Supporting Information

for

[Mes-B-TMP]⁺ Borinium Cation Initiated Cyanosilylation and Catalysed Hydrosilylation of Ketones and Aldehydes

Po-Han Chen, Ching-Pei Hsu, Hsi-Ching Tseng, Yi-Hung Liu and Ching-Wen Chiu

Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, Taiwan 10617

1. Synthesis:

General information.

All the reactions are carried out by using Schlenk system or glovebox under nitrogen atmosphere. Dichloromethane, ether, and toluene were purified by the molecular sieves packed solvent purification system. Et₃SiH were dried by molecular sieves and distilled under nitrogen. Chlorobenzene, CD₂Cl₂, and CDCl₃ were dried by P₂O₅ and distilled under nitrogen. Pentane and hexane were dried by Na/K alloy and distilled under nitrogen. TMSCN and silver tetrakis(perfluoro-*tert*-butoxy) aluminate (Ag[Al(OC(CF₃)₃]₄) were purchased and used without further purification. NMR spectra were collected by using Bruker Advance III-400 (¹H: 400.2 MHz, ¹¹B: 128.4 MHz, ¹³C: 100.6 MHz, ¹⁹F: 376.5 MHz, ²⁷Al: 104.2 MHz, ²⁹Si: 99.4 MHz, ³¹P: 162.0 MHz).

Synthesis of 1a

A solution of MesBCl₂ (4.00 g, 0.02 mol) in toluene (20 mL) was transferred into the suspension of TMPLi (2.93 g, 0.02 mol) in hexane (50 mL), and the mixture was heated to 110 °C for 4 days. Afterward, the orange-beige opaque solution was filtered through celite to remove solid and the collected liquid phase was dried under vacuum to give an orange oil. Colorless crystalline products were then obtained after sublimation (1.20 g, 20% yield). ¹H NMR (400.2 MHz, CDCl₃): $\delta = 6.73$ (s, 2 H), 2.32 (s, 6 H), 2.23 (s, 3 H), 1.86 (t, 2 H, ${}^{3}J_{HH} = 7.80$ Hz), 1.75 (m, 2 H), 1.72 (s, 6 H), 1.66 (t, 2 H, ${}^{3}J_{HH} = 7.80$ Hz) and 1.15 (s, 6 H) ppm. ${}^{11}B$ NMR (128.4 MHz, CDCl₃): $\delta = 39.3$ (s) ppm. ${}^{13}C$ NMR (100.6 MHz, CDCl₃): $\delta = 142.8$ (br), 136.8, 136.6, 127.6, 57.9, 57.6, 32.3, 31.5, 22.9, 21.0 and 14.7 ppm. Anal. Calcd for C₁₈H₂₉BNCl (%): Calcd: C 70.72, H 9.56, N 4.58; Exp: C 71.76, H 9.50, N 4.29.

Synthesis of 1b:

A solution of MesBCl₂ (530.0 mg, 2.63 mmol) in hexane (20 mL) was transferred into the suspension of LiHMDS (441.0 mg, 2.63 mmol) in hexane (50 mL) at – 78 °C. The mixture was slowly warmed to room temperature and stirred for 2 h to give an offwhite opaque solution. The reaction mixture was filtered through celite to remove LiCl and dried under vacuum to give white solids, which were re-crystallized from a concentrated pentane solution at – 30 °C (818 mg, 95% yield). ¹H NMR (400.2 MHz, C₆D₆): δ = 6.65 (s, 2 H), 2.30 (s, 6 H), 2.12 (s, 3 H), 0.49 (br, 9 H) and – 0.04 (br, 9 H) ppm. ¹¹B NMR (128.4 MHz, C₆D₆): δ = 44.8 (s) ppm. ¹³C NMR (100.6 MHz, C₆D₆): δ = 140.7 (br), 137.6, 137.3, 128.2, 127.7, 22.4, 21.2, 4.7 (br) and 4.1 (br) ppm. ²⁹Si NMR (99.4 MHz, C₆D₆): δ = 8.7 (s) ppm. Anal. Calcd for C₁₅H₂₉BNSi₂Cl (%): Calcd: C 55.29, H 8.97, N 4.30; Exp: C 55.87, H 9.01, N 4.44.

Synthesis of [2][Al(OC(CF₃)₃)₄]:

1a (10.0 mg, 0.033 mmol) was mixed with Ag[Al(OC(CF₃)₃)₄] (35.2 mg, 0.033 mmol) in 0.5 mL of CDCl₃ to give a pink solution with brownish solid precipitates. After filtered off the solid, the solution was transferred to a J Young's NMR tube for characterization. Afterward, solvent was removed under vacuum to give a pink oil (35.6 mg, 88% yield). ¹H NMR (400.2 MHz, CDCl₃): δ = 7.14 (s, 2 H), 2.63 (s, 6 H), 2.44 (s, 3 H), 1.89 (m, 2 H), 1.74 (t, 4 H, ³*J*_{HH} = 5.78 Hz) and 1.61 (s, 12 H) ppm. ¹¹B NMR (128.4 MHz, CDCl₃): δ = 55.5 (br) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 156.3, 153.3, 130.1, 121.1 (q, ¹*J*_{CF} = 292.8 Hz), 114.1 (br), 60.4, 37.4, 30.9, 23.1, 22.7 and 16.2 ppm. ¹⁹F NMR (376.5 MHz, CDCl₃): δ = -75.4 (s) ppm. ²⁷Al NMR (104.2 MHz, CDCl₃): δ = 34.1 (s) ppm. Anal. Calcd for C₃₄H₂₉BAlNO₄F₃₆ (%): Calcd: C 33.0, H 2.36, N 1.13; Exp: C 32.71, H 2.48, N 1.14.

Synthesis of [3][Al(OC(CF₃)₃)₄]:

1b (20.0 mg, 0.061 mmol) and Ag[Al(OC(CF₃)₃)₄] (65.9 mg, 0.061 mmol) were mixed in 0.5 mL of DCM to give a pink solution with brownish solids in the bottom. The solution was filtered and dried under vacuum to yield a pink oil, which was redissolved in chlorobenzene. Light brown crystals of [3][Al(OC(CF₃)₃)₄] were obtained after diffusion of hexane in to the chlorobenzene solution of [3][Al(OC(CF₃)₃)₄] at room temperature. Crystalline solids were collected and dried under vacuum (35.5 mg, 46% yield). ¹H NMR (400.2 MHz, CD₂Cl₂): δ = 7.35 (s, 2 H), 2.54 (s, 3 H), 2.51 (s, 6 H), 0.79 (s, 3 H), 0.64 (s, 6 H) and 0.38 (s, 9 H) ppm. ¹¹B NMR (128.4 MHz, CD₂Cl₂): δ = 49.5 (s) ppm. ¹³C NMR (100.6 MHz, CD₂Cl₂): δ = 169.5, 163.1, 132.1, 129.8, 121.1 (q, ¹*J*_{CF} = 292.8 Hz), 79.0 (br), 24.4, 22.8, 4.05, 1.67 and 0.42 ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -75.4 (s) ppm. ²⁷Al NMR (104.2 MHz, CDCl₃): δ = 34.1 (s) ppm. ²⁹Si NMR (99.4 MHz, CD₂Cl₂): δ = 22.6 (s), 21.5 (s) and 9.7 (s) ppm. Anal. Calcd for C₃₁H₂₉BAINO₄Si₂F₃₆ (%): Calcd: C 29.61, H 2.32, N 1.11; Exp: C 29.35, H 2.52, N 1.39.

Synthesis of 4:

1b (20.0 mg, 0.061 mmol) and Na[B(C₆F₅)₄] (43.1 mg, 0.061 mmol) were mixed in 1 mL DCM. Afterward, the mixture was dried under vacuum and extracted with hexane. The collected hexane solution was then dried to give a colorless oil (18 mg, 90% yield). ¹H NMR (400.2 MHz, CD₂Cl₂): δ = 6.76 (s, 2 H), 2.28 (s, 3 H), 2.23 (s, 6 H), 0.88 (s, 3 H), 0.51 (br, 9 H) and 0.18 (br, 6 H) ppm. ¹¹B NMR (128.4 MHz, CD₂Cl₂): δ = 56.5 (br) and – 16.6 (s) ppm. ¹³C NMR (100.6 MHz, C₆D₆): δ = 144.8 (br), 136.6, 136.3, 128.2, 22.1, 21.1, 13.5 (br), 8.1 (br), 7.2, 4.8 and 4.4 (br) ppm. ²⁹Si NMR (99.4 MHz, C₆D₆): δ = 16.9 (s) and 8.2 (s) ppm.

Synthesis of [7][Al(OC(CF₃)₃)₄]

MesB(CN)TMP. A C₆D₆ solution consisting of **1a** (10.0 mg, 0.033 mmol) and TMSCN (6.14 μL, 0.049 mmol) was heated to reflux for 12 h. The reaction progress was monitored with NMR. After the complete consumption of **1a**, all volatiles were removed under vacuum to give **MesB(CN)TMP** as white solid, which was then recrystallized from pentane at – 30 °C (5.4 mg, 56% yield). ¹H NMR (400.2 MHz, CDCl₃): $\delta = 6.75$ (s, 2 H), 2.30 (s, 6 H), 2.24 (s, 3 H), 1.87 (t, 2 H, ³*J*_{HH} = 7.19 Hz), 1.80 (s, 6 H), 1.77 (m, 2 H), 1.65 (t, 2 H, ³*J*_{HH} = 7.4 Hz) and 1.14 (s, 6 H) ppm. ¹¹B NMR (128.4 MHz, CDCl₃): $\delta = 31.4$ (s) ppm. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 139.4$ (br), 137.3, 137.1, 128.8 (br), 127.7, 58.8, 58.3, 36.1 (d, ¹*J*_{CF} = 5.74 Hz), 33.3, 32.1, 22.7, 21.1 and 14.4 ppm. Anal. Calcd for C₁₉H₂₉BN₂ (%): Calcd: C 77.03, H 9.87, N 9.46; Exp: C 77.08, H 9.72, N 9.38.

[7][Al(OC(CF₃)₃)₄]. A freshly prepared [2][Al(OC(CF₃)₃)₄] generated from 1a (3.3 mg, 0.01 mmol) and Ag[Al(OC(CF₃)₃)₄] (11.6 mg, 0.01 mmol) was mixed with **MesB(CN)TMP** (3.2 mg, 0.01 mmol) in CDCl₃. After confirming the formation of [7][Al(OC(CF₃)₃)₄] with ¹H NMR, all volatiles were removed to give white solid, which were washed with 1 mL hexane. Crystalline products were obtained by diffusion pentane into a CHCl₃ solution of [7][Al(OC(CF₃)₃)₄] at – 30 °C (11.8 mg, 77% yield). ¹H NMR (400.2 MHz, CDCl₃): δ = 6.87 (s, 2 H), 6.84 (s, 2 H), 2.31 (s, 3 H), 2.30 (s, 3 H)

H), 2.19 (s, 6 H), 2.16 (s, 6 H), 1.86 – 1.77 (m, 8 H), 1.72 – 1.66 (m, 4 H), 1.37 (s, 6 H), 1.29 (s, 6 H), 1.24 (s, 6 H) and 1.20 (s, 6 H) ppm. ¹¹B NMR (128.4 MHz, CDCl₃): δ = 29.6 (bs) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 141.0, 140.2, 137.6, 137.1, 134.2 (br), 132.7 (br), 128.8, 128.4, 121.1 (q, ¹*J*_{CF} = 292.8 Hz), 61.7, 59.9, 59.7, 58.9, 35.6, 35.16, 35.1, 34.7, 32.2, 32.0, 31.8, 22.6, 21.0 and 13.8 ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = – 75.4 (s) ppm. ²⁷Al NMR (104.2 MHz, CDCl₃): δ = 34.6 (s) ppm. Anal. Calcd for C₅₃H₅₈AlB₂N₃F₃₆O₄ (%): Calcd: C 41.51, H 3.81, N 2.74; Exp: C 41.73, H 3.69, N 2.85.

Generation of $[7]^+$ from reaction of $[2][Al(OC(CF_3)_3)_4]$ and TMSCN. In a J. Young's NMR tube, TMSCN (4.1 µL; 0.03 mmol) was mixed with $[2][Al(OC(CF_3)_3)_4]$ (40.5 mg; 0.03 mmol) in CDCl₃. The ¹H NMR spectra is consistent with that of $[7][Al(OC(CF_3)_3)_4]$.

2. Acidity determination with Gutmann-Beckett method

When $[\mathbf{2}][Al(OC(CF_3)_3)_4]$ reacts with an equimolar amount of Et₃PO, the corresponding Lewis adduct, Et₃PO- $[\mathbf{2}][Al(OC(CF_3)_3)_4]$, formed immediately. The coordination of base at $[\mathbf{2}]^+$ leads to splitting of the methyl proton signal of TMP to two singlets with the ¹¹B resonance shifted to 31.5 ppm. The ³¹P NMR signal detected at 91.3 ppm can be covered to an AN of 86.6. The Lewis acidity of $[\mathbf{2}][Al(OC(CF_3)_3)_4]$ is

lower than that of Cp*-substituted [Cp*-B-Mes]⁺ (AN = 104.5). Compared with B(C₆F₅)₃ (AN = 52.2) a commonly used boron Lewis acid catalyst, it is unambiguous that [2][Al(OC(CF₃)₃)₄] possesses much higher Lewis acidity than B(C₆F₅)₃. NMR data Et₃PO-[2][Al(OC(CF₃)₃)₄]: ¹H NMR (400.2 MHz, CDCl₃): δ = 6.19 (s, 2 H), 2.35 (s, 6 H), 2.31 (s, 3 H), 1.89 (m, 9 H) 1.81 (m, 4 H), 1.67 (m, 2 H), 1.54 (s, 6 H), 1.21 (m, 6 H) and 1.15 (s, 6 H) ppm. ¹¹B NMR (128.4 MHz, CDCl₃): δ = 31.5 (s) ppm. ³¹P NMR (162.0 MHz, CDCl₃): δ = 91.3 (s) ppm.

Lewis acid	³¹ P NMR ð	³¹ P NMR Δδ	Acceptor
	(ppm)	(ppm) ^a	number ^b
$B(C_{6}F_{5})_{3}$	75.7	23.6	52.2
[2][Al(OC(CF ₃) ₃) ₄]	91.3	39.2	86.6
$[Cp*-B^+-Mes][B(C_6F_5)_4]$	97.6	47.3	104.5

 Table S1. Gutmann-Beckett acidity determination result

^aEt₃PO : ${}^{31}P \delta = 52.1 \text{ ppm in CDCl}_3$; ${}^{b}AN = 2.21 \times \Delta \delta$.

3. Reactivity studies

The interconversion between [3][Al(OC(CF₃)₃)₄] and 4

As the conversion of $[3][Al(OC(CF_3)_3)_4]$ to **4** is accomplished through the addition of one equivalent of $[^nBu_4N]Cl$ in CD₂Cl₂, mixing an equimolar amount of **4** and Ag[Al(OC(CF_3)_3)_4] resulted in the formation of $[3][Al(OC(CF_3)_3)_4]$.

Figure S1. ¹H NMR spectra of the interconversion between $[3][Al(OC(CF_3)_3)_4]$ and 4 via chloride addition and abstraction in CD₂Cl₂.

Figure S2. ¹¹B NMR spectra of the interconversion between $[3][Al(OC(CF_3)_3)_4]$ and 4 via chloride addition and abstraction in CD₂Cl₂.

Reaction of [2][Al(OC(CF₃)₃)₄] and TMSCN

TMSCN (4.1 µL; 0.03 mmol) is added to [2][Al(OC(CF₃)₃)₄] (40.5 mg; 0.03 mmol) in CDCl₃ in a J. Young's NMR tube. The obtained ¹H NMR spectrum is consistent with that of [7][Al(OC(CF₃)₃)₄] (**Figure S3**). On the next day, crystalline solids of [TMS-CN-TMS][Al(OC(CF₃)₃)₄] formed at the bottom of the NMR tube were collected, dried under vacuum, and re-dissolved in CD₂Cl₂. ¹H NMR (400.2 MHz, DCM-*d*₂): $\delta = 0.74$ (s, 9 H) and 0.73 (s, 9 H) ppm. ¹⁹F NMR (376.5 MHz, DCM-*d*₂): $\delta = -76.6$ (s) ppm.

Figure S3. ¹H NMR spectra of $[7][Al(OC(CF_3)_3)_4]$ (top) and $[2][Al(OC(CF_3)_3)_4] + TMSCN$ (bottom).

Reaction of [2][Al(OC(CF₃)₃)₄] and acetophenone

Acetophenone (3.8 µL; 0.03 mmol) is added to [2][Al(OC(CF₃)₃)₄] (40.5 mg; 0.03 mmol) in CDCl₃ in a J. Young's NMR tube. The resulting reaction mixture was then quenched by adding diethyl ether, and purified by column chromatography. 1-Phenyl-1-meistylethylene was obtained as colorless oil in 82 % yield. ¹H NMR (400.2 MHz, CDCl₃): δ = 7.26 -7.21 (m, 5H), 6.89 (s, 2H), 5.93 (d, 1H, ²*J*_{HH} = 1.4 Hz), 5.07 (d, 1H, ²*J*_{HH} = 1.4 Hz), 2.29 (s, 3H) and 2.08 (s, 6H) ppm.

Figure S4. ¹H NMR spectra of 1-phenyl-1-mesityl ethylene (top) and the crude reaction mixture $[2][Al(OC(CF_3)_3)_4]$ + acetophenone (bottom).

Reaction of [2][Al(OC(CF₃)₃)₄] and Et₃SiH

Et₃SiH (5.2 μ L; 0.03 mmol) is added to [**2**][Al(OC(CF₃)₃)₄] (40.5 mg; 0.03 mmol) in CDCl₃ in a J. Young's NMR tube. As shown in Figure S5, no decomposition of [**2**]⁺ was identified, and Et₃SiH is converted to a new species which is assigned to (Et₃Si)₂.

Figure S5. ¹H NMR spectra of the crude reaction mixture $[2][Al(OC(CF_3)_3)_4]$ and Et₃SiH (top), $[2]^+$ (middle), and Et₃SiH (bottom).

4. Catalysis studies.

Catalytic cyanosilylation of ketones and aldehydes.

In the J. Young NMR tube, the substrate (0.28 mmol) and TMSCN (52.5 μ L, 0.42 mmol) are mixed into the CDCl₃ solution (0.4 mL). Catalyst [**2**][BAr^F] (13.3 mg, 0.014 mmol) was added to the mixed solution. The reaction was then monitored using ¹H NMR spectroscopy. Afterward, 0.04 mmol of naphthalene (50 μ L, 0.8 M in CDCl₃) was added to the J. Young NMR tube to determine the product yield.

$$a: R_1 = Ph, R_2 = Me$$

$$b: R_1 = 4-NO_2-Ph, R_2 = Me$$

$$c: R_1 = 4-CF_3-Ph, R_2 = Me$$

$$d: R_1 = 4-MeO-Ph, R_2 = Me$$

$$d: R_1 = 4-MeO-Ph, R_2 = Me$$

$$d: R_1 = R_2 = Ph$$

$$f: R_1 = R_2 = Ph$$

$$f: R_1 = R_2 = Ph$$

$$f: R_1 = R_2 = ipropyl$$

$$h: R_1 = R_2 = ethyl$$

$$i: R_1 = Ph, R_2 = H$$

$$f: R_1 = R_2 = Hyl$$

$$i: R_1 = Ph, R_2 = H$$

$$f: R_1 = R_2 = Hyl$$

$$i: R_1 = Ph, R_2 = H$$

$$f: R_1 = R_2 = Hyl$$

$$i: R_1 = R_2 = Hyl$$

$$i: R_1 = Ph, R_2 = H$$

$$f: R_1 = R_2 = Hyl$$

$$i: R_1 = R_2 = Hyl$$

$$i: R_1 = Ph, R_2 = H$$

$$f: R_1 = R_2 = Hyl$$

$$i: R_1 = R_2 = Hyl$$

$$i: R_1 = 4-MeO-Ph, R_2 = H$$

$$f: R_1 = 4-MeO-Ph, R_2 = H$$

6a: 99% NMR yield. ¹H NMR (400.2 MHz, CDCl₃): δ = 7.56 - 7.60 (m, 2 H), 7.35 - 7.44 (m, 3 H), 1.89 (s, 3 H) and 0.22 (s, 9 H) ppm.

6b: 99% NMR yield. ¹H NMR (400.2 MHz, CDCl₃): $\delta = 8.26$ (d, 2 H, ³*J*_{HH} = 8.91 Hz),

7.75 (d, 2 H, ${}^{3}J_{HH} = 8.89$ Hz), 1.88 (s, 3 H) and 0.25 (s, 9 H) ppm.

6c: 99% NMR yield. ¹H NMR (400.2 MHz, CDCl₃): $\delta = 7.67 - 7.72$ (m, 4 H), 1.89 (s,

3 H) and 0.25 (s, 9 H) ppm.

6d: 99% NMR yield. ¹H NMR (400.2 MHz, CDCl₃): $\delta = 7.49$ (d, 2 H, ³*J*_{HH} = 8.4 Hz),

6.93 (d, 2 H, ${}^{3}J_{HH} = 9.0$ Hz), 3.83 (s, 3 H), 1.88 (s, 3 H) and 0.19 (s, 9 H) ppm.

6e: 99% NMR yield. ¹H NMR (400.2 MHz, CDCl₃): δ = 7.54 – 7.58 (m, 4 H), 7.35 – 7.43 (m, 6 H) and 0.20 (s, 9 H) ppm.

6f: 99% NMR yield. ¹H NMR (400.2 MHz, CDCl₃): δ = 1.52 (s, 3H), 1.04 (s, 9 H), 5.54 (s, 1 H) and 0.25 (s, 9 H) ppm.

6g: 99% NMR yield. ¹H NMR (400.2 MHz, CDCl₃): δ = 2.02 (set, 2 H, J = 6.79 Hz),
1.07 (d, 6 H, ³J_{HH} = 6.75 Hz), 1.00 (d, 6 H, ³J_{HH} = 6.63 Hz) and 0.26 (s, 9 H) ppm.
6h: 99% NMR yield. ¹H NMR (400.2 MHz, CDCl₃): δ = 1.77 (q, 4H, J = 7.42 Hz), 1.04 (t, 6 H, J = 7.35 Hz) and 0.25 (s, 9 H) ppm.

6i: 99% NMR yield. ¹H NMR (400.2 MHz, CDCl₃): δ = 7.5 – 7.53 (m, 3H), 7.43 – 7.45 (m, 2 H), 5.54 (s, 1 H) and 0.28 (s, 9 H) ppm.

6j: 99% NMR yield. ¹H NMR (400.2 MHz, CDCl₃): δ = 7.42 (d, 2 H, ³J_{HH} = 8.51 Hz),
6.96 (d, 2 H, ³J_{HH} = 8.73 Hz), 5.48 (s, 1 H), 3.83 (s, 3 H) and 0.25 (s, 9 H) ppm.
6k: 99% NMR yield. ¹H NMR (400.2 MHz, CDCl₃): δ = 8.27 (d, 2 H, ³J_{HH} = 8.64 Hz),
7.68 (d, 2H, ³J_{HH} = 8.68 Hz), 5.63 (s, 1 H) and 0.29 (s, 9 H) ppm.

Catalytic hydrosilylation of ketones and aldehydes by [2]⁺

In the J. Young NMR tube, the substrate (0.28 mmol) and Et₃SiH (44.7 μ L, 0.28 mmol) are mixed in CDCl₃ solution (0.4 mL). Then, catalyst [**2**][BAr^F] (13.3 mg, 0.014 mmol) was added to the mixture. The reaction was then monitored using ¹H NMR

spectroscopy. When no further change in ¹H NMR was observed, 0.04 mmol of naphthalene (50 μ L, 0.8 M in CDCl₃) was added to the J. Young's NMR tube to determine the product yield.

8a: 99% NMR yield. ¹H NMR (400 MHz, CDCl₃): δ = 7.34 – 7.44 (m, 5 H), 4.95 (q, 1 H, ³J_{HH} = 6.22 Hz), 1.51 (d, 3 H, ³J_{HH} = 6.52 Hz), 1.00 (t, 9 H, ³J_{HH} = 7.92 Hz) and 0.61 – 0.69 (m, 6 H) ppm.

8b: 99% NMR yield. ¹H NMR (400.2 MHz, CDCl₃): $\delta = 8.20$ (d, 2 H, ³*J*_{HH} = 8.72 Hz), 7.54 (d, 2 H, ³*J*_{HH} = 8.69 Hz), 4.99 (q, 1 H, ³*J*_{HH} = 6.23 Hz), 1.46 (d, 3 H, ³*J*_{HH} = 6.29 Hz), 0.95 (t, 9 H, ³*J*_{HH} = 7.67 Hz) and 0.58 – 0.66 (m, 6 H) ppm.

8c: 99% NMR yield. ¹H NMR (400.2 MHz, CDCl₃): $\delta = 7.62$ (d, 2 H, ³*J*_{HH} = 8.37 Hz), 7.51 (d, 2 H, ³*J*_{HH} = 8.48 Hz), 4.98 (q, 1 H, ³*J*_{HH} = 6.4 Hz), 1.48 (d, 3 H, ³*J*_{HH} = 5.94 Hz), 0.98 (t, 9 H, ³*J*_{HH} = 8.18 Hz) and 0.61 – 0.69 (m, 6 H) ppm.

9d: 28% NMR yield. ¹H NMR (400.2 MHz, CDCl₃): δ = 7.15 (d, 2 H, ³*J*_{HH} = 8.52 Hz), 6.87 (d, 2 H, ³*J*_{HH} = 8.75 Hz), 3.81 (s, 3 H), 1.25 (t, 3 H, ³*J*_{HH} = 7.48 Hz) and 0.85 (t, 2 H, ³*J*_{HH} = 7.41 Hz) ppm. **9e**: 51.3% NMR yield. ¹H NMR (400.2 MHz, CDCl₃): δ = 7.34 – 7.38 (m, 4 H), 7.24 – 7.3 (m, 6 H) and 4.06 (s, 2 H) ppm.

8f: 93.9% NMR yield. ¹H NMR (400.2 MHz, CDCl₃): $\delta = 3.5$ (q, 1 H, ³*J*_{HH} = 6.68 Hz), 1.09 (d, 3 H, ³*J*_{HH} = 5.93 Hz), 1.01 (t, 9 H, ³*J*_{HH} = 7.71 Hz), 0.89 (s, 9 H) and 0.63 (q, 6 H, ³*J*_{HH} = 7.89 Hz) ppm.

8g: 71.9% NMR yield. ¹H NMR (400.2 MHz, CDCl₃): $\delta = 3.20$ (t, 1 H, ³*J*_{HH} = 4.99 Hz), 1.74 - 1.82 (m, 2 H), 1.02 (t, 9 H, ³*J*_{HH} = 8.01 Hz), 0.92 (d, 6 H, ³*J*_{HH} = 2.37 Hz), 0.90 (d, 6 H, ³*J*_{HH} = 2.29 Hz) and 0.67 (q, 6 H, ³*J*_{HH} = 7.79 Hz) ppm.

8h: 99% NMR yield. ¹H NMR (400.2 MHz, CDCl₃): $\delta = 3.56$ (quin, 1 H, ³*J*_{HH} = 5.78 Hz), 1.45 – 1.55 (m, 4 H), 1.01 (t, 9 H, ³*J*_{HH} = 7.78 Hz), 0.91 (d, 6 H, ³*J*_{HH} = 7.53 Hz) and 0.64 (q, 6 H, ³*J*_{HH} = 7.98 Hz) ppm.

8i: 99% NMR yield. ¹H NMR (400.2 MHz, CDCl₃): $\delta = 7.39 - 7.45$ (m, 5 H), 4.83 (s, 2 H), 1.07 (t, 9 H, ${}^{3}J_{HH} = 7.88$ Hz) and 0.75 (q, 6 H, ${}^{3}J_{HH} = 7.81$ Hz) ppm.

8j: 49.6% NMR yield. ¹H NMR (400.2 MHz, CDCl₃): δ = 7.31 (d, 2 H, ³*J*_{HH} = 8.44 Hz), 6.92 (d, 2 H, ³*J*_{HH} = 7.84 Hz), 4.72 (s, 2 H), 3.83 (s, 3. H), 1.03 (m, 9 H) and 0.70 (q, 6 H, ³*J*_{HH} = 7.83 Hz) ppm.

8k: 99% NMR yield. ¹H NMR (400.2 MHz, CDCl₃): $\delta = 8.21$ (d, 2 H, ³*J*_{HH} = 8.86 Hz), 7.53 (d, 2 H, ³*J*_{HH} = 7.86 Hz), 4.86 (s, 2 H), 1.03 (t, 9 H, *J* = 7.61 Hz) and 0.71 (q, 6 H, ³*J*_{HH} = 7.86 Hz) ppm.

5. Crystal Data.

Crystallographic data collections were carried out with an Oxford Gemini Duo system diffractometer with graphite-monochromated Mo K α radiation (150 K, λ = 0.71073 Å). Data were all collected at 150(2) K. Structures were solved by the direct method and refined by least-square cycles. All calculations were performed using the SHELXTL-97 package. Crystallographic data have been deposited at the Cambridge Crystallographic Data Center with deposition number of CCDC 2120763 (1a), CCDC 2120765 (1b), and CCDC 2120764 ([3][Al(OC(CF₃)₃)₄]).

Figure S6: Molecular structure of compound **1a**. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are set at 50% probability. Selected bond lengths [Å] and angles [°]: Cl(1)-B(1) 1.839(3), N(1)-B(1) 1.402(3), N(1)-C(10) 1.521(3), N(1)-C(14) 1.533(3), B(1)-C(1) 1.591(3), B(1)-N(1)-C(10), 121.74(19), B(1)-N(1)-C(14) 122.14(18), C(10)-N(1)-C(14) 116.12(17), N(1)-B(1)-C(1) 130.7(2), N(1)-B(1)-Cl(1) 121.49(18), C(1)-B(1)-Cl(1) 107.81(16).

· · ·	· · · · · · · · · · · · · · · · · · ·	
Identification code	ic20807	
Empirical formula	C18 H29 B Cl N	
Formula weight	305.68	
Crystal system	Monoclinic	
Space group	P21/c	
Unit cell dimensions	a = 11.2578(14) Å	<i>α</i> = 90°.
	b = 13.1467(15) Å	β= 106.814(12)°.
	c = 12.4351(15) Å	$\gamma = 90^{\circ}$.
Volume	1761.8(4) Å ³	
Ζ	4	
F(000)	664	
Density (calculated)	1.152 Mg/m ³	
Wavelength	0.71073 Å	
Cell parameters reflections used	3600	
Theta range for Cell parameters	4.0340 to 29.8370°.	
Absorption coefficient	0.211 mm ⁻¹	
Temperature	100(2) K	
Crystal size	$0.20 \ x \ 0.20 \ x \ 0.15 \ mm^3$	
Diffractometer	Xcalibur, Atlas, Gemini	
Absorption correction	Semi-empirical from equivalent	its
Max. and min. transmission	1.00000 and 0.91888	
No. of measured reflections	9249	
No. of independent reflections	4047 [R(int) = 0.0408]	
No. of observed [I>2_igma(I)]	3090	
Completeness to theta = 25.242°	99.8 %	
Theta range for data collection	3.099 to 27.497°.	
Final R indices [I>2sigma(I)]	R1 = 0.0634, wR2 = 0.1751	
R indices (all data)	R1 = 0.0821, wR2 = 0.1934	
Goodness-of-fit on F^2	1.017	
No. of reflections	4047	
No. of parameters	190	
No. of restraints	0	
Largest diff. peak and hole	0.471 and -0.570 e.Å ⁻³	

Table S2. Crystal data and experimental details for 1a (ic20807)

Figure S7. Molecular structure of compound **1b**. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are set at 50% probability. Selected bond lengths [Å] and angles [°]: B(1)-N(1) 1.4076(18), B(1)-C(1) 1.5679(19), B(1)-Cl(1) 1.8214(14), Si(1)-N(1) 1.7865(11), Si(2)-N(1) 1.7868(11), N(1)-B(1)-C(1) 128.49(11), N(1)-B(1)-Cl(1) 119.51(10), C(1)-B(1)-Cl(1) 111.98(9), B(1)-N(1)-Si(1) 121.65(9), B(1)-N(1)-Si(2) 119.28(9), Si(1)-N(1)-Si(2) 119.05(6).

-		
Identification code	ic20564	
Empirical formula	C15 H29 B Cl N Si2	
Formula weight	325.83	
Temperature	200(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P21/c	
Unit cell dimensions	a = 8.7219(3) Å	<i>α</i> = 90°.
	b = 13.0132(4) Å	β= 91.2092(11)°.
	c = 17.0764(6) Å	$\gamma = 90^{\circ}$.
Volume	1937.74(11) Å ³	
Ζ	4	
Density (calculated)	1.117 Mg/m ³	
Absorption coefficient	0.313 mm ⁻¹	
F(000)	704	
Crystal size	0.283 x 0.273 x 0.175 mm ³	
Theta range for data collection	1.968 to 29.997°.	
Index ranges	-12<=h<=12, -18<=k<=18, -24	-<=1<=23
Reflections collected	17559	
Independent reflections	5643 [R(int) = 0.0299]	
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.9281 and 0.8280	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	5643 / 0 / 190	
Goodness-of-fit on F^2	1.035	
Final R indices [I>2sigma(I)]	R1 = 0.0389, wR2 = 0.1105	
R indices (all data)	R1 = 0.0456, $wR2 = 0.1165$	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.393 and -0.372 e.Å ⁻³	

Table S3. Crystal data and structure refinement for 1b (ic20564).

Figure S8. Molecular structure of compound [**3**][Al(OC(CF₃)₃)₄]. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are set at 50% probability. Selected bond lengths [Å] and angles [°]: Si(1)-N(1) 1.717(6), Si(1)-C(2) 1.844(11), Si(1)-C(3) 1.855(12), Si(1)-C(7) 2.040(7), Si(1)-B(1) 2.296(9), Si(2)-N(1) 1.783(6), Si(2)-C(4) 1.840(9), Si(2)-C(5) 1.855(9), Si(2)-C(6) 1.859(10), B(1)-N(1) 1.417(10), B(1)-C(1) 1.544(11), B(1)-C(7) 1.666(10), N(1)-Si(1)-C(2) 116.3(5), N(1)-Si(1)-C(3) 116.9(5), C(2)-Si(1)-C(3) 112.5(7), N(1)-Si(1)-C(7) 82.7(3), C(2)-Si(1)-C(7) 111.9(5), C(3)-Si(1)-C(7) 13.1(4), N(1)-Si(1)-C(7) 82.7(3), C(2)-Si(1)-C(7) 111.9(5), C(3)-Si(1)-C(7) 13.1(4), N(1)-Si(1)-B(1) 38.0(3), C(2)-Si(1)-B(1) 122.5(6), C(3)-Si(1)-B(1) 124.9(5), C(7)-Si(1)-B(1) 44.7(3), N(1)-Si(2)-C(4) 110.5(4), N(1)-Si(2)-C(5) 107.9(4), C(4)-Si(2)-C(5) 110.6(4), N(1)-Si(2)-C(6) 106.1(4), C(4)-Si(2)-C(6) 111.4(5), C(5)-Si(2)-C(6) 110.2(6), N(1)-B(1)-C(1) 131.8(7), N(1)-B(1)-C(7) 107.7(6), C(1)-B(1)-C(7) 120.4(6), N(1)-B(1)-C(1) 131.8(7), N(1)-B(1)-C(7) 107.7(6), C(1)-B(1)-C(7) 120.4(6), N(1)-B(1)-Si(1) 48.3(3), C(1)-B(1)-Si(1) 177.8(6), C(7)-B(1)-Si(1) 59.5(3), B(1)-N(1)-Si(1) 93.7(4), B(1)-N(1)-Si(2) 134.8(5), Si(1)-N(1)-Si(2) 131.5(4), B(1)-C(7)-Si(1) 75.8(4)

Identification code	ic20708	
Empirical formula	C39 H29 A12 B F55 N O6 Si2	
Formula weight	1773.58	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P212121	
Unit cell dimensions	a = 14.8299(5) Å	α=90°.
	b = 17.7594(6) Å	β= 90°.
	c = 23.7368(8) Å	$\gamma = 90^{\circ}$.
Volume	6251.6(4) Å ³	
Ζ	4	
Density (calculated)	1.884 Mg/m ³	
Absorption coefficient	0.294 mm ⁻¹	
F(000)	3488	
Crystal size	0.356 x 0.074 x 0.064 mm ³	
Theta range for data collection	2.064 to 26.436°.	
Index ranges	-16<=h<=18, -22<=k<=20, -25<=l<=29	
Reflections collected	28151	
Independent reflections	12829 [R(int) = 0.0391]	
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.9705 and 0.7601	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	12829 / 58 / 966	
Goodness-of-fit on F^2	1.046	
Final R indices [I>2sigma(I)]	R1 = 0.0766, wR2 = 0.2002	
R indices (all data)	R1 = 0.0961, wR2 = 0.2183	
Absolute structure parameter	0.6(3)	
Extinction coefficient	n/a	
Largest diff. peak and hole	1.029 and -0.587 e.Å ⁻³	

Table S4. Crystal data and structure refinement for [**3**][Al(OC(CF₃)₃)₄] (ic20708).

Figure S9. Molecular structure of [7][Al(OC(CF₃)₃)₄]. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are set at 50% probability. As high-quality crystals of [7][Al(OC(CF₃)₃)₄] could not be obtained, no bond distances and angles is discussed.

5 1		···· /
Identification code	ic20861	
Empirical formula	C53 H58 Al B2 F36 N3 O4	
Formula weight	1533.62	
Crystal system	Monoclinic	
Space group	C2/c	
Unit cell dimensions	a = 32.938(5) Å	α= 90°.
	b = 14.8849(12) Å	β= 121.58(2)°.
	c = 30.752(7) Å	$\gamma = 90^{\circ}$.
Volume	12844(4) Å ³	
Ζ	8	
F(000)	6208	
Density (calculated)	1.586 Mg/m ³	
Wavelength	0.71073 Å	
Cell parameters reflections used	5519	
Theta range for Cell parameters	3.5720 to 25.1070°.	
Absorption coefficient	0.183 mm ⁻¹	
Temperature	100(2) K	
Crystal size	0.15 x 0.10 x 0.05 mm ³	
Diffractometer	Xcalibur, Atlas, Gemini	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	1.00000 and 0.32004	
No. of measured reflections	26472	
No. of independent reflections	14660 [R(int) = 0.0751]	
No. of observed [I>2_igma(I)]	7808	
Completeness to theta = 25.242°	99.7 %	
Theta range for data collection	3.101 to 27.499°.	
Final R indices [I>2sigma(I)]	R1 = 0.2453, wR2 = 0.5071	
R indices (all data)	R1 = 0.3182, wR2 = 0.5396	
Goodness-of-fit on F ²	2.505	
No. of reflections	14660	
No. of parameters	935	
No. of restraints	486	
Largest diff. peak and hole	1.981 and -1.126 e.Å ⁻³	

Table S5. Crystal data and experimental details for [7][Al(OC(CF₃)₃)₄] (ic20861).

NMR Spectra

Figure S13. ¹H NMR spectrum of 1b in C₆D₆.

Figure S14. ¹¹B NMR spectrum of 1b in C₆D₆.

Figure S17. ¹H NMR spectrum of [2][Al(OC(CF₃)₃)₄] in CDCl₃.

--75.42

Figure S20. ¹⁹F NMR spectrum of $[2][Al(OC(CF_3)_3)_4]$ in CDCl₃.

Figure S22. ¹H NMR spectrum of [3][Al(OC(CF₃)₃)₄] in CD₂Cl₂.

Figure S25. ¹⁹F NMR spectrum of $[3][Al(OC(CF_3)_3)_4]$ in CD₂Cl₂.

Figure S26. ²⁷Al NMR spectrum of [3][Al(OC(CF₃)₃)₄] in CD₂Cl₂.

Figure S31. ²⁹Si NMR spectrum of 4 in C_6D_6 .

Figure S32. ¹H NMR spectrum of MesB(CN)-TMP in CDCl₃.

Figure S36. ¹¹B NMR spectrum of [7][Al(OC(CF₃)₃)₄] in CDCl₃.

--75.45

Figure S38. ¹⁹F NMR spectrum of [7][Al(OC(CF₃)₃)₄] in CDCl₃.

-34.64

Figure S43. Reaction of TMSCN with [2][Al(OC(CF₃)₃)₄] by crude ¹H NMR spectroscopy.

Figure S44. ¹H NMR spectrum of [TMS-CN-TMS][Al(OC(CF₃)₃)₄] in DCM-*d*₂.

 $< 0.74 \\ 0.73$

60

Figure S46. ²⁷Al NMR spectrum of [TMS-CN-TMS][Al(OC(CF₃)₃)₄] in DCM-*d*₂.

Figure S47. Crude ¹H NMR spectrum consisting of 6a in CDCl₃.

Figure S48. Crude ¹H NMR spectrum consisting of 6b in CDCl₃.

Figure S49. Crude ¹H NMR spectrum consisting of 6c in CDCl₃.

Figure S51.Crude ¹H NMR spectrum consisting of 6e in CDCl₃.

Figure S52. Crude ¹H NMR spectrum consisting of 6f in CDCl₃.

Figure S53. Crude ¹H NMR spectrum consisting of 6g in CDCl₃.

Figure S55. Crude ¹H NMR spectrum consisting of 6i in CDCl₃.

Figure S58. Crude ¹H NMR spectrum consisting of 8a in CDCl₃.

Figure S59. Crude ¹H NMR spectrum consisting of 8b in CDCl₃.

Figure S61. Crude ¹H NMR spectrum consisting of 9d in CDCl₃.

Figure S63. Crude ¹H NMR spectrum consisting of 8f in CDCl₃.

Figure S64. Crude ¹H NMR spectrum consisting of 8g in CDCl₃.

Figure S66. Crude ¹H NMR spectrum consisting of 8i in CDCl₃.

Figure S67. Crude ¹H NMR spectrum consisting of 8j in CDCl₃.

