Supplementary Information

The total synthesis of (–)-strempeliopine *via* palladiumcatalyzed decarboxylative asymmetric allylic alkylation

Yi An,^a Mengjuan Wu,^a Weijian Li,^a Yaling Li,^a Zhenzhen Wang,^a Yansong Xue,^a Pei Tang^{*a} and Fener Chen^{*abc}

 ^aSichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
^bEngineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
^cShanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China

Table of Contents

1.	General Information	1
2.	Experimental Procedures	3
3.	Supplemental References	14
4.	NMR Spectra	15

1. General Information

All commercially available reagents were used without further purification. Tetrahydrofuran, toluene, MTBE and 1,4-dioxane were distilled from sodium/benzophenone ketyl. Chromatography was conducted by using 200–300 mesh silica gel. All new compounds gave satisfactory spectroscopic analyses (IR, ¹H NMR, ¹³C NMR, HRMS). NMR spectra were recorded on a 400 MHz NMR. Reference values for residual solvents were taken as δ = 7.26 (Chloroform-*d*) ppm for ¹H NMR and δ = 77.16 (Chloroform-*d*) ppm for ¹³C NMR. Coupling constants (*J*) are given in Hz and are uncorrected and multiplicities for coupled signals were denoted as: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br. = broad, apt. = apparent and dd = double doublet etc. Infrared (IR) spectra were recorded on a Bruker TOF Premier, by the ESI method. Optical rotation was obtained from Rudolph Research Analytical Autopol VI automatic polarimeter. Chiral HPLC was performed using a Daicel Chiralcel OJ column (4.6 × 250 mm) analytical column. Unless otherwise noted, all products are isolated yields.

Scheme S1 Synthetic synopsis of Schizozygine alkaloids.

ii. Trojánek's biomimetic synthesis of (–)-4 using Le Men's strategy

iii. Heathcock's racemic synthesis of (\pm)-5 via NBS-induced cyclization

iv. Padwa's racemic synthesis of (±)-4 via intramolecular 1,4-dipolar cycloaddition

v. Okada's asymmetric synthesis of (–)-5 via reductive radical cyclization

vi. Qin's asymmetric synthesis of (-)-4 and (-)-5 via a cascade photocatalytic radical reaction and radical cyclization

vii. Anderson's asymmetric synthesis of (+)-3 and (+)-5 via [1,4]-hydride transfer/Mannich cyclization

viii. Boger's asymmetric synthesis of (–)-4 via dearomative transannular radical cyclization

entry	acylation	conditions	selectivity	yield
	reagent ^a		17/18 ^b .	(%) ^c
1	14	LiHMDS (1.2 equiv.),	2.4	/
		THF, -80 °C, 16 min.	3:4	/
2	15	LDA (1.2 equiv.), THF, -	. 00.1	22
		80 °C, 16 min.	> 99:1	32
3	16	LDA (1.2 equiv.), THF, -	. 00.1	50
		80 °C, 16 min.	> 99:1	50
4	16	LDA (1.2 equiv.), THF, -	. 00.1	74
		40 °C, 16 min.	> 99:1	/6
^a The flow was carried out using acylation reagent (1.2 equiv.).				
^b Selectivity of 17 and 18 was determined by LC-MS. ^c Isolated yield.				

2. Experimental Procedures

Synthesis of Lactam Substrates: A Continuous-Flow Synthesis Method

Scheme 2 Synthesis of N-benzoyl- β -amido-diester 11 in multistep continuous flow

Synthesis of benzoyl lactam 13

The flow reactor equipment consists of two pumps for reagent/solvent delivery. Before the start of the actual experiment, all reactors were primed with CH_2CI_2 . The Pump A was used to pump the mixture of the starting material **12** and Et₃N which was 8 mL in total. The Pump B was used to pump BzCl. Solutions A and B were mixed at a T-piece and pumped through Reactor. A 5 bar back pressure regulator (BPR) was connected after

Reactor. After approximately three total system residence times, the output flow from Reactor was collected for 30 mins (3.0 mL). The reactant mixture was concentrated in vacuo and purified using flash chromatography (petroleum ether / ethyl acetate = 3:1) to give pure Benzoyl lactam **13** (77.0 mg, 93%).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 (d, *J* = 6.8 Hz, 2H), 7.43 (t, *J* = 7.2 Hz, 1H), 7.35 (t, *J* = 7.6 Hz, 2H), 3.74 (t, *J* = 5.2 Hz, 2H), 2.49 (t, *J* = 6.8 Hz, 2H), 1.92 – 1.83 (m, 4H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.49, 173.37, 136.02, 131.28, 127.93, 127.72, 45.95, 34.41, 22.56, 21.23. HRMS (ESI) *m*/*z* [M + Na]⁺ calcd. for C₁₂H₁₃NNaO₂⁺ 226.0844, found 226.0838.

Solution	Solution Pump Equiv. Concentration		Flow rate	
			(M)	(mL/min)
12	A	1.0 equiv.	0.30	0.045
Et₃N		1.3 equiv.	0.39	
BzCl	В	1.3 equiv.	0.30	0.054

Table S1. Solution concentration and flow rates for the synthesis of 13.

Synthesis of lactam 17

The flow reactor equipment consists of three pumps for reagent/solvent delivery. Before the start of the actual experiment, all reactors were primed with dry THF. Reactor 1 was pre-cooled to -40 °C, Reactor 2 was pre-cooled to -40 °C and Reactor 3 was kept at room temperature. The Pump A was used to pump the solution of

benzoyl lactam **13** and Pump B was used to pump the solution of LDA. Solutions C and D were mixed at a Tpiece and pumped through Reactor 1 without back pressure regulator (BPR). The output from Reactor 1 was connected to a second T-piece with an incoming solution of allyl cyanoacetate that was pumped using a Pump C. The collective flow stream was allowed to pump into Reactor 2 and Reactor 3. A 5 bar back pressure regulator (BPR) was connected after Reactor 3. After approximately three total system residence times, the output flow from Reactor 3 was collected for 32 mins (8.0 mL). The reactant mixture was concentrated in vacuo and purified using flash chromatography (petroleum ether / ethyl acetate = 4:1) to give pure lactam **17** (190.0 mg, 0.66 mmol, 76%).

Compound 17: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 (d, *J* = 7.6 Hz, 2H), 7.47 (t, *J* = 7.2 Hz, 1H), 7.38 (t, *J* = 7.6 Hz, 2H), 6.01– 5.86 (m, 1H), 5.36 (d, *J* = 17.2 Hz, 1H), 5.29 (d, *J* = 10.4 Hz, 1H), 4.69 (d, *J* = 6.0 Hz, 2H), 3.88 – 3.76 (m, 2H), 3.59 (t, *J* = 6.4 Hz, 1H), 2.39 – 2.28 (m, 1H), 2.21 – 2.11 (m, 1H), 2.11 – 2.01 (m, 1H), 2.00 - 1.87 (m, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.63, 169.66, 169.40, 135.51, 131.97, 131.49, 128.32, 128.23, 119.38, 66.48, 51.14, 46.39, 25.59, 20.72; HRMS (ESI) *m*/*z* [M + Na]⁺ calcd. for C₁₆H₁₇NNaO₄⁺ 310.1055, found 310.1051.

Compound 18: ¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.53 (d, J = 6.8 Hz, 2H), 7.43 (t, J = 7.2 Hz, 1H), 7.40 – 7.34 (m, 2H), 5.85 – 5.70 (m, 1H), 5.31 – 5.16 (m, 1H), 5.06 (t, J = 3.6 Hz, 1H), 4.46 (d, J = 6.0 Hz, 2H), 3.80 (t, J = 5.2 Hz, 2H), 2.29 (td, J = 10.4, 3.6 Hz, 2H), 1.87 (p, J = 6.0 Hz, 2H); ¹³C NMR (101 MHz, Chloroform-*d***)** δ 168.98, 152.12, 141.07, 136.09, 130.99, 130.81, 128.33, 127.81, 119.31, 102.38, 77.48, 77.16, 76.84, 69.15, 46.06, 23.22, 21.86; HRMS (ESI) *m/z* [M + H]⁺ calcd. for C₁₆H₁₈NO₄⁺ 288.1236, found 288.1233.

Solution	Pump	Equiv.	Concentration	Flow rate
			(M)	(mL/min)
13	A	1.0 equiv.	0.20	0.136
LDA	В	1.2 equiv.	0.50	0.064
allyl cyanoacetate	С	1.2 equiv.	0.24	0.136

Table S2. Solution concentration and flow rates for the synthesis of 17.

Synthesis of lactam 11

The flow reactor equipment consists of two pumps for reagent/solvent delivery. Before the start of the actual experiment, all reactors were primed with DMF. The Pump A was used to pump the solution of **17**. The Pump B was used to pump the solution of tert-Butyl bromoacetate. Solutions F and G were mixed at a T-piece and pumped through column reactor packed with 20.0 g K_2CO_3 . A 5 bar back pressure regulator (BPR) was connected after column reactor. After approximately three total system residence times, the output flow from Reactor was collected for 30 mins (21.0 mL). The reactant mixture was concentrated in vacuo and purified using flash chromatography (petroleum ether / ethyl acetate = 5:1) to give pure **11** (733.0 mg, 87%).

¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.74 (d, *J* = 7.2 Hz, 2H), 7.43 (t, *J* = 7.6 Hz, 1H), 7.33 (t, *J* = 7.6 Hz, 2H), 6.01 – 5.91 (m, 1H), 5.38 (dd, *J* = 17.2, 1.6 Hz, 1H), 5.31 (d, *J* = 10.0 Hz, 1H), 4.71 (d, *J* = 4.8, 2H), 3.98 – 3.92 (m, 2H), 3.79 (td, *J* = 12.0, 4.0 Hz, 1H), 3.12 (d, *J* = 16.8 Hz, 1H), 2.67 (d, *J* = 17.2 Hz, 1H), 2.29 – 2.18 (m, 2H), 2.09 – 1.96 (m, 2H), 1.37 (s, 9H); ¹³**C NMR (100 MHz, Chloroform-***d***)** δ 174.79, 171.23, 171.11, 169.48, 136.02, 131.51, 131.25, 128.19, 127.88, 119.64, 81.41, 66.65, 54.17, 46.45, 40.98, 31.67, 28.01, 20.44; **IR (neat, cm**⁻¹**)** 2979, 1718, 1698, 1404, 1219, 1141, 930, 728, 654; **HRMS (ESI)** *m/z* [M + Na]⁺ calcd. for C₂₂H₂₇NNaO₆⁺ 424.1736, found 424.1731.

Solution	Pump	Equiv.	Concentration	Flow rate
			(M)	(mL/min)
17	A	1.0 equiv.	0.20	0.35
tert-Butyl	В	1.5 equiv.	0.30	0.35
bromoacetate				

Table S3. Solution concentration and flow rates for the synthesis of 11.

Synthesis of benzoyl lactam 10

To a dry flask was added (R)-(CF₃)₃-^tBuPHOX (74.0 mg, 0.125 mmol, 0.125 equiv.) and Pd₂(dba)₃ (46.0 mg, 0.05 mmol, 0.05 equiv.). Under argon atmosphere, dry degassed PhMe (22.5 mL) was added through syringe and the mixture was stirred for 30 min at room temperature. Then the mixture was added to a solution of lactam **11** (401.0 mg, 1.00 mmol, 1.00 equiv.) in dry degassed PhMe (7.5 mL). Then the reaction mixture was warmed to 45 °C for 15 h. After completion of the reaction (monitored by TLC), the solvent was removed under reduced pressure. Purification of the residue by column chromatography (petroleum ether / ethyl acetate = 6:1) afforded

the desired product **10** as a yellow oil (329.0 mg, 92%).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.55 (d, *J* = 7.2 Hz, 2H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.35 (t, *J* = 7.6 Hz, 2H), 5.80 – 5.69 (m, 1H), 5.20 – 5.13 (m, 2H), 4.04 – 3.98 (m, 1H), 3.75 (td, *J* = 12.8, 4.0 Hz, 1H), 2. 89 (d, *J* = 16.8 Hz, 1H), 2.51 (ddd, *J* = 58.0, 13.6, 7.6 Hz, 2H), 2.21 (d, *J* = 16.8 Hz, 1H), 2.15 – 1.93 (m, 3H), 1.90 – 1.85 (m, 1H), 1.40 (s, 9H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 177.24, 175.33, 170.66, 136.90, 132.47, 131.32, 128.10, 127.72, 119.92, 81.08, 46.61, 45.57, 42.89, 42.73, 30.32, 28.23, 20.03; $[a]_D^{20}$ = -15.9 (*c* 0.82, CHCl₃, 99% ee); **IR (neat, cm⁻¹)** 2950, 1717, 1698, 1277, 1219, 1141, 961, 728, 694, 654; **HRMS (ESI)** *m/z* [M + Na]⁺ calcd. for C₂₁H₂₇NNaO₄⁺ 380.1838, found 380.1834.

HPLC for measuring ee value

Racemic 10:

信号:	DAD1G, Sig=2	270,4 Ref=off				
保留时间 [min]	类型	峰宽 [min]	峰面积	高度	峰面积%	名称
16.382	MM m	0.92	25837.68	410.95	49.27	
22.949	MM m	1.53	26606.61	238.70	50.73	
		总和	52444, 29			

Enantioenriched 10:

信号:	DAD1G, Sig=	270,4 Ref=off				
保留时间 [min]	类型	峰宽 [min]	峰面积	高度	峰面积%	名称
17.022	MM m	0.75	695.41	13.98	0.47	
21.204	MM m	2.01	148206.75	1015.04	99. 53	
		总和	148902.17			

Entry	Product	Conditions	Retention	Retention time	% ee
			time (min)	(min)	
1	0	HPLC	16.38	22.95	0
	BZ N O'BU	Chiralpak OJ-H			
	Ови	1% iPrOH in			
	Rac-10	hexanes isocratic,			
		1.0 mL/min			
		270 nm			
2	0	HPLC	17.02	21.20	99
	Bz_N	Chiralpak OJ-H			
	О	1% iPrOH in			
	(R)-10	hexanes isocratic,			
		1.0 mL/min			
		270 nm			

Synthesis of lactam 19

To a solution of lactam **10** (357.0 mg, 1.00 mmol, 1.00 equiv.) in MeOH (25 mL) was added a solution of LiOH•H₂O (63.0 mg, 1.50 mmol, 1.50 equiv.) in H₂O (10 mL) at room temperature. After 12 h, the reaction mixture was concentrated under reduced pressure and diluted with saturated aqueous NaHCO₃ and ethyl acetate. The phases were separated, and the aqueous phase was extracted with ethyl acetate, combined organic layers were washed with brine and dried over anhydrous Na₂SO₄, concentrated under vacuum and isolated by using silica flash column chromatography (petroleum ether / ethyl acetate = 2:1) to afford lactam **19** as a white solid (228.0 mg, 90%).

¹H NMR (400 MHz, Methanol- d_4) δ 5.84 – 5.73 (m, 1H), 5.13 – 5.08 (m, 2H), 3.35 – 3.23 (m, 2H), 2.79 (d, J = 16.0 Hz, 1H), 2.47 – 2.41 (m, 1H), 2.31 – 2.25 (m, 1H), 2.22 (d, J = 16.0 Hz, 1H), 1.98 – 1.86 (m, 2H), 1.85 – 1.72 (m, 2H), 1.43 (s, 9H); ¹³C NMR (100 MHz, Methanol- d_4) δ 178.24, 172.30, 134.67, 119.25, 81.86, 49.64, 49.43, 49.21, 49.00, 48.79, 48.58, 48.36, 44.15, 43.97, 43.94, 43.25, 30.33, 28.37, 20.29; $[a]_D^{25} = +22.8 \text{ (c } 1.1, CHCl_3)$; IR (neat, cm⁻¹) 2968, 2934, 1727, 1656, 1361, 1153, 1121; HRMS (ESI) *m/z* [M + H]⁺ calcd. for C₁₄H₂₄NO₃⁺ 254.1756, found 254.1755.

Preparation of compound 9¹

To a suspension of NaH (10.0 g, 250.0 mmol, 60% in mineral oil, 4.0 equiv.) in THF (300 mL) was added a solution of tryptophol (10.0 g, 62.0 mmol, 1.00 equiv.) in THF (100 mL) at 0 °C. The resulting mixture was stirred at room temperature for 1 h and then added a solution of TsCl (47.0 g, 246.0 mmol, 4.0 equiv.) in THF (150 mL). The reaction mixture was stirred overnight at room temperature and quenched by addition of saturated

ammonium chloride solution and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous Na_2SO_4 , filtered, and concentrated under reduced pressure. The residue was subjected to purification on silica gel chromatography (petroleum ether / acetone = 5:1) to afford **9** as white solid (21.5 g, 74%).

¹H NMR (400 MHz, Chloroform-*d*) δ ppm 7.93 (d, J = 8.0 Hz, 1H), 7.74 (d, J = 8.4 Hz, 2H), 7.56 (d, J = 8.4 Hz, 2H), 7.32 – 7.27 (m, 3H), 7.22 (d, J = 8.0 Hz, 2H), 7.19 – 7.12 (m, 3H), 4.24 (t, J = 6.8 Hz, 2H), 3.01 (td, J = 6.8, 1.2 Hz, 2H), 2.38 (s, 3H), 2.32 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 145.13, 144.93, 135.25, 135.12, 132.52, 130.27, 130.05, 129.83, 127.76, 126.92, 124.87, 124.19, 123.25, 119.15, 117.25, 113.80, 68.85, 25.01, 21.77, 21.70; IR (neat, cm⁻¹) 3897, 3685, 3673, 3049, 1594, 1377, 1185, 1168, 975, 903, 762, 597, 574. HRMS (ESI) *m/z* [M + Na]⁺ calcd. for C₂₄H₂₃NNaO₅S₂⁺ 492.0915, found 492.0922.

Synthesis of compound 8

To a suspension of NaH (120.0 mg, 3.0 mmol, 60% in mineral oil, 3.00 equiv.) in toluene (4.0 mL) was added a solution of **19** (253.0 mg, 1.0 mmol, 1.00 equiv.) in toluene (6 mL) at room temperature. The mixture was heated at 85 °C for 1 h. Then a solution of compound **9** (704.0 mg, 1.5 mmol, 1.50 equiv.) in toluene (6.0 mL) was added dropwise to the reaction mixture in 10 min. The resulting mixture was refluxed for 10 h and quenched by adding saturated ammonium chloride solution at 0 °C and extracted by diethyl ether. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was directly used in the next step without further purification. An analytic sample was obtained by column chromatography.

¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.99 (d, J = 8.0 Hz, 1H), 7.75 (d, J = 8.4 Hz, 2H), 7.62 (d, J = 7.6 Hz, 1H), 7.44 (s, 1H), 7.31 (td, J = 7.2, 1.2 Hz, 1H), 7.25 – 7.21 (m, 1H), 7.19 (d, J = 8.0 Hz, 2H), 5.81 – 5.66 (m, 1H), 5.14 – 5.03 (m, 2H), 3.67 – 3.46 (m, 2H), 3.29 (td, J = 11.2, 4.4 Hz, 1H), 3.10 – 3.00 (m, 1H), 2.97 – 2.86 (m, 3H), 2.44 (dd, J = 13.6, 7.2 Hz, 1H), 2.32 (s, 3H), 2.30 – 2.18 (m, 2H), 2.00 – 1.90 (m, 1H), 1.66 – 1.56 (m, 2H), 1.44 (s, 9H); ¹³**C NMR (100 MHz, Chloroform-***d***)** δ 173.58, 171.03, 144.66, 135.42, 135.23, 133.63, 130.87, 129.73, 126.73, 124.61, 123.46, 123.07, 120.43, 119.65, 118.60, 113.66, 80.35, 49.19, 48.38, 43.47, 43.23, 42.96, 29.27, 28.15, 22.78, 21.48, 19.63.

To a solution of the above crude product in tetrahydrofuran (4.0 mL) and methanol (4.0 mL) was added magnesium granule (245.0 mg, 10.0 mmol, 10.00 equiv.) and NH₄Cl (160.0 mg, 3.0 mmol, 3.00 equiv.) at 0 °C. The resulting mixture was stirred for 4 h at room temperature. Then it was cooled by ice bath, diluted by ethyl acetate (8 mL) and quenched by slowly addition of saturated ammonium chloride solution. The mixture was filtered through Celite and washed with ethyl acetate. The filtrate was extracted with ethyl acetate, combined organic layers were washed with brine and dried over anhydrous Na₂SO₄, concentrated under vacuum and isolated by using silica flash column chromatography (petroleum ether / CH_2Cl_2 / MeOH = 8:8:1) to afford lactam **8** as white solid (179.0 mg, 45% from **19**).

¹**H NMR (400 MHz, Chloroform-***d***)** δ 8.26 (s, 1H), 7.69 (d, *J* = 7.6 Hz, 1H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.21 – 7.15 (m, 1H), 7.14 – 7.09 (m, 1H), 7.06 (s, 1H), 5.79 – 5.68 (m, 1H), 5.10 – 5.05 (m, 2H), 3.77 – 3.69 (m, 1H), 3.59 – 3.51 (m, 1H), 3.21 – 3.16 (m, 1H), 3.03 (t, *J* = 7.6 Hz, 2H), 2.91 (dd, *J* = 16.0, 1.6 Hz, 1H), 2.52 – 2.41 (m, 1H),

2.32 (dd, J = 14.0, 7.6 Hz, 1H), 2.25 (dd, J = 16.0, 1.6 Hz, 1H), 2.04 – 1.93 (m, 1H), 1.81 – 1.67 (m, 3H), 1.43 (s, 9H); ¹³**C NMR (100 MHz, Chloroform-***d***)** δ 173.35, 171.12, 136.25, 133.79, 127.49, 122.12, 121.81, 119.17, 118.83, 118.51, 113.39, 111.13, 80.36, 48.93, 48.79, 43.51, 43.31, 43.00, 29.28, 28.13, 22.94, 19.61; $[a]_D^{20} = -9.5$ (*c* 1.6, MeOH); **IR (neat, cm⁻¹)** 3267, 2930, 2858, 1719, 1611, 1143, 963, 854, 695, 508; **HRMS (ESI)** *m/z* [M + H]⁺ calcd. for C₂₄H₃₃N₂O₃⁺ 397.2491, found 397.2485.

Synthesis of pentacycle 21

A mixture of lactam **8** (370.0 mg, 1.00 mmol, 1.00 equiv.) and freshly distilled POCl₃ (2.7mL, 30.0 mmol, 30.00 equiv.) in dry acetonitrile (1.1 mL) was heated at 80 °C for 3 hours. The reaction mixture was cooled down to room temperature and evaporated in vacuo to remove completely excess of POCl₃. The residue was dissolved in CH_2Cl_2 (4.5 mL) and treated with 1 M LiClO₄ (aq.) aqueous solution (3.7 mL) for 30 minutes. The reaction mixture was extracted with CH_2Cl_2 . The combined organic extracts were washed with 1 M LiClO₄ (aq.), dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo to obtain the iminium salt **20** as a green solid which was directly used in the next step without further purification. An analytic sample was obtained by column chromatography.

¹**H NMR (400 MHz, Chloroform-***d***)** δ 8.31 (d, *J* = 8.4 Hz, 1H), 7.69 – 7.52 (m, 2H), 7.39 (t, *J* = 7.6 Hz, 1H), 5.69 – 5.42 (m, 1H), 5.25 – 4.94 (m, 2H), 4.42 – 4.17 (m, 1H), 4.03 – 3.78 (m, 3H), 3.49 – 3.32 (m, 1H), 3.20 (d, *J* = 16.8 Hz, 2H), 2.86 (d, *J* = 16.4 Hz, 1H), 2.61 – 2.49 (m, 1H), 2.32 – 2.15 (m, 2H), 1.92 (t, *J* = 13.6 Hz, 2H), 1.81 (d, *J* = 13.2 Hz, 1H); ¹³**C NMR (100 MHz, Chloroform-***d***)** δ 166.90, 164.20, 137.63, 131.32, 128.77, 127.72, 126.60, 125.68, 125.32, 122.62, 122.27, 116.71, 52.40, 51.86, 42.42, 41.23, 40.50, 25.05, 19.53, 17.09.

The iminium salt **20** was added portionwise to a solution of NaBH₃CN (754.0 mg, 12.0 mmol, 12.0 equiv.) in EtOH (50.0 mL, 0.02 M) at 0 °C. After being stirred at 0 °C for 2 h, the reaction mixture was quenched with 2 M HCl and evaporated in vacuo. The crude product was redissolved in CH_2Cl_2 and saturated aqueous Na_2CO_3 solution and extracted with CH_2Cl_2 . The combined organic extracts were washed with brine, dried over anhydrous Na_2SO_4 , filtered and concentrated in vacuo. The crude product was product was purified by flash column chromatography (petroleum ether / ethyl acetate = 5:1) to afford the singer isomer **21** (199.0 mg, 65% from **8**) as a white solid.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.34 (dd, *J* = 6.8, 1.6 Hz, 1H), 7.39 (dd, *J* = 6.8, 2.0 Hz, 1H), 7.34 – 7.20 (m, 2H), 5.66 (ddt, J = 17.6, 10.0, 7.6 Hz, 1H), 5.09 – 4.89 (m, 2H), 3.11 – 3.00 (m, 2H), 2.92 (t, *J* = 2.8 Hz, 1H), 2.90 – 2.80 (m, 1H), 2.75 (d, *J* = 16.8 Hz, 1H), 2.67 – 2.53 (m, 2H), 2.47 (td, *J* = 11.2, 4.0 Hz, 1H), 2.33 – 2.20 (m, 2H), 1.93 (qt, *J* = 13.2, 4.4 Hz, 1H), 1.81 (dt, *J* = 13.2, 3.2 Hz, 1H), 1.65 – 1.54 (m, 1H), 1.51 (dd, *J* = 14.8, 7.2 Hz, 1H), 1.19 – 1.06 (m, 1H); ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 167.21, 134.97, 132.88, 129.77, 124.04, 123.75, 118.63, 118.08, 116.20, 112.94, 65.04, 55.21, 52.04, 44.38, 39.22, 33.10, 32.25, 21.24, 21.12. $\begin{bmatrix} a \end{bmatrix}_{D}^{20}$ = +184.35 (*c* 0.46, CHCl₃); **IR (neat, cm⁻¹)** 2979, 2949, 1719, 1699, 1365, 1316, 1148, 929; **HRMS (ESI)** *m*/*z* [M + H]* calcd. for C₂₀H₂₃N₂O⁺ 307.1810, found 307.1800.

Synthesis of aldehyde 6

Pentacycle **21** (306.0 mg, 1.0 mmol, 1.00 equiv.) was dissolved in 15 mL of CH_2Cl_2 . The mixture was cooled to -78 °C. Ozone was bubbled into the mixture while keeping the temperature at -78 °C. When the color turned to blue, the ozone bubbling was stopped. O₂ was bubbled until the mixture turned to colorless, PPh₃ (314.0 mg, 1.2 mmol, 1.20 equiv.) was added. The mixture was stirred at -78 °C for 1 h then warmed to 0 °C naturally. After being stirred at 0 °C for 1 h, The reaction mixture was extracted with ethyl acetate, and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and the solvent was removed under reduced pressure and purified by flash column chromatography (petroleum ether / ethyl acetate = 3:1) to afford

the aldehyde 6 (262.0 mg, 85%) as a white solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 9.67 (s, 1H), 8.30 (d, *J* = 4.8 Hz, 1H), 7.38 (d, *J* = 4.4 Hz, 1H), 7.30 – 7.26 (m, 1H), 7.26 – 7.22 (m, 1H), 3.08 – 3.05 (m, 1H), 3.04 – 3.03 (m, 1H), 3.03 – 2.93 (m, 2H), 2.98 – 2.94 (m, 1H), 2.85 – 2.77 (m, 1H), 2.61 (d, *J* = 10.8 Hz, 1H), 2.52 – 2.48 (m, 1H), 2.47 – 2.43 (m, 1H), 2.28 (td, *J* = 8.0, 2.4 Hz, 1H), 2.11 (d, *J* = 8.8 Hz, 1H), 1.93 – 1.86 (m, 2H), 1.63 (d, *J* = 9.6 Hz, 1H), 1.30 (tq, *J* = 9.2, 4.4 Hz, 1H); ¹³C NMR (100 MHz, Chloroform-*a*) δ 201.04, 166.60, 135.10, 132.09, 129.77, 124.55, 124.16, 118.40, 116.40, 113.78, 65.10, 55.10, 51.94, 44.72, 43.29, 39.23, 33.04, 21.55, 21.20. $[a]_D^{20}$ = +99.3 (*c* 1.3, CHCl₃); IR (neat, cm⁻¹) 2932, 1716, 1699, 1463, 1316, 1149, 915; HRMS(ESI) *m/z* [M + H]⁺ calcd. for C₁₉H₂₁N₂O₂⁺ 309.1603, found 309.1598.

Synthesis of compound 22

Samarium (376.0 mg, 2.5 mmol, 2.50 equiv.) and 1,2-diiodoethane (677.0 mg, 2.4 mmol, 2.40 equiv.) were suspended in freshly distilled anhydrous THF (25 mL) under a N₂ atmosphere and stirred for 2 h at room temperature. To the resulting dark blue solution HMPA (1.8 mL, 10.0 mmol, 10 equiv.) was added. The aldehyde **6** (308.0 mg, 1.0 mmol, 1.00 equiv.) and phenol (188.0 mg, 2.0 mmol, 2.0 equiv.) dissolved in THF (20 mL), were then added in one portion to the deep blue solution at 50 °C. After 18h the reaction was quenched with saturated aqueous solution of sodium bicarbonate, the organic layer was separated and the aqueous layer was extracted with diethyl ether. The combined ether extracts were washed with brine (25 mL), dried over anhydrous Na₂SO₄, filtered, and the solvent was removed under reduced pressure and purified by flash column chromatography (petroleum ether / ethyl acetate = 2:1) to afford compound **22** (230.0 mg, 70%) as a white solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.04 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.26 – 7.16 (m, 2H), 7.07 (td, *J* = 7.2, 0.8 Hz, 1H), 3.99 – 3.89 (m, 2H), 3.12 (td, *J* = 11.6, 6.4 Hz, 1H), 2.94 – 2.85 (m, 1H), 2.56 – 2.47 (m, 2H), 2.45 – 2.34 (m, 2H), 2.24 (dd, *J* = 15.2, 7.2 Hz, 1H), 2.18 – 2.01 (m, 3H), 1.91 – 1.60 (m, 4H), 1.38 – 1.22 (m, 2H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 167.11, 141.58, 134.15, 127.96, 124.60, 124.55, 116.98, 78.84, 75.06, 66.25, 53.99, 50.42, 50.04, 44.32, 40.71, 36.18, 30.34, 26.88, 21.53. $[a]_D^{25}$ = +18.3 (c 1.1, CHCl₃); **IR (neat, cm⁻¹)** 3405,

Synthesis of (-)-strempeliopine (4)

Under N_2 atmosphere, a solution of **22** (47.0 mg, 0.15 mmol, 1.00 equiv.) and imidazole (11.0 mg, 0.17 mmol, 1.10 equiv.) in anhydrous THF (17.0 mL) was treated with NaH (27.0 mg, 0.68 mmol, 60% in mineral oil, 40.00 equiv). The mixture was allowed to stir at room temperature for 1.0 h before it was cooled to 0 °C followed by the addition of CS_2 (182.0 µL, 3.0 mmol, 20.00 equiv). The reaction mixture was stirred at 0 °C for 1 h and then treated with MeI (187.0 µL, 3.0 mmol, 20.00 equiv), and the reaction mixture was allowed to be warmed to room temperature. After 1 h, the reaction mixture was quenched with the addition of saturated aqueous NH₄Cl solution, and the mixture was extracted with ethyl acetate. The combined organic phase was washed with saturated aqueous NaCl solution, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was directly used in the next step without further purification.

Under N₂ atmosphere, to a mixture of the above crude product and AIBN (12.0 mg, 0.075 mmol, 0.50 equiv.) in dry PhMe (4.6 mL) was added *n*-Bu₃SnH (102.0 μ L, 0.38 mmol, 2.50 equiv.). The reaction was stirred at 80 °C for 30 min and concentrated in vacuo. Flash chromatography (petroleum ether / ethyl acetate = 2:1) provided (-)-strempeliopine **4** (33.0 mg, 73%) as a white solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.04 (d, *J* = 8.0 Hz, 1H), 7.22 (t, *J* = 7.8, Hz, 2H), 7.16 (d, *J* = 7.6 Hz, 1H), 7.05 (td, *J* = 7.4, 1.1 Hz, 1H), 3.25 (t, *J* = 7.2 Hz, 1H), 2.96 (ddd, *J* = 11.6, 6.0, 2.0 Hz, 1H), 2.90 – 2.81 (m, 1H), 2.62 (d, *J* = 18.2 Hz, 1H), 2.46 (dd, *J* = 18.4, 2.4 Hz, 1H), 2.34 – 2.25 (m, 3H), 2.24 – 2.18 (m, 1H), 2.15 – 2.07 (m, 1H), 2.06 – 2.03 (m, 1H), 2.03 (s, 1H), 2.01 – 1.92 (m, 1H) · 1.90 – 1.81 (m, 1H) · 1.74 – 1.70 (m, 1H) · 1.59 (ddd, *J* = 13.6, 4.8, 2.4 Hz, 1H) · 1.53 – 1.46 (m, 1H) · 1.30 – 1.24 (m, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 169.26, 142.13, 133.25, 128.12, 124.01, 123.75, 115.92, 72.33, 69.72, 54.25, 50.67, 50.44, 43.14, 42.05, 38.88, 31.92, 32.41, 26.32, 21.91. $[a]_{D}^{20}$ = -26.3 (c 0.8, MeOH). Literature: $[a]_{D}^{20}$ = -24 (c 0.23, MeOH)²; $[a]_{D}^{20}$ = -27.6 (c 0.03, MeOH)³; IR (neat, cm⁻¹) 2890, 1666, 1563, 1469, 1393, 1277, 1139, 962, 751, 509; HRMS (ESI) *m/z* [M + H]⁺ calcd. for C₁₉H₂₃N₂O⁺ 295.1810, found 295.1797.

Comparison of ¹ H NMR (CDCI ₃) chemical shifts (ppm)					
Synthetic (-)-strempeliopine ²	synthetic (-)-strempeliopine ³	Our synthetic (-)-strempeliopine			
(400 MHz)	(600 MHz)	(400 MHz)			
1.28 (td, <i>J</i> = 13.2, 4.4 Hz, 1H)	1.28 (td, <i>J</i> = 13.3, 4.7 Hz, 1H)	1.30 - 1.24 (m, 1H)			
1.53 - 1.45 (m, 1H)	1.53 - 1.47 (m, 1H)	1.53 - 1.46 (m, 1H)			
1.59 (d, <i>J</i> = 12.8 Hz, 1H)	1.59 (ddd, J = 13.7, 4.8, 2.4 Hz,	1.59 (ddd, J = 13.6, 4.8, 2.4 Hz,			
	1H)	1H)			
1.74 (d, <i>J</i> = 13.6 Hz, 1H)	1.73 (dt, <i>J</i> = 13.7, 3.4 Hz, 1H)	1.74 - 1.70 (m, 1H)			
1.92 - 1.77 (m, 1H)	1.85 (qt, <i>J</i> = 13.0, 4.1 Hz, 1H)	1.90 - 1.81 (m, 1H)			
2.00 - 1.93 (m, 1H)	2.01 - 1.93 (m, 1H)	2.01 - 1.92 (m, 1H)			
2.03 (s, 1H)	2.03 (s, 1H)	2.03 (s, 1H)			
2.07 - 2.04 (m, 1H)	2.06 - 2.01 (m, 1H)	2.06 - 2.03 (m, 1H)			
2.14 - 2.07 (m, 1H)	2.09 (dq, J = 14.1, 6.2 Hz, 1H)	2.15 - 2.07 (m, 1H)			

2.24 - 2.17 (m, 1H)	2.26 - 2.19 (m, 1H)	2.24 - 2.18 (m, 1H)
2.35 - 2.25 (m, 3H)	2.35 - 2.26 (m, 3H)	2.34 - 2.25 (m, 3H)
2.46 (d, <i>J</i> = 18.4 Hz, 1H)	2.46 (dd, <i>J</i> = 18.2, 2.4 Hz, 1H)	2.46 (dd, <i>J</i> = 18.4, 2.4 Hz, 1H)
2.63 (d, <i>J</i> = 18.4 Hz, 1H)	2.62 (d, <i>J</i> = 18.2 Hz, 1H)	2.62 (d, <i>J</i> = 18.2 Hz, 1H)
2.86 (d, <i>J</i> = 10.8 Hz, 1H)	2.85 (dt, <i>J</i> = 11.2, 3.2 Hz, 1H)	2.90 - 2.81 (m, 1H)
2.97 (dt, <i>J</i> = 11.6, 6.8 Hz, 1H)	2.96 (ddd, J = 11.2, 7.9, 5.9 Hz,	2.96 (ddd, J = 11.6, 6.0, 2.0 Hz,
	1H)	1H)
3.25 (t, <i>J</i> = 7.2 Hz, 1H)	3.25 (t, <i>J</i> = 7.2 Hz, 1H)	3.25 (t, <i>J</i> = 7.2 Hz, 1H)
7.06 (t, <i>J</i> = 7.6 Hz, 1H)	7.05 (td, <i>J</i> = 7.4, 1.1 Hz, 1H)	7.05 (td, <i>J</i> = 7.4, 1.1 Hz, 1H)
7.16 (d, <i>J</i> = 7.2 Hz, 1H)	7.16 (d, <i>J</i> = 7.4 Hz, 1H)	7.16 (d, <i>J</i> = 7.6 Hz, 1H)
7.22 (t l = 7.6 Hz 1H)		
7.22(1, 3 - 7.0112, 111)	7.22 (l, J = 7.7 HZ, 1H)	7.22 (l, J = 7.0, HZ, ZH)

Comparison of ¹³ C NMR (CDCI ₃) chemical shifts (ppm)				
Synthetic (-)-strempeliopine ²	synthetic (-)-strempeliopine ³	Our synthetic (-)-strempeliopine		
(151 MHz)	(151 MHz)	(151 MHz)		
169.3	169.2	169.3		
142.3	142.2	142.1		
133.3	133.3	133.3		
128.2	128.1	128.1		
124.1	124.0	124.0		
123.8	123.7	123.8		
116.0	115.9	115.9		
72.4	72.4	72.3		
69.8	69.8	69.7		
54.4	54.3	54.2		
50.38	50.7	50.7		
50.5	50.5	50.5		
43.2	43.2	43.2		
42.2	42.1	42.1		
39.0	38.9	38.9		
32.0	32.0	32.0		
31.5	31.5	31.4		
26.4	26.4	26.4		
22.0	22.0	22.0		

3. Supplemental References

- 1. H.Adachi, K. K. Palaniappan, A. A. Ivanov, N. Bergman, Z. G. Gao and K. A. Jacobson, *J. Med. Chem.* 2007, **50**, 1810.
- 2. Q. Zhou, X. Dai, H. Song, H. He, X. Wang, X. Liu and Y. Qin, Chem. Commun., 2018, 54, 9510.
- 3. X. Zeng and D. L. Boger, J. Am. Chem. Soc. 2021, 143, 12412.

Figure S2: ¹³C NMR spectrum of **13**

Figure S10: ¹³C NMR spectrum of **10**

Figure S23: HMQC spectrum of 21

Figure S24: HMBC spectrum of 21

Figure S27: 2D NOESY spectrum of 21

Figure S34: HSQC spectrum of 4

Figure S35: HMBC spectrum of 4

the synthesized (-)-strempeliopine by our group.

The synthesized (-)-strempeliopine by Qin's group

The synthesized (-)-strempeliopine by our group

Comparison of ¹³C spectrum between the synthesized (-)-strempeliopine by Qin's group and the synthesized (-)-strempeliopine by our group.

The synthesized (-)-strempeliopine by Qin's group

The synthesized (-)-strempeliopine by our group

ò