Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Reconstruction of Bimetal CoFe_{0,13}-MOF to Enhance the Catalytic

Performance in Oxygen Evolution Reaction

Kexin Yang¹ ‡, Zeqi Jin¹‡, Qicheng Zhang¹, Qiming Chen¹, Wenchao Peng^{1,2}, Yang Li^{1,2}, Fengbao Zhang¹, Qing Xia¹*, Xiaobin Fan^{1,2}*

¹School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, China.

²Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031 China. School of Chemical Engineering and Technology, State Key Laboratory of Chemical

Corresponding Author

*Xiaobin Fan

Email: xiaobinfan@tju.edu.cn

*Qing Xia

Email: xiaqing@tju.edu.cn

Contents:

Fig. S1 to S12

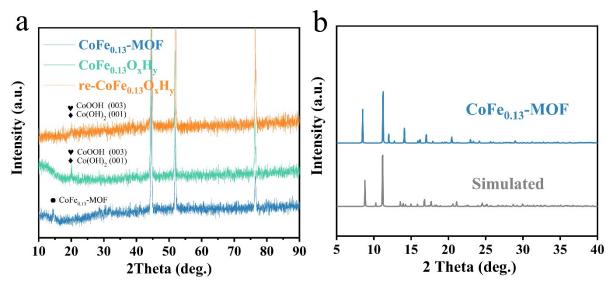
Tab. S1 to S3

Experimental Details

Synthesis of the CoFe_{0.13}-MOF:

2-6 naphthalene dicarboxylic acid (165 mg) and Ferrocenecarboxylic acid (23 mg) were dissolved in 5 mL DMF and 1 mL NaOH (0.4 M) was added. Then the solution was mixed slowly with 5 mL DMF solution containing cobalt (II) nitrate nonahydrate (218 mg) in a 30 mL Teflon-lined stainless-steel autoclave. The Teflon-lined stainless-steel autoclave was heated for 15 h at 100 °C. The resulting products were washed with DMF and ethanol for three times and dried naturally.

OER reconstruction:


The Amperometric i-t Curve program was run for 50000s in 1M KOH alkaline solution with an initial current of 10 mA cm $^{-2}$, followed by rinsing with deionized water, and drying naturally to obtain deactivated CoFe_{0.13}-MOF, namely, CoFe_{0.13}O_xH_y.

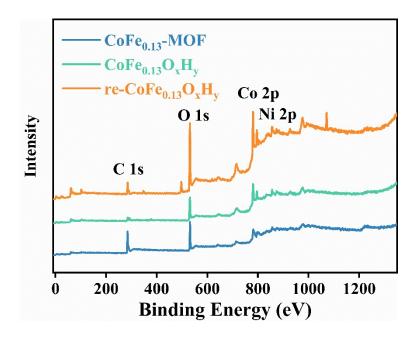
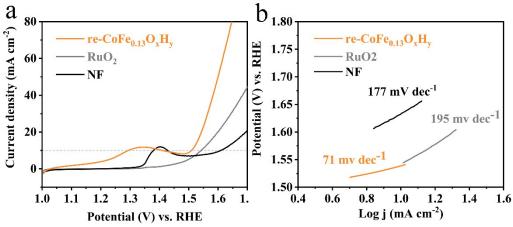
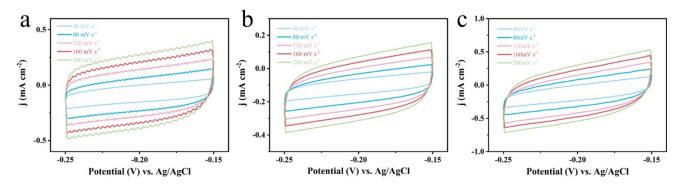
Solvothermal reconstruction:

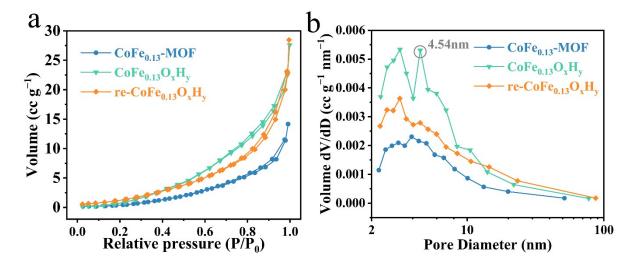
The process of synthesizing $CoFe_{0.13}$ -MOF was repeated without adding 2-6 naphthalene dicarboxylic acid, Ferrocenecarboxylic acid and cobalt (II) nitrate nonahydrate. Finally, the refreshed $CoFe_{0.13}O_xH_y$, is named as re- $CoFe_{0.13}O_xH_y$.

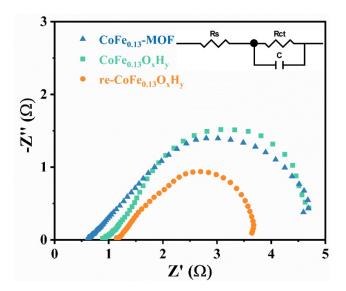
Materials characterization. The phases in each sample were detected by X-ray diffraction (XRD, Bruker D8 Advanced, Germany). The molar ratio of Co:Fe was measured by inductively coupled plasma mass spectrometry (ICP-OES:Shimadzu ICPE-9800). The morphology and microstructure were examined by transmission electron microscopy (TEM, JEM-2100), scanning electron microscopy (SEM, S4800) equipped with an energy-dispersive X-ray analyzer (EDS). The chemical states of samples were concluded by X-ray photoelectron spectroscopy (XPS, ESCALAB 250 XI). electron spin resonance (ESR) spectra were conducted on Bruker EMX PLUS.

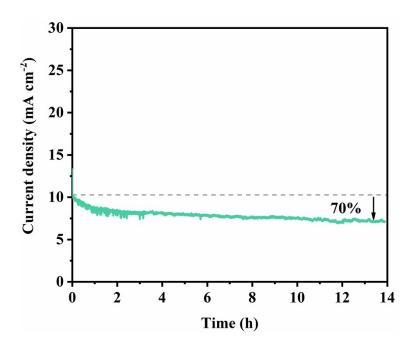
Electrochemical measurements. All the electrochemical data were collected from a CHI760E electrochemical workstation. A standard three–electrode cell was used with 1 M KOH as the electrolyte. Ag/AgCl (3.5 M KCl solution) electrode and a graphite rod were chosen as reference and counter electrodes, respectively. All the linear sweep voltammetry (LSV) data were recorded at a scan rate of 5 mV s⁻¹. Time–dependent current density curves were obtained by chronoamperometric measurements. The electrochemical impedance spectroscopy (EIS) results were determined at 0.5 V vs. Ag/AgCl, and the corresponding frequency range is 0.1~10⁶ Hz.

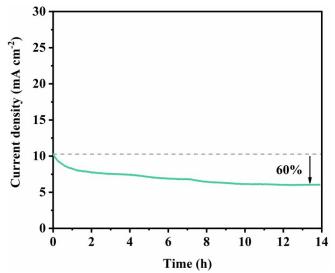
Fig. S1 (a) XRD patterns of the prepared CoFe_{0.13}O_xH_y, re-CoFe_{0.13}O_xH_y and CoFe_{0.13}-MOF. The crystal structure of CoOOH and Co(OH)₂ is shown in the inset. (b) XRD patterns of the CoFe_{0.13}-MOF control sample without the presence of nickel foam and the simulated XRD pattern from previous study.

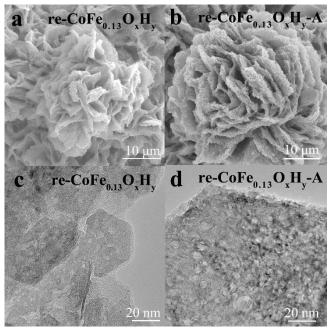




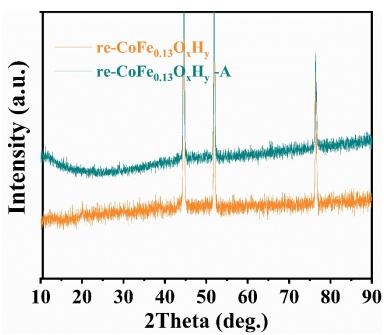

Fig. S2 The full range XPS spectra, the peaks of C 1s, O 1s, Co 2p and Ni 2p are detected.

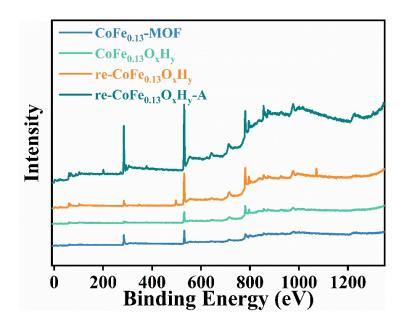

Fig. S3. Electrochemical characterization of re-CoFe_{0.13}-MOF, commercial RuO₂ and the Ni foam. (a) Polarization curves. (b) Tafel slopes.


Fig. S4. Corresponding CV curves in non-Faraday region. CV cycling of **(a)** CoFe_{0.13}-MOF, **(b)** CoFe_{0.13}O_xH_y and **(c)** re-CoFe_{0.13}O_xH_y in 1 M KOH from 40 mVs⁻¹ to 200 mVs⁻¹.


Fig. S5 The pore structure characterization of the $CoFe_{0.13}$ -MOF, $CoFe_{0.13}O_xH_y$, and re- $CoFe_{0.13}O_xH_y$ (a) N_2 sorption isotherms, and (b) pore size distribution curves.


Fig. S6 Nyquist plots. The re-CoFe_{0.13}O_xH_y suggests a smaller charge transfer resistance (~2.5 Ω) than that of CoFe_{0.13}-MOF (~4 Ω) and CoFe_{0.13}O_xH_y (~4 Ω).


Fig. S7 Stability test of the original $CoFe_{0.13}$ -MOF. The current density of the $CoFe_{0.13}$ -MOF drops to 70% in 50000s.


Time (h) Fig. S8 Stability test of the $CoFe_{0.13}$ -MOF-30h. The current density of the $CoFe_{0.13}$ -MOF-30h drops to 60% in 50000s.

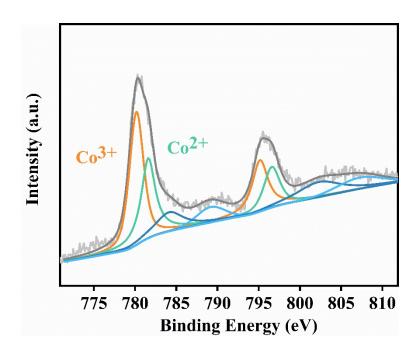

Fig. S9 Morphology of re-CoFe_{0.13}O_xH_y after stability test. SEM images of (a) re-CoFe_{0.13}O_xH_y and (b) re-CoFe_{0.13}O_xH_y-A. TEM images of (c) re-CoFe_{0.13}O_xH_y and (d) re-CoFe_{0.13}O_xH_y-A.

Fig. S10 XRD patterns of the prepared re-CoFe $_{0.13}$ O_xH_y-A (the re-CoFe $_{0.13}$ O_xH_y after 85 h OER process).

Fig. S11 The full range XPS spectra of the re-CoFe $_{0.13}$ O_xH_y-A (the re-CoFe $_{0.13}$ O_xH_y after 85 h OER process).

Fig. S12 The Co 2p XPS spectra of the re-CoFe_{0.13}O_xH_y-A (the re-CoFe_{0.13}O_xH_y after 85 h OER process). The ratio of Co²⁺ to Co³⁺ is 0.77.

Tab. S1 The element content in the CoFe_{0.13}-MOF.

Element	Content ^[a]	
	wt (%)	
Co	4.49	
Fe	0.388	

[a]The data were measured by inductively coupled plasma mass spectrometry (ICP-EOS).

 $\textbf{Tab. S2} \ \text{XPS} \ \text{surface element content of the CoFe}_{0.13}\text{-MOF}$

Name	Atomic %	
C1s	60.54	
O1s	29.52	
Fe2p3	0.62	
Ni2p3	2.22	
Co2p3	7.09	

Tab. S3 Comparison of stability with other MOF catalysts.

Catalyst	Test Condition	Stability Performance
This work	1 M KOH, 10 mA cm ⁻²	85.0 h
CoFe-BDC ¹	1 M KOH, 10 mA cm ⁻²	< 1.0 h
ZIF-67(002) ²	1 M KOH, 10 mA cm ⁻²	8.0h
$Co_{0.6}Fe_{0.4}$ -MOF-74 ³	1 M KOH, 10 mA cm ⁻²	12.0h
CoBDC-Fc ⁴	$1 \text{ M KOH}, 100 \text{ mA cm}^{-2}$	80.0h
CoOOH ⁵	1 M KOH, 10 mA cm ⁻²	100h
γ -CoOOH 6	1 M KOH, 10 mA cm ⁻²	13.0h
F-CoOOH/NF ⁷	1 M KOH, 30 mA cm ⁻²	10.0h
FeCoOOH ⁸	1 M KOH, 10 mA cm ⁻²	15.0h

Reference

- 1. J. Xu, X. Zhu and X. L. Jia, *Acs Sustainable Chemistry & Engineering*, 2019, 7, 16629-16639.
- 2. J. W. Wan, D. Liu, H. Xiao, H. P. Rong, S. Guan, F. Xie, D. S. Wang and Y. D. Li, *Chemical Communications*, 2020, **56**, 4316-4319.
- 3. X. H. Zhao, B. Pattengale, D. H. Fan, Z. H. Zou, Y. Q. Zhao, J. Du, J. E. Huang and C. L. Xu, *Acs Energy Letters*, 2018, **3**, 2520-2526.
- 4. Z. Hu, S. L. Shi, L. Wang, S. J. Chen, Y. S. You, S. H. Wang and C. Chen, *Applied Surface Science*, 2020, **528**.
- 5. J. Zhou, Y. Wang, X. Z. Su, S. Q. Gu, R. D. Liu, Y. B. Huang, S. Yan, J. Li and S. Zhang, *Energy & Environmental Science*, 2019, **12**, 739-746.
- 6. J. H. Huang, J. T. Chen, T. Yao, J. F. He, S. Jiang, Z. H. Sun, Q. H. Liu, W. R. Cheng, F. C. Hu, Y. Jiang, Z. Y. Pan and S. Q. Wei, *Angewandte Chemie-International Edition*, 2015, **54**, 8722-8727.
- 7. P. Z. Chen, T. P. Zhou, S. B. Wang, N. Zhang, Y. Tong, H. X. Ju, W. S. Chu, C. Z. Wu and Y. Xie, *Angewandte Chemie-International Edition*, 2018, **57**, 15471-15475.
- 8. T. T. H. Nguyen, J. Lee, J. Bae and B. Lim, *Chemistry-a European Journal*, 2018, **24**, 4724-4728.