Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2021

Red-light-activatable ruthenium phthalocyanine catalysts

Yuta Ishikawa¹, Tatsuya Kameyama^{2,3}, Tsukasa Torimoto², Hajime Maeda¹,

Masahito Segi¹ and Taniyuki Furuyama*,1,3

¹Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa,

920-1192, Japan

²Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan

³Japan Science and Technology Agency (JST)-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012,

Japan

Supporting information

Table of Contents

General Comments	S-1
Additional Experimental Results	S–3
Full Experimental Procedures	S–9
Copies of the NMR Spectra of Studied Compounds	S–21
References	S-50

General Comments

Instrumentation

Photoreactions were carried out in a reaction vessel wherein the reaction mixtures were irradiated using red ($\lambda_{max} = 634 \text{ nm}$) or blue ($\lambda_{max} = 470 \text{ nm}$) LED light. LDL2-119X16RD2 (nominal wavelength: 634 nm, fwhm: 15.0 nm) and ALDKIT001 (nominal wavelength: 470 nm, fwhm: 24.7 nm) were purchased from CCS Inc. and Aldrich Inc., respectively (Fig. S10). The output power was 12 W, and the LED light was placed 5.0 cm from the reaction vessel. NMR spectra were obtained using JEOL ECA-500 or Bruker AVANCE 400 spectrometer. Chemical shifts are expressed in δ (ppm) values, and coupling constants are expressed in hertz (Hz). ¹H and ¹³C NMR spectra were referenced to the tetramethylsilane (TMS) or the residual solvent as an internal standard. ¹⁹F NMR spectra were referenced to the trifluoroacetic acid ($\delta = -79.0$ ppm) as an internal standard. The following abbreviations are used: s = singlet, d = doublet, m = multiplet, and brs = broad singlet. High-resolution mass spectra (HRMS) were recorded using a Bruker Daltonics solariX spectrometer (MALDI). Electronic absorption spectra were recorded on a JASCO V-770 spectrophotometer. A photonic multichannel analyzer (Hamamatsu, PMA-12) was used for the measurement of phosphorescence spectra under N₂ atmosphere, in which the wavelength of excitation light was 632 nm. Cyclic voltammetry (CV) measurements were recorded using a Hokuto Denko HZ5000 potentiostat under a nitrogen atmosphere with 0.1 M of tetrabutylammonium perchlorate (TBAP) as the supporting electrolyte. Measurements were made using a glassy carbon electrode (area = 0.07 cm^2), an Ag/AgCl reference electrode, and a Pt wire counter electrode. The concentration of the solution was fixed at 0.5 mM, and the sweep rate was set to 100 mV/s. The ferrocenium/ferrocene (Fc⁺/Fc) couple was used as an internal standard.

Materials

Unless otherwise noted, materials were purchased from Tokyo Kasei Co., Aldrich Inc., and other commercial suppliers and were used after appropriate purification (distillation or recrystallization). ZnPc,¹ Ru(py)₂TAP,² 2a,³ 2c,⁴ 2d,⁵ 2e,⁶ 2f,⁷ 2g,⁸ 2j,⁹ and 2n¹⁰ were synthesized according to published procedures.

Crystallographic data collection

Data collection for **1b** was carried out on a Bruker APEXIII CCD diffractometer with Bruker Helios multilayered confocal mirror monochromatized CuK α radiation ($\lambda = 1.54178$ Å) at -183° C. The structures were solved by a direct method (SIR2004)¹¹ and refined using a full-matrix least square technique (SHELXL-2014).¹² Yadokari-XG 2009 software was used as a GUI for SHELXL-2014.¹³ All non-hydrogen atoms were refined anisotropically. Positions of all hydrogen atoms were calculated geometrically, and refined by applying riding models. Some large electron peaks due to a solvent molecule(s) were found in the unit cell. As we failed to model them properly, the rest molecules were refined without the effect of the solvent molecule(s) by the Platon squeeze technique.¹⁴ CCDC-2108084 contains the supplementary crystallographic data. Their data can be obtained free of charge from Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

Additional Experimental Results

Fig. S1 Molecular structure of **1b** with thermal ellipsoids at 50% probability. Hydrogen atoms have been omitted for clarity and only selected atoms have been labeled.

Empirical formula	C44H24F6N10Ru	
Formula weight	907.80	
Temperature	90(2) K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	Cc	
Unit cell dimensions	<i>a</i> = 20.1094(18) Å	$\alpha = 90^{\circ}$
	<i>b</i> = 22.559(2) Å	$\beta = 108.370(2)^{\circ}$
	c = 10.5878(10) Å	$\gamma = 90^{\circ}$
Volume	4558.4(7) Å ³	
Ζ	4	
Density (Calcd.)	1.323 Mg/m ³	
Absorption coefficient	3.351 mm ⁻¹	
<i>F</i> (000)	1824	
Crystal size	$0.200 \times 0.200 \times 0.100$ m	m ³
Theta range for data collection	5.920 to 66.497°	
Index ranges	-23<=h<=23, -26<=k<=2	25, -12<= <i>l</i> <=12
Reflections collected	14260	
Independent reflections	6274 [<i>R</i> (int) = 0.0395]	
Completeness to theta = 66.497°	98.1%	
Refinement method	Full-matrix least-squares	s on F^2
Data / restraints /parameters	6274 / 2 / 550	
Goodness-of-fit on F^2	1.042	
Final <i>R</i> indices $[I > 2 \text{sigma}(I)]$	$R_1 = 0.0431, wR_2 = 0.112$	25
R indices (all data)	$R_1 = 0.0435, wR_2 = 0.113$	33
Largest diff. peak and hole	1.635 and -0.861 e.Å ⁻³	
CCDC No.	2108084	

 Table S1 Crystal data and structure refinement for 1b.

Fig. S2 Absorption spectra of RuPcs 1a-d in CHCl3.

Fig. S3 Structures of H2Pc, ZnPc, and Ru(py)2TAP.

Fig. S4 Reaction setup for the shielded condition. The photo shows the reaction vessel immersed in a

methanol solution of methyl red (Fig. 3a, entry 2). The entire reaction system was shielded from natural light during the photoreaction.

Fig. S5 Absorption spectra of (a) 1b, 4, and $[Ru(phen)_3]Cl_2$ and (b) 1a and 6. The emission spectra of the LEDs overlapped.

Fig. S6 Plausible reaction mechanism.

Fig. S7 Cyclic voltammograms of RuPcs **1a-d** recorded using 0.5 mM solutions of the analytes in [*n*Bu₄N]ClO₄/DMF. Ferrocene was used as the internal standard and the Fc/Fc⁺ couple was set to 0 V.

Fig. S8 Phosphorescence spectra of RuPcs 1a-d (2 μ M) in acetone under an N₂ atmosphere ($\lambda_{ex} = 632$ nm).

Catalyst	$E_{ m ox} \left[{ m V} ight] {}^{a}$ (cat/cat ^{•+})	$E_{\rm red}$ [V] ^{<i>a</i>} (cat/cat ⁻)	λ _{phos, max} [nm]	$E_{0,0}$ [eV]	$E_{\mathrm{ox}}^{*}[\mathrm{V}]^{a}$ (cat*/cat*+)	$E_{\rm red}$ * [V] ^{<i>a</i>} (cat*/cat ⁻)
1a	+0.30	-1.25	863	1.55	-1.25	+0.30
1b	+0.29	-1.34	863	1.53	-1.24	+0.19
1c	+0.18	-1.30	N.D. ^{<i>b</i>}	N.D. ^{<i>b</i>}	N.D. ^{<i>b</i>}	N.D. ^b
1d	+0.04	-2.00	868	1.57	-1.53	-0.43
Ru(phen) ₃ Cl ₂ ^c	+0.88	-1.74	610	2.15	-1.25	+0.44

Table S2 Summary of optical and redox parameters for the photocatalysts

^{*a*} vs Fc/Fc⁺. ^{*b*} Not determined. ^{*c*} The data was taken from ref. 15.

Fig. S9 (a) Phosphorescence spectra of 1a (16 μ M, in acetone) with CF₃SO₂Cl (0~60 mM). (b) The Stern-Volmer plot for 1a/CF₃SO₂Cl, 2a, and K₂HPO₄. When the lifetime τ_0 of 1a was 135 ns (in CH₂Cl₂)¹⁶, the quencher rate coefficient k_q of CF₃SO₂Cl was calculated as 5.8 x 10⁸ M⁻¹s⁻¹.

Fig. S10 Emission spectra of the NIR and blue LEDs.

Full Experimental Procedures

Preparation of catalysts

Bis(pyridyl) ruthenium(II) phthalocyanine (1a)¹⁷

A mixture of phthalonitrile (201 mg, 1.6 mmol), pyridine (0.15 mL, 1.9 mmol), and DBU (0.05 mL, 0.33 mmol) in 1-pentanol (4.0 mL) was refluxed. At the same time, RuCl₃•nH₂O (108 mg, 521 µmol) was boiled in 1-pentanol (2.0 mL) until a blue color formed. The RuCl₃ blue solution was added over 5 min to the phthalonitrile/pyridine/DBU mixture, and resulting solution was refluxed for 3 d. After the 1-pentanol was removed by evaporation, the crude product was purified by silica gel column chromatography (CHCl₃). The blue band was collected and concentrated. Then, MeOH was added to the residue, and precipitate was collected by filtration. The desired complex was obtained as a blue solid. (61.9 mg, 20%)

400 MHz ¹H NMR(CDCl₃) δ(ppm): 9.16-9.14 (m, 8H, Pc-H), 7.90-7.88 (m, 8H, Pc-H), 6.04 (t, *J* = 7.6 Hz, 2H, py), 5.23 (dd, *J* = 7.6, 6.8 Hz, 4H, py), 2.45 (d, *J* = 5.2 Hz, 4H, py).

UV-vis(CHCl₃) ($\epsilon \times 10^{-4}$) λ_{max} nm: 315(9.4), 378(2.3), 626(6.2).

HR-MALDI-FT-ICR-MS calcd for C₃₇H₂₁N₉Ru [M-pyridine]⁺: 693.0968. Found: 693.0959.

Bis(4-trifluoromethylpyridyl) ruthenium(II) phthalocyanine (1b)

Synthesized according to the procedure for 1a. Blue solid. (14%)

500 MHz ¹H NMR(CDCl₃) δ(ppm): 9.21-9.17 (m, 8H, Pc-H), 7.96-7.92 (m, 8H, Pc-H), 5.47 (d, J = 7.4

Hz, 4H, 4-CF₃-py), 2.53 (d, *J* = 6.4 Hz, 4H, 4-CF₃-py).

470MHz ¹⁹F-NMR (CDCl₃) δ(ppm): -67 (s, CF₃).

UV-vis(CHCl₃) (ε×10⁻⁴) λ_{max} nm: 312(9.3), 418(0.95), 628(5.4).

HR-MALDI-FT-ICR-MS calcd for $C_{44}H_{24}F_6N_{10}Ru \ [M]^+$: 908.1139. Found: 908.1131.

Bis(N, N-dimethyl-4-aminopyridyl) ruthenium(II) phthalocyanine (1c)

Synthesized according to the procedure for 1a. Blue solid. (7%)

400 MHz ¹H NMR(CDCl₃) δ (ppm): 9.09-9.07 (m, 8H, Pc-H), 7.83-7.81 (m, 8H, Pc-H), 4.37 (d, J = 7.6 Hz, 4H, DMAP), 2.21 (d, J = 7.6 Hz, 4H, DMAP), 2.01 (s, 12H, DMAP). UV-vis(CHCl₃) ($\epsilon \times 10^{-4}$) λ_{max} nm: 318(7.8), 383(1.9), 571(2.0), 624(6.3). HR-MALDI-FT-ICR-MS calcd for C₄₆H₃₆N₁₂Ru [M]⁺: 858.2236. Found: 858.2239. β-tetrakis('Bu) bis(pyridyl) ruthenium(II) phthalocyanine (1d)¹⁸

A mixture of 6-'Bu-1,3-diiminoindoline (500 mg, 2.5 mmol), pyridine (1.3 mL, 17 mmol), RuCl₃•nH₂O (150 mg, 750 μmol), and DBU (1.0 mL, 6.70 mmol) in 2-ethoxyethanol (5.0 mL) was refluxed for 20 h under Ar atmosphere. After the reaction mixture was cooled, MeOH was added. Then, the precipitate was collected by filtration. After the residue was dried under reduced pressure, the product was purified by silica gel column chromatography (CHCl₃). The desired complex was obtained as a blue solid. (5.1 mg, 8%)

400 MHz ¹H NMR(CDCl₃) δ(ppm): 9.21-9.16 (m, 4H, Pc-H), 9.09-9.03 (m, 4H, Pc-H), 7.97-7.26 (m, 4H, Pc-H), 6.01 (t, *J* = 7.8 Hz, 2H, py), 5.21 (dd, *J* = 7.52, 6.64 Hz, 4H, py), 2.47 (d, *J* = 5.2 Hz, 4H, py), 1.74-1.23 (m, 36H, ^{*i*}Bu)

UV-vis(CHCl₃) ($\epsilon \times 10^{-4}$) λ_{max} nm: 317(6.6), 379(1.4), 632(3.8).

HR-MALDI-FT-ICR-MS calcd for C58H58N10Ru [M]+: 996.3900. Found: 996.3901.

Preparation of substrates

Compound 2i

To a solution of 4-butylphenol (316 mg, 2.1 mmol) and K_2CO_3 (733 mg, 5.3 mmol) in 20 mL of MeCN, 4-bromo-1-butene (549 mg, 4.1 mmol) was added, and the mixture was refluxed for 23 h. The reaction was quenched with water, extracted with EtOAc and washed with water and brine. The organic layer was dried over Na₂SO₄ and concentrated in *vacuo*. The product was purified by silica gel column chromatography (hexane : EtOAc = 9 : 1). The desired compound was obtained as colorless oil. (165 mg,

400 MHz ¹H NMR (CDCl₃) δ(ppm): 7.08 (d, *J* = 8.7 Hz, 2H, Ar), 6.82 (d, *J* = 8.7 Hz, 2H, Ar), 5.94-5.87 (m, 1H, CH), 5.19-5.08 (m, 2H, CH₂), 3.99 (t, *J* = 6.7 Hz, 2H, CH₂), 2.56-2.51 (m, 4H, CH₂×2), 1.59-1.52 (m, 2H, CH₂), 1.37-1.31 (m, 2H, CH₂), 0.92 (t, *J* = 7.3 Hz, 3H, CH₃). 100 MHz ¹³C NMR(CDCl₃) δ(ppm): 157.05, 135.19, 134.73, 129.36, 117.01, 114.51, 67.38, 34.87, 34.04,

33.87, 22.44, 14.10.

38%)

HR-FAB-MS calcd for C₁₄H₂₁O [M+H]⁺: 205.1587. Found: 205.1588.

Compound 2k

To a solution of 8-hydroxyquinoline (218 mg, 1.5 mmol) and K_2CO_3 (525 mg, 3.8 mmol) in 5 mL of MeCN, 6-bromo-1-hexene (294 mg, 1.8 mmol) was added, and the mixture was refluxed overnight. The reaction was quenched with water, extracted with EtOAc and washed with water. The organic layer was dried by Na₂SO₄ and concentrated in *vacuo*. The product was purified by silica gel column chromatography (hexane : EtOAc = 9 : 1). The desired compound was obtained as colorless oil. (332 mg, 99%)

400 MHz ¹H NMR (CDCl₃) δ(ppm): 8.95 (dd, *J* = 4.2, 1.8 Hz, 1H, Ar), 8.12 (dd, *J* = 8.3, 1.7 Hz, 1H, Ar), 7.46-7.36 (m, 3H, Ar), 7.06 (dd, *J* = 7.7, 1.3 Hz, 1H, Ar), 5.85-5.81 (m, 1H, CH), 5.06-4.95 (m, 2H, CH₂), 4.25 (t, *J* = 7.0 Hz, 2H, CH₂), 2.18-2.14 (m, 2H, CH₂), 2.07-2.03 (m, 2H, CH₂), 1.67-1.63 (m, 2H, CH₂). 100 MHz ¹³C NMR(CDCl₃) δ(ppm): 154.92, 149.37, 140.50, 138.58, 135.94, 129.58, 126.74, 121.59, 119.47, 114.87, 108.68, 68.84, 33.59, 28.53, 25.46.

HR-MALDI-FT-ICR-MS calcd for C₁₅H₁₇NO [M]⁺: 228.1383. Found: 228.1384.

Compound 4

A mixture of Coumarin 343 (77 mg, 0.20 mmol), 5-hexen-1-ol (64 mg, 0.64 mmol), *N*, *N*-dimethylaminopyridine (DMAP) (25 mg, 0.20 mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI) (78 mg, 0.41 mmol), in 20 mL of CH₂Cl₂ was refluxed overnight. The reaction was quenched with water, extracted with CH₂Cl₂ and washed with 1N HCl (×2), sat. NaHCO₃aq and brine. The organic layer was dried over Na₂SO₄ and concentrated in *vacuo*. The product was purified by silica gel column chromatography (CHCl₃: MeOH = 30 : 1). The desired compound was obtained as a yellow solid. (64 mg, 87%).

400 MHz ¹H NMR (CDCl₃) δ(ppm): 8.30 (s, 1H, Ar), 6.94 (s, 1H, Ar), 5.91-5.73 (m, 1H, CH), 5.10-4.90 (m, 2H, CH₂), 4.29 (t, *J* = 6.7 Hz, 2H, CH₂), 3.33 (q, *J* = 6.5 Hz, 4H, CH₂×2), 2.87 (t, *J* = 6.4 Hz 2H, CH₂), 2.75 (t, *J* = 6.2 Hz 2H, CH₂), 2.19-2.04 (m, 2H, CH₂), 2.01-1.93 (m, 4H, CH₂×2), 1.84-1.71 (m, 2H, CH₂), 1.64-1.46 (m, 2H, CH₂)

100 MHz ¹³C NMR(CDCl₃) δ(ppm): 164.76, 158.74, 153.61, 149.20, 148.58, 138.65, 127.06, 119.23, 114.90, 107.81, 107.66, 105.93, 65.00, 50.39, 50.01, 33.49, 28.33, 27.56, 25.41, 21.32, 20.34, 20.22. UV-vis(CHCl₃) (ε×10⁻⁴) λ_{max} nm: 437(1.7).

HR-MALDI-FT-ICR-MS calcd for C₂₂H₂₅NO₄ [M]⁺: 367.1778. Found: 367.1792.

Compound 6¹⁹

To a flask, rhodamine B (479 mg, 1.0 mmol), allyl bromide (658 mg, 5.4 mmol), and Cs_2CO_3 (990 mg, 3.0 mmol) were dissolved in 10 mL of dry DMF and the mixture was heated at 80°C for 2 days. Then, the solvent was removed *in vacuo*. The product was purified by silica gel column chromatography (CHCl₃: MeOH = 100 : 1). The desired compound was obtained as a gold solid. (352 mg, 68%). 500 MHz ¹H NMR (CDCl₃) δ (ppm): 8.30 (dd, *J* = 7.9, 0.9 Hz, 1H, Ar), 7.82 (td, *J* = 7.5, 1.3 Hz, 1H, Ar), 7.73 (td, *J* = 7.7, 1.3 Hz, 1H, Ar), 7.31 (dd, *J* = 7.6, 0.9 Hz, 1H, Ar), 7.06 (d, *J* = 9.5 Hz, 2H, Ar), 6.91 (dd, *J* = 9.5, 2.5 Hz, 2H, Ar), 6.80 (d, *J* = 2.5 Hz, 2H, Ar), 5.71-5.66 (m, 1H, CH), 5.21-5.10 (m, 2H, CH₂), 4.50 (dt, *J* = 5.9, 1.3 Hz 2H, CH₂), 3.65 (q, *J* = 7.2 Hz 8H, CH₂×4), 1.32 (t, *J* = 7.1 Hz 12H, CH₃×4). 100MHz ¹³C-NMR(CDCl₃) δ (ppm): 164.86, 158.83, 157.91, 155.69, 133.80, 133.35, 131.46, 131.40, 131.25, 130.53, 130.47, 130.05, 119.24, 114.48, 113.73, 96.57, 66.26, 46.37, 12.85. UV-vis(CHCl₃) (ϵ ×10⁻⁴) λ max nm: 260(2.6), 352(0.64), 557(8.8).

General procedure for the red-light-mediated chlorotrifluoromethylation of alkenes: Compound 3a

In a 4 mL glass-vial, **1a** (3.9 mg, 5 μ mol), K₂HPO₄ (174.1 mg, 1 mmol), and **2a** (59 mg, 0.5 mmol) were suspended in acetone (3 mL) and the solution was degassed by argon. After CF₃SO₂Cl (169.0 mg, 1 mmol) was added, the reaction mixture was stirred for 20 h and irradiation with 634 nm red-LED light, then the reaction was quenched with water. The mixture was extracted with ethyl acetate, and then washed with water and brine. The organic layer was dried over Na₂SO₄. The solvent was removed and purified using flash column chromatography on silica gel (hexane:ethyl acetate = 9:1 v/v). Compound **3a**²⁰ was obtained (155 mg, 94%) as a white solid.

500 MHz¹H NMR (CDCl₃) δ(ppm): 7.75 (d, *J* = 8.3 Hz, 2H, Ar), 7.33 (d, *J* = 8.0 Hz, 2H, Ar), 4.61 (br t, *J* = 6.5 Hz, 1H, NH), 4.18-4.16 (m, 1H, CH), 3.23-3.12 (m, 2H, CH₂), 2.67-2.57 (m, 1H, CH₂), 2.54-2.46 (m, 1H, CH₂), 2.44 (s, 3H, CH₃), 2.13-2.07 (m, 1H, CH₂), 1.87-1.80 (m, 1H, CH₂).

100 MHz ¹³C NMR(CDCl₃) δ (ppm): 143.95, 136.65, 130.00, 127.21 (q, *J*_{C, F} = 277.7 Hz), 51.32 (q, *J*_{C, F} = 3.3 Hz), 42.44 (q, *J*_{C, F} = 28.7 Hz), 40.11, 37.88, 21.63.

470 MHz ¹⁹F NMR (CDCl₃) δ (ppm): -67 (t, $J_{F, H} = 9.7$ Hz, CF₃).

Compound 3b²¹

400 MHz ¹H NMR (CDCl₃) δ (ppm): 6.77 (d, J = 7.9 Hz, 1H, Ar), 6.71 (d, J = 1.5 Hz, 1H, Ar), 6.66 (dd, J = 7.9, 1.7 Hz, 1H, Ar), 5.96 (s, 2H, CH₂), 4.28-4.21 (m, 1H, CH), 3.02 (d, J = 6.9 Hz, 2H, CH₂), 2.62-2.49 (m, 2H, CH₂).

100 MHz ¹³C NMR(CDCl₃) δ (ppm): 148.00, 147.01, 130.03, 125.48 (q, *J*_{C, F} = 277.5 Hz), 122.75, 109.81, 108.53, 101.25, 54.32 (q, *J*_{C, F} = 3.0 Hz), 44.25, 41.34 (q, *J*_{C, F} = 28.7 Hz).

376 MHz ¹⁹F NMR (CDCl₃) δ (ppm): -66 (t, $J_{F, H} = 10.1$ Hz, CF₃).

Compound 3c²²

400 MHz ¹H NMR (CDCl₃) δ (ppm): 7.87-7.84 (m, 2H, Ar), 7.76-7.71 (m, 2H, Ar), 4.18-4.15 (m, 1H, CH), 3.96-3.85 (m, 2H, CH₂), 2.69-2.59 (m, 2H, CH₂), 2.29-2.25 (m, 1H, CH₂), 2.17-2.11 (m, 1H, CH₂). 100 MHz ¹³C-NMR(CDCl₃) δ (ppm): 168.29, 134.29, 132.11, 123.78 (q, *J*_{C, F} = 277.7 Hz), 123.56, 51.49 (q, *J*_{C, F} = 3.3 Hz), 42.40 (q, *J*_{C, F} = 28.9 Hz), 36.59, 35.18. 376 MHz ¹⁹F-NMR (CDCl₃) δ (ppm): -67 (t, *J*_{F, H} = 10.2 Hz, CF₃). HR-APCI-FT-ICR-MS calcd for C₁₃H₁₁ClF₃NO₂ [M]⁺: 306.0503. Found: 306.0502.

Compound 3d²¹

500 MHz ¹H NMR (CDCl₃) δ (ppm): 7.30-7.26 (m, 1H, Ar), 7.15 (d, J = 7.3 Hz, 1H, Ar), 6.92 (tt, J = 7.5, 1.4 Hz, 1H, Ar), 6.88 (d, J = 8.1 Hz, 1H, Ar), 4.45 (p, J = 6.6 Hz, 1H, CH), 3.84 (d, J = 1.6 Hz, 3H, CH₃), 3.15 (dd, J = 13.6, 6.5 Hz, 1H, CH₂) 3.07 (dd, J = 13.6, 6.5 Hz, 1H, CH₂), 2.59-2.52 (m, 2H, CH₂). 100 MHz ¹³C NMR(CDCl₃) δ (ppm): 157.64, 131.66, 128.93, 125.66 (q, $J_{C,F} = 277.5$ Hz), 124.96, 120.66, 110.61, 55.37, 53.07 (q, $J_{C,F} = 3.1$ Hz), 41.65 (q, $J_{C,F} = 28.6$ Hz), 40.13. 470 MHz ¹⁹F NMR (CDCl₃) δ (ppm): -67 (t, $J_{F,H} = 10.2$ Hz, CF₃).

Compound 3e²³

400 MHz ¹H NMR (CDCl₃) δ (ppm): 7.58 (d, *J* = 8.9 Hz, 2H, Ar), 6.93 (d, *J* = 8.9 Hz, 2H, Ar), 4.16-4.14 (m, 1H, CH), 4.02 (t, *J* = 6.1 Hz, 2H, CH₂), 2.66-2.53 (m, 2H, CH₂), 1.94-1.64 (m, 6H, CH₂×3). 100 MHz ¹³C-NMR(CDCl₃) δ (ppm): 162.32, 134.10, 125.32(q, *J*_{C, F} = 277.6 Hz), 119.34, 115.26, 104.01, 67.99, 54.01 (q, *J*_{C, F} = 3.2 Hz), 42.53 (q, *J*_{C, F} = 28.5 Hz), 37.70, 28.36, 22.76. 376 MHz ¹⁹F NMR (CDCl₃) δ (ppm): -67 (t, *J*_{F, H} = 10.3 Hz, CF₃). HR-MALDI-FT-ICR-MS calcd for C₁₄H₁₅ClF₃NO [M]⁺: 306.0867. Found: 306.0871.

Compound 3f

400 MHz ¹H NMR (CDCl₃) δ (ppm): 8.20 (d, *J* = 9.3 Hz, 2H, Ar), 6.94 (d, *J* = 9.3 Hz, 2H, Ar), 4.16-4.14 (m, 1H, CH), 4.08 (t, *J* = 6.1 Hz, 2H, CH₂), 2.67-2.54 (m, 2H, CH₂), 1.95-1.65 (m, 6H, CH₂×3). 100 MHz ¹³C-NMR(CDCl₃) δ (ppm): 164.10, 141.60, 126.05, 125.34 (q, *J*_{C, F} = 277.6 Hz), 114.51, 68.48, 54.02 (q, *J*_{C, F} = 3.3 Hz), 42.56(q, *J*_{C, F} = 28.5 Hz), 37.71, 28.39, 22.77. 376 MHz ¹⁹F-NMR (CDCl₃) δ (ppm): -67 (t, *J*_{F, H} = 10.1 Hz, CF₃).

HR-MALDI-FT-ICR-MS calcd for $C_{13}H_{15}ClF_3NO_3$ [M]⁺: 326.0765. Found: 326.0769.

Compound 3g

400 MHz ¹H NMR (CDCl₃) δ(ppm): 7.40 (d, *J* = 2.5 Hz, 1H, Ar), 7.22 (dd, *J* = 8.8, 2.5 Hz, 1H, Ar), 6.89 (d, *J* = 8.8 Hz, 1H, Ar) 4.70-4.42 (m, 1H, CH), 4.37-4.07 (m, 2H, CH₂), 2.97-2.62 (m, 2H, CH₂), 2.56-2.36 (m, 1H, CH₂), 2.29-2.00 (m, 1H, CH₂).

100 MHz ¹³C-NMR(CDCl₃) δ(ppm): 153.01, 130.23, 127.79, 126.45, 125.30 (q, *J*_{C, F} = 277.6 Hz), 124.05, 114.36, 65.60, 50.98 (q, *J*_{C, F} = 28.7 Hz), 37.52.

376MHz ¹⁹F-NMR (CDCl₃) δ(ppm): -67 (t, $J_{F, H}$ = 10.2 Hz, CF₃).

HR-APCI-FT-ICR-MS calcd for C₁₁H₁₀Cl₃F₃O [M]⁺: 319.9744. Found: 319.9744.

Compound 3h²¹

400 MHz ¹H NMR (CDCl₃) δ(ppm): 7.37-7.21 (m, 5H, Ar), 4.36-4.30 (m, 1H, CH), 3.11 (d, 2H, CH₂), 2.62-2.53 (m, 2H, CH₂). 100 MHz ¹³C-NMR(CDCl₃) δ(ppm): 136.40, 129.55, 128.83, 127.50, 125.47 (q, *J*_{C, F} = 278.76 Hz), 54.16 (q, *J*_{C, F} = 3.03 Hz), 44.58, 41.49 (q, *J*_{C, F} = 28.28 Hz). 376 MHz ¹⁹F-NMR (CDCl₃) δ(ppm): -67 (t, *J*_{F, H} = 11.3 Hz, CF₃).

Compound 3i

400 MHz ¹H NMR (CDCl₃) δ(ppm): 7.10 (d, *J* = 8.7 Hz, 2H, Ar), 6.82 (d, *J* = 8.6 Hz, 2H, Ar), 4.45-4.43 (m, 1H, CH), 4.18-4.12 (m, 2H, CH₂), 2.72-2.63 (m, 2H, CH₂), 2.55 (t, *J* = 7.7 Hz, 2H, CH₂), 2.37-2.34 (m, 1H, CH₂), 2.15-2.12 (m, 1H, CH₂), 1.60-1.53 (m, 2H, CH₂) , 1.37-1.32 (m, 2H, CH₂), 0.92 (t, *J* = 7.3 Hz, 3H, CH₃).

100 MHz ¹³C-NMR(CDCl₃) δ (ppm): 156.63, 135.72, 129.49, 126.74 (q, $J_{C, F} = 277.7$ Hz), 114.48, 64.05, 51.16 (q, $J_{C, F} = 3.3$ Hz), 42.69 (q, $J_{C, F} = 28.6$ Hz), 37.88, 34.88, 34.03, 22.44, 14.10.

376 MHz ¹⁹F-NMR (CDCl₃) δ (ppm): -67 (t, $J_{F, H} = 10.1$ Hz, CF₃).

HR-MALDI-FT-ICR-MS calcd for $C_{15}H_{20}ClF_{3}O[M]^+$: 308.1149. Found: 308.1151.

Compound 3j

CF₃

500 MHz ¹H NMR (CDCl₃) δ(ppm): 8.21-8.19 (m, 2H, Ar), 7.69-7.66 (m, 1H, Ar), 7.56-7.53 (m, 1H, Ar), 7.40-7.34 (m, 2H, Ar), 7.30-7.26 (m, 1H, Ar), 7.23-7.21 (m, 1H, Ar), 4.41-4.35 (m, 1H, CH), 3.16 (dd, *J* = 14.4, 5.9 Hz, 1H, CH₂), 3.04 (dd, *J* = 14.3, 8.3 Hz, 1H, CH₂), 2.60-2.56 (m, 2H, CH₂).

100 MHz ¹³C NMR(CDCl₃) δ(ppm): 164.95, 149.49, 133.98, 131.57, 130.16, 128.99, 128.84, 128.80, 128.79, 126.34, 125.20 (q, *J*_{C, F} = 277.6 Hz), 122.94, 53.10 (q, *J*_{C, F} = 3.1 Hz), 41.86 (q, *J*_{C, F} = 28.7 Hz), 39.38.

470 MHz¹⁹F NMR (CDCl₃) δ(ppm): -67 (t, $J_{F, H} = 9.5$ Hz, CF₃).

HR-MALDI-FT-ICR-MS calcd for C₁₇H₁₄ClF₃O₂ [M]⁺: 343.0707. Found: 343.0711.

Compound 3k

$$V$$
 CI CF_3

400 MHz¹H NMR (CDCl₃) δ(ppm): 8.95 (dd, *J* = 4.2, 1.8 Hz, 1H, Ar), 8.13 (dd, *J* = 8.3, 1.8 Hz, 1H, Ar), 7.50-7.36 (m, 3H, Ar), 7.06 (dd, *J* = 7.6, 1.4 Hz, 1H, Ar), 4.27 (t, *J* = 6.7 Hz, 2H, CH₂), 4.22-4.11 (m, 1H, CH), 2.71-2.49 (m, 2H, CH₂), 2.17-1.66 (m, 6H, CH₂×3).

100 MHz ¹³C NMR(CDCl₃) δ(ppm): 154.75, 149.40, 140.39, 136.11, 129.64, 126.79, 125.40 (q, *J*_{C, F} = 277.7 Hz), 121.70, 119.76, 108.87, 68.66, 54.09 (q, *J*_{C, F} = 3.3 Hz), 42.53 (q, *J*_{C, F} = 28.4 Hz), 37.93, 28.33, 22.98.

376 MHz¹⁹F NMR (CDCl₃) δ(ppm): -67 (t, $J_{F, H}$ = 10.4 Hz, CF₃).

HR-MALDI-FT-ICR-MS calcd for $C_{16}H_{17}ClF_3NO [M]^+$: 332.1024. Found: 332.1025.

Compound 3l²⁴

400 MHz ¹H NMR (CDCl₃) δ(ppm): 4.14-4.08 (m, 1H, CH), 2.62-2.53 (m, 2H, CH₂), 1.83-1.73 (m, 2H, CH₂), 1.55-1.42 (m, 8H, CH₂×4) 0.91-0.88 (m, 3H, CH₃).

376 MHz¹⁹F-NMR (CDCl₃) δ (ppm): -67 (t, $J_{F, H} = 10.2$ Hz, CF₃).

Compound 3m

(*dr* 1 : 1.7)

400 MHz ¹H NMR (CDCl₃) δ(ppm): 4.24-4.14 (m, 1H), 2.62-2.46 (m, 0.40H), 2.42-2.27 (m, 0.67H), 1.89-1.32 (m, 8H), 0.98-0.92 (m, 6H). 100 MHz ¹³C NMR(CDCl₃) δ(ppm): 127.30 (q, *J*_{C, F} = 281.5 Hz), 125.68 (q, *J*_{C, F} = 281.7 Hz), 59.87 (q, *J*_{C, F} = 3.0 Hz), 59.08 (q, *J*_{C, F} = 3.3 Hz), 49.46 (q, *J*_{C, F} = 24.2 Hz), 48.45 (q, *J*_{C, F} = 24.7 Hz), 38.59, 36.14 (d, *J*_{C, F} = 1.6 Hz), 26.79 (q, *J*_{C, F} = 1.8 Hz), 26.54 (q, *J*_{C, F} = 2.0 Hz), 21.37, 21.10, 20.52, 20.25, 14.21,

14.05, 13.45, 13.44.

376 MHz¹⁹F NMR (CDCl₃) δ(ppm): -69 (d, $J_{F, H}$ = 9.6 Hz, CF₃), -70 (d, $J_{F, H}$ = 9.1 Hz, CF₃). HR-APCI-FT-ICR-MS calcd for C₉H₁₆ClF₃ [M+H]⁺: 217.0965. Found: 217.0990.

Compound 3n²¹

500 MHz ¹H NMR (CDCl₃) δ(ppm): 4.20 (m, *J* = 7.2 Hz, 2H, CH₂×2), 3.57-3.38 (m, 2H, CH×2), 2.72-2.42 (m, 4H, CH₂×2), 2.41-1.95 (m, 1H, CH₂+CH×2), 1.25 (t, *J* = 7.1 Hz, 3H, CH₃), 1.25 (t, *J* = 7.1 Hz, 3H, CH₃). Hz, 3H, CH₃). 100 MHz ¹³C-NMR(CDCl₃) δ(ppm): 172.20, 172.11, 126.94 (q, *J*_{C, F} = 277.1 Hz), 61.96, 61.92, 58.62,

44.43, 43.98, 38.61, 37.08, 35.56 (q, *J*_{C, F} = 2.5 Hz), 33.37 (q, *J*_{C, F} = 28.7 Hz), 14.10.

470 MHz¹⁹F-NMR (CDCl₃) δ (ppm): -67 (t, $J_{F, H} = 10.5$ Hz, CF₃).

Compound 5

400 MHz ¹H NMR (CDCl₃) δ(ppm): 8.31 (s, 1H, Ar), 6.93 (s, 1H, Ar), 4.31 (t, *J* = 6.3 Hz, 2H, CH₂), 4.19-4.08 (m, 1H, CH), 3.33 (q, *J* = 6.3 Hz, 4H, CH₂×2), 2.87 (t, *J* = 6.4 Hz, 2H, CH₂), 2.81-2.71 (m, 2H, CH₂), 2.70-2.50 (m, 2H, CH₂), 2.02-1.92 (m, 4H, CH₂×2), 1.88-1.69 (m, 4H, CH₂×2), 1.67-1.51 (m, 2H, CH₂).

100 MHz ¹³C NMR(CDCl₃) δ (ppm): 164.77, 158.72, 153.61, 149.32, 148.69, 127.08, 125.40 (q, $J_{C,F} =$ 277.6 Hz), 119.31, 107.62, 107.36, 105.84, 64.53, 54.11 (q, $J_{C,F} =$ 3.2 Hz), 50.37, 49.98, 42.49 (q, $J_{C,F} =$ 28.4 Hz), 37.73, 28.07, 27.52, 22.73, 21.25, 20.27, 20.17.

470MHz¹⁹F NMR (CDCl₃) δ(ppm): -67 (t, $J_{F, H}$ = 10.3 Hz, CF₃).

UV-vis(CHCl₃) ($\epsilon \times 10^{-4}$) λ_{max} nm: 438(3.8).

HR-FAB-MS calcd for $C_{23}H_{25}ClF_3NO_4 \ [M]^+: 471.1419$. Found: 471.1415.

Copies of the NMR Spectra of Studied Compounds

¹H NMR (500 MHz, Chloroform-d) δ 7.75 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 4.61 (t, J = 6.5 Hz, 1H), 4.17 (dddd, J = 10.6, 7.4, 5.5, 3.2 Hz, 1H), 3.25 - 3.09 (m, 2H), 2.62 (dddd, J = 20.3, 15.4, 10.1, 7.9 Hz, 1H), 2.49 (ddt, J = 15.5, 10.3, 5.0 Hz, 1H), 2.44 (s, 3H), 2.15 - 2.03 (m, 1H), 1.89 - 1.78 (m, 1H).

21 Modification Date 2020-09-11T09:3 0.28

¹H NMR (400 MHz, Chloroform-d) δ 6.77 (d, J = 7.9 Hz, 1H), 6.71 (d, J = 1.5 Hz, 1H), 6.66 (dd, J = 7.9, 1.7 Hz, 1H), 5.96 (s, 2H), 4.58 - 3.72 (m, 1H), 3.02 (d, J = 6.9 Hz, 2H), 2.77 - 2.37 (m, 2H).

23 Spectrometer 500.16

¹H NMR (400 MHz, Chloroform-d) δ 7.58 (d, *J* = 8.9 Hz, 2H), 6.93 (d, *J* = 8.9 Hz, 2H), 4.20 - 4.09 (m, 1H), 4.02 (t, *J* = 6.1 Hz, 2H), 2.75 - 2.47 (m, 2H), 2.01 - 1.55 (m, 6H).

21 Modification Date 2020-09-16T09:2

¹³C NMR (101 MHz, Chloroform-*d*) δ 162.32, 134.10, 125.32 (q, *J* = 277.6 Hz), 119.34, 115.26, 104.01, 67.99, 54.01 (q, *J* = 3.2 Hz), 42.53 (q, *J* = 28.5 Hz), 37.70, 28.36, 22.76.

¹³C NMR (101 MHz, Chloroform-d) δ 156.63, 135.72, 129.49, 126.74 (q, *J* = 277.7 Hz), 114.48, 64.05, 51.16 (q, *J* = 3.3 Hz), 42.69 (q, *J* = 28.6 Hz), 37.88, 34.03, 22.44, 14.10.

¹H NMR (500 MHz, Chloroform-d) 8 8.24 – 8.14 (m, 1H), 7.77 – 7.62 (m, 1H), 7.59 – 7.52 (m, 1H), 7.44 – 7.33 (m, 1H), 7.33 – 7.27 (m, 1H), 7.23 – 7.18 (m, 1H), 4.48 – 4.26 (m, 1H), 3.16 (dd, *J* = 14.4, 5.9 Hz, 1H), 3.04 (dd, *J* = 14.3, 8.3 Hz, 1H), 2.66 – 2.49 (m, 1H).

	Parameter	Value
1	Data File Name	C:/ Users/
		furuyama/
		Documents/
		Personaldata/
		IshikawaYuta/
		NMR/ 生data/
		201125_ex279_C
		DCI3/ 1/ fid
2	Title	201125_ex279_C DCl3.1.fid
3	Comment	
4	Origin	Bruker BioSpin GmbH
5	Owner	nmrsu
6	Site	
7	Instrument	Avance
8	Author	
9	Solvent	CDCI3
10	Temperature	298.1
11	Pulse Sequence	zgpg30
12	Experiment	1D
13	Probe	Z116098_0842 (PA BBO 400S1 BBF-H-D-05 Z SP)
14	Number of Scans	10000
15	Receiver Gain	28.7
16	Relaxation Delay	2.0000
17	Pulse Width	10.0000
18	Presaturation Frequency	
19	Acquisition Time	1.3763
20	Acquisition Date	2020-11-26T05:3 9:08

23 Spectrometer

500.16

¹³C NMR (101 MHz, Chloroform-*d*) δ 164.95, 149.49, 133.98, 131.57, 130.16, 128.99, 128.84, 128.80, 128.79, 126.34, 125.20 (q, *J* = 277.6 Hz), 122.94, 53.10 (q, *J* = 3.1 Hz), 41.86 (q, *J* = 28.7 Hz), 39.38.

 $^{^{13}\}mathrm{C} \text{ NMR (101 MHz, Chloroform-}d) \\ \delta 154.75, 149.40, 140.39, 136.11, 129.64, 126.79, 125.40 \\ (q, \textit{J}=277.7\text{Hz}), 121.70, 119.76, 108.87, 68.66, 54.09 \\ (q, \textit{J}=3.3 \text{ Hz}), 42.53 \\ (q, \textit{J}=28.4 \text{ Hz}), 37.93, 28.33, 22.98. \\ \end{array}$

¹³ C NMR (101 MHz, Chloroform-d) δ 127.30 (q, J = 281.5 Hz), 125.68 (q, J = 281.7 Hz), 59.87 (q, J = 3.0 Hz), 59.08 (q, J = 3.3 Hz), 49.46 (q, J = 3.0 Hz), 59.08 (q, J = 3.0 Hz), 59	
J = 24.2 Hz), 48.45 (q, $J = 24.7$ Hz), 38.59, 36.14 (d, $J = 1.6$ Hz), 26.79 (q, $J = 1.8$ Hz), 26.54 (q, $J = 2.0$ Hz), 21.37, 21.10, 20.52, 20.25, 14.21,	
14.05, 13.45, 13.44.	

Value

201204_ex309_C DCl3.1.fid

Bruker BioSpin GmbH

nmrsu

Avance

CDCI3

298.2

C:/Users/ furuyama/ Documents/ Personaldata/ IshikawaYuta/ NMR/ ±data/ 201204_ex309_C DCl3/ 1/ fid

2021-01-14T16:0 1·24

21 Modification Date

 $^{1}\text{H} \text{ NMR (400 MHz, Chloroform-}d) \\ \delta 8.30 (s, 1\text{H}), 6.94 (s, 1\text{H}), 5.91 - 5.73 (m, 1\text{H}), 5.10 - 4.90 (m, 2\text{H}), 4.29 (t, \textit{J} = 6.7 \text{ Hz}, 2\text{H}), 3.33 (q, \textit{J} = 6.5 \text{ Hz}, 4\text{H}), 2.87 (t, \textit{J} = 6.4 \text{ Hz}, 2\text{H}), 2.75 (t, \textit{J} = 6.2 \text{ Hz}, 2\text{H}), 2.19 - 2.04 (m, 2\text{H}), 2.01 - 1.93 (m, 4\text{H}), 1.84 - 1.71 (m, 2\text{H}), 1.64 - 1.46 (m, 4\text{H}). \\ \epsilon = 6.2 \text{ Hz}, 2 \text{ Hz}$

¹³C NMR (101 MHz, Chloroform-d) & 164.76, 158.74, 153.61, 149.20, 148.58, 138.65, 127.06, 119.23, 114.90, 107.81, 107.66, 105.93, 65.00, 50.39, 50.01, 33.49, 28.33, 27.56, 25.41, 21.32, 20.34, 20.22.

¹H NMR (500 MHz, Chloroform-d) δ 8.30 (dd, J = 7.9, 0.9 Hz, 1H), 7.82 (td, J = 7.5, 1.3 Hz, 1H), 7.73 (td, J = 7.7, 1.3 Hz, 1H), 7.31 (dd, J = 7.6, 0.9 Hz, 1H), 7.06 (d, J = 9.5 Hz, 2H), 6.91 (dd, J = 9.5, 2.5 Hz, 2H), 6.80 (d, J = 2.5 Hz, 2H), 5.69 (ddt, J = 17.2, 10.4, 5.9 Hz, 1H), 5.21 – 5.10 (m, 2H), 4.50 (dt, J = 5.9, 1.3 Hz, 2H), 3.65 (q, J = 7.2 Hz, 8H), 1.32 (t, J = 7.1 Hz, 12H).

23 Spectrometer 500.16

References

- ¹ L.-C. Liu and A. T. Hu, J. Porphyrins Phthalocyanines 2003, 7, 565-571.
- ² T. Furuyama, F. Shimasaki, N. Saikawa, H. Maeda and M. Segi, *Sci. Rep.* 2019, **9**, 16528.
- ³ R. Ebule, S. Mudshinge, M. H. Nantz, M. S. Mashuta, G. B. Hammond and B. Xu, *J. Org. Chem.* 2019, **84**, 3249-3259.
- ⁴ B.-Z. Fan, H. Hiasa, W. Lv, S. Brody, Z.-Y. Yang, C. Aldrich, M. Cushman and J.-H. Liang, *Eur. J. Med. Chem.* 2020, **193**, 112222.
- ⁵ M. J. Gresser, S. M. Wales and P. A. Keller, *Tetrahedron* 2010, **66**, 6965-6976.
- ⁶ G. Li, L. Wang, L. Wu, Z. Guo, J. Zhao, Y. Liu, R. Bai and X. Yan, *J. Am. Chem. Soc.* 2020, **142**, 14343-14349.
- ⁷ G. Villa, G. Povie and P. Renaud, J. Am. Chem. Soc. 2011, **133**, 5913-5920.
- ⁸ B. H. Lipshutz, S. Ghorai and W. W. Y. Leong, 2009, 74, 2854-2857.
- ⁹ A. E. Díaz-Álvarez, P. Crochet and V. Cadierno, *Tetrahedron* 2012, 68, 2611-2620.
- ¹⁰ J. Escudero, V. Bellosta and J. Cossy, Angew. Chem. Int. Ed. 2018, **57**, 574-578.
- ¹¹ M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G.
 Polidori and R. Spagna, *J. Appl. Cryst.* 2005, **38**, 381.
- ¹² G. M. Sheldrick, Acta Crystallogr. C, Struct. Chem. 2015, 71, 3-8.
- ¹³ Yadokari-XG, Software for Crystal Structure Analyses, K. Wakita (2001); Release of Software (Yadokari-XG 2009) for Crystal Structure Analyses, C. Kabuto, S. Akine, T. Nemoto and E. Kwon, *J. Cryst. Soc. Jpn.* 2009, **51**, 218-224.
- ¹⁴ (a) A. L. Spek, Acta Crystallogr. Sect. A 1990, 46, c34; (b) P. van der Sluis and A. L. Spek, Acta Crystallogr. Sect. A 1990, 46, 194.
- ¹⁵ R. C. Young, T. J. Meyer, D. G. Witten, J. Am. Chem. Soc., 1976, 98, 286-287.
- ¹⁶ G. J. Ferraudi and D. R. Prasad, J. Chem. Soc., Dalton Trans. 1984, 2137-2140.
- ¹⁷ N. P. Farrell, A. J. Murray, J. R. Thornback, D. H. Dolphin and B. R. James, *Inorg. Chim. Acta.* 1978,
 28, L144-L146

¹⁸ T. Rawling, H. Xiao, S.-T. Lee, S. B. Colbran and A. M. McDonagh, *Inorg. Chem.* 2007, **46**, 2805-2813.

- ¹⁹ G. Chen, F. Song, J. Wang, Z. Yang, S. Sun, J. Fan, X. Qiang, X. Wang, B. Dou and X. Peng, *Chem. Commun.* 2012, **48**, 2949-2951.
- ²⁰ W. An, N. Ha, H. M. Lee, Y. R. Malpani, D.-H. Lee, Y.-S. Jung and S. B. Han, *Adv. Synth. Catal.* 2015, 357, 3949-3960.
- ²¹ D. B. Bagal, G. Kachkovskyi, M. Knorn, T. Rawner, B. M. Bhanage and O. Reiser, *Angew. Chem. Int. Ed.* 2015, **54**, 6999-7002.
- ²² S. H. Oh, Y. R. Malpani, N. Ha, Y.-S. Jung and S. B. Han, Org. Lett. 2014, 16, 1310-1313.
- ²³ B. Yang, X.-H. Xu and F.-L. Qing, Chin. J. Chem. 2016, **34**, 465-468.
- ²⁴ T. P. Nicholls, C. Caporale, M. Massi, M. G. Gardiner and A. C. Bissember, *Dalton Trans.* 2019, 48, 7290-7301.