Supporting Information

for

$\left[\right.$ Mes-B-TMP ${ }^{+}$Borinium Cation Initiated Cyanosilylation and Catalysed Hydrosilylation of Ketones and Aldehydes Po-Han Chen, Ching-Pei Hsu, Hsi-Ching Tseng, Yi-Hung Liu and Ching-Wen Chiu
Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, Taiwan 10617

1. Synthesis:

General information.

All the reactions are carried out by using Schlenk system or glovebox under nitrogen atmosphere. Dichloromethane, ether, and toluene were purified by the molecular sieves packed solvent purification system. $\mathrm{Et}_{3} \mathrm{SiH}$ were dried by molecular sieves and distilled under nitrogen. Chlorobenzene, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, and CDCl_{3} were dried by $\mathrm{P}_{2} \mathrm{O}_{5}$ and distilled under nitrogen. Pentane and hexane were dried by Na / K alloy and distilled under nitrogen. TMSCN and silver tetrakis(perfluoro-tert-butoxy) aluminate $\left(\mathrm{Ag}\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right]_{4}\right)\right.$ were purchased and used without further purification. NMR spectra were collected by using Bruker Advance III-400 (${ }^{1} \mathrm{H}: 400.2 \mathrm{MHz},{ }^{11} \mathrm{~B}: 128.4$ $\mathrm{MHz},{ }^{13} \mathrm{C}: 100.6 \mathrm{MHz},{ }^{19} \mathrm{~F}: 376.5 \mathrm{MHz},{ }^{27} \mathrm{Al}: 104.2 \mathrm{MHz},{ }^{29} \mathrm{Si}: 99.4 \mathrm{MHz},{ }^{31} \mathrm{P}: 162.0$ MHz).

Synthesis of 1a

A solution of $\mathrm{MesBCl}_{2}(4.00 \mathrm{~g}, 0.02 \mathrm{~mol})$ in toluene $(20 \mathrm{~mL})$ was transferred into the suspension of TMPLi $(2.93 \mathrm{~g}, 0.02 \mathrm{~mol})$ in hexane $(50 \mathrm{~mL})$, and the mixture was heated to $110{ }^{\circ} \mathrm{C}$ for 4 days. Afterward, the orange-beige opaque solution was filtered through celite to remove solid and the collected liquid phase was dried under vacuum to give an orange oil. Colorless crystalline products were then obtained after sublimation ($1.20 \mathrm{~g}, 20 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.73(\mathrm{~s}, 2 \mathrm{H}), 2.32$
(s, 6 H$), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.86\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.80 \mathrm{~Hz}\right), 1.75(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 6 \mathrm{H}), 1.66$ $\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.80 \mathrm{~Hz}\right)$ and $1.15(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{11} \mathrm{~B} \operatorname{NMR}\left(128.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=39.3$ (s) ppm. ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}): $\delta=142.8(\mathrm{br}), 136.8,136.6,127.6,57.9,57.6$, 32.3, 31.5, 22.9, 21.0 and 14.7 ppm . Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{BNCl}$ (\%): Calcd: C 70.72, H 9.56, N 4.58; Exp: C 71.76, H 9.50, N 4.29.

Synthesis of 1b:

A solution of $\mathrm{MesBCl}_{2}(530.0 \mathrm{mg}, 2.63 \mathrm{mmol})$ in hexane $(20 \mathrm{~mL})$ was transferred into the suspension of LiHMDS $(441.0 \mathrm{mg}, 2.63 \mathrm{mmol})$ in hexane $(50 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture was slowly warmed to room temperature and stirred for 2 h to give an offwhite opaque solution. The reaction mixture was filtered through celite to remove LiCl and dried under vacuum to give white solids, which were re-crystallized from a concentrated pentane solution at $-30^{\circ} \mathrm{C}\left(818 \mathrm{mg}, 95 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR (400.2 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=6.65(\mathrm{~s}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 0.49(\mathrm{br}, 9 \mathrm{H})$ and $-0.04(\mathrm{br}, 9 \mathrm{H})$ ppm. ${ }^{11}$ B NMR ($128.4 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=44.8$ (s) ppm. ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): δ $=140.7$ (br), 137.6, 137.3, 128.2, 127.7, 22.4, 21.2, 4.7 (br) and 4.1 (br) ppm. ${ }^{29} \mathrm{Si}$ NMR (99.4 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=8.7$ (s) ppm. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{BNSi}_{2} \mathrm{Cl}$ (\%): Calcd: C 55.29, H 8.97, N 4.30; Exp: C 55.87, H 9.01, N 4.44.

Synthesis of $[2]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$:

1a $(10.0 \mathrm{mg}, 0.033 \mathrm{mmol})$ was mixed with $\mathrm{Ag}\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right](35.2 \mathrm{mg}, 0.033$ mmol) in 0.5 mL of CDCl_{3} to give a pink solution with brownish solid precipitates. After filtered off the solid, the solution was transferred to a J Young's NMR tube for characterization. Afterward, solvent was removed under vacuum to give a pink oil (35.6 $\mathrm{mg}, 88 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.14(\mathrm{~s}, 2 \mathrm{H}), 2.63(\mathrm{~s}, 6 \mathrm{H}), 2.44$ (s, $3 \mathrm{H}), 1.89(\mathrm{~m}, 2 \mathrm{H}), 1.74\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=5.78 \mathrm{~Hz}\right)$ and $1.61(\mathrm{~s}, 12 \mathrm{H}) \mathrm{ppm} .{ }^{11} \mathrm{~B} \mathrm{NMR}$ (128.4 MHz, CDCl_{3}): $\delta=55.5$ (br) ppm. ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=156.3$, 153.3, 130.1, $121.1\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=292.8 \mathrm{~Hz}\right), 114.1(\mathrm{br}), 60.4,37.4,30.9,23.1,22.7$ and $16.2 \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR ($376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-75.4$ (s) ppm. ${ }^{27} \mathrm{Al}$ NMR (104.2 MHz , CDCl_{3}): $\delta=34.1$ (s) ppm. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{29} \mathrm{BAlNO}_{4} \mathrm{~F}_{36}$ (\%): Calcd: C 33.0, H 2.36, N 1.13; Exp: C 32.71, H 2.48, N 1.14 .

Synthesis of $[3]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$:

$\mathbf{1 b}(20.0 \mathrm{mg}, 0.061 \mathrm{mmol})$ and $\mathrm{Ag}\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right](65.9 \mathrm{mg}, 0.061 \mathrm{mmol})$ were mixed in 0.5 mL of DCM to give a pink solution with brownish solids in the bottom. The solution was filtered and dried under vacuum to yield a pink oil, which was redissolved in chlorobenzene. Light brown crystals of $[3]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ were obtained after diffusion of hexane in to the chlorobenzene solution of $[3]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ at
room temperature. Crystalline solids were collected and dried under vacuum (35.5 mg , 46% yield). ${ }^{1} \mathrm{H}$ NMR ($400.2 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=7.35(\mathrm{~s}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{~s}, 6$ H), $0.79(\mathrm{~s}, 3 \mathrm{H}), 0.64(\mathrm{~s}, 6 \mathrm{H})$ and $0.38(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{11} \mathrm{~B}$ NMR (128.4 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $\delta=49.5(\mathrm{~s})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=169.5,163.1,132.1,129.8,121.1$ (q, ${ }^{1} J_{\mathrm{CF}}=292.8 \mathrm{~Hz}$), 79.0 (br), 24.4, 22.8, 4.05, 1.67 and $0.42 \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR (376 MHz , CDCl_{3}): $\delta=-75.4$ (s) ppm. ${ }^{27} \mathrm{Al}$ NMR (104.2 MHz, CDCl_{3}): $\delta=34.1$ (s) ppm. ${ }^{29} \mathrm{Si}$ NMR (99.4 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=22.6$ (s), 21.5 (s) and 9.7 (s) ppm. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{BAlNO}_{4} \mathrm{Si}_{2} \mathrm{~F}_{36}$ (\%): Calcd: C 29.61, H 2.32, N 1.11; Exp: C 29.35, H 2.52, N 1.39.

Synthesis of 4:

1b (20.0 mg, 0.061 mmol$)$ and $\mathrm{Na}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](43.1 \mathrm{mg}, 0.061 \mathrm{mmol})$ were mixed in 1 mL DCM. Afterward, the mixture was dried under vacuum and extracted with hexane. The collected hexane solution was then dried to give a colorless oil (18 mg , 90% yield). ${ }^{1} \mathrm{H}$ NMR ($400.2 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=6.76(\mathrm{~s}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 6$ H), $0.88(\mathrm{~s}, 3 \mathrm{H}), 0.51(\mathrm{br}, 9 \mathrm{H})$ and $0.18(\mathrm{br}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{11} \mathrm{~B} \mathrm{NMR}\left(128.4 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $\delta=56.5(\mathrm{br})$ and $-16.6(\mathrm{~s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=144.8(\mathrm{br}), 136.6$, 136.3, 128.2, 22.1, 21.1, 13.5 (br), 8.1 (br), 7.2, 4.8 and 4.4 (br) ppm. ${ }^{29}$ Si NMR (99.4 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=16.9$ (s) and 8.2 (s) ppm.

Synthesis of [7][Al(OC(CF $\left.\left.\mathbf{3}_{3}\right)_{4}\right]$

$\operatorname{MesB}(\mathbf{C N}) \mathbf{T M P}$. A $\mathrm{C}_{6} \mathrm{D}_{6}$ solution consisting of $\mathbf{1 a}(10.0 \mathrm{mg}, 0.033 \mathrm{mmol})$ and TMSCN $(6.14 \mu \mathrm{~L}, 0.049 \mathrm{mmol})$ was heated to reflux for 12 h . The reaction progress was monitored with NMR. After the complete consumption of 1a, all volatiles were removed under vacuum to give $\operatorname{Mes} \mathbf{B}(\mathbf{C N}) \mathbf{T M P}$ as white solid, which was then recrystallized from pentane at $-30^{\circ} \mathrm{C}\left(5.4 \mathrm{mg}, 56 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR (400.2 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=6.75(\mathrm{~s}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.87\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.19 \mathrm{~Hz}\right), 1.80$ $(\mathrm{s}, 6 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 1.65\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.4 \mathrm{~Hz}\right)$ and $1.14(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{11} \mathrm{~B}$ NMR (128.4 MHz, CDCl_{3}): $\delta=31.4$ (s) ppm. ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100.6} \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=139.4$ (br), 137.3, 137.1, 128.8 (br), 127.7, 58.8, 58.3, $36.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=5.74 \mathrm{~Hz}\right), 33.3,32.1,22.7$, 21.1 and 14.4 ppm. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{BN}_{2}$ (\%): Calcd: C 77.03, H 9.87, N 9.46; Exp: C 77.08, H 9.72, N 9.38.
$[7]\left[\mathbf{A l}\left(\mathbf{O C}\left(\mathbf{C F}_{3}\right)_{3}\right)_{4}\right]$. A freshly prepared $[\mathbf{2}]\left[\mathrm{Al}\left(\mathrm{OC}_{\left.\left.\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right] \text { generated from 1a }}^{\mathbf{1 a}}\right.\right.$ (3.3 mg, 0.01 mmol$)$ and $\mathrm{Ag}\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right](11.6 \mathrm{mg}, 0.01 \mathrm{mmol})$ was mixed with $\operatorname{MesB}(\mathbf{C N}) \mathbf{T M P}(3.2 \mathrm{mg}, 0.01 \mathrm{mmol})$ in CDCl_{3}. After confirming the formation of $[7]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ with ${ }^{1} \mathrm{H}$ NMR, all volatiles were removed to give white solid, which were washed with 1 mL hexane. Crystalline products were obtained by diffusion pentane into a CHCl_{3} solution of $[7]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ at $-30^{\circ} \mathrm{C}(11.8 \mathrm{mg}, 77 \%$ yield $)$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.87(\mathrm{~s}, 2 \mathrm{H}), 6.84(\mathrm{~s}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3$
H), 2.19 (s, 6 H), 2.16 (s, 6 H), 1.86 - 1.77 (m, 8 H), 1.72 - 1.66 (m, 4 H), 1.37 (s, 6 H), $1.29(\mathrm{~s}, 6 \mathrm{H}), 1.24(\mathrm{~s}, 6 \mathrm{H})$ and $1.20(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{11} \mathrm{~B}$ NMR ($\left.128.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 29.6 (bs) ppm. ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=141.0,140.2,137.6,137.1,134.2$ (br), 132.7 (br), 128.8, 128.4, $121.1\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=292.8 \mathrm{~Hz}\right), 61.7,59.9,59.7,58.9,35.6$, 35.16, 35.1, 34.7, 32.2, 32.0, 31.8, 22.6, 21.0 and $13.8 \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR (376 MHz , CDCl_{3}): $\delta=-75.4$ (s) ppm. ${ }^{27} \mathrm{Al} \mathrm{NMR}\left(104.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=34.6$ (s) ppm. Anal. Calcd for $\mathrm{C}_{53} \mathrm{H}_{58} \mathrm{AlB}_{2} \mathrm{~N}_{3} \mathrm{~F}_{36} \mathrm{O}_{4}$ (\%): Calcd: C 41.51, H 3.81, N 2.74; Exp: C 41.73, H 3.69, N 2.85 .

Generation of $[7]^{+}$from reaction of $[2]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ and TMSCN. In a J. Young's NMR tube, TMSCN $(4.1 \mu \mathrm{~L} ; 0.03 \mathrm{mmol})$ was mixed with $[2]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ ($40.5 \mathrm{mg} ; 0.03 \mathrm{mmol}$) in CDCl_{3}. The ${ }^{1} \mathrm{H}$ NMR spectra is consistent with that of $[7]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$.

2. Acidity determination with Gutmann-Beckett method

When $[2]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ reacts with an equimolar amount of $\mathrm{Et}_{3} \mathrm{PO}$, the corresponding Lewis adduct, $\mathrm{Et}_{3} \mathrm{PO}-[2]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$, formed immediately. The coordination of base at $[2]^{+}$leads to splitting of the methyl proton signal of TMP to two singlets with the ${ }^{11} \mathrm{~B}$ resonance shifted to 31.5 ppm . The ${ }^{31} \mathrm{P}$ NMR signal detected at 91.3 ppm can be covered to an AN of 86.6. The Lewis acidity of $[2]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ is
lower than that of Cp^{*}-substituted $[\mathrm{Cp} *-\mathrm{B}-\mathrm{Mes}]^{+}(\mathrm{AN}=104.5)$. Compared with $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\mathrm{AN}=52.2)$ a commonly used boron Lewis acid catalyst, it is unambiguous that $[2]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ possesses much higher Lewis acidity than $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$. NMR data $\mathbf{E t}_{3} \mathbf{P O}-[\mathbf{2}]\left[\mathbf{A l}\left(\mathbf{O C}\left(\mathbf{C F}_{3}\right)_{3}\right)_{4}\right]:{ }^{1} \mathrm{H} \operatorname{NMR}\left(400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.19(\mathrm{~s}, 2 \mathrm{H})$, $2.35(\mathrm{~s}, 6 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~m}, 9 \mathrm{H}) 1.81(\mathrm{~m}, 4 \mathrm{H}), 1.67(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 6 \mathrm{H})$, $1.21(\mathrm{~m}, 6 \mathrm{H})$ and $1.15(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{11} \mathrm{~B} \mathrm{NMR}\left(128.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=31.5(\mathrm{~s}) \mathrm{ppm}$. ${ }^{31} \mathrm{P}$ NMR ($162.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=91.3$ (s) ppm.

Table S1. Gutmann-Beckett acidity determination result

Lewis acid	${ }^{31}$ P NMR $\boldsymbol{\delta}$	${ }^{31} \mathrm{P}$ NMR $\boldsymbol{\Delta V}^{\text {d }}$	Acceptor
	(ppm)	(ppm) ${ }^{\text {a }}$	number ${ }^{\text {b }}$
$\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$	75.7	23.6	52.2
[2][$\left.\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$	91.3	39.2	86.6
$\left[\mathrm{Cp}^{*}-\mathrm{B}^{+}-\mathrm{Mes}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$	97.6	47.3	104.5

${ }^{\mathrm{a}} \mathrm{Et}_{3} \mathrm{PO}:{ }^{31} \mathrm{P} \delta=52.1 \mathrm{ppm}$ in $\mathrm{CDCl}_{3} ;{ }^{\mathrm{b}} \mathrm{AN}=2.21 \times \Delta \delta$.

3. Reactivity studies

The interconversion between $[3]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ and 4

As the conversion of $[3]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ to $\mathbf{4}$ is accomplished through the addition of one equivalent of $\left[{ }^{n} \mathrm{Bu} 4 \mathrm{~N}\right] \mathrm{Cl}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, mixing an equimolar amount of 4 and $\mathrm{Ag}\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ resulted in the formation of $[3]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$.

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectra of the interconversion between $[3]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ and 4 via chloride addition and abstraction in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S2. ${ }^{11}$ B NMR spectra of the interconversion between $[3]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ and 4 via chloride addition and abstraction in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Reaction of $[2]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ and TMSCN

$\operatorname{TMSCN}(4.1 \mu \mathrm{~L} ; 0.03 \mathrm{mmol})$ is added to $[2]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right](40.5 \mathrm{mg} ; 0.03 \mathrm{mmol})$ in CDCl_{3} in a J. Young's NMR tube. The obtained ${ }^{1} \mathrm{H}$ NMR spectrum is consistent with that of $[7]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ (Figure S3). On the next day, crystalline solids of [TMS-$\mathrm{CN}-\mathrm{TMS}]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ formed at the bottom of the NMR tube were collected, dried under vacuum, and re-dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2} .{ }^{1} \mathrm{H}$ NMR ($400.2 \mathrm{MHz}, \mathrm{DCM}-d_{2}$): $\delta=0.74$ (s, 9 H) and $0.73(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR ($376.5 \mathrm{MHz}, \mathrm{DCM}-d_{2}$): $\delta=-76.6(\mathrm{~s}) \mathrm{ppm}$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectra of $[7]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ (top) and $[2]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]+$ TMSCN (bottom).

Reaction of $[2]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ and acetophenone

Acetophenone $(3.8 \mu \mathrm{~L} ; 0.03 \mathrm{mmol})$ is added to $[2]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right](40.5 \mathrm{mg} ; 0.03$ $\mathrm{mmol})$ in CDCl_{3} in a J . Young's NMR tube. The resulting reaction mixture was then quenched by adding diethyl ether, and purified by column chromatography. 1-Phenyl-1-meistylethylene was obtained as colorless oil in 82% yield. ${ }^{1} \mathrm{H}$ NMR (400.2 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.26-7.21(\mathrm{~m}, 5 \mathrm{H}), 6.89(\mathrm{~s}, 2 \mathrm{H}), 5.93\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J_{\mathrm{HH}}=1.4 \mathrm{~Hz}\right), 5.07(\mathrm{~d}, 1 \mathrm{H}$, $\left.{ }^{2} J_{\mathrm{HH}}=1.4 \mathrm{~Hz}\right), 2.29(\mathrm{~s}, 3 \mathrm{H})$ and $2.08(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$.

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectra of 1-phenyl-1-mesityl ethylene (top) and the crude reaction mixture $[2]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]+$ acetophenone (bottom).

Reaction of $[2]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ and $\mathrm{Et}_{3} \mathrm{SiH}$

$\mathrm{Et}_{3} \mathrm{SiH}(5.2 \mu \mathrm{~L} ; 0.03 \mathrm{mmol})$ is added to $[2]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right](40.5 \mathrm{mg} ; 0.03 \mathrm{mmol})$ in CDCl_{3} in a J. Young's NMR tube. As shown in Figure S5, no decomposition of [2] ${ }^{+}$was identified, and $\mathrm{Et}_{3} \mathrm{SiH}$ is converted to a new species which is assigned to $\left(\mathrm{Et}_{3} \mathrm{Si}\right)_{2}$.

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectra of the crude reaction mixture $[\mathbf{2}]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ and $\mathrm{Et}_{3} \mathrm{SiH}$ (top), $[2]^{+}$(middle), and $\mathrm{Et}_{3} \mathrm{SiH}$ (bottom).

4. Catalysis studies.

Catalytic cyanosilylation of ketones and aldehydes.

In the J. Young NMR tube, the substrate (0.28 mmol) and TMSCN $(52.5 \mu \mathrm{~L}, 0.42$ $\mathrm{mmol})$ are mixed into the CDCl_{3} solution $(0.4 \mathrm{~mL})$. Catalyst [2][BAr $\left.{ }^{\mathrm{F}}\right](13.3 \mathrm{mg}, 0.014$ mmol) was added to the mixed solution. The reaction was then monitored using ${ }^{1} \mathrm{H}$ NMR spectroscopy. Afterward, 0.04 mmol of naphthalene ($50 \mu \mathrm{~L}, 0.8 \mathrm{M} \mathrm{in} \mathrm{CDCl}_{3}$) was added to the J. Young NMR tube to determine the product yield.

5

$$
\begin{aligned}
& \text { a: } R_{1}=P h, R_{2}=M e \\
& \text { b: } R_{1}=4-\mathrm{NO}_{2}-\mathrm{Ph}, \mathrm{R}_{2}=\mathrm{Me} \\
& \mathrm{c}: \mathrm{R}_{1}=4-\mathrm{CF} F_{3}-\mathrm{Ph}, \mathrm{R}_{2}=\mathrm{Me} \\
& \mathrm{~d}: \mathrm{R}_{1}=4-\mathrm{MeO}-\mathrm{Ph}, \mathrm{R}_{2}=\mathrm{Me} \\
& \mathrm{e}: \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Ph} \\
& \mathrm{f}: \mathrm{R}_{1}=t \text {-butyl, } \mathrm{R}_{2}=\mathrm{Me} \\
& \mathrm{~g}: \mathrm{R}_{1}=\mathrm{R}_{2}=i-\text {-propyl } \\
& \mathrm{h}: \mathrm{R}_{1}=\mathrm{R}_{2}=\text { ethyl } \\
& \mathrm{i}: \mathrm{R}_{1}=\mathrm{Ph}, \mathrm{R}_{2}=\mathrm{H} \\
& \mathrm{j}: \mathrm{R}_{1}=4-\mathrm{MeO}-\mathrm{Ph}, \mathrm{R}_{2}=\mathrm{H} \\
& \mathrm{k}: \mathrm{R}_{1}=4-\mathrm{NO} \mathrm{O}_{2}-\mathrm{Ph}, \mathrm{R}_{2}=\mathrm{H}
\end{aligned}
$$

6a: 99% NMR yield. ${ }^{1} \mathrm{H}$ NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.56-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.35-$ $7.44(\mathrm{~m}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H})$ and $0.22(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.

6b: 99% NMR yield. ${ }^{1} \mathrm{H}$ NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.26\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.91 \mathrm{~Hz}\right)$, $7.75\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.89 \mathrm{~Hz}\right), 1.88(\mathrm{~s}, 3 \mathrm{H})$ and $0.25(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.

6c: 99% NMR yield. ${ }^{1} \mathrm{H}$ NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.67-7.72(\mathrm{~m}, 4 \mathrm{H}), 1.89(\mathrm{~s}$, $3 \mathrm{H})$ and $0.25(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.

6d: 99% NMR yield. ${ }^{1} \mathrm{H}$ NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.49\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.4 \mathrm{~Hz}\right)$, $6.93\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=9.0 \mathrm{~Hz}\right), 3.83(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H})$ and $0.19(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.

6e: 99% NMR yield. ${ }^{1} \mathrm{H}$ NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.54-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.35-$ $7.43(\mathrm{~m}, 6 \mathrm{H})$ and $0.20(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.

6f: 99% NMR yield. ${ }^{1} \mathrm{H}$ NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.52(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H})$, $5.54(\mathrm{~s}, 1 \mathrm{H})$ and $0.25(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.

6g: 99% NMR yield. ${ }^{1} \mathrm{H}$ NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.02$ (set, $2 \mathrm{H}, J=6.79 \mathrm{~Hz}$),
$1.07\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=6.75 \mathrm{~Hz}\right), 1.00\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=6.63 \mathrm{~Hz}\right)$ and $0.26(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.

6h: 99% NMR yield. ${ }^{1} \mathrm{H}$ NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.77(\mathrm{q}, 4 \mathrm{H}, J=7.42 \mathrm{~Hz}), 1.04$
$(\mathrm{t}, 6 \mathrm{H}, J=7.35 \mathrm{~Hz})$ and $0.25(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.

6i: 99% NMR yield. ${ }^{1} \mathrm{H}$ NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.5-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.45$
(m, 2 H$), 5.54(\mathrm{~s}, 1 \mathrm{H})$ and $0.28(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.

6j: 99\% NMR yield. ${ }^{1} \mathrm{H}$ NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.42\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.51 \mathrm{~Hz}\right)$,
$6.96\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.73 \mathrm{~Hz}\right), 5.48(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$ and $0.25(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.

6k: 99% NMR yield. ${ }^{1} \mathrm{H}$ NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.27\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.64 \mathrm{~Hz}\right)$,
$7.68\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.68 \mathrm{~Hz}\right), 5.63(\mathrm{~s}, 1 \mathrm{H})$ and $0.29(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.

Catalytic hydrosilylation of ketones and aldehydes by [2] ${ }^{+}$

In the J . Young NMR tube, the substrate $(0.28 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{SiH}(44.7 \mu \mathrm{~L}, 0.28$
mmol) are mixed in CDCl_{3} solution $(0.4 \mathrm{~mL})$. Then, catalyst [2][$\left.\mathrm{BAr}^{\mathrm{F}}\right](13.3 \mathrm{mg}, 0.014$ mmol) was added to the mixture. The reaction was then monitored using ${ }^{1} \mathrm{H}$ NMR
spectroscopy. When no further change in ${ }^{1} \mathrm{H}$ NMR was observed, 0.04 mmol of naphthalene ($50 \mu \mathrm{~L}, 0.8 \mathrm{M}$ in CDCl_{3}) was added to the J. Young's NMR tube to determine the product yield.

$$
\begin{aligned}
& \mathrm{a}: \mathrm{R}_{1}=\mathrm{Ph}, \mathrm{R}_{2}=\mathrm{Me} \\
& \mathrm{~b}: \mathrm{R}_{1}=4-\mathrm{NO}_{2}-\mathrm{Ph}, \mathrm{R}_{2}=\mathrm{Me} \\
& \mathrm{c}: \mathrm{R}_{1}=4-\mathrm{CF}_{3}-\mathrm{Ph}, \mathrm{R}_{2}=\mathrm{Me} \\
& \mathrm{~d}: \mathrm{R}_{1}=4-\mathrm{MeO}-\mathrm{Ph}, \mathrm{R}_{2}=\mathrm{Me} \\
& \mathrm{e}: \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Ph} \\
& \mathrm{f}: \mathrm{R}_{1}=t \text {-butyl, } \mathrm{R}_{2}=\mathrm{Me} \\
& \mathrm{~g}: \mathrm{R}_{1}=\mathrm{R}_{2}=i \text {-propyl } \\
& \mathrm{h}: \mathrm{R}_{1}=\mathrm{R}_{2}=\text { ethyl } \\
& \mathrm{i}: \mathrm{R}_{1}=\mathrm{Ph}, \mathrm{R}_{2}=\mathrm{H} \\
& \mathrm{j}: \mathrm{R}_{1}=4-\mathrm{MeO}_{-\mathrm{Ph}}, \mathrm{R}_{2}=\mathrm{H} \\
& \mathrm{k}: \mathrm{R}_{1}=4-\mathrm{NO}_{2}-\mathrm{Ph}, \mathrm{R}_{2}=\mathrm{H}
\end{aligned}
$$

8a: 99\% NMR yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.34-7.44(\mathrm{~m}, 5 \mathrm{H}), 4.95(\mathrm{q}, 1$ $\left.\mathrm{H},{ }^{3} J_{\mathrm{HH}}=6.22 \mathrm{~Hz}\right), 1.51\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=6.52 \mathrm{~Hz}\right), 1.00\left(\mathrm{t}, 9 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.92 \mathrm{~Hz}\right)$ and 0.61 $-0.69(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm}$.

8b: 99% NMR yield. ${ }^{1} \mathrm{H}$ NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.20\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.72 \mathrm{~Hz}\right)$, $7.54\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.69 \mathrm{~Hz}\right), 4.99\left(\mathrm{q}, 1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=6.23 \mathrm{~Hz}\right), 1.46\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=6.29\right.$ $\mathrm{Hz}), 0.95\left(\mathrm{t}, 9 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.67 \mathrm{~Hz}\right)$ and $0.58-0.66(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm}$.

8c: 99% NMR yield. ${ }^{1} \mathrm{H}$ NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.62\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.37 \mathrm{~Hz}\right.$), $7.51\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.48 \mathrm{~Hz}\right), 4.98\left(\mathrm{q}, 1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=6.4 \mathrm{~Hz}\right), 1.48\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=5.94\right.$ $\mathrm{Hz}), 0.98\left(\mathrm{t}, 9 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.18 \mathrm{~Hz}\right)$ and $0.61-0.69(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm}$.

9d: 28% NMR yield. ${ }^{1} \mathrm{H}$ NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.15\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.52 \mathrm{~Hz}\right.$), $6.87\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.75 \mathrm{~Hz}\right), 3.81(\mathrm{~s}, 3 \mathrm{H}), 1.25\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.48 \mathrm{~Hz}\right)$ and $0.85(\mathrm{t}, 2$ $\left.\mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.41 \mathrm{~Hz}\right) \mathrm{ppm}$.

9e: 51.3% NMR yield. ${ }^{1} \mathrm{H}$ NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.34-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.24-$ $7.3(\mathrm{~m}, 6 \mathrm{H})$ and $4.06(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}$.

8f: 93.9% NMR yield. ${ }^{1} \mathrm{H}$ NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.5\left(\mathrm{q}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.68 \mathrm{~Hz}\right.$), $1.09\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=5.93 \mathrm{~Hz}\right), 1.01\left(\mathrm{t}, 9 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.71 \mathrm{~Hz}\right), 0.89(\mathrm{~s}, 9 \mathrm{H})$ and $0.63(\mathrm{q}, 6$ $\left.\mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.89 \mathrm{~Hz}\right) \mathrm{ppm}$.

8g: 71.9\% NMR yield. ${ }^{1} \mathrm{H}$ NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.20\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=4.99 \mathrm{~Hz}\right)$, $1.74-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.02\left(\mathrm{t}, 9 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.01 \mathrm{~Hz}\right), 0.92\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=2.37 \mathrm{~Hz}\right), 0.90$ $\left(\mathrm{d}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=2.29 \mathrm{~Hz}\right)$ and $0.67\left(\mathrm{q}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.79 \mathrm{~Hz}\right) \mathrm{ppm}$.

8h: 99% NMR yield. ${ }^{1} \mathrm{H}$ NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.56$ (quin, $1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=5.78$ $\mathrm{Hz}), 1.45-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.01\left(\mathrm{t}, 9 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.78 \mathrm{~Hz}\right), 0.91\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.53 \mathrm{~Hz}\right)$ and $0.64\left(\mathrm{q}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.98 \mathrm{~Hz}\right) \mathrm{ppm}$.

8i: 99% NMR yield. ${ }^{1} \mathrm{H}$ NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.39-7.45(\mathrm{~m}, 5 \mathrm{H}), 4.83(\mathrm{~s}$, $2 \mathrm{H}), 1.07\left(\mathrm{t}, 9 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.88 \mathrm{~Hz}\right)$ and $0.75\left(\mathrm{q}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.81 \mathrm{~Hz}\right) \mathrm{ppm}$.
$\mathbf{8 j}: 49.6 \%$ NMR yield. ${ }^{1} \mathrm{H}$ NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.31\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.44 \mathrm{~Hz}\right)$, $6.92\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.84 \mathrm{~Hz}\right), 4.72(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 . \mathrm{H}), 1.03(\mathrm{~m}, 9 \mathrm{H})$ and $0.70(\mathrm{q}, 6$ $\left.\mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.83 \mathrm{~Hz}\right) \mathrm{ppm}$.

8k: 99% NMR yield. ${ }^{1} \mathrm{H}$ NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.21\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.86 \mathrm{~Hz}\right.$), $7.53\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.86 \mathrm{~Hz}\right), 4.86(\mathrm{~s}, 2 \mathrm{H}), 1.03(\mathrm{t}, 9 \mathrm{H}, J=7.61 \mathrm{~Hz})$ and $0.71(\mathrm{q}, 6 \mathrm{H}$, $\left.{ }^{3} J_{\mathrm{HH}}=7.86 \mathrm{~Hz}\right) \mathrm{ppm}$.

5. Crystal Data.

Crystallographic data collections were carried out with an Oxford Gemini Duo system diffractometer with graphite-monochromated $\mathrm{Mo} \mathrm{K} \alpha$ radiation ($150 \mathrm{~K}, \lambda=0.71073 \AA$).

Data were all collected at 150(2) K. Structures were solved by the direct method and refined by least-square cycles. All calculations were performed using the SHELXTL97 package. Crystallographic data have been deposited at the Cambridge Crystallographic Data Center with deposition number of CCDC 2120763 (1a), CCDC

2120765 (1b), and CCDC $2120764\left([3]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]\right)$.

Figure S6: Molecular structure of compound 1a. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are set at 50% probability. Selected bond lengths $[\AA]$ and angles [${ }^{\circ}$]: $\mathrm{Cl}(1)-\mathrm{B}(1) 1.839(3), \mathrm{N}(1)-\mathrm{B}(1) 1.402(3), \mathrm{N}(1)-\mathrm{C}(10) 1.521(3), \mathrm{N}(1)-\mathrm{C}(14)$ $1.533(3), \quad \mathrm{B}(1)-\mathrm{C}(1) \quad 1.591(3), \quad \mathrm{B}(1)-\mathrm{N}(1)-\mathrm{C}(10), \quad 121.74(19), \quad \mathrm{B}(1)-\mathrm{N}(1)-\mathrm{C}(14)$ 122.14(18), $\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{C}(14) 116.12(17), \mathrm{N}(1)-\mathrm{B}(1)-\mathrm{C}(1) 130.7(2), \mathrm{N}(1)-\mathrm{B}(1)-\mathrm{Cl}(1)$ 121.49(18), C(1)-B(1)-Cl(1) 107.81(16).

Table S2. Crystal data and experimental details for 1a (ic20807)

Figure S7. Molecular structure of compound 1b. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are set at 50% probability. Selected bond lengths $[\AA]$ and angles [${ }^{\circ}$]: $\mathrm{B}(1)-\mathrm{N}(1) 1.4076(18), \mathrm{B}(1)-\mathrm{C}(1) 1.5679(19), \mathrm{B}(1)-\mathrm{Cl}(1) 1.8214(14), \mathrm{Si}(1)-$ $\mathrm{N}(1) 1.7865(11), \mathrm{Si}(2)-\mathrm{N}(1) 1.7868(11), \mathrm{N}(1)-\mathrm{B}(1)-\mathrm{C}(1) 128.49(11), \mathrm{N}(1)-\mathrm{B}(1)-\mathrm{Cl}(1)$ $119.51(10), \mathrm{C}(1)-\mathrm{B}(1)-\mathrm{Cl}(1) 111.98(9), \mathrm{B}(1)-\mathrm{N}(1)-\mathrm{Si}(1) 121.65(9), \mathrm{B}(1)-\mathrm{N}(1)-\mathrm{Si}(2)$ 119.28(9), $\mathrm{Si}(1)-\mathrm{N}(1)-\mathrm{Si}(2) 119.05(6)$.

Table S3. Crystal data and structure refinement for $\mathbf{1 b}$ (ic20564).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
ic20564
C15 H29 B Cl N Si2
325.83

200(2) K
$0.71073 \AA$
Monoclinic
P2 ${ }_{1} / \mathrm{c}$
$\mathrm{a}=8.7219(3) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=13.0132(4) \AA \quad \beta=91.2092(11)^{\circ}$.
$\mathrm{c}=17.0764(6) \AA \quad \gamma=90^{\circ}$.
1937.74(11) \AA^{3}

4
$1.117 \mathrm{Mg} / \mathrm{m}^{3}$
$0.313 \mathrm{~mm}^{-1}$
704
$0.283 \times 0.273 \times 0.175 \mathrm{~mm}^{3}$
1.968 to 29.997°.
$-12<=\mathrm{h}<=12,-18<=\mathrm{k}<=18,-24<=1<=23$
17559
$5643[\mathrm{R}(\mathrm{int})=0.0299]$
99.9 \%

Semi-empirical from equivalents
0.9281 and 0.8280

Full-matrix least-squares on F^{2}
5643 / 0 / 190
1.035
$\mathrm{R} 1=0.0389, \mathrm{wR} 2=0.1105$
$\mathrm{R} 1=0.0456, \mathrm{wR} 2=0.1165$
n/a
0.393 and $-0.372 \mathrm{e} . \AA^{-3}$

Figure S8. Molecular structure of compound $[3]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are set at 50% probability. Selected bond lengths $[\AA]$ and angles [${ }^{\circ}$]: $\mathrm{Si}(1)-\mathrm{N}(1) 1.717(6), \mathrm{Si}(1)-\mathrm{C}(2) 1.844(11), \mathrm{Si}(1)-\mathrm{C}(3) 1.855(12)$, $\mathrm{Si}(1)-\mathrm{C}(7) 2.040(7), \mathrm{Si}(1)-\mathrm{B}(1) 2.296(9), \mathrm{Si}(2)-\mathrm{N}(1) 1.783(6), \mathrm{Si}(2)-\mathrm{C}(4) 1.840(9)$, $\mathrm{Si}(2)-\mathrm{C}(5) 1.855(9), \mathrm{Si}(2)-\mathrm{C}(6) 1.859(10), \mathrm{B}(1)-\mathrm{N}(1) 1.417(10), \mathrm{B}(1)-\mathrm{C}(1) 1.544(11)$, $\mathrm{B}(1)-\mathrm{C}(7) 1.666(10), \mathrm{N}(1)-\mathrm{Si}(1)-\mathrm{C}(2) 116.3(5), \mathrm{N}(1)-\mathrm{Si}(1)-\mathrm{C}(3) 116.9(5), \mathrm{C}(2)-\mathrm{Si}(1)-$ $\mathrm{C}(3) 112.5(7), \mathrm{N}(1)-\mathrm{Si}(1)-\mathrm{C}(7) 82.7(3), \mathrm{C}(2)-\mathrm{Si}(1)-\mathrm{C}(7) 111.9(5), \mathrm{C}(3)-\mathrm{Si}(1)-\mathrm{C}(7)$ 113.1(4), $\mathrm{N}(1)-\mathrm{Si}(1)-\mathrm{B}(1) 38.0(3), \mathrm{C}(2)-\mathrm{Si}(1)-\mathrm{B}(1) 122.5(6), \mathrm{C}(3)-\mathrm{Si}(1)-\mathrm{B}(1) 124.9$ (5), $\mathrm{C}(7)-\mathrm{Si}(1)-\mathrm{B}(1) 44.7(3), \mathrm{N}(1)-\mathrm{Si}(2)-\mathrm{C}(4) 110.5(4), \mathrm{N}(1)-\mathrm{Si}(2)-\mathrm{C}(5) 107.9(4), \mathrm{C}(4)-$ $\mathrm{Si}(2)-\mathrm{C}(5) 110.6(4), \mathrm{N}(1)-\mathrm{Si}(2)-\mathrm{C}(6) 106.1(4), \mathrm{C}(4)-\mathrm{Si}(2)-\mathrm{C}(6) 111.4(5), \mathrm{C}(5)-\mathrm{Si}(2)-$ $\mathrm{C}(6) 110.2(6), \mathrm{N}(1)-\mathrm{B}(1)-\mathrm{C}(1) 131.8(7), \mathrm{N}(1)-\mathrm{B}(1)-\mathrm{C}(7) 107.7(6), \mathrm{C}(1)-\mathrm{B}(1)-\mathrm{C}(7)$ 120.4(6), $\mathrm{N}(1)-\mathrm{B}(1)-\mathrm{Si}(1) 48.3(3), \mathrm{C}(1)-\mathrm{B}(1)-\mathrm{Si}(1) 177.8(6), \mathrm{C}(7)-\mathrm{B}(1)-\mathrm{Si}(1) 59.5(3)$, $\mathrm{B}(1)-\mathrm{N}(1)-\mathrm{Si}(1) 93.7(4), \mathrm{B}(1)-\mathrm{N}(1)-\mathrm{Si}(2) 134.8(5), \mathrm{Si}(1)-\mathrm{N}(1)-\mathrm{Si}(2) 131.5(4), \mathrm{B}(1)-$ C(7)-Si(1) 75.8(4)

Table S4. Crystal data and structure refinement for $[3]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ (ic20708).

Identification code	ic20708
Empirical formula	C39 H29 Al2 B F55 N O6 Si2
Formula weight	1773.58
Temperature	150(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	P 212121
Unit cell dimensions	$\mathrm{a}=14.8299(5) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=17.7594(6) \AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=23.7368(8) \AA \quad \gamma=90^{\circ}$.
Volume	$6251.6(4) \AA^{3}$
Z	4
Density (calculated)	$1.884 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.294 \mathrm{~mm}^{-1}$
F(000)	3488
Crystal size	$0.356 \times 0.074 \times 0.064 \mathrm{~mm}^{3}$
Theta range for data collection	2.064 to 26.436°.
Index ranges	$-16<=\mathrm{h}<=18,-22<=\mathrm{k}<=20,-25<=\mathrm{l}<=29$
Reflections collected	28151
Independent reflections	$12829[\mathrm{R}(\mathrm{int})=0.0391]$
Completeness to theta $=25.242^{\circ}$	99.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9705 and 0.7601
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	12829 / 58 / 966
Goodness-of-fit on F^{2}	1.046
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0766, \mathrm{wR} 2=0.2002$
R indices (all data)	$\mathrm{R} 1=0.0961, \mathrm{wR} 2=0.2183$
Absolute structure parameter	0.6(3)
Extinction coefficient	n / a
Largest diff. peak and hole	1.029 and -0.587 e. \AA^{-3}

Figure S9. Molecular structure of $[7]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are set at 50% probability. As high-quality crystals of $[7]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ could not be obtained, no bond distances and angles is discussed.

Table S5. Crystal data and experimental details for $[7]\left[\mathrm{Al}\left(\mathrm{OC}_{(}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ (ic20861).

NMR Spectra

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 a}$ in CDCl_{3}.

Figure S11. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{1 a}$ in CDCl_{3}.

Figure S12. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 a}$ in CDCl_{3}.

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 b}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S14. ${ }^{11}$ B NMR spectrum of $\mathbf{1 b}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S15. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 b}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S16. ${ }^{29}$ Si NMR spectrum of $\mathbf{1 b}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum of $[\mathbf{2}]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ in CDCl_{3}.

Figure S18. ${ }^{11} \mathrm{~B}$ NMR spectrum of $[2]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ in CDCl_{3}.

Figure S19. ${ }^{13} \mathrm{C}$ NMR spectrum of $[2]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ in CDCl_{3}.

Figure S20. ${ }^{19} \mathrm{~F}$ NMR spectrum of $[\mathbf{2}]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ in CDCl_{3}.

Figure S21. ${ }^{27} \mathrm{Al}$ NMR spectrum of $[2]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ in CDCl_{3}.

Figure S22. ${ }^{1} \mathrm{H}$ NMR spectrum of $[3]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S23. ${ }^{11} \mathrm{~B}$ NMR spectrum of $[3]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S24. ${ }^{13} \mathrm{C}$ NMR spectrum of $[3]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S25. ${ }^{19} \mathrm{~F}$ NMR spectrum of $[3]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S27. ${ }^{29} \mathrm{Si}$ NMR spectrum of $[3]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S28. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S29. ${ }^{11}$ B NMR spectrum of 4 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S30. ${ }^{13} \mathrm{C}$ NMR spectrum of 4 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S32. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{M e s} \mathbf{B}(\mathbf{C N})$-TMP in CDCl_{3}.

Figure S33. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\left.\mathbf{M e s B (C N}\right)$-TMP in CDCl_{3}.

Figure S35. ${ }^{1} \mathrm{H}$ NMR spectrum of $[7]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ in CDCl_{3}.

$\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}{ }^{\ominus}\right.$

Figure S36. ${ }^{11} \mathrm{~B}$ NMR spectrum of $[7]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ in CDCl_{3}.

Figure S37. ${ }^{13} \mathrm{C}$ NMR spectrum of $[7]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ in CDCl_{3}.

Figure S38. ${ }^{19} \mathrm{~F}$ NMR spectrum of $[7]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ in CDCl_{3}.

Figure S39. ${ }^{27} \mathrm{Al} \mathrm{NMR}$ spectrum of $[7]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ in CDCl_{3}.

Figure S40. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Et}_{3} \mathrm{PO}-[2]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ adduct in CDCl_{3}.

Figure S41. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathrm{Et}_{3} \mathrm{PO}-[2]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ adduct in CDCl_{3}

```
~
```



```
Figure S42. \({ }^{31} \mathrm{P}\) NMR spectrum of \(\mathrm{Et}_{3} \mathrm{PO}-[2]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]\) adduct in \(\mathrm{CDCl}_{3}\)
```


Figure S44. ${ }^{1} \mathrm{H}$ NMR spectrum of $[\mathrm{TMS}-\mathrm{CN}-\mathrm{TMS}]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ in $\mathrm{DCM}-d_{2}$.

Figure S45. ${ }^{19} \mathrm{~F}$ NMR spectrum of $[\mathrm{TMS}-\mathrm{CN}-\mathrm{TMS}]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ in $\mathrm{DCM}-d_{2}$.

Figure S46. ${ }^{27} \mathrm{Al}$ NMR spectrum of $[\mathrm{TMS}-\mathrm{CN}-\mathrm{TMS}]\left[\mathrm{Al}\left(\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)_{4}\right]$ in $\mathrm{DCM}-d_{2}$.

TMS

- naphthalene

Figure S47. Crude ${ }^{1} \mathrm{H}$ NMR spectrum consisting of $\mathbf{6 a}$ in CDCl_{3}.

Figure S48. Crude ${ }^{1} \mathrm{H}$ NMR spectrum consisting of $\mathbf{6} \mathbf{b}$ in CDCl_{3}.

Figure S49. Crude ${ }^{1} \mathrm{H}$ NMR spectrum consisting of $\mathbf{6 c}$ in CDCl_{3}.

Figure S50. Crude ${ }^{1} \mathrm{H}$ NMR spectrum consisting of $\mathbf{6 d}$ in CDCl_{3}.

(MMS

- naphthalene

Figure S51.Crude ${ }^{1} \mathrm{H}$ NMR spectrum consisting of $\mathbf{6 e}$ in CDCl_{3}.

- naphthalene

Figure S52. Crude ${ }^{1} \mathrm{H}$ NMR spectrum consisting of $\mathbf{6 f}$ in CDCl_{3}.

Figure S53. Crude ${ }^{1} \mathrm{H}$ NMR spectrum consisting of $\mathbf{6 g}$ in CDCl_{3}.

Figure S54. Crude ${ }^{1} \mathrm{H}$ NMR spectrum consisting of $\mathbf{6 h}$ in CDCl_{3}.

- naphthalene

Figure S55. Crude ${ }^{1} \mathrm{H}$ NMR spectrum consisting of $\mathbf{6 i}$ in CDCl_{3}.

年少	べった	$\stackrel{\infty}{+}$	$\stackrel{+}{\infty}$
$\stackrel{\wedge}{\wedge}$	$\dot{\bullet} \dot{0}$	ம่	\dot{m}
V	V	1	1

Figure S56．Crude ${ }^{1} \mathrm{H}$ NMR spectrum consisting of $\mathbf{6 j}$ in CDCl_{3} ．

- naphthalene

Figure S57. Crude ${ }^{1} \mathrm{H}$ NMR spectrum consisting of $\mathbf{6 k}$ in CDCl_{3}.

Figure S58. Crude ${ }^{1} \mathrm{H}$ NMR spectrum consisting of $\mathbf{8 a}$ in CDCl_{3}.

- naphthalene

Figure S59. Crude ${ }^{1} \mathrm{H}$ NMR spectrum consisting of $\mathbf{8 b}$ in CDCl_{3}.

Figure S60. Crude ${ }^{1} \mathrm{H}$ NMR spectrum consisting of $\mathbf{8 c}$ in CDCl_{3}.

$\cdots \underbrace{6} \times 6$	$\stackrel{-}{\infty}$	
$\because \cdot \overbrace{}^{\infty}$.	${ }^{\infty}$	$\stackrel{\sim}{\sim}{ }^{\text {N }}{ }^{\infty} .^{\infty} .^{\infty} .^{\infty}$.
$\wedge \wedge 6$	m	100000
$V V$	1	-

Figure S61. Crude ${ }^{1} \mathrm{H}$ NMR spectrum consisting of $9 \mathbf{d}$ in CDCl_{3}.

Figure S62. Crude ${ }^{1} \mathrm{H}$ NMR spectrum consisting of $\mathbf{9 e}$ in CDCl_{3}.

Figure S63. Crude ${ }^{1} \mathrm{H}$ NMR spectrum consisting of $\mathbf{8 f}$ in CDCl_{3}.

- naphthalene
- substrate

Figure S64. Crude ${ }^{1} \mathrm{H}$ NMR spectrum consisting of $\mathbf{8 g}$ in CDCl_{3}.

Figure S65. Crude ${ }^{1} \mathrm{H}$ NMR spectrum consisting of $\mathbf{8} \mathbf{h}$ in CDCl_{3}.

Figure S66. Crude ${ }^{1} \mathrm{H}$ NMR spectrum consisting of $\mathbf{8 i}$ in CDCl_{3}.

Figure S67. Crude ${ }^{1} \mathrm{H}$ NMR spectrum consisting of $\mathbf{8 j}$ in CDCl_{3}.

- naphthalene

Figure S68. Crude ${ }^{1} \mathrm{H}$ NMR spectrum consisting of $\mathbf{8 k}$ in CDCl_{3}.

