Electronic Supplementary Information for

Refining boron-iodane exchange to access versatile arylation reagents

Shubhendu S. Karandikar^a and David R. Stuart*^a

^aDepartment of Chemistry, Portland State University, Portland, Oregon 97201, United States. *Corresponding author: Email – <u>dstuart@pdx.edu</u>

	Table of contents	Pages		
1.	General considerations	S2		
2.	Comparison of yields from current work with literature yields	S3		
3.	List of potassium aryltrifluoroborate salts used in this work	S4		
4.	Synthesis of potassium aryltrifluoroborate salts from arylboronic acids (General procedure A) and their characterization data.			
5.	Optimization of Aryl(Mes)iodonium salts synthesis from potassium aryltrifluoroborates and lodomesitylene diacetate	S14		
6.	Recovery studies from liquid-liquid extraction	S15		
7.	Synthesis of Aryl(Mes)iodonium salts	S16		
	 7.1 - Synthesis of Aryl(Mes)iodonium salts from Potassium aryltrifluoroborates and lodomesitylene diacetate (General procedure B) 	S16		
	 7.2- Synthesis of Aryl(Mes)iodonium salts from Potassium aryltrifluoroborates and 2-iodomesitylene (General procedure C) 	S16		
8	Mechanistic experiments: Boron-Iodane exchange Hammett plot using potassium aryltrifluoroborates and Iodomesitylene diacetate	S17-19		
9	Characterization data for Aryl(Mes)iodonium salts	S20-31		
10	References	S32-33		
11	Spectral data: ¹ H, ¹³ C{ ¹ H}, ¹⁹ F{ ¹ H} NMR spectra	S34-156		

1. General Considerations

Materials and methods: Commercially available reagents and solvents were used without further purification. All other materials were prepared as described in detail below. Reactions performed above ambient room temperature were done so in an oil bath or aluminium block heated externally. Crude reaction mixtures were analyzed by ¹H-NMR spectroscopy in presence of internal standard. ¹H, ¹³C{¹H}, ¹⁹F{¹H} NMR spectra were obtained at 298 K in DMSO-*d*₆ on Bruker Avance 400 MHz or Bruker Avance 600 MHz spectrometer and referenced to residual solvent peak (2.5 ppm) or tetramethylsilane when applicable. Residual water from the solvent (DMSO-*d*₆) is observed in all ¹H-NMR spectra at 3.33 ppm. The following notation is used while analyzing NMR data: s – singlet, d – doublet, dd – doublet of doublets, dd – doublet of doublets, t – triplet, q – quartet, n – nonet, br – broad signal. High resolution mass spectrometry (HRMS) data were recorded on Thermo Scientific Q-exactive mass spectrometer by electrospray ionization with an Orbitrap mass-analyzer (ESIOrbitrap). FTIR spectra were recorded on Thermo Scientific Nicolet iS5 Infra-red spectrometer. Melting points(°C) were obtained on the Stuart SMP10 melting point apparatus or the Mel-Temp Electrothermal melting point apparatus are uncorrected.

%Purity of the synthesized aryl(Mes)iodonium salts was calculated by quantitative NMR according to the protocol as described on the by *Organic Syntheses* author instruction guidelines (<u>http://www.orgsyn.org/instructions.aspx</u>). The procedure is described as below:

Accurately weigh 10-20 mg of the desired compound and approximately equimolar amount of the internal standard (at least 10 mg) in a clean glass container. This mixture is dissolved in approximately 1 mL of DMSO- d_6 . Proton NMR is obtained for the mixture with a minimum relaxation delay of 30s between the scans. The weight percent purity is calculated using the following equation:

$$Molar ratio = \frac{\left[\frac{I_{cpd}}{nH_{cpd}}\right]}{\left[\frac{I_{std}}{nH_{std}}\right]}$$
$$wt\% = \frac{mg_{std} \times MW_{cpd} \times Molar ratio \times P_{std}}{mg_{cpd} \times MW_{std}} \times 100$$

Where,

wt% = Purity of the sample

$$\begin{split} I_{cpd} &= \text{Proton integral area of a known peak on the compound being analyzed} \\ nH_{cpd} &= \text{Number of hydrogens associated with the compound NMR peak} \\ I_{std} &= \text{Proton integral area of a known peak on the internal standard} \\ nH_{std} &= \text{Number of hydrogens associated with the internal standard NMR peak} \\ mg_{std} &= \text{Amount of intenral standard used for analysis (in milligrams)} \\ mg_{cpd} &= \text{Amount of compound used for analysis (in milligrams)} \\ MW_{std} &= \text{Molecular weight of the the internal standard} \\ MW_{cpd} &= \text{Molecular weight of the compound being analyzed} \\ P_{std} &= wt\% \text{ purity of the internal standard expressed as decimal value (usually 1.00)} \end{split}$$

2. Comparison of yields from current work with literature yields

3

3. List of the potassium aryltrifluoroborate salts used in this work

4. Synthesis of potassium aryltrifluoroborate salts from arylboronic acids (General procedure A) and their characterization data.

Synthesis of potassium aryltrifluoroborate salts was carried out using the protocol reported by Lennox et al (*Angew. Chem. Int. Ed. 2012, 51, 9385–9388*).¹

Arylboronic acid (1 mmol) was suspended in acetonitrile (4 mL). To this suspension potassium fluoride (4 equiv., 4 mmol, 232 mg) dissolved in H_2O (0.4 mL) was added at room temperature. In most cases, the solution becomes clear after adding KF within 2-5 mins (1-2 mL MeOH was added if clear solution doesn't appear). To this rapidly stirring biphasic mixture was added tartaric acid (2.05 equiv., 2.05 mmol, 308 mg) dissolved in THF over 1 minute (the solution was warmed to dissolve tartaric acid in THF). White precipitate forms as tartaric acid solution is added to the mixture. The reaction was allowed to stir for 10 mins at room temperature after which the mixture was diluted with 5 mL acetonitrile and filtered. The filter cake was rinsed with acetonitrile (3 x 5 mL). The filtrate was concentrated *in-vacuo* to give the crude solid which was co-evaporated using toluene (2 x 5mL) to remove residual water to give the corresponding potassium aryltrifluoroborate salt.

Compounds **1a**,**1b**, and **1I** were prepared according to the literature procedure above and the analytical data is in agreement with that previously reported.¹

Compound 1c

Prepared from 4-(methanesulfonyl)phenylboronic acid using the general procedure A and isolated as a white crystalline solid in 54% yield.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 7.65 (d, *J* = 7.6 Hz, 2H), 7.56 (d, *J* = 7.7 Hz), 3.10 (s, 3H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 138.1, 132.3, 125.2, 44.4 ppm, C-B signal not observed due to quadrupolar relaxation.

¹⁹**F{**¹**H} NMR** (376 MHz, [D6] DMSO): δ = -140.1 ppm

HRMS: Calculated for C₇H₇BF₃O₂S [M-K]⁻: 223.02119, found 223.02112

FT-IR: 3019, 1385, 1323, 1291, 1205, 1146, 1086, 1035, 976, 944(broad), 929, 859, 830, 733, 632 cm⁻¹

Melting point: 310-315 °C

Compound 1d

Prepared from 4-trifluomethylphenylboronic acid using the general procedure A and isolated as a while solid in 80% yield.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 7.53 (d, *J* = 7.6 Hz), 7.42 (d, *J* = 7.6 Hz).

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 130.6, 124.7 (q, ²J_{C-F} = 40 Hz), 123.9 (q, ¹J_{C-F} = 272 Hz), 121.6, C-B signal not observed due to quadrupolar relaxation.

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): δ = -60.4, -139.9

The analytical data are in accordance with the previously reported literature.²

Compound 1e

Prepared from 4-methoxycarbonylphenylboronic acid using the general procedure A and isolated as a while solid in 47% yield.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 7.73 (d, *J* = 7.6 Hz), 7.44 (d, *J* = 7.6 Hz), 3.80 (s, 3H) ppm

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 167.6, 131.9, 127.7, 126.9, 52.1 ppm; C-B signal not observed due to quadrupolar relaxation.

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): δ = -139.9 ppm

The analytical data are in accordance with the previously reported literature.³

Compound 1f

Prepared from 4-((benzyloxy)carbonyl)phenylboronic acid using the general procedure A and isolated as a white solid in 86% yield.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 7.76 (d, J = 7.6 Hz, 2H), 7.50-7.31 (m, 7H), 5.31 (s, 2H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 166.9, 137.0, 132.0, 129.0, 128.5, 128.3, 127.8, 126.8, 66.0 ppm. C-B signal not observed due to quadrupolar relaxation.

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): δ = -139.8 ppm.

The analytical data are in accordance with the previously reported literature.⁴

Compound 1g

Prepared from 4-Benzylphenylboronic acid using the general procedure A and isolated as a fluffy white solid in 80% yield.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 7.71 (d, *J* = 7.7 Hz, 2H), 7.64 (t, *J* = 7.7 Hz, 1H), 7.58-7.48 (m, 6H), ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 194.7, 136.3, 132.3, 130.4, 129.6, 127.7, 126.7, 126.4, ppm. C-B signal not observed due to quadrupolar relaxation.

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): δ = -139.8 ppm.

The analytical data are in accordance with the previously reported literature.⁵

Compound 1h

Prepared from 4-trifluoromethoxyphenylboronic acid using the general procedure A and isolated as a white solid in 98% yield.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 7.41 (d, *J* = 7.84 Hz, 2H), 7.04 (d, *J* = 7.80 Hz, 2H), ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 145.0, 131.1, 118.6 (q, ¹*J*_{C-F} = 255 Hz), 117.1, ppm. C-B signal not observed due to quadrupolar relaxation.

¹⁹**F**{¹**H**} **NMR** (376 MHz, [D6] DMSO): δ = -56.6, -139.3 ppm.

The analytical data are in accordance with the previously reported literature.⁶

Compound 1i

Prepared from 4-acetamidophenylboronic acid using the general procedure A and isolated as a white solid in 80% yield.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 9.58 (s, 1H), 7.28 (d, *J* = 7.8 Hz, 2H), 7.21(d, *J* = 7.8 Hz, 2H), 2.95 (s, 3H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 166.0, 134.8, 129.7, 115.9, 22.3, ppm. C-B signal not observed due to quadrupolar relaxation.

¹⁹**F**{¹**H**} **NMR** (376 MHz, [D6] DMSO): δ = -138.6 ppm.

The analytical data are in accordance with the previously reported literature.⁷

Compound 1j

Prepared from 4-chlorophenylboronic acid using the general procedure A and isolated as a white solid in 98% yield.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 7.32 (d, *J* = 7.7 Hz, 2H), 7.11 (d, *J* = 7.7 Hz, 2H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 133.6, 130.2, 126.6 ppm.

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): δ = -139.3 ppm.

The analytical data are in accordance with the previously reported literature.8

Compound 1k

Prepared from 4-methoxyphenylboronic acid using the general procedure A and isolated as shiny crystalline solid in 84% yield.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 7.22 (d, *J* = 8.0 Hz, 2H), 6.66 (d, *J* = 8.0 Hz, 2H), 3.66 (s, 3H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 157.7, 132.7, 112.3, 55.0, ppm. C-B signal not observed due to quadrupolar relaxation.

¹⁹**F**{¹**H**} **NMR** (376 MHz, [D6] DMSO): δ = -138.2 ppm.

The analytical data are in accordance with the previously reported literature.⁵

Compound 1m

Prepared from 4-isobutylphenylboronic acid using the general procedure A and isolated as a white solid in 88% yield.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 7.22 (d, *J* = 7.3 Hz, 2H), 6.86 (d, *J* = 7.4 Hz, 2H), 2.22 (d, *J* = 7.0 Hz, 2H), 1.77 (m, 1H), 0.84 (d, *J* = 6.5 Hz, 6H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 137.6, 131.6, 127.4, 45.3, 30.3, 22.7, ppm. C-B signal not observed due to quadrupolar relaxation.

¹⁹**F**{¹**H**} **NMR** (376 MHz, [D6] DMSO): δ = -138.6 ppm.

HRMS = Calculated for $C_{10}H_{13}BF_3^{-1}[M-K]^{-1}$: 201.10624, found: 201.10605

FT-IR: 3009, 2951, 2922, 2866, 2843, 1601, 1465, 1396, 1381, 1223, 1194, 1053, 949(broad), 880, 790 cm⁻¹

Melting point: 287-300 °C

Compound 1n

Prepared from 3-formylphenylboronic acid using the general procedure A and isolated as an offwhite solid in 95% yield.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 9.95 (s, 1H), 7.88 (s, 1H), 7.67 (d, *J* = 7.0 Hz, 1H), 7.60 (d, *J* = 7.5 Hz, 1H), 7.33 (t, *J* = 7.3 Hz, 1H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 194.7, 138.4, 135.2, 133.8, 127.6, 126.7 ppm. C-B signal not observed due to quadrupolar relaxation.

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): δ = -139.7 ppm.

The analytical data are in accordance with the previously reported literature.8

Compound 1o

Prepared from 3-methoxycarbonylphenylboronic acid using the general procedure A and isolated as a white solid in 76% yield.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 7.99 (s, 1H), 7.67 (d, *J* = 7.6 Hz, 1H), 7.6 (d, *J* = 7.2 Hz, 1H), 7.23 (t, *J* = 7.4 H, 1H), 3.81 (s, 3H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 167.9, 136.8, 132.8, 128.0, 127.0, 126.6, 52.1 ppm. C-B signal not observed due to quadrupolar relaxation.

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): δ = -139.6 ppm.

The analytical data are in accordance with the previously reported literature.²

Compound 1p

Prepared from 3-methoxyphenylboronic acid using the general procedure A and isolated as a white solid in 86% yield.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 7.01 (t, 7.4 Hz, 1H), 6.94-6.82 (m, 2H), 6.58 (d, *J* = 3.8 Hz, 1H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 158.5, 127.6, 124.3, 116.7, 111.1, 54.9 ppm. C-B signal not observed due to quadrupolar relaxation.

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): δ = -139.1 ppm.

The analytical data are in accordance with the previously reported literature.⁸

Compound 1q

Prepared from 3-chloro-4-methoxyphenylboronic acid using the general procedure A and isolated as a white solid in 90% yield.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 7.22 (s, 1H), 7.20 (d, *J* = 8.0 Hz, 1Hz), 6.87 (d, *J* = 7.9 Hz, 1H), 3.76 (s, 3H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 150.6, 130.9, 129.2, 117.8, 116.4, 109.7, 54.9 ppm. C-B signal not observed due to quadrupolar relaxation.

¹⁹**F**{¹**H**} **NMR** (376 MHz, [D6] DMSO): δ = -138.9 ppm.

HRMS = Calculated for $C_7H_6BCIF_3O^{-1}[M-K]^{-1}$ 209.01523; found 209.01520

Melting point: 237-241 °C

The analytical data are in accordance with the previously reported literature.⁹

Compound 1r

Prepared from phenylboronic acid using the general procedure A and isolated as a crystalline solid in 92% yield.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 7.32 (d, *J* = 7.0 Hz, 2H), 7.11-6.96 (m, 3H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 131.8, 126.7, 125.4 ppm. C-B signal not observed due to quadrupolar relaxation.

¹⁹**F**{¹**H**} **NMR (**376 MHz, [D6] DMSO): δ = -139.1 ppm.

The analytical data are in accordance with the previously reported literature.¹⁰

Compound 1s

Prepared from Furan-2-ylboronic acid using the general procedure A and isolated as a crystalline solid in 84% yield

¹H NMR (400 MHz, [D6] DMSO): δ = 7.39 (m, 1H), 6.15 (m, 1H), 5.94 (m, 1H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 141.5, 110.6, 108.9 ppm.C-B signal not observed due to quadrupolar relaxation.

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): δ = -138.5 ppm.

The analytical data are in accordance with the previously reported literature.¹¹

Compound 1t

Prepared from furan-3-ylboronic acid using the general procedure A and isolated as a crystalline solid in 87% yield.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 7.35 (m, 1H), 7.07 (m, 1H), 6.18 (m, 1H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 143.1, 130.9, 114.2 ppm. C-B signal not observed due to quadrupolar relaxation.

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): δ = -134.5 ppm.

The analytical data are in accordance with the previously reported literature.³

Compound 1u

Prepared from Thiophen-3-ylboronic acid using the general procedure A and isolated as a crystalline solid in 81% yield.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 7.17 (m, 1H), 7.03-7.93 (m, 2H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 132.3, 124.8, 123.0 ppm. C-B signal not observed due to quadrupolar relaxation.

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): δ = -135.5 ppm.

The analytical data are in accordance with the previously reported literature.³

Compound 1v

Prepared from Benzo[b]thiophen-2-ylboronic acid using the general procedure A and isolated as a crystalline solid in 78% yield.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 7.79 (d, *J* = 7.8 Hz, 1H), 7.67(d, *J* = 7.8 Hz, 1H), 7.21 (t, *J* = 7.2 Hz, 1H), 7.14 (t, *J* = 7.2 Hz, 1H), 7.09 (s, 1H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 141.9, 141.5, 123.8, 123.4, 122.7, 122.5, 122.3 ppm. C-B signal not observed due to quadrupolar relaxation.

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): δ = -134.9 ppm.

The analytical data are in accordance with the previously reported literature.¹¹

5. Optimization of Aryl (Mes)iodonium salts synthesis from potassium aryltrifluoroborates and lodomesitylene diacetate

To an oven dried 4 mL vial equipped with a stir bar was charged with potassium aryltrifluoroborate salt (1.0 equiv, 0.1 mmol) and iodomesitylene diacetate (1.2 equiv, 0.12 mmol). This mixture was suspended in MeCN (1 mL, 0.1 M) and BF₃.OEt₂ (0.12 equiv, 0.12 mmol) was added dropwise. The vial was sealed and transferred to a pre-heated aluminium block at 65 °C and stirred at that temperature for 1hour. The crude reaction mixture was concentrated under-vacuum and internal standard (ethylene carbonate was added) to the mixture. This mixture was dissolved in DMSO- d_6 and analyzed by ¹H-NMR spectroscopy.

6. Recovery studies from liquid-liquid extraction

To test the water-solubility of iodonium salts during liquid-liquid extraction as a function of counter anion, we synthesized three distinct iodonium salts where counter anions were BF_4 , OTs and OTf. 0.5 mmol of pure salt was taken up in a separating funnel and 25 mL of water was added. The salt was extracted with DCM (3x15 mL). The organic layer was dried with Na₂SO₄ and concentrated *in-vacuo* to afford a crude oil which was triturated with Et₂O. The white precipitates were filtered, and recovery was calculated.

 $X = BF_4$, OTs, OTf

Entry	Counteranion (X)	%Recovery ^a
1	BF_4	20%
2	OTs	67%
3	OTf	82%

7. Syntheses of aryl (Mes)iodonium salts

7.1. Synthesis of aryl(Mes)iodonium salts from potassium aryltrifluoroborates and iodomesitylene diacetate (General procedure B)

An Oven-dried 12 mL glass vial with stir bar was charged with potassium aryltrifluoroborate salt (0.5 mmol, 1.0 equiv) and iodomesitylene diacetate (0.6 mmol, 1.2 equiv) and acetonitrile (5 mL, 0.1 M). To this mixture, $BF_3 \bullet OEt_2$ (0.075 mL, 1.2 equiv) was added dropwise under stirring. The solution shows intermittent blue-green colouration and turns yellow over a period of one minute. The vial was transferred to a preheated block at 65 °C, and the mixture was stirred at the same temperature for 1 hour. The solvent was evaporated in-vacuo and the crude residue was transferred to a separatory funnel using DCM (10 mL x 3). The organic layer was washed with 2% (w/v) aqueous sodium trifluoromethanesulfonate solution (10 mL x 3). The organic phase was dried over sodium sulfate and concentrated in-vacuo. The crude was dissolved in minimum amount of DCM and was triturated in diethyl ether and the resulting solid was filtered and weighed.

7.2. Synthesis of aryl(Mes)iodonium salts from potassium aryltrifluoroborates and 2-iodomesitylene (General procedure C)

An oven-dried 12 mL glass vial with stir bar was charged with potassium aryltrifluoroborate salt (1.0 mmol, 2.0 equiv), iodomesitylene (0.5 mmol, 1.0 equiv) and acetonitrile (5 mL, 0.1 M). To this mixture, 2,6-dichloropyridinium tetrafluoroborate (1.0 mmol, 2.0 equiv) was added in portions under stirring. The vial was transferred to a preheated block at 65 °C and heated at the same temperature for 15 minutes. The solvent was evaporated in-vacuo and the crude residue was transferred to a separatory funnel using DCM (10 mL x 3). The organic layer was washed with 2% (w/v) aqueous sodium trifluoromethanesulfonate solution (10 mL x 3). The organic phase was dried over sodium sulfate and concentrated in-vacuo. The crude was dissolved in minimum amount of DCM and was triturated in diethyl ether and the resulting solid was filtered and weighed.

8. Mechanistic Studies: Boron-Iodane exchange Hammett plot using potassium aryltrifluoroborates and Iodomesitylene diacetate

Evaluating the electronic effects on the aryl ring using Hammett plot.

In a flame dried 5 mL vial equipped with stir bar was charged with potassium phenyltrifluoroborate (0.1 mmol, 1.0 equiv), 4-substituted potassium aryltrifluoroborate (0.1 mmol, 1.0 equiv), and iodomesiylene diacetate (0.03 mmol, 0.3 equiv). The components were suspended in acetonitrile (1 ml, 0.1 M). To this stirred suspension, $BF_3 \bullet OEt_2$ (0.03 mmol, 0.3 equiv) was added under stirring at room temperature. The reaction was sealed with screw cap and was placed in a preheated heating block at 65 °C for 1 hour while stirring. After one hour, the solvent was evaporated in-vacuo and the crude was dissolved in DMSO-d₆ and analyzed by ¹H NMR spectroscopy.

Entry	R	σ_{p}	Yield [I] _R	Yield [I] _H	$\log \left[\frac{[I]_R}{[I]_H} \right]$
1	-OMe	-0.27	9.20	1.00	0.963788
2	-Me	-0.17	3.57	1.00	0.552668
3	<i>-iso</i> Bu	-0.15	2.52	1.00	0.401401
4	-H	0.00	1.00	1.00	0
5	-CI	0.24	0.16	1.00	-0.795880

Experiment 1 (OMe vs H)

Experiment 2 (Me vs H)

Experiment 4 (Cl vs H)

9. Characterization of aryl (Mes)iodonium salts

Compound 2a

Synthesized using the general procedure B on 0.5 mmol scale and isolated as a pale-yellow solid in 70% yield (0.1815 g, 0.35 mmol). The NMR yield for corresponding reaction that generates the tetrafluoroborate salt was 85%.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 8.26 (d, *J* = 8.8 Hz, 2H), 8.16 (d, *J* = 8.8 Hz, 2H), 7.25 (s, 2H), 2.60 (s, 6H), 2.31 (s, 3H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 149.7, 143.9, 142.1, 135.9, 130.4, 126.6, 123.8, 122.1, 121.2 (q, ${}^{1}J_{C-F}$ = 323 Hz), 26.8, 21.00 ppm.

¹⁹**F**{¹**H**} **NMR** (376 MHz, [D6] DMSO): δ = -77.7 (s, 3F) ppm.

%Purity (QNMR) = 95%

The analytical data are in accordance with the previously known literature.¹²

Compound 2b

Synthesized using the general procedure B on 0.5 mmol scale and isolated as a white solid in 42% yield (0.104 g, 0.21 mmol). The NMR yield for corresponding reaction that generates the tetrafluoroborate salt was 82%.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 8.10 (d, *J* = 8.3 Hz, 2H), 7.9 (d, *J* = 8.3 Hz, 2H), 7.24(s, 2H), 2.58 (s, 6H), 2.31 (s, 3H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 143.9, 142.1, 135.5, 135.3, 130.4, 123.6, 121.2 (q, ¹*J*_{C-F} = 323Hz, -CF₃), 120.6, 118.0, 114.7, 26.8, 21.1 ppm.

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): δ = -77.7 (s, 3F) ppm.

%Purity (QNMR) = >99%

The analytical data are in accordance with the previously known literature.¹³

Compound 2c

Synthesized using the general procedure B on 0.5 mmol scale and isolated as a white solid in 65% yield (0.176 g, 0.32 mmol). The NMR yield for corresponding reaction that generates the tetrafluoroborate salt was 85%.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 8.13 (d, *J* = 8.16 Hz, 2H), 7.95 (d, *J* = 8.16 Hz), 7.21 (s, 2H), 3.26 (s, 3H), 2.59 (s, 6H), 2.29 (s, 3H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 143.61, 143.34, 141.73, 135.22, 130.20, 130.06, 125.36, 123.34, 121.15 (q, ${}^{1}J_{C-F}$ = 323Hz, -CF₃) 43.51, 26.76, 20.99 ppm.

¹⁹**F**{¹**H**} **NMR** (376 MHz, [D6] DMSO): δ = -77.7 (s, 3F) ppm.

%Purity (QNMR) = 93%

HRMS: Calculated for C₁₆H₁₈IO₂S⁺ [M-OTf]⁺: 401.0067; found 401.00599

FT-IR: 3680, 2980, 2922, 2863, 2843, 1563, 1453, 1387, 1320, 1300, 1268, 1244, 1149, 1024, 771, 633 cm⁻¹

Melting Point: 194-197 °C

Compound 2d

Synthesized using the general procedure B on 0.5 mmol scale and isolated as a white solid in 65% yield (0.173 g, 0.32 mmol). The NMR yield for corresponding reaction that generates the tetrafluoroborate salt was 85%.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 8.13 (d, *J* = 8.2 Hz, 2H), 7.86 (d, *J* = 8.2 Hz, 2H), 7.25 (s, 2H), 2.59 (s, 6H), 2.31 (s, 3H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 143.90, 142.17, 135.48, 132.08 (q, ${}^{1}J_{C-F}$ = 32.3 Hz), 130.39, 128.85 (q, ${}^{2}J_{C-F}$ = 3.78 Hz), 125.20, 123.28, 121.1 (${}^{1}J_{C-F}$ = 296 Hz), 119.47, 26.77, 29.99 ppm.

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): δ = -61.7 (s, 3F), -77.7 (s, 3F) ppm.

%Purity (QNMR) = 98%

The analytical data corresponds to the previously reported literature.¹⁴

Compound 2e

Synthesized using the general procedure B employing aq. NaBF₄ wash instead of aq. NaOTf on 0.5 mmol scale and isolated as a white solid in 76% yield (0.178 g, 0.38 mmol). The NMR yield for corresponding reaction was 99%.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 8.06 (d, *J* = 8.4 Hz, 2H), 7.96 (d, *J* = 8.4 Hz, 2H), 7.22 (s, 2H), 3.85 (s, 3H), 2.59 (s, 6H), 2.30 (s, 3H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 165.6, 143.6, 142.0, 135.0, 132.7, 132.4, 130.3, 123.9, 120.9, 53.1, 26.7, 21.0 ppm.

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): δ = -148.2, -148.2 (1:3) ppm.

%Purity (QNMR) = 99%

The analytical data corresponds to the previously reported literature.¹⁵

Compound 2f

Synthesized using the general procedure B on 0.5 mmol scale and isolated as a white solid in 76% yield (0.23 g, 0.38 mmol). The NMR yield for the corresponding reaction was 93%.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 8.08 (d, J = 8.3 Hz, 2H), 8.02 (d, J = 8.4 Hz, 2H), 7.31-7.51 (m, 5H), 7.23 (s, 2H), 5.34 (s, 2H), 2.58 (s, 6H), 2.30 (s, 3H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 164.9, 143.8, 142.1, 136.2, 135.1, 132.8, 132.5, 130.3, 129.0, 128.7, 128.5, 123.4, 121.2 (q, ${}^{1}J_{C-F}$ = 324 Hz, CF₃), 121.3, 67.3, 26.8, 21.1 ppm.

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): δ = -77.7 (s, 3F) ppm.

%Purity (QNMR) = 92%

HRMS: Calculated for C₂₃H₂₂IO₂⁺ [M-OTf]⁺: 457.06590; found 457.06490

FT-IR: 3076, 3680, 2980, 3005, 2980, 2966, 2922, 2863, 2843, 1725, 1583, 1454, 1263, 1244, 1171, 1032, 752, 679, 631 cm⁻¹

Melting point: 154-159 °C

Compound 2g

Synthesized using the general procedure B on 0.5 mmol scale and isolated as a white solid in 44% yield (0.126 g, 0.22 mmol). The NMR yield for corresponding reaction that generates the tetrafluoroborate salt was 75%.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 8.10 (d, J = 8.0 Hz, 2H), 7.78 (d, J = 8.0 Hz, 2H), 7.65-7.75 (m, 3H), 7.57 (t, J = 7.7 Hz,2H), 7.26 (s, 2H), 2.63 (s, 6H), 2.31 (s, 3H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 195.1, 143.8, 142.2, 140.1, 136.4, 134.8, 133.9, 132.7, 130.4, 130.3, 129.2, 123.3, 121.2 (q, ¹*J*_{C-F} = 324 Hz, CF₃), 119.1, 26.8, 21.0 ppm.

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): δ = -77.7 (s, 3F) ppm.

%Purity (QNMR) = 99%

The analytical data corresponds to the previously reported literature.¹⁶

Compound 2h

Synthesized using the general procedure B on 0.5 mmol scale and isolated as a white solid in 76% yield (0.211 g, 0.38 mmol). The NMR yield for corresponding reaction that generates the tetrafluoroborate salt was 88%.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 8.07 (d, *J* = 9 Hz, 2H), 7.51 (d, *J* = 8.32 Hz, 2H), 7.23 (s, 2H), 2.60 (s, 6H), 2.30 (s, 3H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 150.8, 150.8, 143.8, 142.0, 137.2, 130.3, 124.5, 121.2 (q, ¹*J*_{C-F} = 324 Hz, -CF₃), 120.3 (q, ¹*J*_{C-F} = 258 Hz, -OCF₃), 112.9, 26.7, 21.0 ppm.

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): δ = -56.9 (s, 3F), -77.8 (s, 3F) ppm.

%Purity (QNMR) = >99%

The analytical data are in accordance with the previously reported literature.¹⁷

Compound 2i

Synthesized using the general procedure B on 0.5 mmol scale and isolated as a white solid in 64% yield (0.169 g, 0.32 mmol). The NMR yield for corresponding reaction that generates the tetrafluoroborate salt was 88%.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 10.29 (s, 1H), 7.92 (d, *J* = 8.8 Hz, 2H), 7.66 (d, *J* = 8.8 Hz), 7.19 (s, 2H), 2.60 (s, 6H), 2.28 (s, 3H), 2.05 (s, 3H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 169.5, 142.2, 142.7, 141.7, 136.1, 130.1, 123.9, 122.8, 121.9, 121.2(q, ¹*J*_{C-F} = 323 Hz), 107.0, 26.7, 24.6, 21.0 ppm.

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): δ = -77.7 (s, 3F) ppm.

%Purity (QNMR) = 95%

The analytical data are in accordance with the previously reported literature.¹⁴

Compound 2j

Synthesized using the general procedure B on 0.5 mmol scale and isolated as a white solid in 48% yield (0.125 g, 0.24 mmol). The NMR yield for corresponding reaction that generates the tetrafluoroborate salt was 97%.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 7.95 (d, *J* = 8.4 Hz, 2H), 7.75 (d, *J* = 8.4 Hz, 2H), 7.22 (s, 2H), 2.59 (s, 6H), 2.30 (s, 3H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 143.6, 142.0, 137.4, 136.6, 132.2, 130.3, 123.5, 121.2 (q, ${}^{1}J_{C-F} = 324$ Hz, -CF₃), 113.2, 26.7, 21.0 ppm.

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): δ = -77.7 (s, 3F) ppm.

%Purity (QNMR) = 91%

The analytical data are in accordance with the previously known literature.¹²

Synthesized using the general procedure B on 0.5 mmol scale and isolated as a white solid in 89% yield (0.23g, 0.46 mmol). The NMR yield for corresponding reaction was 98%.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 7.92 (d, *J* = 8.8 Hz, 2H), 7.19 (s, 2H), 7.03 (d, *J* = 8.8 Hz, 2H), 3.78 (s, 3H), 2.60 (s, 6H), 2.28 (s, 3H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 162.2, 143.3, 141.8, 137.0, 130.1, 123.6, 122.8, 121.2 (q, ${}^{1}J_{C-F}$ = 323 Hz, -CF₃), 117.9, 104.0, 56.1, 26.7, 21.0 ppm.

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): δ = -77.7 (s, 3F) ppm.

%Purity (QNMR) = 94%

The analytical data are in accordance with the previously known literature.¹²

Compound 2I

Synthesized using the general procedure B employing aq. NaBF₄ wash instead of aq. NaOTf, on 0.5 mmol scale and isolated as a white solid in 80% yield (0.176 g, 0.4 mmol). The NMR yield for corresponding reaction that generates the tetrafluoroborate salt was 97%.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 7.83 (d, *J* = 7.9 Hz, 2H), 7.29 (d, *J* = 7.8 Hz, 2H), 7.18 (s, 2H), 2.58 (s, 6H), 2.31 (s, 3H), 2.28 (s, 3H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): 143.2, 142.4, 141.8, 134.8, 132.8, 130.1, 124.0, 123.3, 26.7, 21.2, 21.0 ppm

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): -148.2 ppm.

%Purity (QNMR) = 99%

The analytical data are in accordance with the previously known literature.¹²

Compound 2m

Synthesized using the general procedure B on 0.5 mmol scale and isolated as white solid in 68% yield (0.182 g, 0.34 mmol). The NMR yield for the corresponding reaction that generates the tetrafluoroborate salt was 83%. **Melting point** = $161-167 \, ^{\circ}C$

¹**H NMR** (400 MHz, [D6] DMSO): δ = 7.88 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.21 (s, 2H), 2.59 (s, 6H), 2.47 (d, *J* = 7.2 Hz, 2H), 2.29 (s, 3H), 1.81 (m, 1H), 0.83 (d, *J* = 6.5 Hz, 6H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 146.0, 143.4, 141.9, 134.9, 132.9, 130.2, 123.3, 121.1 (q, ${}^{1}J_{C-F}$ = 323 Hz), 112.0, 44.3, 29.9, 26.7, 22.4, 21.0 ppm.

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): δ = -77.7 (s, 3F) ppm.

%Purity (QNMR) = >99%

The analytical data are in accordance with the previously reported literature.¹⁸

Compound 2n

Synthesized using the general procedure B on 0.5 mmol scale and isolated as a pale white solid in 60% yield (0.154 g, 0.3 mmol). The NMR yield for the corresponding reaction that generates the tetrafluoroborate salt was 96%.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 9.99 (s, 1H), 8.44 (s, 1H), 8.19 (d, *J* = 7.8 Hz, 1H), 8.13 (d, *J* = 7.5 Hz, 1H), 7.71 (t, *J* = 7.8 Hz, 1H), 7.23 (s, 2H), 2.61 (s, 6H), 2.30 (s, 3H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 192.1, 143.8, 142.1, 139.9, 138.9, 134.8, 133.0, 130.3, 123.3, 121.2 (q, ${}^{1}J_{C-F}$ = 324 Hz), 116.0, 26.8, 21.0 ppm.

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): δ = -77.7 (s, 3F) ppm.

%Purity (QNMR) = 94%

The analytical data are in accordance with the previously reported literature.¹⁹

Compound 20

Synthesized using the general procedure B on 0.5 mmol scale as while power in 66% isolated yield (0.180 g, 0.33 mmol). The NMR yield of the corresponding reaction that generates the tetrafluoroborate salt was 92%.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 8.49 (s, 1H), 8.14 (d, *J* = 7.72 Hz, 1H), 8.07 (d, *J* = 8.0 Hz, 1H), 7.63 (t, *J* = 7.9 Hz, 2H), 7.24 (s, 2H), 3.88 (s, 3H), 2.59 (s, 6H), 2.31 (s, 3H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 164.9, 143.8, 142.1, 138.7, 134.9, 132.8, 132.7, 132.4, 130.3, 123.2, 122.7, 121.2 (q, ${}^{1}J_{C-F}$ = 323 Hz), 115.3, 53.3, 26.8, 21.0 ppm.

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): δ = -77.7 (s, 3F) ppm.

%Purity (QNMR) = 96%

The analytical data are in accordance with the previously reported literature.¹⁷

Compound 2p

Synthesized using the general procedure B on 0.5 mmol scale and isolated as a sticky solid in 60% yield (0.155 g, 0.3 mmol). NMR yield of the corresponding reaction that generates the tetrafluoroborate salt was 84%.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 7.56 (s, 1H), 7.36-7.47 (m, 2H), 7.17-7.26 (m, 3H), 3.78 (s, 3H), 2.60 (s, 6H), 2.30 (s, 3H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 161.0, 143.6, 142.1, 133.1, 130.2, 126.5, 123.0, 122.8, 122.0 (q, ${}^{1}J_{C-F}$ = 323 Hz), 120.5, 117.7, 114.8, 56.3, 26.8, 21.0 ppm.

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): δ = -77.7 (s, 3F) ppm.

%Purity (QNMR) = 99%

The analytical data are in accordance with the previously reported literature.²⁰

Compound 2q

Synthesized using the general procedure B on 0.5 mmol scale and isolated as white solid in 53% yield (0.143 g, 0.26 mmol). rThe NMR yield for the corresponding reaction that generates the tetrafluoroborate salt was 84%.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 8.13 (s, 1H), 7.86 (d, *J* = 7.8 Hz), 7.29-7.09 (m, 3H), 3.88 (s, 3H), 2.60 (s, 6H), 2.29 (s, 3H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 157.6, 143.3, 141.8, 135.6, 135.5, 130.2, 124.3, 123.7, 121.1 (q, ${}^{1}J_{C-F}$ = 323 Hz), 116.1, 104.5, 57.1, 26.7, 20.9 ppm.

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): δ = -77.7 (s, 3F) ppm.

HRMS: Calculated for C₁₆H₁₇ICIO⁺ [M-OTf]⁺: 387.00071; found 386.9999

FT-IR: 3705, 3005, 2951, 2865, 2843, 1610, 1570, 1454, 1380, 1298, 1239, 1221, 1195, 1168, 1057, 1014, 826, 790, 630 cm⁻¹

Melting point: 176-182 °C

% Purity (QNMR) = 99%

Compound 2r

Synthesized using the general procedure B with aq. NaBF₄ was instead of NaOTf and isolated as a pale white solid in 92% yield (0.187g, 0.46 mmol). The NMR yield for the corresponding reaction was 99%.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 7.95 (d, *J* = 7.8 Hz, 2H), 7.62 (t, *J* = 7.3 Hz, 1H), 7.5 (t, *J* = 7.7 Hz, 2H), 7.21 (s, 2H), 2.59 (s, 6H), 2.29 (s, 3H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 143.4, 142.0, 134.8, 132.3, 132.1, 130.2, 123.6, 115.7, 26.7, 21.0 ppm.

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): δ = - 148.2, -148.3 (1:3) ppm.

% Purity (QNMR) = 97%

The analytical data are in accordance with the previously known literature.¹²

Compound 2s

Synthesized using the general procedure B on 0.5 mmol scale and isolated as a white solid in 59% yield (0.136 g, 0.29 mmol). The NMR yield for the corresponding reaction that generates the tetrafluoroborate salt was 87%.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 8.0 (d, *J* = 1.32 Hz, 1H), 7.48 (d, *J* = 3.4, 1H), 7.20 (s, 2H), 6.68-6.64 (m, 1H), 2.66 (s, 6H), 2.28 (s, 3H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 151.3, 143.4, 141.1, 130.1, 126.8, 124.4, 114.8, 121.1 (q, ${}^{1}J_{C-F}$ = 323 Hz), 113.9, 26.7, 21.0 ppm.

¹⁹**F**{¹**H**} **NMR** (376 MHz, [D6] DMSO): δ = -77.7 (s, 3F) ppm.

% Purity (QNMR) = 93%

HRMS: Calculated for C₁₃H₁₄IO⁺ [M-OTf]⁺: 313.00838; found 313.00780

FT-IR: 3712, 3680, 3132, 2980, 2864, 1589, 1449, 1379, 1268, 1244, 1160, 1031, 893, 851, 759, 628 cm⁻¹

Melting point: 136-139 °C

Compound 2t

Synthesized using the general procedure B on 0.5 mmol scale and isolated as a white solid in 77% yield (0.179 g, 0.38 mmol). The NMR yield for the corresponding reaction that generates the tetrafluoroborate salt was 93%.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 8.52 (s, 1H), 7.91 (m, 1H), 7.30 (s, 2H), 7.05 (d, *J* = 1.4 Hz), 2.64 (s, 6H), 2.29 (s, 3H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 150.4, 146.7, 143.4, 141.5, 130.0, 124.2, 121.1 (q, ¹*J*_{C-F} = 323 Hz), 114.1, 89.0, 26.8, 21.0 ppm

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): δ = -77.7 (s, 3F) ppm

% Purity (QNMR) = 98%

HRMS: Calculated for C₁₃H₁₄IO⁺ [M-OTf]⁺: 313.00838; found 313.00786

FT-IR: 3680, 3162, 3134, 2986, 2936, 1478, 1451, 1272, 1221, 1237, 1161, 1019, 903, 868, 851, 792, 628 cm⁻¹

Melting point: 168-170 °C

Compound 2u

Synthesized using the general procedure B on 0.5 mmol scale and isolated as a white solid in 60% yield (0.145 g, 0.3 mmol). The NMR yield for the corresponding reaction that generates the tetrafluoroborate salt was 79%.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 8.49 (m, 1H), 7.84-7.43 (m, 1H), 7.53 (d, *J* = 5 Hz, 1H), 7.20 (s, 2H), 2.63 (s, 6H), 2.28 (s, 3H) ppm

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 143.4, 141.6, 135.5, 131.7, 131.1, 130.1, 124.3, 121.2 (q, ${}^{1}J_{C-F} = 324$ Hz), 99.8, 26.8, 21.0 ppm

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): δ = -77.7 (s, 3F) ppm.

% Purity (QNMR) = 98%

The analytical data are in accordance with the previously known literature.²¹

Compound 2v

Synthesized using the GP-A on 0.5 mmol scale and isolated as a white solid in 69% yield (0.179 g, 0.33 mmol). The NMR yield for the corresponding reaction that generates the tetrafluoroborate salt was 78%.

¹**H NMR** (400 MHz, [D6] DMSO): δ = 8.29 (s, 1H), 8.12 - 7.89 (m, 2H), 7.54 - 7.38 (m, 2H), 7.23 (s, 2H), 2.70 (s, 6H), 2.29 (s, 3H) ppm.

¹³C{¹H} NMR (101 MHz, [D6] DMSO): δ = 143.7, 143.2, 141.5, 139.2, 136.0, 130.2, 127.2, 126.2, 126.0, 125.1, 123.0, 121.2 (q, ${}^{1}J_{C-F}$ = 324 Hz), 105.0, 26.8, 21.0 ppm.

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): δ = -77.7 (s, 3F) ppm.

% Purity (QNMR) = >99%

HRMS: Calculated for $C_{17}H_{16}IS^{+}$ [M-OTf]⁺:379.00119; found 379.00305

FT-IR: 3672, 3054, 2978, 1738, 1590, 1455, 1377, 1221, 1157, 1058, 1023, 958, 945, 848, 829, 750, 705, 634 cm⁻¹

Melting point: Decomposition starting at 146-151 °C

References

- 1 A. J. J. Lennox and G. C. Lloyd-Jones, *Angewandte Chemie International Edition*, 2012, **51**, 9385–9388.
- G. A. Molander, S. L. J. Trice and S. M. Kennedy, Organic Letters, 2012, 14, 4814–4817.
- 3 G. A. Molander, L. N. Cavalcanti and C. García-García, *Journal of Organic Chemistry*, 2013, **78**, 6427–6439.
- 4 T. Sawazaki, Y. Shimizu, K. Oisaki, Y. Sohma and M. Kanai, *Organic Letters*, 2018, **20**, 7767–7770.
- 5 G. A. Molander, S. L. J. Trice and S. D. Dreher, *Journal of the American Chemical Society*, 2010, **132**, 17701–17703.
- 6 T. Lim, J. Y. Ryoo and M. S. Han, *The Journal of Organic Chemistry*, 2020, **85**, 10966–10972.
- 7 S. Jin, H. T. Dang, G. C. Haug, R. He, V. D. Nguyen, V. T. Nguyen, H. D. Arman, K. S. Schanze and O. V Larionov, *Journal of the American Chemical Society*, 2020, **142**, 1603–1613.
- 8 P. G. Wilson, J. M. Percy, J. M. Redmond and A. W. McCarter, *The Journal of Organic Chemistry*, 2012, **77**, 6384–6393.
- 9 M. Dyga, D. Hayrapetyan, R. K. Rit and L. J. Gooßen, *Advanced Synthesis & Catalysis*, 2019, **361**, 3548–3553.
- 10 T. Mohy El Dine, O. Sadek, E. Gras and D. M. Perrin, *Chemistry A European Journal*, 2018, **24**, 14933–14937.
- 11 G. A. Molander, B. Canturk and L. E. Kennedy, *Journal of Organic Chemistry*, 2009, **74**, 973–980.
- 12 Z. Gonda and Z. Novák, *Chemistry A European Journal*, 2015, **21**, 16801–16806.
- 13 D. Yi, F. Zhu and M. A. Walczak, Organic Letters, 2018, **20**, 1936–1940.
- 14 G. Laudadio, H. P. L. Gemoets, V. Hessel and T. Noël, *The Journal of Organic Chemistry*, 2017, **82**, 11735–11741.
- 15 H. Yuan, Y. Du, F. Liu, L. Guo, Q. Sun, L. Feng and H. Gao, *Chemical Communications*, 2020, **56**, 8226–8229.
- 16 P. Nikolaienko, T. Yildiz and M. Rueping, *European Journal of Organic Chemistry*, 2016, **2016**, 1091–1094.
- 17 D. I. Bugaenko, A. A. Volkov, M. V Livantsov, M. A. Yurovskaya and A. V Karchava, *Chemistry – A European Journal*, 2019, **25**, 12502–12506.
- 18 A. Bigot, A. E. Williamson and M. J. Gaunt, *Journal of the American Chemical Society*, 2011, **133**, 13778–13781.
- 19 Z. Huang, Q. P. Sam and G. Dong, *Chemical Science*, 2015, **6**, 5491–5498.
- 20 D. I. Bugaenko, M. A. Yurovskaya and A. V Karchava, Organic Letters, 2018, 20, 6389– 6393.

J. Sheng, Y. Wang, X. Su, R. He and C. Chen, *Angewandte Chemie International Edition*, 2017, **56**, 4824–4828.

10. Spectral data for potassium aryltrifluoroborate salts

¹³C{¹H} NMR (101 MHz, [D6] DMSO): Compound 1c

35

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound 1c

10 -140 -180 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -160 -200

13C{1H} NMR (101 MHz, [D6] DMSO): Compound 1d

¹H NMR (400 MHz, [D6] DMSO): Compound 1e

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound 1e

¹H NMR (400 MHz, [D6] DMSO): Compound 1f

¹³C{¹H} NMR (101 MHz, [D6] DMSO): Compound 1f

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound 1f

10 0 -10 -20	30 -40 -50 -60 -70	-80 -90 -100 -120	-140 -160	-180 -200

 $\int_{7.5664}^{7.7189} \int_{7.6651}^{7.7189} \int_{7.6651}^{7.6651} \int_{7.6467}^{7.6664} \int_{7.5664}^{7.5664} \int_{7.5288}^{7.5288}$

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound 1g

¹H NMR (400 MHz, [D6] DMSO): Compound 1h

¹³C{¹H} NMR (101 MHz, [D6] DMSO): Compound 1h

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound 1h

¹H NMR (400 MHz, [D6] DMSO): Compound 1i

¹³C{¹H} NMR (101 MHz, [D6] DMSO): Compound 1i

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound 1i

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound 1j

¹H NMR (400 MHz, [D6] DMSO): Compound **1**k

¹³C{¹H} NMR (101 MHz, [D6] DMSO): Compound 1k

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound 1k

¹H NMR (400 MHz, [D6] DMSO): Compound 1m

¹³C{¹H} NMR (101 MHz, [D6] DMSO): Compound 1m

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound 1m

----138.6440

¹H NMR (400 MHz, [D6] DMSO): Compound 1n

¹³C{¹H} NMR (101 MHz, [D6] DMSO): Compound 1n

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound 1n

¹H NMR (400 MHz, [D6] DMSO): Compound 10

¹³C{¹H} NMR (101 MHz, [D6] DMSO): Compound 10

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound **10**

	1	

210 200 190 180 170 160 150 140 130 120 110 100 90

¹³C{¹H} NMR (101 MHz, [D6] DMSO): Compound 1p

-10

BF₃K

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound 1p

----139.0710

¹H NMR (400 MHz, [D6] DMSO): Compound 1q

¹³C{¹H} NMR (101 MHz, [D6] DMSO): Compound 1q

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound 1q

---138.9558

¹³C{¹H} NMR (101 MHz, [D6] DMSO): Compound 1r

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound 1r

10 0 -10 -20	-30 -40 -50 -60 -70 -80	-90 -100 -120	-140 -160	-180 -200

¹H NMR (400 MHz, [D6] DMSO): Compound 1s

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound 1s

¹H NMR (400 MHz, [D6] DMSO): Compound 1t

-7.3518 -7.0790

--6.1871

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound 1t

-7.1717

~7.0068 ~6.9886 ~6.9770

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound 1u

 $<^{135.4126}_{135.5608}$

¹H NMR (400 MHz, [D6] DMSO): Compound 1v

¹³C{¹H} NMR (101 MHz, [D6] DMSO): Compound 1v

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound 1v

Spectral data for Aryl (Mes)iodonium salts

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound 2a

¹³C{¹H} NMR (101 MHz, [D6] DMSO): Compound 2a

¹H NMR (400 MHz, [D6] DMSO): Compound **2b**

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound 1b

¹³C{¹H} NMR (101 MHz, [D6] DMSO): Compound 2b

¹H NMR (400 MHz, [D6] DMSO): Compound 2c

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound 2c

---77.7446

¹H NMR (400 MHz, [D6] DMSO): Compound 2d

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound 2d

¹³C{¹H} NMR (101 MHz, [D6] DMSO): Compound 2d

¹H NMR (400 MHz, [D6] DMSO): Compound 2e

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound 2e

¹³C{¹H} NMR (101 MHz, [D6] DMSO): Compound 2e

¹H NMR (400 MHz, [D6] DMSO): Compound 2f

--77.7326

¹³C{¹H} NMR (101 MHz, [D6] DMSO): Compound 2f

¹H NMR (400 MHz, [D6] DMSO): Compound 2g

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound 2g

---77.7284

10 0) -10	-20 -3	0 -40	-50	-60 -70	-80	-90	-100	-120	 -140	-160	 -180	-200	

¹H NMR (400 MHz, [D6] DMSO): Compound 2h

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound 2h

¹³C{¹H} NMR (101 MHz, [D6] DMSO): Compound 2h

¹H NMR (400 MHz, [D6] DMSO): Compound 2i

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound 2i

¹³C{¹H} NMR (101 MHz, [D6] DMSO): Compound 2i

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound 2j

¹³C{¹H} NMR (101 MHz, [D6] DMSO): Compound 2j

¹³C{¹H} NMR (101 MHz, [D6] DMSO): Compound 2k

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound 21

¹³C{¹H} NMR (101 MHz, [D6] DMSO): Compound 2I

¹H NMR (400 MHz, [D6] DMSO): Compound 2m

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound 2m

¹³C{¹H} NMR (101 MHz, [D6] DMSO): Compound 2m

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound 2n

¹³C{¹H} NMR (101 MHz, [D6] DMSO): Compound 2n

¹H NMR (400 MHz, [D6] DMSO): Compound 20

¹³C{¹H} NMR (101 MHz, [D6] DMSO): Compound 20

¹H NMR (400 MHz, [D6] DMSO): Compound **2p**

---77.7262

¹³C{¹H} NMR (101 MHz, [D6] DMSO): Compound 2p

¹H NMR (400 MHz, [D6] DMSO): Compound 2q

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound 2q

¹³C{¹H} NMR (101 MHz, [D6] DMSO): Compound 2q

¹H NMR (400 MHz, [D6] DMSO): Compound 2s

145

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound 2s

¹³C{¹H} NMR (101 MHz, [D6] DMSO): Compound 2s

¹H NMR (400 MHz, [D6] DMSO): Compound 2t

148

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound **2t**

¹³C{¹H} NMR (101 MHz, [D6] DMSO): Compound 2t

¹H NMR (400 MHz, [D6] DMSO): Compound 2u

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound 2u

¹³C{¹H} NMR (101 MHz, [D6] DMSO): Compound 2u

¹H NMR (400 MHz, [D6] DMSO): Compound 2v

¹⁹F{¹H} NMR (376 MHz, [D6] DMSO): Compound 2v

¹³C{¹H} NMR (101 MHz, [D6] DMSO): Compound 2v

