.17 (d, J = 8.6 Hz, 2H), 6.84 (dd, J = 17.8, 8.5 Hz, 4H), 6.76 (t, J = 7.3 Hz, 1H), 4.61 (d, J = 16.9 Hz, 2H), 4.24 (q, J = 7.1 Hz, 2H), 3.79 (s, 3H), 3.04 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ = 167.3 (d, ³ J_{C-F} = 16.3 Hz), 165.0 (d, ¹ J_{C-F} = 274.9 Hz), 159.2, 149.2, 130.8 (d, ⁴ J_{C-F} = 3.0 Hz), 129.3, 124.1 (d, ⁴ J_{C-F} = 1.1 Hz), 117.6, 117.4 (d, ² J_{C-F} = 18.0 Hz), 113.6, 112.9, 61.5, 55.3, 51.8 (d, ² J_{C-F} = 24.1 Hz), 39.1 (d, ⁴ J_{C-F} = 1.1 Hz), 14.3. ¹⁹F-NMR (376 MHz, CDCl₃): δ = -93.84 (s). HR-MS (EI) m/z calcd for C₂₀H₂₂FNO₃ [M+H⁺] 344.1656, found 344.1658.

Ethyl (*E*)-4-{2-[3-ethoxy-1-fluoro-2-(4-methoxyphenyl)-3-oxoprop-1-en-1-yl]pyrrolidin-1-yl}benzoate (32)

The general procedure **TP2** was followed using **N-aryl amines** (0.5 mmol) and **gemdifluoroalkenes** (0.25 mmol) for 24 h. Purification by column chromatography (PE) yielded **32** (34 mg, 30%) as a colorless oil. ¹H-NMR (400 MHz, CDCl₃): δ = 7.95 (d, *J* = 8.9 Hz, 2H), 7.18 (d, *J* = 8.7 Hz, 2H), 6.89 (t, *J* = 11.7 Hz, 2H), 6.69 (d, *J* = 8.9 Hz, 2H), 5.42 – 5.23 (m, 1H), 4.34 (q, *J* = 7.1 Hz, 2H), 4.24 (dddd, *J* = 25.0, 10.8, 7.1, 3.7 Hz, 2H), 3.82 (s, 3H), 3.56 (td, *J* = 8.6, 4.3 Hz, 1H), 3.47 (dd, *J* = 15.3, 8.1 Hz, 1H), 2.57 – 2.35 (m, 1H), 2.34 – 2.19 (m, 2H), 2.16 – 2.00 (m, 1H), 1.39 (t, *J* = 7.1 Hz, 3H), 1.25 (t, *J* = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ = 167.1 (d, *J*_{C-F} = 18.4 Hz), 166.6 (d, *J* = 274.9 Hz), 159.3, 150.2, 131.5, 130.7, 130.7, 124.0, 118.4, 116.5 (d, ²*J*_{C-F} = 18.7 Hz), 113.7, 111.5, 61.6, 60.3, 57.7 (d, ²*J*_{C-F} = 24.3 Hz), 55.4, 48.9, 32.1 (d, ⁴*J*_{C-F} = 1.9 Hz), 24.0, 14.6, 14.2. ¹⁹F-NMR (376 MHz, CDCl₃): δ = -102.32 (s). HR-MS (EI) m/z calcd for C₂₅H₂₈FNO₅ [M+H⁺] 442.2024, found 442.2034.

Scheme S3. Photoredox-Catalyzed Twofold Csp³–H/Csp²–F Bond-Diaminomethylation.

Ethyl (*E*)-4-{[3-benzyl-4-ethoxy-2-((methyl(phenyl)amino)methyl)-4-oxobut-2-en-1yl](methyl)amino}benzoate (37)
The general procedure **TP3** was followed using **6** (0.27 mmol) and **1a** (0.54 mmol) for 16 h. Purification by column chromatography (PE/EtOAc 100:1) yielded **37** (38 mg, 35%) as an oil. ¹H-NMR (400 MHz, CDCl₃): δ = 7.85 (d, *J* = 9.0 Hz, 2H), 7.29 (dd, *J* = 9.9, 4.8 Hz, 2H), 7.24 - 7.15 (m, 5H), 6.75 (t, *J* = 7.2 Hz, 1H), 6.70 - 6.59 (m, 4H), 4.34 - 4.29 (m, 2H), 4.19 (s, 2H), 4.07 (q, *J* = 7.1 Hz, 2H), 3.88 (d, *J* = 6.9 Hz, 4H), 2.88 (s, 3H), 2.72 (s, 3H), 1.36 (dd, *J* = 8.0, 6.2 Hz, 3H), 1.13 (t, *J* = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ = 169.2, 167.1 153.3, 150.3, 141.2, 138.3, 133.6, 131.2, 129.3, 128.7, 128.6, 126.7, 118.3, 118.1, 113.8, 111.7, 61.1, 60.3, 52.6, 51.8, 38.3, 38.2, 36.1, 14.6, 14.2. HR-MS (EI) m/z calcd for C₃₁H₃₆N₂O₄ [M+H⁺] 501.2748, found 501.2749.

Ethyl (*Z*)-4-{[3-benzyl-4-ethoxy-2-((methyl(phenyl)amino)methyl)-4-oxobut-2-en-1-yl](m ethyl)amino}benzoate (37')

The general procedure **TP3** was followed using **6** (0.27 mmol) and **1a** (0.54 mmol) for 16 h. Purification by column chromatography (PE/EtOAc 100:1) yielded **37**' (38 mg, 35%) as an oil. ¹H-NMR (400 MHz, CDCl₃): δ = 7.85 (d, *J* = 9.0 Hz, 2H), 7.40 – 7.12 (m, 7H), 6.80 – 6.66 (m, 3H), 6.61 (t, *J* = 13.0 Hz, 2H), 4.32 (q, *J* = 7.1 Hz, 2H), 4.20 – 4.03 (m, 4H), 3.93 (d, *J* = 27.2 Hz, 2H), 3.87 (s, 2H), 2.86 (d, *J* = 21.2 Hz, 3H), 2.74 (d, *J* = 12.5 Hz, 3H), 1.36 (t, *J* = 7.1 Hz, 3H), 1.13 (dd, *J* = 8.0, 6.2 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ = 169.3, 167.0, 153.1, 150.4, 140.9, 138.2, 133.5, 131.3, 129.2, 128.7, 128.6, 126.7, 118.5, 117.8, 113.8, 111.6, 61.0, 60.3, 53.1, 51.2, 38.4, 38.1, 36.1, 14.6, 14.2. HR-MS (EI) m/z calcd for C₃₁H₃₆N₂O₄ [M+H⁺] 501.2748, found 501.2749.

Ethyl 2-benzyl-4-[methyl(phenyl)amino]-3-{[methyl(phenyl)amino]methyl}but-2-enoate (38)

S-36

The general procedure **TP3** was followed using **N-aryl amines** (0.75 mmol) and *gem***difluoroalkenes** (0.25 mmol) for 16 h. Purification by column chromatography (PE/EtOAc 100:1) yielded **38** (61 mg, 57%) as an oil. ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.31 - 7.24$ (m, 2H), 7.24 - 7.15 (m, 7H), 6.77 - 6.68 (m, 6H), 4.08 - 4.00 (m, 4H), 3.96 (s, 2H), 3.87 (s, 2H), 2.79 (s, 3H), 2.76 (s, 3H), 1.10 (t, J = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): $\delta = 169.5$, 150.5, 141.6, 138.5, 133.0, 129.2, 129.1, 128.6, 126.5, 117.7, 117.4, 113.8, 113.7, 60.9, 53.5, 52.0, 38.3, 38.1, 36.1, 14.1. HR-MS (EI) m/z calcd for C₂₈H₃₂N₂O₂ [M+H⁺] 429.2537, found 429.2540.

Ethyl 2-{1,3-bis[methyl(phenyl)amino]propan-2-ylidene}-5-(4-fluorophenoxy)pentanoate (39)

The general procedure **TP3** was followed using **N-aryl amines** (0.75 mmol) and *gem-***difluoroalkenes** (0.25 mmol) for 16 h. Purification by column chromatography (PE/EtOAc 100:1) yielded **39** (62.5 mg, 51%) as an oil. ¹H-NMR (400 MHz, CDCl₃): δ = 7.17 (td, *J* = 7.5, 4.6 Hz, 4H), 6.93 (t, *J* = 8.6 Hz, 2H), 6.85 – 6.64 (m, 8H), 4.12 (q, *J* = 7.1 Hz, 2H), 3.96 (s, 2H), 3.92 (t, *J* = 5.9 Hz, 2H), 3.87 (s, 2H), 2.76 (s, 3H), 2.74 (s, 3H), 2.68 (t, *J* = 7.5 Hz, 2H), 1.95 (dt, *J* = 13.3, 6.5 Hz, 2H), 1.23 (t, *J* = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ = 170.1, 157.3 (d, ¹*J*_{C-F} = 238.2 Hz), 155.0 (d, ⁴*J*_{C-F} = 1.6 Hz), 150.6, 150.4, 139.7, 133.5, 129.2, 129.1, 117.7, 117.4, 115.9 (d, ²*J*_{C-F} = 23.2 Hz), 115.4 (d, ³*J*_{C-F} = 8.0 Hz), 113.8, 113.7, 67.1, 61.0, 53.9, 51.1, 38.4, 37.9, 28.1, 26.7, 14.3. ¹⁹F-NMR (376 MHz, CDCl₃): δ = -124.13 (s). HR-MS (EI) m/z calcd for C₃₀H₃₅FN₂O₃ [M+H⁺] 491.2704, found 491.2704.

Ethyl 4-[(4-bromophenyl)(methyl)amino]-3-{[(4-bromophenyl)(methyl)amino]methyl}-2-[2-(thiophen-3-yl)ethyl]but-2-enoate (40)

The general procedure **TP3** was followed using **N-aryl amines** (0.75 mmol) and *gem***difluoroalkenes** (0.25 mmol) for 16 h. Purification by column chromatography (PE/EtOAc 100:1) yielded **40** (86 mg, 57%) as an oil. ¹H-NMR (400 MHz, CDCl₃): δ = 7.22 (ddd, *J* = 6.6, 4.2, 1.7 Hz, 5H), 7.00 – 6.90 (m, 2H), 6.55 – 6.45 (m, 4H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.85 (s, 2H), 3.62 (s, 2H), 2.83 – 2.74 (m, 4H), 2.68 (s, 3H), 2.64 (s, 3H), 1.28 (t, *J* = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ = 169.7, 149.2 (d, *J* = 1.5 Hz), 140.9, 139.1, 134.0, 131.9, 131.7, 128.4, 125.7, 121.3, 115.1, 115.0, 109.7, 109.4, 61.1, 53.6, 50.8, 38.1, 37.8, 31.6, 29.0, 14.4. HR-MS (EI) m/z calcd for C₂₇H₃₀Br₂N₂O₂S [M+H⁺] 605.0468, found 605.0468.

Ethyl 2-{1,3-bis[(4-bromophenyl)(methyl)amino]propan-2-ylidene}-5-cyanopentanoate (41)

The general procedure **TP3** was followed using **N-aryl amines** (0.75 mmol) and *gem-***difluoroalkenes** (0.25 mmol) for 16 h. Purification by column chromatography (PE/EtOAc 100:1) yielded **41** (73 mg, 52%) as an oil. ¹H-NMR (400 MHz, CDCl₃): δ = 7.27 (d, *J* = 6.8 Hz, 2H), 7.24 (d, *J* = 9.1 Hz, 2H), 6.56 (dd, *J* = 9.1, 7.0 Hz, 4H), 4.19 – 4.14 (m, 2H), 3.91 (s, 2H), 3.87 (s, 2H), 2.76 (s, 3H), 2.72 (s, 3H), 2.65 – 2.59 (m, 2H), 2.40 (t, *J* = 7.0 Hz, 2H), 1.88 – 1.79 (m, 2H), 1.27 (d, *J* = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ = 169.3, 149.3, 149.2, 140.2, 132.8, 132.0, 131.8, 119.2, 115.4, 115.2, 110.2, 109.8, 61.3, 53.7, 51.2, 38.5, 38.1, 28.9, 24.5, 16.8, 14.3. HR-MS (EI) m/z calcd for C₂₅H₂₉Br₂N₃O₂ [M+H⁺] 562.0699, found 562.0690.

Diethyl 4,4'-{[2-(3-(1-((benzyloxy)carbonyl)piperidin-4-yl)-1-ethoxy-1-oxopropan-2-ylidene)propane-1,3-diyl]bis(methylazanediyl)dibenzoate (42)

The general procedure **TP3** was followed using **N-aryl amines** (0.75 mmol) and *gem-***difluoroalkenes** (0.25 mmol) for 16 h. Purification by column chromatography (PE/EtOAc 100:1) yielded **42** (96.3 mg, 54%) as an oil. ¹H-NMR (400 MHz, CDCl₃): δ = 7.85 (dd, *J* = 13.3, 9.0 Hz, 4H), 7.39 – 7.27 (m, 5H), 6.60 (dd, *J* = 12.2, 9.1 Hz, 4H), 5.12 (s, 2H), 4.31 (qd, *J* = 7.1, 3.6 Hz, 4H), 4.19 (q, *J* = 7.1 Hz, 4H), 3.97 (d, *J* = 19.9 Hz, 4H), 2.82 (s, 3H), 2.80 (s, 3H), 2.76 (d, *J* = 3.6 Hz, 2H), 2.47 (d, *J* = 7.2 Hz, 2H), 1.74 (d, *J* = 11.7 Hz, 2H), 1.67 – 1.58 (m, 1H), 1.36 (td, *J* = 7.1, 2.9 Hz, 6H), 1.28 (t, *J* = 7.1 Hz, 3H), 1.20 – 1.10 (m, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ = 169.6, 166.9, 166.8, 155.3, 153.0, 153.0, 138.6, 136.9, 134.1, 131.3, 131.2, 128.5, 128.0, 128.0, 118.9, 118.6, 111.8, 111.6, 67.1, 61.2, 60.3, 60.3, 52.4, 50.5, 44.2, 38.0, 37.9, 37.1, 35.8, 32.0, 27.0, 14.5, 14.3. HR-MS (EI) m/z calcd for C₄₁H₅₁N₃O₈ [M+H⁺] 714.3749, found 714.3755.

References:

- [1] Zhang, Y.; Yang, X.; Yao, Q.; Ma, D, Org. Lett. 2012, 14, 12, 3056–3059.
- [2] Hu, M.; Ni, C.; Li, L.; Han, Y.; Hu, J, J. Am. Chem. Soc. 2015, 137, 14496–14501.
- [3] P. Gandeepan, J. Koeller, K. Korvorapun, J. Mohr, L. Ackermann, *Angew. Chem. Int. Ed.***2019**, *58*, 9820-9825.
- [4] F. Cong, X.-Y. Lv, C. S. Day, R. Martin, J. Am. Chem. Soc. 2020, 142, 20594-20599.

S-44

F CO₂Et AcO

2j ¹H-NMR (400 MHz,CDCl₃)

(376 MHz, CDCl₃)

S-50

Z-68.40 Z-68.41 Z-72.71 Z-72.71

Bn O₂Et

2n ¹⁹F-NMR (376 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

CO2Et **P**h Me 3 ¹⁹F-NMR (376 MHz, CDCl₃)

€1.22 1.18

----98.29

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm) 7.25 7.55

7.22 7.25 7.55

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

ÇO₂Et Me C 'n 20 ¹³F-NMR (376 MHz, CDCl₃)

-42 -44 -46 -48 -50 -52 -54 -56 -58 -60 -62 -64 -66 -68 -70 -72 -74 -76 -78 -80 -82 -84 -86 -88 -90 -92 -94 -96 -98 -100 f1 (ppm)

ÇO₂Et Me _N 22 ¹⁹F-NMR (376 MHz, CDCl₃)

-63 -65 -67 -69 -71 -73 -75 -77 -79 -81 -83 -85 -87 -89 -91 -93 -95 -97 -99 fl (ppm)

09.68----

-73 -74 -75 -76 -77 -78 -79 -80 -81 -82 -83 -84 -85 -86 -87 -88 -89 -90 -91 -92 -93 -94 -95 -96 -97 -98 -99 -101 f1 (ppm)

1125

-90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)

Br CO2Et Mé

28 ¹⁹F-NMR (376 MHz, CDCl₃)

-50 -60

-40

-70 -80

-7.26 6.91 6.89 6.89 6.89

第855863 11111

20 10 0 -10 -20 -30

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

→ 1128 → 112

4.0 3.5 3. 0 0.0 2. 0 1.0 0.5 5. 0 4.5 2.5 1.5

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

110 100 90 fl (ppm) -10 130 120