Catalytic asymmetric aromatizing inverse electron-demand

[4+2] cycloaddition of 1-thioaurones and 1-azaaurones

Shu-Pei Yuan,^{a,b,c} Pei-Hao Dou,^{a,b,c} Yun-Qing Jia,^{a,b,c} Jian-Qiang Zhao,^b Yong You,^b Zhen-Hua Wang,^b Ming-Qiang Zhou,^{a*} and Wei-Cheng Yuan^{a,b*}

 ^aNational Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
 ^bInnovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
 ^cUniversity of Chinese Academy of Sciences, Beijing, 100049, China

> *E-mail: yuanwc@cioc.ac.cn screenfilm@foxmail.com

Supporting Information

Table of Contents

1.	General information	S1
2.	General procedures for the asymmetric synthesis of compounds 3	S1
3.	General procedures for the asymmetric synthesis of compounds 5	S11
4.	General procedures for the asymmetric synthesis of compounds 7	.S16
5.	General procedures for the asymmetric synthesis of compounds 8	S20
6.	Scale-up experiment for the synthesis of 3a	.S22
7.	Synthetic transformations of products	.S23
	7.1 The procedure for the synthesis of compound 9	.S23
	7.2 The procedure for the synthesis of compound 10	.S23
	7.3 The procedure for the synthesis of compound 11	.S24
8.	X-ray crystal structure of compound 3a , 5a , 7e and 8b	S25
9.	Proposed transition states for the asymmetric aromatizing IED [4+2] cycloaddition	.S29
10.	The copies of ¹ H NMR, ¹³ C NMR and HPLC spectra for compounds 3 , 5 , 7-11	S 31

1. General Information

Reagents were purchased from commercial sources and were used as received unless mentioned otherwise. Reactions were monitored by TLC. ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ and DMSO- d_6 . ¹H NMR chemical shifts are reported in ppm relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard (CDCl₃ at 7.26 ppm, DMSO- d_6 at 2.50 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, br s = broad singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz) and integration. 13C NMR chemical shifts are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard (CDCl₃ at 77.20 ppm, DMSO- d_6 at 39.51 ppm). The enantiomeric excesses were determined by chiral HPLC analysis. HPLC analysis was performed on Shimadzu SCL-10AVP HPLC systems consisting of the followings: pump, LC-10AD; detector, SPD-10A measured at 254 nm. HRMS was recorded on Bruker Q TOF. Optical rotations were measured with a Perkin-Elmer-341 polarimeter. Melting points were recorded on a Büchi Melting Point B-545. The substrates **1**^[1] and **6**^[2] were prepared following the procedures reported in literatures. Among them, **1a-1b**, **1d-1j** were prepared from the same reference^[1a]. While **1c**, **1l-1n** were synthesized according to precedent literature report^[1b]. Furthermore, **1k** was obtained by the other way^[1c].

- (a) T. B. Nguyen and P. Retailleau, *Org. Lett.* 2018, **20**, 186-189; (b) B. Maerz, S. Wiedbrauk,
 S. Oesterling, E. Samoylova, A. Nenov, P. Mayer, R. Vivie-Riedle, W. Zinth and H. Dube,
 Chem. Eur. J. 2014, **20**, 13984-13992; (c) P. Xiao, S.-K. Su, W. Wang, W.-G. Cao, J. Chen, J.
 Li and Y.-L. Chen, *RSC Advances*. 2019, **9**, 39119-39123.
- [2] X.-H. Fei, Y.-L. Zhao, F.-F. Yang, X. Guan, Z.-Q. Li, D.-P. Wang, M. Zhou, Y.-Y. Yang and B. He, *Adv. Synth. Catal.* 2021, **363**, 3018-3024.

2. General procedures for the asymmetric synthesis of compounds 3

In an ordinary vial equipped with a magnetic stirring bar, the solution of 1-Thioaurones 1 (0.12 mmol, 1.2 equiv), γ -Deconjugated Butenolides 2 (0.1 mmol, 1.0 equiv) and catalyst C (20 mol %) in toluene (2.0 mL) was cooled to 0 °C. And then, the mixture was stirred at the same temperature for the specified time. After completion of the reaction, as indicated by TLC, the products 3 were isolated by flash chromatography on silica gel (PE/EA = 21/1 ~ 10/1).

(3R,4S)-3-(2-oxo-2-phenylethyl)-4-phenyl-3,4-dihydro-2H-benzo[4,5]thieno[3,2-b]pyran-2one (3a)

The major diastereomer 3a was purified by flash column chromatography (petroleum ether/ethyl acetate = 15:1);

White solid; 35.0 mg, 88% yield; 92:8 dr, 99% ee; $[\alpha]_D{}^{20} = +27.9$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 159.3-160.5 °C;

The ee was determined by HPLC (Chiralpak IB, EtOH/hexane = 10/90, flow rate 0.6 mL/min, λ = 254 nm, major diastereomer: $t_{\text{minor}} = 19.7 \text{ min}$, $t_{\text{major}} = 17.9 \text{ min}$);

¹H NMR (300 MHz, CDCl₃) δ (major diastereomer) 7.94-7.86 (m, 2H), 7.80 (d, J = 7.5 Hz, 1H), 7.64 (d, J = 8.0 Hz, 1H), 7.58-7.49 (m, 1H), 7.46-7.37 (m, 3H), 7.37-7.26 (m, 6H), 4.55 (d, J = 11.6 Hz, 1H), 3.91-3.67 (m, 1H), 3.43 (dd, J = 18.0, 6.0 Hz, 1H), 3.23 (dd, J = 18.0, 4.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ (major diastereomer) 196.7, 169.5, 141.4, 139.8, 136.8, 136.4, 133.5,

 $129.9,\,129.3,\,128.7,\,128.6,\,128.4,\,128.2,\,125.5,\,124.9,\,122.8,\,120.2,\,120.0,\,43.4,\,43.3,\,36.7;$

HRMS (ESI-TOF) calcd. for $C_{25}H_{19}O_3S$ [M + H]⁺ 399.1049; found: 399.1052.

(3R,4S)-3-(2-(4-fluorophenyl)-2-oxoethyl)-4-phenyl-3,4-dihydro-2H-benzo[4,5]thieno[3,2b]pyran-2-one (3b)

The major diastereomer **3b** was purified by flash column chromatography (petroleum ether/ethyl acetate = 15:1);

Yellow solid; 32.5 mg, 78% yield; 84:16 dr, 99% ee; $[\alpha]_D^{20} = +4.8$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 106.5-107.3 °C;

The ee was determined by HPLC (Chiralpak IB, EtOH/hexane = 10/90, flow rate 0.8 mL/min, λ = 254 nm, major diastereomer: t_{minor} = 23.0 min, t_{major} = 13.5 min);

¹**H NMR (400 MHz, CDCl₃)** δ (major diastereomer) 7.96-7.89 (m, 2H), 7.82 (d, *J* = 7.3 Hz, 1H), 7.66 (d, *J* = 8.0 Hz, 1H), 7.46-7.33 (m, 5H), 7.33-7.27 (m, 2H), 7.14-7.06 (m, 2H), 4.55 (d, *J* = 11.7 Hz, 1H), 3.86-3.70 (m, 1H), 3.41 (dd, *J* = 17.8, 6.1 Hz, 1H), 3.19 (dd, *J* = 17.8, 4.2 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃) δ (major diastereomer) 195.2, 169.5, 166.0 (d, *J* = 255.4 Hz, 1C), 141.4, 139.7, 136.8, 132.9 (d, *J* = 3.0 Hz, 1C), 130.9 (d, *J* = 9.5 Hz, 1C), 129.9, 129.4, 128.6, 128.4, 125.5, 124.9, 122.8, 120.2, 120.0, 115.8 (d, *J* = 21.9 Hz, 1C), 43.4, 43.3, 36.6;

HRMS (**ESI-TOF**) calcd. for C₂₅H₁₈FO₃S [M + H]⁺ 417.0955; found: 417.0956.

(3R,4S)-3-(2-(4-chlorophenyl)-2-oxoethyl)-4-phenyl-3,4-dihydro-2H-benzo[4,5]thieno[3,2b]pyran-2-one (3c)

The major diastereomer 3c was purified by flash column chromatography (petroleum ether/ethyl acetate = 15:1);

Yellow solid; 32.0 mg, 74% yield; 87:13 dr, 98% ee; $[\alpha]_D^{20} = +18.0$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 128.7-129.9 °C;

The ee was determined by HPLC (Chiralpak IB, EtOH/hexane = 10/90, flow rate 0.8 mL/min, λ = 254 nm, major diastereomer: t_{minor} = 20.5 min, t_{major} = 12.9 min);

¹**H NMR (400 MHz, CDCl₃)** δ (major diastereomer) 7.83 (dd, *J* = 8.4, 6.5 Hz, 3H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.47-7.39 (m, 3H), 7.39-7.26 (m, 6H), 4.55 (d, *J* = 11.7 Hz, 1H), 3.85-3.67 (m, 1H), 3.41 (dd, *J* = 17.8, 6.1 Hz, 1H), 3.18 (dd, *J* = 17.8, 4.1 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃) δ (major diastereomer) 195.6, 169.5, 141.4, 140.1, 139.7, 136.8, 134.8, 129.9, 129.6, 129.4, 129.1, 128.7, 128.5, 125.5, 125.0, 122.9, 120.3, 120.0, 43.5, 43.4, 36.7; HRMS (ESI-TOF) calcd. for C₂₅H₁₈ClO₃S [M + H]⁺ 433.0660; found: 433.0659.

(3R,4S)-3-(2-(4-bromophenyl)-2-oxoethyl)-4-phenyl-3,4-dihydro-2H-benzo[4,5]thieno[3,2b]pyran-2-one (3d)

The major diastereomer **3d** was purified by flash column chromatography (petroleum ether/ethyl acetate = 15:1);

Yellow solid; 37.2 mg, 78% yield; 87:13 dr, 99% ee; $[\alpha]_D^{20} = +25.1$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 114.5-115.2 °C;

The ee was determined by HPLC (Chiralpak IB, EtOH/hexane = 10/90, flow rate 1.0 mL/min, λ = 254 nm, major diastereomer: t_{minor} = 18.0 min, t_{major} = 11.1 min);

¹**H NMR (400 MHz, CDCl₃)** δ (major diastereomer) 7.82 (d, *J* = 7.9 Hz, 1H), 7.76 (d, *J* = 8.3 Hz, 2H), 7.67 (d, *J* = 7.9 Hz, 1H), 7.57 (d, *J* = 8.3 Hz, 2H), 7.47-7.33 (m, 5H), 7.34-7.29 (m, 2H), 4.55 (d, *J* = 11.8 Hz, 1H), 3.84-3.71 (m, 1H), 3.40 (dd, *J* = 17.9, 6.2 Hz, 1H), 3.17 (dd, *J* = 17.9, 4.1 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃) δ (major diastereomer) 195.8, 169.5, 141.4, 139.7, 136.9, 135.3, 132.1, 129.9, 129.7, 129.4, 128.8, 128.7, 128.5, 125.5, 125.0, 122.9, 120.3, 120.0, 43.5, 43.4, 36.7;
HRMS (ESI-TOF) calcd. for C₂₅H₁₈BrO₃S [M + H]⁺ 477.0155; found: 477.0157.

(3R,4S)-3-(2-oxo-2-(p-tolyl)ethyl)-4-phenyl-3,4-dihydro-2H-benzo[4,5]thieno[3,2-b]pyran-2one (3e)

The major diastereomer **3e** was purified by flash column chromatography (petroleum ether/ethyl acetate = 20:1);

Yellow solid; 32.3 mg, 78% yield; 89:11 dr, 99% ee; $[\alpha]_D^{20} = +26.5$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 177.2-177.8 °C;

The ee was determined by HPLC (Chiralpak IB, EtOH/hexane = 10/90, flow rate 0.8 mL/min, λ = 254 nm, major diastereomer: $t_{\text{minor}} = 15.1 \text{ min}, t_{\text{major}} = 11.9 \text{ min}$);

¹**H** NMR (400 MHz, CDCl₃) δ (major diastereomer) 7.83 (dd, J = 10.4, 7.9 Hz, 3H), 7.68 (d, J = 8.0 Hz, 1H), 7.46-7.40 (m, 1H), 7.40-7.29 (m, 6H), 7.24 (d, J = 8.0 Hz, 2H), 4.57 (d, J = 11.2 Hz, 1H), 3.82-3.69 (m, 1H), 3.42 (dd, J = 17.9, 5.8 Hz, 1H), 3.25 (dd, J = 17.9, 4.5 Hz, 1H), 2.40 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ (major diastereomer) 196.2, 169.6, 144.5, 141.5, 140.0, 136.9, 134.1, 130.0, 129.4, 129.3, 128.6, 128.5, 128.4, 125.5, 124.9, 122.9, 120.3, 119.9, 43.5, 43.4, 36.7, 21.8;

HRMS (ESI-TOF) calcd. for $C_{26}H_{21}O_3S [M + H]^+ 413.1206$; found: 413.1209.

(3R,4S)-3-(2-(4-methoxyphenyl)-2-oxoethyl)-4-phenyl-3,4-dihydro-2H-benzo[4,5]thieno[3,2-

b]pyran-2-one (3f)

The major diastereomer **3f** was purified by flash column chromatography (petroleum ether/ethyl acetate = 18:1);

Yellow solid; 35.6 mg, 83% yield; 81:19 dr, 98% ee; $[\alpha]_D^{20} = +55.7$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 164.3-165.2 °C;

The ee was determined by HPLC (Chiralpak IB, EtOH/hexane = 10/90, flow rate 0.8 mL/min, λ = 254 nm, major diastereomer: t_{minor} = 22.6 min, t_{major} = 18.2 min);

¹**H NMR (300 MHz, CDCl₃)** δ (major diastereomer) 7.94-7.84 (m, 2H), 7.83 (d, *J* = 7.8 Hz, 1H), 7.67 (d, *J* = 8.2 Hz, 1H), 7.45-7.39 (m, 1H), 7.39-7.26 (m, 6H), 6.90 (d, *J* = 8.9 Hz, 2H), 4.56 (d, *J* = 11.1 Hz, 1H), 3.85 (s, 3H), 3.82-3.67 (m, 1H), 3.39 (dd, *J* = 17.7, 5.6 Hz, 1H), 3.23 (dd, *J* = 17.7, 4.5 Hz, 1H);

¹³C NMR (75 MHz, CDCl₃) δ (major diastereomer) 195.1, 169.6, 163.9, 141.5, 140.0, 136.9, 130.5, 130.0, 129.6, 129.3, 128.5, 128.4, 125.5, 124.9, 122.9, 120.3, 119.9, 113.9, 55.6, 43.5, 43.4, 36.5;
HRMS (ESI-TOF) calcd. For C₂₆H₂₀NaO₄S [M + Na]⁺ 451.0975; found: 451.0955.

(3R,4S)-3-(2-(naphthalen-2-yl)-2-oxoethyl)-4-phenyl-3,4-dihydro-2H-benzo[4,5]thieno[3,2b]pyran-2-one (3g)

The major diastereomer 3g was purified by flash column chromatography (petroleum ether/ethyl acetate = 15:1);

Yellow solid; 36.7 mg, 82% yield; 92:8 dr, 99% ee; $[\alpha]_D{}^{20} = +37.9$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 211.4-212.5 °C;

The ee was determined by HPLC (Chiralpak IB, EtOH/hexane = 10/90, flow rate 1.0 mL/min, λ = 254 nm, major diastereomer: t_{minor} = 16.3 min, t_{major} = 12.4 min);

¹**H NMR** (**300 MHz**, **CDCl**₃) δ (major diastereomer) 8.41 (s, 1H), 8.02-7.94 (m, 1H), 7.94-7.81 (m, 4H), 7.67 (d, J = 7.9 Hz, 1H), 7.65-7.48 (m, 2H), 7.46-7.39 (m, 1H), 7.39-7.30 (m, 6H), 4.61 (d, J = 11.3 Hz, 1H), 3.92-3.75 (m, 1H), 3.59 (dd, J = 17.8, 5.8 Hz, 1H), 3.39 (dd, J = 17.8, 4.4 Hz, 1H); ¹³C NMR (75 MHz, **CDCl**₃) δ 196.6, 169.6, 141.5, 139.9, 136.9, 135.9, 133.9, 132.5, 130.0, 129.7, 129.4, 128.8, 128.6, 128.5, 127.9, 127.0, 125.5, 125.0, 123.8, 122.9, 120.3, 120.0, 43.6, 43.5, 36.9; **HRMS (ESI-TOF)** calcd. for C₂₉H₂₁O₃S [M + H]⁺ 449.1206; found: 449.1207.

(3R,4S)-3-(2-oxopropyl)-4-phenyl-3,4-dihydro-2H-benzo[4,5]thieno[3,2-b]pyran-2-one (3h)

The product **3h** was purified by flash column chromatography (petroleum ether/ethyl acetate = 10:1); Pink solid; 13.7 mg, 41% yield; 52:48 dr, 91% ee for major diastereomer, 90% ee for minor diastereomer; $[\alpha]_D^{20} = +82.7$ (*c* 1.00, CH₂Cl₂); m.p. 168.7-169.9 °C;

The ee was determined by HPLC (Chiralpak IB, EtOH/hexane = 10/90, flow rate 0.8 mL/min, λ = 254 nm, major diastereomer: $t_{\text{minor}} = 12.7 \text{ min}$, $t_{\text{major}} = 11.5 \text{ min}$; minor diastereomer: $t_{\text{minor}} = 10.2 \text{ min}$, $t_{\text{major}} = 9.2 \text{ min}$);

¹**H** NMR (300 MHz, CDCl₃) δ 7.81 (dd, J = 12.0, 7.3 Hz, 1.0H), 7.67 (dd, J = 16.5, 7.6 Hz, 1.0H), 7.46-7.34 (m, 3.0H), 7.34-7.22 (m, 3.0H), 7.07-6.99 (m, 1.0H), 4.52-4.36 (m, 1.0H), 4.02-3.91 (m, 0.5H), 3.64-3.53 (m, 0.5H), 3.00 (dd, J = 18.5, 5.9 Hz, 0.5H), 2.85 (dd, J = 17.8, 6.7 Hz, 0.5H), 2.63 (dd, J = 17.8, 3.9 Hz, 0.5H), 2.34 (dd, J = 18.5, 7.1 Hz, 0.5H), 2.17 (s, 1.5H), 2.15 (s, 1.5H);

¹³C NMR (101 MHz, CDCl₃) δ 205.8, 205.4, 169.5, 169.2, 141.6, 141.3, 139.5, 137.9, 137.1, 136.7, 129.8, 129.7, 129.4, 129.3, 128.6, 128.4, 128.3, 127.6, 125.7, 125.5, 124.9, 124.8, 123.0, 122.8, 120.3, 120.2 (2C), 119.5, 43.3, 43.1, 42.0, 41.3, 40.9 (2 C), 30.4 (2 C);

HRMS (ESI-TOF) calcd. for $C_{20}H_{17}O_3S$ [M + H]⁺ 337.0893; found: 337.0896.

(3R,4S)-4-(4-fluorophenyl)-3-(2-oxo-2-phenylethyl)-3,4-dihydro-2H-benzo[4,5]thieno[3,2b]pvran-2-one (3i)

The major diastereomer 3i was purified by flash column chromatography (petroleum ether/ethyl acetate = 15:1);

Yellow solid; 29.9 mg, 72% yield; 89:11 dr, 99% ee; $[\alpha]_D^{20} = +26.1$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 96.2-97.3 °C;

The ee was determined by HPLC (Chiralpak IB, EtOH/hexane = 10/90, flow rate 0.8 mL/min, λ = 254 nm, major diastereomer: t_{minor} = 15.7 min, t_{major} = 13.4 min);

¹**H NMR (300 MHz, CDCl**₃) δ (major diastereomer) 7.94-7.86 (m, 2H), 7.81 (d, *J* = 8.5 Hz, 1H), 7.66 (d, *J* = 7.3 Hz, 1H), 7.60-7.51 (m, 1H), 7.47-7.23 (m, 6H), 7.09-6.99 (m, 2H), 4.56 (d, *J* = 11.3 Hz, 1H), 3.84-3.59 (m, 1H), 3.43 (dd, *J* = 17.9, 5.7 Hz, 1H), 3.24 (dd, *J* = 17.9, 4.5 Hz, 1H);

¹³C NMR (75 MHz, CDCl₃) δ (major diastereomer) 196.6, 169.3, 162.7 (d, *J* = 247.8 Hz, 1C), 141.5, 136.8, 136.4, 135.6 (d, *J* = 3.2 Hz, 1C), 133.6, 130.1 (d, *J* = 8.1 Hz, 1C), 129.9, 128.8, 128.2, 125.6, 125.0, 122.9, 120.3, 119.6, 116.3 (d, *J* = 21.7 Hz, 1C), 43.6, 42.7, 36.7;

HRMS (ESI-TOF) calcd. for $C_{25}H_{18}FO_3S$ [M + H]⁺ 417.0955; found: 417.0959.

(3R,4S)-4-(2-chlorophenyl)-3-(2-oxo-2-phenylethyl)-3,4-dihydro-2H-benzo[4,5]thieno[3,2b]pyran-2-one (3j)

The major diastereomer 3j was purified by flash column chromatography (petroleum ether/ethyl acetate = 15:1);

Yellow solid; 30.7 mg, 71% yield; 90:10 dr, 99% ee; $[\alpha]_D^{20} = +54.6$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 171.5-172.7 °C;

The ee was determined by HPLC (Chiralpak IB, EtOH/hexane = 10/90, flow rate 0.8 mL/min, λ

= 254 nm, major diastereomer: t_{minor} = 14.4 min, t_{major} = 12.9 min);

¹**H NMR (300 MHz, CDCl₃)** δ (major diastereomer) 7.97-7.88 (m, 2H), 7.83 (d, J = 7.4 Hz, 1H), 7.67 (d, J = 8.1 Hz, 1H), 7.61-7.52 (m, 1H), 7.48-7.40 (m, 3H), 7.38-7.31 (m, 5H), 4.57 (d, J = 11.4 Hz, 1H), 3.88-3.70 (m, 1H), 3.45 (dd, J = 17.9, 5.8 Hz, 1H), 3.26 (dd, J = 17.9, 4.4 Hz, 1H); ¹³**C NMR (75 MHz, CDCl₃)** δ (major diastereomer) 196.7, 169.6, 141.5, 139.9, 136.9, 136.5, 133.6, 130.0, 129.4, 128.8, 128.6, 128.5, 128.2, 125.5, 125.0, 122.9, 120.3, 120.0, 43.5, 43.4, 36.8; **HRMS (ESI-TOF)** calcd. for C₂₅H₁₈ClO₃S [M + H]⁺ 433.0660; found: 433.0662.

(3R,4S)-4-(4-chlorophenyl)-3-(2-oxo-2-phenylethyl)-3,4-dihydro-2H-benzo[4,5]thieno[3,2b]pyran-2-one (3k)

The major diastereomer 3k was purified by flash column chromatography (petroleum ether/ethyl acetate = 15:1);

Yellow solid; 29.7 mg, 69% yield; 89:11 dr, 99% ee; $[\alpha]_D^{20} = +42.4$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 80.5-81.2 °C;

The ee was determined by HPLC (Chiralpak IB, EtOH/hexane = 10/90, flow rate 0.8 mL/min, λ = 254 nm, major diastereomer: t_{minor} = 16.5 min, t_{major} = 13.8 min);

¹**H NMR (300 MHz, CDCl₃)** δ (major diastereomer) 7.96-7.87 (m, 2H), 7.87-7.81 (m, 1H), 7.74-7.66 (m, 1H), 7.62-7.54 (m, 1H), 7.48-7.32 (m, 6H), 7.28-7.24 (m, 2H), 4.58 (d, *J* = 10.9 Hz, 1H), 3.78-3.67 (m, 1H), 3.43 (dd, *J* = 18.0, 5.5 Hz, 1H), 3.27 (dd, *J* = 18.0, 4.7 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃) δ (major diastereomer) 196.5, 169.2, 141.7, 138.4, 136.9, 136.4, 134.5, 133.7, 129.9, 129.8, 129.6, 128.8, 128.2, 125.7, 125.1, 122.9, 120.4, 119.1, 43.5, 42.9, 36.8; HRMS (ESI-TOF) calcd. for C₂₅H₁₈ClO₃S [M + H]⁺ 433.0660; found: 433.0662.

(3R,4S)-4-(3-bromophenyl)-3-(2-oxo-2-phenylethyl)-3,4-dihydro-2H-benzo[4,5]thieno[3,2b]pyran-2-one (3l)

The major diastereomer **31** was purified by flash column chromatography (petroleum ether/ethyl acetate = 15:1);

Yellow solid; 34.2 mg, 72% yield; 89:11 dr, 97% ee; $[\alpha]_D^{20} = +47.5$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 109.2-110.6 °C;

The ee was determined by HPLC (Chiralpak IC, EtOH/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm, major diastereomer: t_{minor} = 12.1 min, t_{major} = 9.1 min);

¹**H NMR (400 MHz, CDCl₃)** δ (major diastereomer) 7.92 (d, *J* = 7.7 Hz, 2H), 7.84 (d, *J* = 7.8 Hz, 1H), 7.69 (d, *J* = 8.0 Hz, 1H), 7.62-7.53 (m, 1H), 7.51-7.41 (m, 5H), 7.41-7.35 (m, 1H), 7.28-7.22 (m, 2H), 4.56 (d, *J* = 10.9 Hz, 1H), 3.79-3.68 (m, 1H), 3.43 (dd, *J* = 18.0, 5.5 Hz, 1H), 3.30 (dd, *J* = 18.0, 4.8 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃) δ (major diastereomer) 196.5, 169.1, 142.3, 141.7, 136.9, 136.4, 133.7, 131.8, 131.5, 130.9, 129.8, 128.8, 128.2, 127.1, 125.7, 125.1, 123.4, 122.9, 120.4, 118.7, 43.5, 43.1, 36.9;

HRMS (ESI-TOF) calcd. for $C_{25}H_{18}BrO_3S$ [M + H]⁺ 477.0155; found: 477.0168.

 $(3R, 4S) \cdot 3 \cdot (2 \cdot oxo \cdot 2 \cdot phenylethyl) \cdot 4 \cdot (p \cdot tolyl) \cdot 3, 4 \cdot dihydro \cdot 2H \cdot benzo[4, 5] thieno[3, 2 \cdot b] pyran \cdot 2 \cdot (p \cdot tolyl) \cdot 3, 4 \cdot dihydro \cdot 2H \cdot benzo[4, 5] thieno[3, 2 \cdot b] pyran \cdot 2 \cdot (p \cdot tolyl) \cdot 3, 4 \cdot dihydro \cdot 2H \cdot benzo[4, 5] thieno[3, 2 \cdot b] pyran \cdot 2 \cdot (p \cdot tolyl) \cdot 3, 4 \cdot dihydro \cdot 2H \cdot benzo[4, 5] thieno[3, 2 \cdot b] pyran \cdot 2 \cdot (p \cdot tolyl) \cdot 3, 4 \cdot dihydro \cdot 2H \cdot benzo[4, 5] thieno[3, 2 \cdot b] pyran \cdot 2 \cdot (p \cdot tolyl) \cdot 3, 4 \cdot dihydro \cdot 2H \cdot benzo[4, 5] thieno[3, 2 \cdot b] pyran \cdot 2 \cdot (p \cdot tolyl) \cdot 3, 4 \cdot dihydro \cdot 2H \cdot benzo[4, 5] thieno[3, 2 \cdot b] pyran \cdot 2 \cdot (p \cdot tolyl) \cdot 3, 4 \cdot dihydro \cdot 2H \cdot benzo[4, 5] thieno[3, 2 \cdot b] pyran \cdot 2 \cdot (p \cdot tolyl) \cdot 3, 4 \cdot dihydro \cdot 2H \cdot benzo[4, 5] thieno[3, 2 \cdot b] pyran \cdot 2 \cdot (p \cdot tolyl) \cdot 3, 4 \cdot dihydro \cdot 2H \cdot benzo[4, 5] thieno[3, 2 \cdot b] pyran \cdot 2 \cdot (p \cdot tolyl) \cdot 3, 4 \cdot dihydro \cdot 2H \cdot benzo[4, 5] thieno[3, 2 \cdot b] pyran \cdot 2 \cdot (p \cdot tolyl) \cdot 3, 4 \cdot dihydro \cdot 2H \cdot benzo[4, 5] thieno[3, 2 \cdot b] pyran \cdot 2 \cdot (p \cdot tolyl) \cdot 3, 4 \cdot dihydro \cdot 2H \cdot benzo[4, 5] thieno[3, 2 \cdot b] pyran \cdot 2 \cdot (p \cdot tolyl) \cdot 3, 4 \cdot dihydro \cdot 2H \cdot benzo[4, 5] thieno[3, 2 \cdot b] pyran \cdot 2 \cdot (p \cdot tolyl) \cdot 3, 4 \cdot dihydro \cdot 2H \cdot benzo[4, 5] thieno[3, 2 \cdot b] pyran \cdot 2 \cdot (p \cdot tolyl) \cdot 3, 4 \cdot dihydro \cdot 2H \cdot benzo[4, 5] thieno[3, 2 \cdot b] pyran \cdot 2 \cdot (p \cdot tolyl) \cdot 3, 4 \cdot dihydro \cdot 2H \cdot benzo[4, 5] thieno[3, 2 \cdot b] pyran \cdot 2 \cdot (p \cdot tolyl) \cdot 3, 4 \cdot dihydro \cdot 2H \cdot benzo[4, 5] thieno[3, 2 \cdot b] pyran \cdot 2 \cdot (p \cdot tolyl) \cdot 3, 4 \cdot dihydro \cdot 2H \cdot benzo[4, 5] thieno[3, 2 \cdot b] pyran \cdot 2 \cdot (p \cdot tolyl) \cdot 3, 4 \cdot dihydro \cdot 2H \cdot benzo[4, 5] thieno[3, 2 \cdot b] pyran \cdot 2 \cdot (p \cdot tolyl) \cdot 3, 4 \cdot dihydro \cdot 2H \cdot benzo[4, 5] thieno[3, 2 \cdot b] pyran \cdot 2 \cdot (p \cdot tolyl) \cdot 3, 4 \cdot dihydro \cdot 2H \cdot benzo[4, 5] thieno[3, 2 \cdot b] pyran \cdot 2 \cdot (p \cdot tolyl) \cdot 3, 4 \cdot dihydro \cdot 2H \cdot benzo[4, 5] thieno[3, 2 \cdot b] pyran \cdot 2 \cdot (p \cdot tolyl) \cdot 3, 4 \cdot dihydro \cdot 2H \cdot benzo[4, 5] thieno[3, 2 \cdot b] pyran \cdot 2 \cdot (p \cdot tolyl) \cdot 3, 4 \cdot dihydro \cdot 2H \cdot benzo[4, 5] thieno[3, 5] thieno[3$

The major diastereomer **3m** was purified by flash column chromatography (petroleum ether/ethyl acetate = 12:1);

Yellow solid; 36.2 mg, 88% yield; 89:11 dr, 99% ee; $[\alpha]_D^{20} = +47.0$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 98.3-99.2 °C;

The ee was determined by HPLC (Chiralpak IB, EtOH/hexane = 10/90, flow rate 0.8 mL/min, λ = 254 nm, major diastereomer: t_{minor} = 13.2 min, t_{major} = 11.3 min);

¹**H NMR (400 MHz, CDCl₃)** δ (major diastereomer) 7.83 (d, *J* = 7.3 Hz, 2H), 7.75 (d, *J* = 7.9 Hz, 1H), 7.59 (d, *J* = 8.0 Hz, 1H), 7.52-7.44 (m, 1H), 7.38-7.31 (m, 3H), 7.30-7.23 (m, 1H), 7.18-7.06 (m, 4H), 4.45 (d, *J* = 11.7 Hz, 1H), 3.74-3.63 (m, 1H), 3.37 (dd, *J* = 17.9, 6.1 Hz, 1H), 3.15 (dd, *J* = 17.9, 4.1 Hz, 1H), 2.27 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ (major diastereomer) 196.8, 169.7, 141.3, 138.4, 136.9, 136.8, 136.6, 133.5, 130.1, 130.0, 128.7, 128.3, 128.2, 125.4, 124.9, 122.9, 120.4, 120.3, 43.5, 43.0, 36.8, 21.3;

HRMS (ESI-TOF) calcd. for $C_{26}H_{21}O_3S [M + H]^+ 413.1206$; found: 413.1208.

(3R,4S)-4-(4-methoxyphenyl)-3-(2-oxo-2-phenylethyl)-3,4-dihydro-2H-benzo[4,5]thieno[3,2b]pyran-2-one (3n)

The major diastereomer **3n** was purified by flash column chromatography (petroleum ether/ethyl acetate = 11:1);

White solid; 34.4 mg, 80% yield; 90:10 dr, 98% ee; $[\alpha]_D{}^{20} = +55.3$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 95.2-96.1 °C;

The ee was determined by HPLC (Chiralpak IB, EtOH/hexane = 10/90, flow rate 0.8 mL/min, λ = 254 nm, major diastereomer: t_{minor} = 19.9 min, t_{major} = 17.1 min);

¹**H NMR (300 MHz, CDCl₃)** δ (major diastereomer) 7.97-7.89 (m, 2H), 7.82 (d, *J* = 7.8 Hz, 1H), 7.67 (d, *J* = 8.1 Hz, 1H), 7.63-7.52 (m, 1H), 7.52-7.33 (m, 4H), 7.27-7.20 (m, 2H), 6.94-6.84 (m, 2H), 4.52 (d, *J* = 11.8 Hz, 1H), 3.80 (s, 3H), 3.77-3.68 (m, 1H), 3.46 (dd, *J* = 17.9, 6.0 Hz, 1H), 3.24 (dd, *J* = 17.9, 4.1 Hz, 1H);

¹³C NMR (75 MHz, CDCl₃) δ (major diastereomer) 196.8, 169.7, 159.7, 141.3, 136.8, 136.6, 133.6, 131.7, 130.0, 129.6, 128.7, 128.2, 125.4, 124.9, 122.9, 120.7, 120.3, 114.7, 55.4, 43.6, 42.6, 36.7; HRMS (ESI-TOF) calcd. for C₂₆H₂₁O₄S [M + H]⁺ 429.1155; found: 429.1158.

(3R,4S)-4-(3,4-dimethylphenyl)-3-(2-oxo-2-phenylethyl)-3,4-dihydro-2Hbenzo[4,5]thieno[3,2-b]pyran-2-one (30)

The major diastereomer **30** was purified by flash column chromatography (petroleum ether/ethyl acetate = 17:1);

Yellow solid; 35.6 mg, 83% yield; 81:19 dr, 99% ee; $[\alpha]_D^{20} = +61.0$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 97.6-98.3 °C;

The ee was determined by HPLC (Chiralpak IB, EtOH/hexane = 10/90, flow rate 0.8 mL/min, λ = 254 nm, major diastereomer: $t_{\text{minor}} = 15.4 \text{ min}, t_{\text{major}} = 13.3 \text{ min}$);

¹**H** NMR (400 MHz, CDCl₃) δ (major diastereomer) 7.92 (d, J = 7.2 Hz, 2H), 7.83 (d, J = 7.9 Hz, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.60-7.52 (m, 1H), 7.46-7.40 (m, 3H), 7.39-7.32 (m, 1H), 7.12 (d, J = 7.7 Hz, 1H), 7.09-6.99 (m, 2H), 4.48 (d, J = 11.7 Hz, 1H), 3.84-3.71 (m, 1H), 3.46 (dd, J = 17.9, 6.2 Hz, 1H), 3.23 (dd, J = 17.9, 4.1 Hz, 1H), 2.25 (s, 3H), 2.23 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ (major diastereomer) 196.9, 169.8, 141.3, 137.7, 137.2, 137.1, 136.9, 136.7, 133.5, 130.5, 130.0, 129.6, 128.7, 128.2, 125.8, 125.4, 124.9, 122.9, 120.6, 120.3, 43.5, 43.0, 36.8, 20.0, 19.6;

HRMS (ESI-TOF) calcd. for $C_{27}H_{23}O_3S$ [M + H]⁺ 427.1362; found: 427.1367.

(3R,4S)-3-(2-oxo-2-phenylethyl)-4-(thiophen-2-yl)-3,4-dihydro-2H-benzo[4,5]thieno[3,2b]pyran-2-one (3p)

The major diastereomer **3p** was purified by flash column chromatography (petroleum ether/ethyl acetate = 15:1);

White solid; 25.6 mg, 63% yield; 86:14 dr, 94% ee; $[\alpha]_D^{20} = +16.0$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 174.3-175.2 °C;

The ee was determined by HPLC (Chiralpak IB, EtOH/hexane = 10/90, flow rate 0.8 mL/min, λ = 254 nm, major diastereomer: t_{minor} = 16.0 min, t_{major} = 14.6 min);

¹**H NMR (400 MHz, CDCl₃)** δ (major diastereomer) 7.94 (d, *J* = 7.3 Hz, 2H), 7.83 (d, *J* = 7.8 Hz, 1H), 7.69 (d, *J* = 7.8 Hz, 1H), 7.63-7.54 (m, 1H), 7.51-7.40 (m, 3H), 7.40-7.34 (m, 1H), 7.31 (d, *J* = 5.1 Hz, 1H), 7.05 (d, *J* = 3.5 Hz, 1H), 7.02-6.96 (m, 1H), 4.98 (d, *J* = 11.4 Hz, 1H), 3.84-3.68 (m, 1H), 3.55-3.36 (m, 2H);

¹³C NMR (101 MHz, CDCl₃) δ (major diastereomer) 196.6, 168.9, 142.9, 140.9, 136.8, 136.5, 133.6, 129.9, 128.8, 128.3, 127.3, 127.2, 126.0, 125.7, 125.0, 122.9, 120.4, 119.8, 44.4, 38.8, 36.8; **HRMS (ESI-TOF)** calcd. for $C_{23}H_{17}O_3S_2$ [M + H]⁺ 405.0614; found: 405.0616.

(3R, 4S) - 4 - (naphthalen - 1 - yl) - 3 - (2 - oxo - 2 - phenylethyl) - 3, 4 - dihydro - 2H - benzo [4, 5] thieno [3, 2 - yhenylethyl) - 3, 4 - dihydro - 2H - benzo [4, 5] thieno [3, 2 - yhenylethyl] - 3, 4 - dihydro - 2H - benzo [4, 5] thieno [3, 2 - yhenylethyl] - 3, 4 - dihydro - 2H - benzo [4, 5] thieno [3, 2 - yhenylethyl] - 3, 4 - dihydro - 2H - benzo [4, 5] thieno [3, 2 - yhenylethyl] - 3, 4 - dihydro - 2H - benzo [4, 5] thieno [3, 2 - yhenylethyl] - 3, 4 - dihydro - 2H - benzo [4, 5] thieno [3, 2 - yhenylethyl] - 3, 4 - dihydro - 2H - benzo [4, 5] thieno [3, 2 - yhenylethyl] - 3, 4 - dihydro - 2H - benzo [4, 5] thieno [3, 2 - yhenylethyl] - 3, 4 - dihydro - 2H - benzo [4, 5] thieno [3, 2 - yhenylethyl] - 3, 4 - dihydro - 2H - benzo [4, 5] thieno [3, 2 - yhenylethyl] - 3, 4 - dihydro - 2H - benzo [4, 5] thieno [3, 2 - yhenylethyl] - 3, 4 - dihydro - 2H - benzo [4, 5] thieno [3, 2 - yhenylethyl] - 3, 4 - dihydro - 2H - benzo [4, 5] thieno [3, 2 - yhenylethyl] - 3, 4 - dihydro - 2H - benzo [4, 5] thieno [3, 2 - yhenylethyl] - 3, 4 - dihydro - 2H - benzo [4, 5] thieno [3, 2 - yhenylethyl] - 3, 4 - dihydro - 2H - benzo [4, 5] thieno [3, 2 - yhenylethyl] - 3, 4 - dihydro - 2H - benzo [4, 5] thieno [3, 2 - yhenylethyl] - 3, 4 - dihydro - 2H - benzo [4, 5] thieno [3, 2 - yhenylethyl] - 3, 4 - dihydro - 2H - benzo [4, 5] thieno [3, 2 - yhenylethyl] - 3, 4 - dihydro - 2H - benzo [4, 5] thieno [3, 2 - yhenylethyl] - 3, 4 - dihydro - 2H - benzo [4, 5] thieno [3, 2 - yhenylethyl] - 3, 4 - dihydro - 2H - benzo [4, 5] thieno [3, 2 - yhenylethyl] - 3, 4 - dihydro - 2H - benzo [4, 5] thieno [3, 2 - yhenylethyl] - 3, 4 - dihydro - 2H - benzo [4, 5] thieno [3, 2 - yhenylethyl] - 3, 4 - dihydro - 2H - benzo [4, 5] thieno [3, 2 - yhenylethyl] - 3, 4 - dihydro - 2H - benzo [4, 5] thieno [3, 2 - yhenylethyl] - 3, 4 - dihydro - 2H - benzo [4, 5] thieno [3, 2 - yhenylethyl] - 3, 4 - dihydro - 2H - benzo [4, 5] thieno [3, 5] thie

The major diastereomer 3q was purified by flash column chromatography (petroleum ether/ethyl acetate = 15:1);

Yellow solid; 29.7 mg, 66% yield; 94:6 dr, 99% ee; $[\alpha]_D^{20} = +61.5$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 161.1-161.9 °C;

The ee was determined by HPLC (Chiralpak IC, EtOH/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm, major diastereomer: t_{minor} = 12.7 min, t_{major} = 10.5 min);

¹**H** NMR (**300** MHz, DMSO-*d*₆) δ (major diastereomer) 8.30-8.10 (m, 1H), 8.06-7.91 (m, 2H), 7.91-7.78 (m, 4H), 7.62-7.51 (m, 5H), 7.50-7.39 (m, 4H), 5.66 (d, J = 7.2 Hz, 1H), 4.27-4.12 (m, 1H), 3.50 (dd, J = 18.2, 6.5 Hz, 1H), 3.16 (dd, J = 18.2, 4.0 Hz, 1H);

¹³C NMR (**75** MHz, DMSO-*d*₆) δ (major diastereomer) 197.3, 169.1, 140.5, 136.1, 136.0, 135.7, 133.7, 133.5, 131.3, 129.3, 129.1, 128.7 (2 C), 127.9 (2 C), 126.8, 126.1, 125.8, 125.4, 125.1, 123.3, 123.0, 120.7, 119.5, 42.2, 36.9 (2 C);

HRMS (ESI-TOF) calcd. for $C_{29}H_{21}O_{3}S$ [M + H]⁺ 449.1206; found: 449.1209.

Methyl (3R,4S)-2-oxo-3-(2-oxo-2-phenylethyl)-3,4-dihydro-2H-benzo[4,5]thieno[3,2-b] pyran-4-carboxylate (3r)

The product **3r** was purified by flash column chromatography (petroleum ether/ethyl acetate= 10:1); Yellow solid; 13.0 mg, 34% yield; 72:28 dr, 84% ee for major diastereomer, 52% ee for minor diastereomer; $[\alpha]_D^{20} = +39.5$ (*c* 1.00, CH₂Cl₂); m.p. 67.5-68.3 °C;

The ee was determined by HPLC (Chiralpak IB, EtOH/hexane = 10/90, flow rate 1.0 mL/min, λ = 254 nm, major diastereomer: $t_{\text{minor}} = 13.4 \text{ min}$, $t_{\text{major}} = 11.4 \text{ min}$; minor diastereomer: $t_{\text{minor}} = 14.5 \text{ min}$, $t_{\text{major}} = 17.0 \text{ min}$);

¹**H** NMR (**300** MHz, CDCl₃) δ 8.05-7.99 (m, 0.4H), 7.99-7.92 (m, 1.7H), 7.83-7.77 (m, 1.0H), 7.76-7.69 (m, 1.0H), 7.61-7.54 (m, 1.0H), 7.51-7.44 (m, 1.8H), 7.44-7.35 (m, 2.4H), 4.36 (d, *J* = 9.1 Hz, 0.8H), 4.28 (d, *J* = 5.9 Hz, 0.2H), 4.04 (dd, *J* = 18.3, 5.3 Hz, 0.2H), 3.99-3.96 (m, 0.2H), 3.95-3.88 (m, 0.8H), 3.83 (s, 2.4H), 3.75 (dd, 18.3, 5.7 Hz, 0.8H), 3.69 (s, 0.6H), 3.51 (dd, *J* = 18.3, 4.0 Hz, 0.8H), 3.20 (dd, *J* = 18.3, 6.8 Hz, 0.2H);

¹³C NMR (**75** MHz, CDCl₃) δ 196.5, 196.3, 170.4, 170.0, 168.5, 168.1, 141.9, 141.7, 137.0, 136.8, 136.2, 136.1, 133.8, 133.7, 129.7, 129.6, 128.8 (2C), 128.3, 128.2, 126.1, 126.0, 125.1, 125.0, 122.9, 122.7, 120.5, 120.4, 112.2, 111.0, 53.1, 53.0, 43.1, 42.5, 38.1, 37.7, 37.4, 36.9;

HRMS (ESI-TOF) calcd. for $C_{21}H_{17}O_5S$ [M + H]⁺ 381.0791; found: 381.0794.

(3R,4S)-8-chloro-3-(2-oxo-2-phenylethyl)-4-phenyl-3,4-dihydro-2H-benzo[4,5]thieno[3,2b]pyran-2-one (3s)

The major diastereomer **3s** was purified by flash column chromatography (petroleum ether/ethyl acetate = 15:1);

Pink solid; 35.4 mg, 82% yield; 90:10 dr, 99% ee; $[\alpha]_D^{20} = +13.6$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 103.3-104.3 °C;

The ee was determined by HPLC (Chiralpak IB, EtOH/hexane = 10/90, flow rate 0.8 mL/min, λ = 254 nm, major diastereomer: $t_{\text{minor}} = 17.9 \text{ min}$, $t_{\text{major}} = 15.8 \text{ min}$);

¹**H NMR (400 MHz, CDCl₃)** δ (major diastereomer) 7.93-7.88 (m, 2H), 7.80 (d, *J* = 2.0 Hz, 1H), 7.61-7.53 (m, 2H), 7.47-7.41 (m, 2H), 7.41-7.34 (m, 3H), 7.34-7.28 (m, 3H), 4.59 (d, *J* = 11.7 Hz, 1H), 3.83-3.71 (m, 1H), 3.43 (dd, *J* = 18.0, 5.9 Hz, 1H), 3.26 (dd, *J* = 18.0, 4.2 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃) δ (major diastereomer) 196.7, 169.1, 140.7, 139.5, 136.4, 134.9, 133.6, 131.4, 131.0, 129.5, 128.8, 128.7, 128.5, 128.2, 126.0, 124.0, 122.3, 120.0, 43.4, 43.3, 36.7;
HRMS (ESI-TOF) calcd. for C₂₅H₁₈ClO₃S [M + H]⁺ 433.0660; found: 433.0661.

(3R,4S)-8-methyl-3-(2-oxo-2-phenylethyl)-4-phenyl-3,4-dihydro-2H-benzo[4,5]thieno[3,2b]pyran-2-one (3t)

The major diastereomer 3t was purified by flash column chromatography (petroleum ether/ethyl acetate = 15:1);

White solid; 34.2 mg, 83% yield; 88:12 dr, 99% ee; $[\alpha]_D^{20} = +25.6$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 181.1-182.3 °C;

The ee was determined by HPLC (Chiralpak IB, EtOH/hexane = 10/90, flow rate 1.0 mL/min, λ = 254 nm, major diastereomer: t_{minor} = 13.0 min, t_{major} = 10.0 min);

¹**H NMR (400 MHz, CDCl₃)** δ (major diastereomer) 7.99-7.87 (m, 2H), 7.64 (s, 1H), 7.59-7.52 (m, 2H), 7.47-7.40 (m, 2H), 7.40-7.29 (m, 5H), 7.18 (dd, *J* = 8.4, 1.6 Hz, 1H), 4.55 (d, *J* = 11.4 Hz, 1H), 3.87-3.67 (m, 1H), 3.44 (dd, *J* = 18.0, 5.9 Hz, 1H), 3.24 (dd, *J* = 18.0, 4.3 Hz, 1H), 2.48 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ (major diastereomer) 196.7, 169.6, 141.2, 139.9, 136.5, 134.9, 134.1, 133.6, 130.2, 129.3, 128.8, 128.6, 128.5, 128.2, 127.2, 122.5, 120.2, 120.1, 43.4, 43.3, 36.8, 21.6;

HRMS (ESI-TOF) calcd. for $C_{26}H_{21}O_{3}S$ [M + H]⁺ 413.1206; found: 413.1210.

(3R,4S)-6-methyl-3-(2-oxo-2-phenylethyl)-4-phenyl-3,4-dihydro-2H-benzo[4,5]thieno[3,2b]pyran-2-one (3u)

The major diastereomer 3u was purified by flash column chromatography (petroleum ether/ethyl acetate = 15:1);

Yellow solid; 34.3 mg, 83% yield; 90:10 dr, 99% ee; $[\alpha]_D^{20} = +5.8$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 189.7-190.9 °C;

The ee was determined by HPLC (Chiralpak IB, EtOH/hexane = 10/90, flow rate 0.8 mL/min, λ = 254 nm, major diastereomer: t_{minor} = 11.9 min, t_{major} = 11.0 min);

¹**H NMR (300 MHz, CDCl₃)** δ (major diastereomer) 7.97-7.87 (m, 2H), 7.69 (d, *J* = 8.0 Hz, 1H), 7.61-7.52 (m, 1H), 7.49-7.41 (m, 2H), 7.41-7.29 (m, 6H), 7.17 (d, *J* = 7.2 Hz, 1H), 4.58 (d, *J* = 11.4 Hz, 1H), 3.87-3.72 (m, 1H), 3.46 (dd, *J* = 17.9, 5.9 Hz, 1H), 3.25 (dd, *J* = 17.9, 4.3 Hz, 1H), 2.42 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ (major diastereomer) 196.7, 169.6, 142.0, 140.0, 136.9, 136.5, 133.6, 132.2, 129.8, 129.4, 128.8, 128.6, 128.5, 128.2, 125.8, 125.4, 119.6, 118.0, 43.5, 43.4, 36.8, 19.4;

HRMS (ESI-TOF) calcd. for $C_{26}H_{21}O_{3}S$ [M + H]⁺ 413.1206; found: 413.1207.

3. General procedures for the asymmetric synthesis of compounds 5

In an ordinary vial equipped with a magnetic stirring bar, the solution of 1-Thioaurones 1 (0.12 mmol, 1.2 equiv), Azlactones 4 (0.1 mmol, 1.0 equiv) and catalyst C (20 mol %) in CH₂Cl₂ (2.0 mL) was cooled to 0 °C. And then, the mixture was stirred at the same temperature for the specified time. After completion of the reaction, as indicated by TLC, the products 5 were isolated by flash chromatography on silica gel (PE/EA = $21/1 \sim 15/1$).

N-((3S,4R)-3-benzyl-2-oxo-4-phenyl-3,4-dihydro-2H-benzo[4,5]thieno[3,2-b]pyran-3yl)benzamide (5a)

The major diastereomer **5a** was purified by flash column chromatography (petroleum ether/ethyl acetate = 15:1);

Yellow solid; 40.7 mg, 93% yield; 89:11 dr, 93% ee; $[\alpha]_D{}^{20} = +267.4$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 186.5-187.3 °C;

The ee was determined by HPLC (Chiralpak IA, EtOH/hexane = 50/50, flow rate 1.0 mL/min, λ = 254 nm, major diastereomer: $t_{\text{minor}} = 7.4 \text{ min}$, $t_{\text{major}} = 13.3 \text{ min}$);

¹**H NMR (300 MHz, CDCl₃)** δ (major diastereomer) 8.00-7.95 (m, 1H), 7.83-7.76 (m, 1H), 7.57-7.49 (m, 1H), 7.48-7.38 (m, 3H), 7.37-7.29 (m, 3H), 7.24-7.15 (m, 8H), 7.15-7.06 (m, 2H), 6.74 (s, 1H), 5.57 (s, 1H), 4.34 (d, *J* = 13.9 Hz, 1H), 3.38 (d, *J* = 13.9 Hz, 1H);

¹³C NMR (75 MHz, CDCl₃) δ (major diastereomer) 168.4, 168.2, 140.1, 137.7, 137.4, 135.2, 134.7, 131.7, 130.1, 129.1, 129.0, 128.7, 128.5, 128.3, 127.9, 127.6, 126.8, 125.9, 125.3, 123.3, 120.2, 119.7, 66.8, 47.8, 39.2;

HRMS (ESI-TOF) calcd. for $C_{31}H_{24}NO_3S$ [M + H]⁺ 490.1471; found: 490.1469.

N-((3S,4R)-3-benzyl-4-(4-fluorophenyl)-2-oxo-3,4-dihydro-2H-benzo[4,5]thieno[3,2-b]pyran-3-yl)benzamide (5b)

The major diastereomer **5b** was purified by flash column chromatography (petroleum ether/ethyl acetate = 16:1);

Light yellow solid; 42.8 mg, 84% yield; 91:9 dr, 97% ee; $[\alpha]_D^{20} = +220.5$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 215.8-216.3 °C;

The ee was determined by HPLC (Chiralpak IA, EtOH/hexane = 50/50, flow rate 1.0 mL/min, λ = 254 nm, major diastereomer: $t_{\text{minor}} = 8.5 \text{ min}$, $t_{\text{major}} = 11.5 \text{ min}$);

¹**H NMR (400 MHz, CDCl₃)** δ (major diastereomer) 7.97 (d, *J* = 7.9 Hz, 1H), 7.80 (d, *J* = 7.9 Hz, 1H), 7.57-7.50 (m, 1H), 7.50-7.40 (m, 4H), 7.39-7.32 (m, 2H), 7.26-7.15 (m, 5H), 7.12-7.06 (m, 2H), 6.92-6.83 (m, 2H), 6.78 (s, 1H), 5.59 (s, 1H), 4.30 (d, *J* = 13.9 Hz, 1H), 3.36 (d, *J* = 13.9 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃) δ (major diastereomer) 168.3, 168.1, 162.5 (d, *J* = 247.4 Hz), 140.0, 137.6, 134.9, 134.5, 133.2 (d, *J* = 3.3 Hz), 131.9, 130.1, 129.6 (d, *J* = 8.2 Hz), 129.0, 128.8, 128.6, 127.7, 126.7, 126.1, 125.3, 123.3, 120.2, 119.4, 115.9 (d, *J* = 21.6 Hz), 66.8, 47.0, 39.1; **LIPMS (ESL TOF**) collad for *C*. **L.** ENO S IM + 101 508 1277; found: 508 1274

HRMS (ESI-TOF) calcd. for $C_{31}H_{23}FNO_3S$ [M + H]⁺ 508.1377; found: 508.1374.

N-((3S,4R)-3-benzyl-2-oxo-4-(p-tolyl)-3,4-dihydro-2H-benzo[4,5]thieno[3,2-b]pyran-3yl)benzamide (5c)

The major diastereomer **5c** was purified by flash column chromatography (petroleum ether/ethyl acetate = 16:1);

White solid; 47.0 mg, 93% yield; 89:11 dr, 96% ee; $[\alpha]_D^{20} = +231.3$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 192.9-193.2 °C;

The ee was determined by HPLC (Chiralpak IA, EtOH/hexane = 50/50, flow rate 1.0 mL/min, λ = 254 nm, major diastereomer: $t_{\text{minor}} = 7.6$ min, $t_{\text{major}} = 21.1$ min);

¹**H NMR (400 MHz, CDCl₃)** δ (major diastereomer) 7.97 (d, *J* = 7.9 Hz, 1H), 7.79 (d, *J* = 7.9 Hz, 1H), 7.55-7.49 (m, 1H), 7.48-7.38 (m, 4H), 7.38-7.30 (m, 2H), 7.24-7.18 (m, 3H), 7.14-7.05 (m, 4H), 6.99 (d, *J* = 7.9 Hz, 2H), 6.75 (s, 1H), 5.54 (s, 1H), 4.33 (d, *J* = 13.9 Hz, 1H), 3.37 (d, *J* = 13.9 Hz, 1H), 2.21 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ (major diastereomer) 168.5, 168.1, 140.0, 138.0, 137.7, 135.2, 134.7, 134.3, 131.7, 130.1, 129.7, 129.1, 128.7, 128.5, 127.7, 127.6, 126.8, 125.9, 125.2, 123.3, 120.1, 119.9, 66.9, 47.4, 39.1, 21.2;

HRMS (ESI-TOF) calcd. for $C_{32}H_{26}NO_3S$ [M + H]⁺ 504.1628; found: 504.1630.

N-((3S,4R)-3-benzyl-4-(3,4-dimethylphenyl)-2-oxo-3,4-dihydro-2H-benzo[4,5]thieno[3,2b]pyran-3-yl)benzamide (5d)

The major diastereomer **5d** was purified by flash column chromatography (petroleum ether/ethyl acetate = 16:1);

Light yellow solid; 45.6 mg, 88% yield; 94:6 dr, 97% ee; $[\alpha]_D^{20} = +241.7$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 127.3-128.0 °C;

The ee was determined by HPLC (Chiralpak IA, EtOH/hexane = 50/50, flow rate 1.0 mL/min, λ = 254 nm, major diastereomer: $t_{\text{minor}} = 6.8 \text{ min}$, $t_{\text{major}} = 13.7 \text{ min}$);

¹**H NMR (400 MHz, CDCl₃)** δ (major diastereomer) 7.97 (d, *J* = 8.0 Hz, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.57-7.49 (m, 1H), 7.49-7.39 (m, 4H), 7.37-7.31 (m, 2H), 7.24-7.19 (m, 3H), 7.10 (dd, *J* = 6.7, 2.9 Hz, 2H), 6.99-6.85 (m, 3H), 6.72 (s, 1H), 5.50 (s, 1H), 4.33 (d, *J* = 14.0 Hz, 1H), 3.36 (d, *J* = 14.0 Hz, 1H), 2.11 (s, 3H), 2.07 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ (major diastereomer) 168.5, 168.2, 140.1, 137.7, 137.2, 136.7, 135.4, 134.8, 134.5, 131.7, 130.2, 130.1, 129.2, 129.1, 128.7, 128.5, 127.6, 126.8, 125.8, 125.2, 125.1, 123.3, 120.2, 119.9, 67.0, 47.2, 39.0, 19.8, 19.5;

HRMS (ESI-TOF) calcd. for $C_{33}H_{28}NO_3S$ [M + H]⁺ 518.1784; found: 518.1788.

N-((3S,4R)-3-benzyl-2-oxo-4-(thiophen-2-yl)-3,4-dihydro-2H-benzo[4,5]thieno[3,2-b]pyran-3-yl)benzamide (5e)

The major diastereomer **5e** was purified by flash column chromatography (petroleum ether/ethyl acetate = 21:1);

Light yellow solid; 38.4 mg, 77% yield; 79:21 dr, 94% ee; $[\alpha]_D^{20} = +232.6$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 204.9-205.5 °C;

The ee was determined by HPLC (Chiralpak IA, EtOH/hexane = 50/50, flow rate 1.0 mL/min, λ = 254 nm, major diastereomer: $t_{\text{minor}} = 7.3 \text{ min}$, $t_{\text{major}} = 12.6 \text{ min}$);

¹**H NMR (400 MHz, CDCl₃)** δ (major diastereomer) 7.97 (d, *J* = 7.9 Hz, 1H), 7.82 (d, *J* = 7.9 Hz, 1H), 7.58-7.42 (m, 5H), 7.42-7.35 (m, 2H), 7.25-7.19 (m, 3H), 7.15-7.04 (m, 3H), 6.90-6.85 (m, 2H), 6.84-6.79 (m, 1H), 5.95 (s, 1H), 4.25 (d, *J* = 13.9 Hz, 1H), 3.33 (d, *J* = 13.9 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃) δ (major diastereomer) 168.2, 168.0, 139.9, 139.8, 137.6, 135.0, 134.6, 131.9, 130.1, 129.0, 128.8, 128.6, 127.7, 127.2, 127.0, 126.2, 125.9, 125.3, 123.3, 120.4, 119.4, 67.4, 42.4, 38.9;

HRMS (**ESI-TOF**) calcd. for C₂₉H₂₂NO₃S₂ [M + H]⁺ 496.1036; found: 496.1037.

N-((3S,4R)-3-benzyl-4-(naphthalen-1-yl)-2-oxo-3,4-dihydro-2H-benzo[4,5]thieno[3,2b]pyran-3-yl)benzamide (5f)

The major diastereomer **5f** was purified by flash column chromatography (petroleum ether/ethyl acetate = 17:1);

White solid; 49.5 mg, 92% yield; >99:1 dr, 99% ee; $[\alpha]_D^{20} = +245.2$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 179.9-180.6 °C;

The ee was determined by HPLC (Chiralpak AD-H, *i*-PrOH/hexane = 40/60, flow rate 1.0 mL/min, $\lambda = 254$ nm, major diastereomer: $t_{minor} = 17.2$ min, $t_{major} = 39.1$ min);

¹**H** NMR (400 MHz, DMSO-*d*₆) δ (major diastereomer) 8.57 (d, *J* = 8.7 Hz, 1H), 7.95-7.84 (m, 3H), 7.75 (d, *J* = 8.2 Hz, 1H), 7.71-7.64 (m, 1H), 7.56-7.49 (m, 2H), 7.49-7.43 (m, 2H), 7.40-7.33 (m, 2H), 7.26-7.19 (m, 5H), 7.16-7.08 (m, 5H), 6.45 (s, 1H), 4.42 (d, *J* = 13.9 Hz, 1H), 3.51 (d, *J* = 13.9 Hz, 1H);

¹³C NMR (151 MHz, CDCl₃) δ (major diastereomer) 169.0, 167.9, 139.5, 137.3, 135.0, 134.6, 134.5, 134.2, 131.4, 131.3, 130.3, 129.2, 128.9, 128.7, 128.6, 128.5, 127.7, 126.6, 126.5, 126.1, 125.9, 125.5, 125.2, 124.7, 124.0, 123.2, 120.7, 120.2, 66.1, 43.2, 39.4;

HRMS (ESI-TOF) calcd. for $C_{35}H_{26}NO_3S$ [M + H]⁺ 540.1628; found: 540.1633.

N-((3S,4R)-3-benzyl-8-chloro-2-oxo-4-phenyl-3,4-dihydro-2H-benzo[4,5]thieno[3,2-b]pyran-3-yl)benzamide (5g)

The major diastereomer **5g** was purified by flash column chromatography (petroleum ether/ethyl acetate = 16:1);

Red solid; 49.3 mg, 94% yield; >99:1 dr, 98% ee; $[\alpha]_D^{20} = +280.9$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 152.3-153.4 °C;

The ee was determined by HPLC (Chiralpak AD-H, *i*-PrOH/hexane = 40/60, flow rate 1.0 mL/min, $\lambda = 254$ nm, major diastereomer: $t_{\text{minor}} = 7.9$ min, $t_{\text{major}} = 11.4$ min);

¹**H NMR (400 MHz, DMSO-***d*₆) δ (major diastereomer) 8.06 (d, *J* = 8.7 Hz, 1H), 7.97 (d, *J* = 2.1 Hz, 1H), 7.53 (dd, *J* = 8.7, 2.1 Hz, 1H), 7.51-7.45 (m, 1H), 7.41-7.35 (m, 4H), 7.27-7.17 (m, 7H), 7.16-7.11 (m, 2H), 7.11-7.04 (m, 2H), 5.59 (s, 1H), 4.21 (d, *J* = 13.8 Hz, 1H), 3.32 (d, *J* = 13.8 Hz, 1H);

¹³C NMR (151 MHz, CDCl₃) δ (major diastereomer) 168.2, 168.0, 139.3, 137.1, 135.7, 135.1, 134.5, 131.8, 131.7, 130.2, 130.1, 129.1, 128.7, 128.6, 128.4, 127.8, 127.7, 126.8, 126.5, 124.3, 121.8, 120.0, 66.7, 47.8, 39.2;

HRMS (ESI-TOF) calcd. for $C_{31}H_{23}CINO_3S$ [M + H]⁺ 524.1082; found: 524.1088.

N-((3S,4R)-3-benzyl-8-methyl-2-oxo-4-phenyl-3,4-dihydro-2H-benzo[4,5]thieno[3,2-b]pyran-3-yl)benzamide (5h)

The major diastereomer **5h** was purified by flash column chromatography (petroleum ether/ethyl acetate = 17:1);

Yellow solid; 41.8 mg, 83% yield; 89:11 dr, 96% ee; $[\alpha]_D{}^{20} = +253.8$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 192.3-193.5 °C;

The ee was determined by HPLC (Chiralpak IA, EtOH/hexane = 50/50, flow rate 1.0 mL/min, λ = 254 nm, major diastereomer: $t_{\text{minor}} = 6.4 \text{ min}$, $t_{\text{major}} = 7.8 \text{ min}$);

¹**H** NMR (400 MHz, CDCl₃) δ (major diastereomer) 7.78 (s, 1H), 7.67 (d, J = 8.2 Hz, 1H), 7.46-7.35 (m, 3H), 7.35-7.25 (m, 3H), 7.24-7.15 (m, 8H), 7.13-7.06 (m, 2H), 6.74 (s, 1H), 5.55 (s, 1H), 4.34 (d, J = 13.9 Hz, 1H), 3.37 (d, J = 13.9 Hz, 1H), 2.55 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ (major diastereomer) 168.5, 168.1, 139.7, 137.4, 135.3, 135.2, 134.8, 134.7, 131.7, 130.1, 129.3, 129.0, 128.7, 128.5, 128.2, 127.8, 127.7, 127.6, 126.7, 122.9, 120.0, 119.7, 66.8, 47.8, 39.1, 21.6;

HRMS (ESI-TOF) calcd. for $C_{32}H_{26}NO_3S$ [M + H]⁺ 504.1628; found: 504.1629.

N-((3S,4R)-3-benzyl-2-oxo-4-phenyl-3,4-dihydro-2H-benzo[4,5]thieno[3,2-b]pyran-3-yl)-4fluorobenzamide (5i)

The major diastereomer **5i** was purified by flash column chromatography (petroleum ether/ethyl acetate = 16:1);

Light yellow solid; 42.2 mg, 83% yield; 90:10 dr, 94% ee; $[\alpha]_D^{20} = +200.7$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 186.1-186.9 °C;

The ee was determined by HPLC (Chiralpak IA, EtOH/hexane = 50/50, flow rate 1.0 mL/min, λ = 254 nm, major diastereomer: t_{minor} = 8.7 min, t_{major} = 12.5 min);

¹**H NMR (400 MHz, CDCl₃)** δ (major diastereomer) 7.97 (d, J = 8.1 Hz, 1H), 7.80 (d, J = 8.1 Hz, 1H), 7.55-7.50 (m, 1H), 7.48-7.42 (m, 1H), 7.42-7.36 (m, 2H), 7.24-7.20 (m, 3H), 7.20-7.14 (m, 5H), 7.08 (dd, J = 6.5, 3.0 Hz, 2H), 7.03-6.95 (m, 2H), 6.69 (s, 1H), 5.55 (s, 1H), 4.31 (d, J = 14.0 Hz, 1H), 3.38 (d, J = 14.0 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃) δ (major diastereomer) 168.5, 167.0, 164.9 (d, *J* = 252.2 Hz, 1C), 140.0, 137.7, 137.3, 134.6, 131.2 (d, *J* = 3.1 Hz, 1C), 130.1, 129.2 (d, *J* = 9.1 Hz, 1C), 129.1, 129.0, 128.6, 128.3, 127.8, 127.7, 126.0, 125.3, 123.3, 120.2, 119.5, 115.8 (d, *J* = 21.9 Hz, 1C), 66.8, 47.8, 39.2;

HRMS (ESI-TOF) calcd. for $C_{31}H_{23}FNO_3S$ [M + H]⁺ 508.1377; found: 508.1381.

N-((3S,4R)-3-benzyl-2-oxo-4-phenyl-3,4-dihydro-2H-benzo[4,5]thieno[3,2-b]pyran-3-yl)-4methylbenzamide (5j)

The major diastereomer **5j** was purified by flash column chromatography (petroleum ether/ethyl acetate = 16:1);

Light yellow solid; 45.0 mg, 89% yield; 90:10 dr, 96% ee; $[\alpha]_D^{20} = +221.4$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 150.1-150.9 °C;

The ee was determined by HPLC (Chiralpak IA, EtOH/hexane = 20/80, flow rate 1.0 mL/min, λ

= 254 nm, major diastereomer: $t_{\text{minor}} = 10.5 \text{ min}, t_{\text{major}} = 14.7 \text{ min});$

¹**H NMR (400 MHz, CDCl₃)** δ (major diastereomer) 7.97 (d, *J* = 8.1 Hz, 1H), 7.80 (d, *J* = 8.1 Hz, 1H), 7.58-7.49 (m, 1H), 7.49-7.41 (m, 1H), 7.30 (d, *J* = 7.7 Hz, 2H), 7.23-7.15 (m, 8H), 7.15-7.06 (m, 4H), 6.72 (s, 1H), 5.57 (s, 1H), 4.34 (d, *J* = 13.8 Hz, 1H), 3.36 (d, *J* = 13.8 Hz, 1H), 2.34 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ (major diastereomer) 168.5, 168.1, 142.2, 140.1, 137.7, 137.4, 134.7, 132.3, 130.2, 129.4, 129.2, 129.0, 128.5, 128.2, 127.9, 127.6, 126.8, 125.9, 125.2, 123.3, 120.2, 119.7, 66.8, 47.8, 39.2, 21.6;

HRMS (ESI-TOF) calcd. for C₃₂H₂₆NO₃S [M + H]⁺ 504.1628; found: 504.1629.

N-((3S,4R)-2-oxo-4-phenyl-3,4-dihydro-2H-benzo[4,5]thieno[3,2-b]pyran-3-yl)benzamide (5k)

The major diastereomer **5k** was purified by flash column chromatography (petroleum ether/ethyl acetate = 10:1);

White solid; 25.2 mg, 63% yield; >99:1 dr, 96% ee; $[\alpha]_D^{20} = +267.8$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 232.3-233.4 °C;

The ee was determined by HPLC (Chiralpak IA, EtOH/hexane = 50/50, flow rate 1.0 mL/min, λ = 220 nm, major diastereomer: $t_{\text{minor}} = 7.6 \text{ min}$, $t_{\text{major}} = 11.2 \text{ min}$);

¹**H** NMR (400 MHz, CDCl₃) δ (major diastereomer) 7.80 (d, J = 7.9 Hz, 1H), 7.71 (d, J = 8.1 Hz, 1H), 7.62 (d, J = 7.7 Hz, 2H), 7.51-7.32 (m, 5H), 7.21 (s, 3H), 7.00 (s, 2H), 6.58 (d, J = 6.3 Hz, 1H), 5.55 (t, J = 6.9 Hz, 1H), 4.99 (d, J = 7.3 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ (major diastereomer) 167.4, 167.2, 141.5, 137.6, 135.6, 133.4, 132.3, 129.3, 129.2, 128.9, 128.7, 128.2, 127.2, 126.0, 125.2, 123.2, 120.3, 117.9, 54.3, 42.1.

HRMS (ESI-TOF) calcd. for $C_{24}H_{18}NO_3S [M + H]^+ 400.1002$; found: 400.1012.

4. General procedures for the asymmetric synthesis of compounds 7

In an ordinary vial equipped with a magnetic stirring bar, the solution of 1-Azaaurones 6 (0.12 mmol, 1.2 equiv), γ -Deconjugated Butenolides 2 (0.1 mmol, 1.0 equiv) and catalyst C (20 mol %) in toluene (2.0 mL) was cooled to 0 °C. And then, the mixture was stirred at the same temperature for the specified time. After completion of the reaction, as indicated by TLC, the products 7 were isolated by flash chromatography on silica gel (PE/EA = 9/1 ~ 8/1).

(3S,4R)-3-(2-oxo-2-phenylethyl)-4-phenyl-5-tosyl-4,5-dihydropyrano[3,2-b]indol-2(3H)-one

The major diastereomer 7a was purified by flash column chromatography (petroleum ether/ethyl

acetate = 8:1);

Yellow solid; 40.0 mg, 75% yield; 90:10 dr, 99% ee; $[\alpha]_D^{20} = -12.6$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 73.3-74.2 °C;

The ee was determined by HPLC (Chiralpak IC, *i*-PrOH/hexane = 25/75, flow rate 1.0 mL/min, $\lambda = 254$ nm, major diastereomer: $t_{\text{minor}} = 15.1$ min, $t_{\text{major}} = 10.6$ min);

¹**H** NMR (600 MHz, CDCl₃) δ (major diastereomer) 8.23 (d, J = 8.4 Hz, 1H), 7.91 (d, J = 6.9 Hz, 2H), 7.69-7.60 (m, 2H), 7.52-7.47 (m, 2H), 7.47-7.42 (m, 1H), 7.40-7.35 (m, 1H), 7.34-7.27 (m, 3H), 7.26-7.21 (m, 4H), 6.65 (d, J = 8.2 Hz, 2H), 4.96 (d, J = 1.6 Hz, 1H), 3.82-3.75 (m, 1H), 3.31 (dd, J = 18.0, 2.6 Hz, 1H), 3.22 (dd, J = 18.0, 10.6 Hz, 1H), 2.06 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ (major diastereomer) 195.2, 168.8, 145.1, 140.4, 137.8, 136.0, 135.1, 135.0, 134.0, 129.8, 129.4, 129.0, 128.3, 127.8, 127.3, 126.4, 126.3, 124.4, 120.7, 118.6, 117.7, 115.2, 44.8, 42.5, 39.6, 21.5;

HRMS (ESI-TOF) calcd. for C₃₂H₂₆NO₅S [M + H]⁺ 536.1526; found: 536.1535.

(3S,4R)-3-(2-(4-fluorophenyl)-2-oxoethyl)-4-phenyl-5-tosyl-4,5-dihydropyrano[3,2-b]indol-2(3H)-one (7b)

The major diastereomer **7b** was purified by flash column chromatography (petroleum ether/ethyl acetate = 9:1);

Yellow solid; 40.5 mg, 73% yield; 93:7 dr, 99% ee; $[\alpha]_D^{20} = -13.8$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 76.1-76.5 °C;

The ee was determined by HPLC (Chiralpak IC, *i*-PrOH/hexane = 25/75, flow rate 1.0 mL/min, $\lambda = 254$ nm, major diastereomer: $t_{\text{minor}} = 13.7$ min, $t_{\text{major}} = 9.7$ min);

¹**H** NMR (300 MHz, CDCl₃) δ (major diastereomer) 8.22 (d, J = 8.2 Hz, 1H), 8.03-7.85 (m, 2H), 7.66 (d, J = 6.8 Hz, 1H), 7.50-7.34 (m, 2H), 7.34-7.27 (m, 3H), 7.24-7.10 (m, 6H), 6.71 (d, J = 8.1 Hz, 2H), 4.95 (d, J = 1.6 Hz, 1H), 3.83-3.70 (m, 1H), 3.38-3.11 (m, 2H), 2.11 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ (major diastereomer) 193.7, 168.7, 166.3 (d, *J* = 256.6 Hz, 1C), 145.0, 140.3, 137.7, 135.1, 135.0, 132.5 (d, *J* = 2.9 Hz, 1C), 131.0 (d, *J* = 9.4 Hz, 1C), 129.7, 129.4, 127.9, 127.4, 126.5, 126.3, 124.3, 120.6, 118.6, 117.7, 116.2 (d, *J* = 22.1 Hz, 1C), 115.1, 44.8, 42.4, 39.6, 21.5;

HRMS (ESI-TOF) calcd. for C₃₂H₂₅FNO₅S [M + H]⁺ 554.1432; found: 554.1431.

(3S,4R) - 3 - (2 - oxo - 2 - (p - tolyl) ethyl) - 4 - phenyl - 5 - tosyl - 4,5 - dihydropyrano [3,2 - b] indol - 2(3H) - one (3S,4R) - 3 - (2 - oxo - 2 - (p - tolyl) ethyl) - 4 - phenyl - 5 - tosyl - 4,5 - dihydropyrano [3,2 - b] indol - 2(3H) - one (3S,4R) - 3 - (2 - oxo - 2 - (p - tolyl) ethyl) - 4 - phenyl - 5 - tosyl - 4,5 - dihydropyrano [3,2 - b] indol - 2(3H) - one (3S,4R) - 3 - (2 - oxo - 2 - (p - tolyl) ethyl) - 4 - phenyl - 5 - tosyl - 4,5 - dihydropyrano [3,2 - b] indol - 2(3H) - one (3S,4R) - 3 - (2 - oxo - 2 - (p - tolyl) ethyl) - 4 - phenyl - 5 - tosyl - 4,5 - dihydropyrano [3,2 - b] indol - 2(3H) - one (3S,4R) - 3 - (2 - oxo - 2 - (p - tolyl) ethyl) - 4 - phenyl - 5 - tosyl - 4,5 - dihydropyrano [3,2 - b] indol - 2(3H) - one (3S,4R) - 3 - (2 - oxo - 2 - (p - tolyl) ethyl) - 4 - phenyl - 5 - tosyl - 4,5 - dihydropyrano [3,2 - b] indol - 2(3H) - one (3S,4R) - 3 - (2 - oxo - 2 - (p - tolyl) ethyl) - 4 - phenyl - 5 - tosyl - 4,5 - dihydropyrano [3,2 - b] indol - 2(3H) - 3 - (2 - oxo - 2 - (p - tolyl) ethyl) - 4 - phenyl - 5 - tosyl - 4,5 - dihydropyrano [3,2 - b] indol - 2(3H) - 3 - (2 - oxo - 2 - (p - tolyl) ethyl) - 4 - phenyl - 5 - tosyl - 4,5 - dihydropyrano [3,2 - b] indol - 2(3H) - 3 - (2 - oxo - 2 - (p - tolyl) ethyl) - 4 - (2 - oxo - 2 - (p - tolyl) ethyl - 2 - (2 - oxo - 2 - (p - tolyl) ethyl - 2 - (2 - oxo - 2 - (p - tolyl) ethyl - 2 - (2 - oxo - 2 - (p - tolyl) ethyl - 2 - (2 - oxo - 2 - (p - tolyl) ethyl - 2 - (2 - oxo - 2 - (p - tolyl) ethyl - 2 - (2 - oxo - 2 - (p - tolyl) ethyl - 2 - (p -

The major diastereomer **7c** was purified by flash column chromatography (petroleum ether/ethyl acetate = 9:1);

Yellow solid; 44.3 mg, 81% yield; >99:1 dr, 99% ee; $[\alpha]_D^{20} = -65.5$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 188.3-189.2 °C;

The ee was determined by HPLC (Chiralpak IC, *i*-PrOH/hexane = 25/75, flow rate 1.0 mL/min, $\lambda = 254$ nm, major diastereomer: $t_{minor} = 15.1$ min, $t_{major} = 12.7$ min);

¹**H NMR (300 MHz, CDCl₃)** δ (major diastereomer) 8.23 (d, *J* = 8.3 Hz, 1H), 7.79 (d, *J* = 8.2 Hz, 2H), 7.65 (d, *J* = 7.6 Hz, 1H), 7.46-7.33 (m, 2H), 7.30-7.24 (m, 7H), 7.24-7.19 (m, 2H), 6.63 (d, *J* = 8.1 Hz, 2H), 4.96 (d, *J* = 1.5 Hz, 1H), 3.86-3.71 (m, 1H), 3.37-3.07 (m, 2H), 2.42 (s, 3H), 2.04 (s, 3H);

¹³C NMR (**75** MHz, CDCl₃) δ (major diastereomer) 194.8, 168.8, 145.0, 140.4, 137.8, 135.1, 135.0, 133.6, 129.8, 129.6, 129.3, 128.4, 127.7, 127.3, 126.3, 126.2, 124.3, 120.7, 118.6, 117.6, 115.1, 44.8, 42.4, 39.5, 21.8, 21.4;

HRMS (ESI-TOF) calcd. for C₃₃H₂₈NO₅S [M + H]⁺ 550.1683; found: 550.1686.

(3S,4R)-4-(3-chlorophenyl)-3-(2-oxo-2-phenylethyl)-5-tosyl-4,5-dihydropyrano[3,2-b]indol-2(3H)-one (7d)

The major diastereomer **7d** was purified by flash column chromatography (petroleum ether/ethyl acetate = 8:1);

Yellow solid; 41.9 mg, 74% yield; 95:5 dr, 99% ee; $[\alpha]_D^{20} = -127.9$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 107.3-107.9 °C;

The ee was determined by HPLC (Chiralpak IC, *i*-PrOH/hexane = 25/75, flow rate 1.0 mL/min, $\lambda = 254$ nm, major diastereomer: $t_{minor} = 20.0$ min, $t_{major} = 23.7$ min);

¹H NMR (**300** MHz, CDCl₃) δ (major diastereomer) 8.27 (d, J = 8.3 Hz, 1H), 7.90 (d, J = 7.3 Hz, 2H), 7.70-7.59 (m, 2H), 7.53-7.38 (m, 4H), 7.28-7.23 (m, 4H), 7.21-7.15 (m, 1H), 7.11 (s, 1H), 6.68 (d, J = 8.1 Hz, 2H), 4.95 (d, J = 1.5 Hz, 1H), 3.82-3.67 (m, 1H), 3.39-3.09 (m, 2H), 2.07 (s, 3H); ¹³C NMR (**75** MHz, CDCl₃) δ (major diastereomer) 195.2, 168.4, 145.3, 142.4, 138.1, 135.9, 135.3, 135.2, 135.0, 134.1, 130.6, 129.8, 129.1, 128.3, 128.1, 127.3, 126.6, 126.3, 125.7, 124.5, 120.6, 117.8, 117.5, 115.2, 44.7, 42.0, 39.5, 21.5;

HRMS (ESI-TOF) calcd. for C₃₂H₂₄ClNNaO₅S [M + Na]⁺ 592.0956; found: 592.0963.

(3S,4R)-4-(3,4-dimethylphenyl)-3-(2-oxo-2-phenylethyl)-5-tosyl-4,5-dihydropyrano[3,2b]indol-2(3H)-one (7e)

The major diastereomer **7e** was purified by flash column chromatography (petroleum ether/ethyl acetate = 8:1);

Yellow solid; 44.9 mg, 80% yield; >99:1 dr, 99% ee; $[\alpha]_D^{20} = -23.5$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 87.8-88.3 °C;

The ee was determined by HPLC (Chiralpak IC, *i*-PrOH/hexane = 25/75, flow rate 1.0 mL/min, $\lambda = 254$ nm, major diastereomer: $t_{minor} = 38.0$ min, $t_{major} = 26.9$ min);

¹**H NMR (600 MHz, CDCl₃)** δ (major diastereomer) 8.24 (d, *J* = 8.4 Hz, 1H), 7.90 (d, *J* = 6.8 Hz, 2H), 7.68-7.60 (m, 2H), 7.51-7.46 (m, 2H), 7.46-7.42 (m, 1H), 7.40-7.35 (m, 1H), 7.27-7.22 (m, 1H), 7.40-7.35 (m, 1H), 7.27-7.22 (m, 1H), 7.40-7.35 (m, 1H)

2H), 7.04 (d, *J* = 7.9 Hz, 1H), 6.94 (d, *J* = 6.5 Hz, 2H), 6.63 (d, *J* = 8.1 Hz, 2H), 4.89 (d, *J* = 1.6 Hz, 1H), 3.79-3.73 (m, 1H), 3.28 (dd, *J* = 18.0, 2.6 Hz, 1H), 3.19 (dd, *J* = 18.0, 10.6 Hz, 1H), 2.23 (s, 3H), 2.18 (s, 3H), 2.05 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ (major diastereomer) 195.3, 169.0, 144.9, 137.7, 137.6, 137.5, 136.1, 136.0, 135.1, 135.0, 134.0, 130.5, 129.6, 129.0, 128.3, 128.2, 126.4, 126.2, 124.6, 124.3, 120.7, 118.9, 117.7, 115.2, 45.0, 42.1, 39.6, 21.5, 20.0, 19.6;

HRMS (ESI-TOF) calcd. for $C_{34}H_{30}NO_5S [M + H]^+ 564.1839$; found: 564.1835.

(3S,4R)-4-(naphthalen-2-yl)-3-(2-oxo-2-phenylethyl)-5-tosyl-4,5-dihydropyrano[3,2-b]indol-2(3H)-one (7f)

The major diastereomer **7f** was purified by flash column chromatography (petroleum ether/ethyl acetate = 8:1);

Yellow solid; 50.2 mg, 86% yield; 94:6 dr, 99% ee; $[\alpha]_D^{20} = -110.2$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 144.9-145.3 °C;

The ee was determined by HPLC (Chiralpak IC, *i*-PrOH/hexane = 25/75, flow rate 1.0 mL/min, $\lambda = 254$ nm, major diastereomer: $t_{minor} = 17.8$ min, $t_{major} = 12.9$ min);

¹**H NMR (600 MHz, CDCl₃)** δ (major diastereomer) 8.29 (d, *J* = 8.4 Hz, 1H), 7.93 (d, *J* = 7.7 Hz, 2H), 7.87-7.80 (m, 2H), 7.72 (d, *J* = 7.8 Hz, 1H), 7.66-7.60 (m, 1H), 7.57 (dd, *J* = 14.2, 8.3 Hz, 2H), 7.53-7.38 (m, 6H), 7.34 (s, 1H), 7.14 (d, *J* = 7.9 Hz, 2H), 6.42 (d, *J* = 7.9 Hz, 2H), 5.12 (s, 1H), 3.96-3.81 (m, 1H), 3.44-3.25 (m, 2H), 1.89 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ (major diastereomer) 195.4, 168.8, 145.0, 137.9, 137.6, 136.0, 135.3, 134.9, 134.1, 133.6, 133.0, 129.5, 129.4, 129.0, 128.3, 128.1, 127.7, 126.4, 126.3, 126.2, 125.8, 125.7, 124.4, 120.6, 118.4, 117.8, 115.2, 44.8, 42.4, 39.6, 21.3;

HRMS (ESI-TOF) calcd. for $C_{36}H_{28}NO_5S [M + H]^+ 586.1683$; found: 586.1682.

$(3S,4R)-4-(furan-2-yl)-3-(2-oxo-2-phenylethyl)-5-tosyl-4,5-dihydropyrano \cite[3,2-b]indol-2(3H)-3-(2-yl)-3-($

The major diastereomer **7g** was purified by flash column chromatography (petroleum ether/ethyl acetate = 8:1);

Yellow solid; 43.2 mg, 82% yield; >99:1 dr, 99% ee; $[\alpha]_D^{20} = -92.0$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 115.5-116.1 °C;

The ee was determined by HPLC (Chiralpak IA, EtOH/hexane = 10/90, flow rate 1.0 mL/min, λ = 254 nm, major diastereomer: t_{minor} = 25.8 min, t_{major} = 20.4 min);

¹**H** NMR (**300** MHz, DMSO-*d*₆) δ (major diastereomer) 8.13 (d, *J* = 8.4 Hz, 1H), 8.00-7.93 (m, 2H), 7.75-7.67 (m, 1H), 7.67-7.59 (m, 2H), 7.58-7.47 (m, 3H), 7.45-7.37 (m, 3H), 6.86 (d, *J* = 8.1

Hz, 2H), 6.45 (dd, *J* = 3.3, 1.9 Hz, 1H), 6.26 (d, *J* = 3.3 Hz, 1H), 5.07 (d, *J* = 1.8 Hz, 1H), 3.77-3.64 (m, 1H), 3.51 (dd, *J* = 18.4, 4.4 Hz, 1H), 3.43 (dd, *J* = 18.4, 8.9 Hz, 1H), 2.08 (s, 3H);

¹³C NMR (75 MHz, DMSO-*d*₆) δ (major diastereomer) 196.0, 167.4, 152.3, 145.6, 143.2, 137.4, 135.6, 134.2, 133.9, 133.7, 130.1, 128.8, 128.3, 126.5, 126.0, 124.6, 120.3, 117.6, 116.3, 114.8, 110.8, 107.0, 41.5, 38.5, 35.9, 20.9;

HRMS (ESI-TOF) calcd. for $C_{30}H_{24}NO_6S [M + H]^+ 526.1319$; found: 526.1310.

5. General procedures for the asymmetric synthesis of compounds 8

In an ordinary vial equipped with a magnetic stirring bar, the solution of 1-Azaaurones 6 (0.12 mmol, 1.2 equiv), Azlactones 4 (0.1 mmol, 1.0 equiv) and catalyst C (20 mol %) in CH₂Cl₂ (2.0 mL) was cooled to 0 °C. And then, the mixture was stirred at the same temperature for the specified time. After completion of the reaction, as indicated by TLC, the products 8 were isolated by flash chromatography on silica gel (PE/EA = $15/1 \sim 12/1$).

N-((3R,4S)-3-benzyl-2-oxo-4-phenyl-5-tosyl-2,3,4,5-tetrahydropyrano[3,2-b]indol-3yl)benzamide (8a)

The major diastereomer **8a** was purified by flash column chromatography (petroleum ether/ethyl acetate = 12:1);

Yellow solid; 45.2 mg, 72% yield; 88:12 dr, 99% ee; $[\alpha]_D^{20} = -156.4$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 219.5-220.4 °C;

The ee was determined by HPLC (Chiralpak IA, EtOH/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm, major diastereomer: $t_{\text{minor}} = 16.8 \text{ min}, t_{\text{major}} = 7.0 \text{ min}$);

¹**H NMR (400 MHz, CDCl₃)** δ (major diastereomer) 8.24 (d, *J* = 8.3 Hz, 1H), 7.71 (d, *J* = 7.7 Hz, 1H), 7.50-7.38 (m, 3H), 7.39-7.30 (m, 4H), 7.26 (dd, *J* = 14.2, 7.4 Hz, 4H), 7.23-7.15 (m, 6H), 7.10-6.91 (m, 4H), 6.58 (s, 1H), 6.14 (s, 1H), 4.24 (d, *J* = 13.9 Hz, 1H), 3.11 (d, *J* = 13.9 Hz, 1H), 2.23 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 168.2, 168.1, 145.3, 136.8, 135.8, 135.3, 135.0, 134.9, 134.6, 131.7, 130.1, 129.8, 128.9, 128.7, 128.5, 128.1, 127.6, 127.0, 126.7, 126.4, 124.4, 121.1, 120.1, 117.5, 115.2, 66.7, 46.5, 38.9, 21.6;

HRMS (ESI-TOF) calcd. for $C_{38}H_{31}N_2O_5S$ [M + H]⁺ 627.1948; found: 627.1944.

N-((3R, 4S)-3-benzyl-2-oxo-4-phenyl-5-tosyl-2, 3, 4, 5-tetrahydropyrano [3, 2-b] indol-3-yl)-4-benzyl-2-oxo-4-phenyl-5-tosyl-2, 3, 4, 5-tetrahydropyrano [3, 2-b] indol-3-yl)-4-benzyl-2-benzyl-2-oxo-4-phenyl-5-tosyl-2, 3, 4, 5-tetrahydropyrano [3, 2-b] indol-3-yl)-4-benzyl-2-benzy

The major diastereomer **8b** was purified by flash column chromatography (petroleum ether/ethyl acetate = 12:1);

Yellow solid; 52.2 mg, 81% yield; 89:11 dr, 99% ee; $[\alpha]_D^{20} = -96.0$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 225.4-226.5 °C;

The ee was determined by HPLC (Chiralpak IA, EtOH/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm, major diastereomer: t_{minor} = 20.1 min, t_{major} = 7.3 min);

¹**H NMR (300 MHz, DMSO-***d*₆) δ (major diastereomer) 8.14 (d, *J* = 8.3 Hz, 1H), 7.78 (d, *J* = 7.7 Hz, 1H), 7.56-7.43 (m, 4H), 7.34-7.23 (m, 6H), 7.22-7.15 (m, 7H), 7.15-7.07 (m, 2H), 7.02-6.94 (m, 2H), 6.05 (s, 1H), 4.20 (d, *J* = 13.8 Hz, 1H), 3.11 (d, *J* = 13.8 Hz, 1H), 2.22 (s, 3H);

¹³C NMR (75 MHz, CDCl₃) δ (major diastereomer) 168.2, 166.9, 164.9 (d, *J* = 252.1 Hz, 1C), 145.3, 136.8, 135.8, 134.9 (d, *J* = 7.8 Hz, 1C), 134.5, 131.4 (d, *J* = 2.9 Hz, 1C), 130.0, 129.8, 129.1, 129.0, 128.9, 128.7, 128.5, 128.2, 127.7, 127.0, 126.4, 124.5, 121.0, 120.1, 117.5, 115.8 (d, *J* = 21.9 Hz, 1C), 115.2, 66.7, 46.5, 38.9, 21.6;

HRMS (ESI-TOF) calcd. for $C_{38}H_{30}FN_2O_5S [M + H]^+ 645.1854$; found: 645.1851.

N-((3R,4S)-3-benzyl-2-oxo-4-phenyl-5-tosyl-2,3,4,5-tetrahydropyrano[3,2-b]indol-3-yl)-4methylbenzamide (8c)

The major diastereomer **8c** was purified by flash column chromatography (petroleum ether/ethyl acetate = 12:1);

Yellow solid; 55.2 mg, 86% yield; 88:12 dr, 99% ee; $[\alpha]_D^{20} = -61.4$ (*c* 0.50, CH₂Cl₂) for major diastereomer; m.p. 102.5-103.6 °C;

The ee was determined by HPLC (Chiralpak IA, EtOH/hexane = 20/80, flow rate 0.8 mL/min, λ = 254 nm, major diastereomer: t_{minor} = 22.2 min, t_{major} = 8.7 min);

¹**H NMR (400 MHz, CDCl₃)** δ (major diastereomer) 8.24 (d, *J* = 8.4 Hz, 1H), 7.71 (d, *J* = 7.2 Hz, 1H), 7.50-7.36 (m, 2H), 7.32-7.26 (m, 4H), 7.26-7.22 (m, 2H), 7.22-7.15 (m, 6H), 7.12 (d, *J* = 7.8 Hz, 2H), 7.08-7.01 (m, 2H), 6.98 (d, *J* = 8.1 Hz, 2H), 6.56 (s, 1H), 6.14 (s, 1H), 4.25 (d, *J* = 13.9 Hz, 1H), 3.09 (d, *J* = 13.9 Hz, 1H), 2.34 (s, 3H), 2.23 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ (major diastereomer) 168.2, 168.0, 145.3, 142.2, 136.9, 135.8, 135.0, 134.9, 134.7, 132.4, 130.1, 129.8, 129.3, 128.9, 128.7, 128.5, 128.1, 127.6, 127.0, 126.8, 126.3, 124.4, 121.1, 120.1, 117.5, 115.2, 66.7, 46.5, 38.8, 21.6, 21.5;

HRMS (ESI-TOF) calcd. for $C_{39}H_{33}N_2O_5S$ [M + H]⁺ 641.2105; found: 641.2104.

N-((3R,4S)-3-benzyl-4-(3-chlorophenyl)-2-oxo-5-tosyl-2,3,4,5-tetrahydropyrano[3,2-b]indol-3-yl)benzamide (8d)

The major diastereomer **8d** was purified by flash column chromatography (petroleum ether/ethyl acetate/dichloromethane= 30:1:1);

Yellow solid; 52.9 mg, 80% yield; >99:1 dr, 99% ee; $[\alpha]_D^{20} = -60.6$ (*c* 0.50, CH₂Cl₂) for major diastereomer; m.p. 100.3-100.9 °C;

The ee was determined by HPLC (Chiralpak IA, EtOH/hexane = 20/80, flow rate 0.8 mL/min, λ

= 254 nm, major diastereomer: t_{minor} = 20.3 min, t_{major} = 8.4 min);

¹**H** NMR (600 MHz, CDCl₃) δ (major diastereomer) 8.29 (d, J = 8.4 Hz, 1H), 7.73 (d, J = 7.2 Hz, 1H), 7.52-7.48 (m, 1H), 7.48-7.41 (m, 4H), 7.38-7.32 (m, 4H), 7.22-7.19 (m, 3H), 7.18-7.13 (m, 3H), 7.13-7.08 (m, 1H), 7.07-7.00 (m, 4H), 6.61 (s, 1H), 6.13 (s, 1H), 4.20 (d, J = 14.0 Hz, 1H), 3.08 (d, J = 14.0 Hz, 1H), 2.25 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ (major diastereomer) 168.2, 167.7, 145.5, 138.7, 136.2, 135.1, 135.0, 134.9, 134.8, 134.3, 131.9, 130.1, 130.0, 129.9, 128.8, 128.6, 128.4, 127.7, 126.9, 126.7, 126.6, 124.6, 120.0, 119.9, 117.6, 115.3, 66.5, 46.1, 38.8, 21.6;

HRMS (ESI-TOF) calcd. for $C_{38}H_{30}CIN_2O_5S$ [M + H]⁺ 661.1558; found: 661.1553.

N-((3R,4S)-3-benzyl-4-(3,4-dimethylphenyl)-2-oxo-5-tosyl-2,3,4,5-tetrahydropyrano[3,2b]indol-3-yl)benzamide (8e)

The major diastereomer **8e** was purified by flash column chromatography (petroleum ether/ethyl acetate = 15:1);

Yellow solid; 46.7 mg, 71% yield; >99:1 dr, 99% ee; $[\alpha]_D^{20} = -104.8$ (*c* 1.00, CH₂Cl₂) for major diastereomer; m.p. 221.5-222.7 °C;

The ee was determined by HPLC (Chiralpak IA, EtOH/hexane = 20/80, flow rate 0.8 mL/min, λ = 254 nm, major diastereomer: t_{minor} = 15.4 min, t_{major} = 7.8 min);

¹**H NMR (600 MHz, CDCl₃)** δ (major diastereomer) 8.27 (d, J = 8.4 Hz, 1H), 7.72 (d, J = 7.2 Hz, 1H), 7.50-7.38 (m, 5H), 7.37-7.29 (m, 4H), 7.22-7.16 (m, 3H), 7.05 (dd, J = 6.7, 2.9 Hz, 2H), 6.97 (d, J = 8.2 Hz, 2H), 6.95-6.89 (m, 3H), 6.55 (s, 1H), 6.05 (s, 1H), 4.21 (d, J = 14.0 Hz, 1H), 3.07 (d, J = 14.0 Hz, 1H), 2.24 (s, 3H), 2.15 (s, 3H), 2.04 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ (major diastereomer) 168.2, 168.1, 145.1, 137.0, 136.4, 135.8, 135.5, 135.1, 134.9, 134.8, 133.8, 131.6, 130.1, 129.7, 128.7, 128.5, 127.6, 127.0, 126.8, 126.3, 125.9, 124.4, 121.3, 120.1, 117.4, 115.2, 66.8, 46.0, 38.7, 21.6, 19.8, 19.5;

HRMS (**ESI-TOF**) calcd. for $C_{40}H_{35}N_2O_5S$ [M + H]⁺ 655.2261; found: 655.2259.

6. Scale-up experiment

In an ordinary vial equipped with a magnetic stirring bar, the solution of 1-Thioaurones **1a** (4.8 mmol, 1.2 equiv), γ -Deconjugated Butenolides **2a** (4.0 mmol, 1.0 equiv) and catalyst **C** (20 mol %) in toluene (40 mL) was cooled to 0 °C. And then, the whole was stirred for 72 h until the completion of the reaction as indicated by TLC. Finally, the reaction mixture was directly concentrated under reduced pressure and purified by flash chromatography on silica gel (PE/EA=30:1-15:1) and acquired the product **3a** (1.11 g, 70% yield, 87:13 dr, 99% ee).

7. Synthetic transformations of products

7.1 The procedure for the synthesis of compound 9

To a flame dried reaction tube was added **3a** (60.0 mg, 0.15 mmol, 1.0 equiv) and metachloroperoxybenzoic acid (m-CPBA) (93.0 mg, 0.54 mmol, 3.6 equiv) at room temperature under an argon atmosphere, followed by addition of dry CH_2Cl_2 (1.0 mL). After stirring for 5 h, the mixture was concentrated under reduced pressure and purified by flash column chromatography on silica gel (PE/EA = 3/1) to afford product **9** (31.8 mg, 49% yield) as a white solid.

(3R,4S)-3-(2-oxo-2-phenylethyl)-4-phenyl-3,4-dihydro-2H-benzo[4,5]thieno[3,2-b]pyran-2one 5,5-dioxide (9)

White solid; 31.8 mg, 49% yield; >99:1 dr, 99% ee; $[\alpha]_D^{20} = +136.7$ (*c* 1.00, CH₂Cl₂); m.p. 187.4-188.5 °C;

The ee was determined by HPLC (Chiralpak AD-H, EtOH/hexane = 35/65, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{minor} = 39.5$ min, $t_{major} = 50.1$ min);

¹**H NMR (400 MHz, CDCl₃)** δ (major diastereomer) 7.96-7.88 (m, 3H), 7.87-7.80 (m, 1H), 7.63-7.53 (m, 3H), 7.46-7.40 (m, 2H), 7.25-7.18 (m, 2H), 7.12-7.00 (m, 3H), 4.72 (d, *J* = 12.6 Hz, 1H), 4.17-4.09 (m, 1H), 3.47 (d, *J* = 4.6 Hz, 2H);

¹³C NMR (101 MHz, CDCl₃) δ (major diastereomer) 195.4, 188.5, 173.4, 144.4, 137.7, 135.9, 134.7, 133.9, 130.6, 130.1, 129.3, 129.0, 128.9, 128.8, 128.3, 124.7, 122.1, 93.1, 51.1, 40.1, 36.2; HRMS (ESI-TOF) calcd. for $C_{25}H_{19}O_5S$ [M + H]⁺ 431.0948; found: 431.0929.

7.2 The procedure for the synthesis of compound 10

In a reaction tube equipped with a magnetic stirring bar, the solution of **3a** (40.0 mg, 0.1 mmol, 1.0 equiv) in THF (1.0 mL) was cooled to -40 °C, followed by addition of $ZnCl_2$ (27.3 mg, 0.2 mmol, 2.0 equiv) and NaBH₄ (7.6 mg, 0.2 mmol, 2.0 equiv). Maintaining the reaction stirring at the same temperature for 96 h until **3a** consumed as monitored by TLC. And then, H₂O (2.0 mL) was added to the reaction tube. The aqueous phase was extracted with ethyl acetate for three times. The combined organic layers were dried over Na₂SO₄, filtered and concentrated in vacuo. Then the residue was purified by column chromatography (PE/EA = 7:1) to afford the compound **10** as a white solid (29.4 mg, 74% yield).

(3R,4S)-3-(2-hydroxy-2-phenylethyl)-4-phenyl-3,4-dihydro-2H-benzo[4,5]thieno[3,2b]pyran-2-one (10)

White solid; 29.4 mg, 74% yield; 80:20 dr; $[\alpha]_D^{20} = +22.9$ (*c* 1.00, CH₂Cl₂); m.p. 200.8-201.9 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.83-7.81 (m, 1.6H), 7.80-7.75 (m, 0.4H), 7.74-7.68 (m, 0.8H), 7.65-7.59 (m, 1.0H), 7.55-7.46 (m, 1.1H), 7.39-7.23 (m, 9.2H), 5.82-5.79 (m, 0.8H), 5.50-5.42 (m, 0.2H), 4.61 (d, *J* = 9.3 Hz, 0.2H), 4.18 (d, *J* = 8.6 Hz, 0.8H), 4.14 (d, *J* = 8.9 Hz, 0.2H), 4.03 (d, *J* = 4.2 Hz, 0.8H), 3.39 (dd, *J* = 18.5, 9.6 Hz, 0.8H), 3.28-3.19 (m, 0.2H), 3.16-3.12 (m, 0.2H), 3.08-2.96 (m, 1.8H);

¹³C NMR (101 MHz, CDCl₃) δ 200.6, 199.5, 143.6, 142.4, 142.3, 141.7, 137.4, 137.3, 136.6, 136.4, 133.7, 133.5, 131.7, 131.4, 129.1, 129.0, 128.9 (2C), 128.8, 128.7, 128.3, 128.2, 127.9, 127.7, 125.0, 124.8, 124.2, 124.1, 122.8, 122.7, 120.5, 120.2, 116.4, 115.9, 99.1, 93.6, 45.1, 42.9, 42.1, 41.2, 38.3, 37.2;

HRMS (ESI-TOF) calcd. for C₂₅H₂₀NaO₃S [M + Na]⁺ 423.1025; found: 423.1030.

7.3 The procedure for the synthesis of compound 11

In a reaction tube equipped with a magnetic stirring bar, the solution of **10** (50.3 mg, 0.12 mmol, 1.0 equiv) in THF (1.0 mL) was cooled to 0 °C, followed by addition of NaH (7.2 mg, 0.18 mmol, 1.5 equiv, 60% in mineral oil) and ClCO₂Et (11.3 μ L, 0.18 mmol, 1.5 equiv). Subsequently, the whole was stirred for 6 h at room temperature. And then, H₂O (2.0 mL) was added to the reaction tube. The aqueous phase was extracted with ethyl acetate for three times. The combined organic layers were dried over Na₂SO₄, filtered and concentrated in vacuo. Then the residue was purified by column chromatography (PE/EA = 13:1) to afford the product **11** as a yellow solid (26.7 mg, 47% yield).

Ethyl (2-((3R,4S)-2-oxo-4-phenyl-3,4-dihydro-2H-benzo[4,5]thieno[3,2-b]pyran-3-yl)-1-

Yellow solid; 26.7 mg, 47% yield; 80:20 dr, 99% ee; $[\alpha]_D^{20} = +152.6$ (*c* 1.00, CH₂Cl₂); m.p. 65.9-66.3 °C;

The ee was determined by HPLC (Chiralpak IB, EtOH/hexane = 10/90, flow rate 1.0 mL/min, λ = 254 nm, major diastereomer: $t_{\text{minor}} = 15.3 \text{ min}, t_{\text{major}} = 16.3 \text{ min}$);

¹**H NMR (300 MHz, DMSO-***d*₆) δ 7.87-7.79 (m, 3H), 7.69-7.64 (m, 1H), 7.62-7.55 (m, 1H), 7.50-7.44 (m, 2H), 7.43-7.38 (m, 3H), 7.37-7.29 (m, 4H), 6.57 (d, *J* = 2.1 Hz, 1H), 4.19 (d, *J* = 11.3 Hz, 1H), 4.10 (q, *J* = 7.0 Hz, 2H), 3.35-3.26 (m, 1H), 3.17-3.07 (m, 1H), 2.96 (dd, *J* = 18.4, 3.2 Hz, 1H), 1.15 (t, *J* = 7.0 Hz, 3H);

¹³C NMR (**75** MHz, DMSO-*d*₆) δ 197.6, 153.3, 140.8, 140.5, 136.1, 136.0, 133.5, 130.5, 129.0, 128.8, 128.7, 127.9, 127.8, 125.2, 124.6, 123.1, 119.7, 118.1, 94.7, 64.4, 40.4, 39.5, 36.5, 13.8;

HRMS (**ESI-TOF**) calcd. for C₂₈H₂₄NaO₅S [M + Na]⁺ 495.1237; found: 495.1245.

8. X-ray crystal structure of compounds 3a, 5a, 7e and 8b.

Single crystal of compound **3a** was prepared from the mixture solvent of EtOH/ dichloromethane/Petroleum ether (V : V = 10/1/1) at room temperature by slow evaporation of solvent. A suitable crystal was selected for structure determination on a Xcalibur, Eos, Gemini diffractometer. The crystal was kept at 293(2) K during data collection. Using Olex2^[1], the structure was solved with the ShelXS^[2] structure solution program using Direct Methods and refined with the ShelXL^[3] refinement package using Least Squares minimisation.

Single crystal of compound **5a** was prepared from the single solvent of EtOH at room temperature by slow evaporation of solvent. A suitable crystal was selected for structure determination on a Xcalibur, Eos, Gemini diffractometer. The crystal was kept at 293(2) K during data collection. Using Olex2^[1], the structure was solved with the ShelXS^[2] structure solution program using Direct Methods and refined with the ShelXL^[3] refinement package using Least Squares minimisation.

Single crystal of compound **7e** was prepared from the mixture solvent of EtOH/ Petroleum ether (V : V = 10/1) at room temperature by slow evaporation of solvent. A suitable crystal was selected for structure determination on a Xcalibur, Eos, Gemini diffractometer. The crystal was kept at 293(2) K during data collection. Using Olex2^[1], the structure was solved with the ShelXS^[2] structure solution program using Direct Methods and refined with the ShelXL^[3] refinement package using Least Squares minimisation.

Single crystal of compound **8b** was prepared from the mixture solvent of DMSO- d_6 / Petroleum ether (V : V = 10/1) at room temperature by slow evaporation of solvent. A suitable crystal was selected for structure determination on a Xcalibur, Eos, Gemini diffractometer. The crystal was kept at 293(2) K during data collection. Using Olex2^[1], the structure was solved with the ShelXS^[2] structure solution program using Direct Methods and refined with the ShelXL^[3] refinement package using Least Squares minimisation.

- O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.* 2009, 42, 339-341.
- [2] G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122.
- [3] G. M. Sheldrick, Acta Cryst. 2015, C71, 3-8.

т 1

ORTEP of **3a** (at 50% level)

Crysta	al d	lata and st	ructure refinement for	3a (CCDC-2102386)
		1		

Identification code	Ja
Empirical formula	$C_{25}H_{18}O_{3}S$
Formula weight	398.45
Temperature/K	293(2)
Crystal system	orthorhombic
Space group	$P2_{1}2_{1}2_{1}$

S25

a/Å	9.1738(2)
b/Å	11.5881(2)
c/Å	18.4905(4)
α /°	90
β/°	90
γ/°	90
Volume/Å ³	1965.66(8)
Z	4
$\rho_{calc}g/cm^3$	1.346
μ/mm^{-1}	1.657
F(000)	832.0
Crystal size/mm ³	$0.17 \times 0.12 \times 0.09$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/ $^\circ$	9.006 to 134.13
Index ranges	$-10 \le h \le 10, -13 \le k \le 13, -18 \le l \le 22$
Reflections collected	16343
Independent reflections	3499 [$R_{int} = 0.0423$, $R_{sigma} = 0.0298$]
Data/restraints/parameters	3499/0/262
Goodness-of-fit on F ²	1.042
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0373, wR_2 = 0.0969$
Final R indexes [all data]	$R_1 = 0.0403, wR_2 = 0.1001$
Largest diff. peak/hole / e Å-3	0.14/-0.24
Flack parameter	-0.006(11)

ORTEP of **5a** (at 50% level)

Crystal data and structure refinement for 5a (CCDC-2102388)					
Identification code	5a				
Empirical formula	$C_{31}H_{23}NO_3S$				
Formula weight	489.56				
Temperature/K	293(2)				
Crystal system	triclinic				
Space group	P1				
a/Å	10.0702(4)				
b/Å	11.9626(8)				
c/Å	12.1903(7)				

α/°	117.754(6)
β/°	91.918(4)
$\gamma/^{\circ}$	96.198(4)
Volume/Å ³	1286.10(14)
Z	2
$\rho_{calc}g/cm^3$	1.264
μ/mm^{-1}	1.377
F(000)	512.0
Crystal size/mm ³	$0.13 \times 0.11 \times 0.1$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	8.234 to 142.082
Index ranges	$-12 \le h \le 12, -14 \le k \le 13, -14 \le l \le 14$
Reflections collected	18465
Independent reflections	8825 [$R_{int} = 0.0335$, $R_{sigma} = 0.0417$]
Data/restraints/parameters	8825/4/657
Goodness-of-fit on F ²	1.025
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0494, wR_2 = 0.1247$
Final R indexes [all data]	$R_1 = 0.0559, wR_2 = 0.1344$
Largest diff. peak/hole / e Å-3	0.24/-0.21
Flack parameter	-0.01(2)

ORTEP of **7e** (at 50% level) Crystal data and structure refinement for 7e (CCDC-2111474)

Identification code	7e	
Empirical formula	$C_{34}H_{29}NO_5S$	
Formula weight	563.64	
Temperature/K	293(2)	
Crystal system	monoclinic	
Space group	P21	
a/Å	11.2382(4)	
b/Å	18.0725(7)	
c/Å	15.2764(5)	
$lpha/^{\circ}$	90	
β/°	94.280(4)	

$\gamma^{ m o}$	90
Volume/Å ³	3094.0(2)
Z	4
$\rho_{calc}g/cm^3$	1.210
μ/mm^{-1}	1.259
F(000)	1184.0
Crystal size/mm ³	0.15 imes 0.12 imes 0.1
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	7.59 to 134.112
Index ranges	$-13 \le h \le 13, -21 \le k \le 21, -11 \le l \le 18$
Reflections collected	23685
Independent reflections	11060 [$R_{int} = 0.0321$, $R_{sigma} = 0.0441$]
Data/restraints/parameters	11060/40/658
Goodness-of-fit on F ²	1.019
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0714, wR_2 = 0.2003$
Final R indexes [I>=2σ (I)] Final R indexes [all data]	$\begin{aligned} R_1 &= 0.0714, \ wR_2 = 0.2003 \\ R_1 &= 0.0855, \ wR_2 = 0.2200 \end{aligned}$
Final R indexes [I>=2σ (I)] Final R indexes [all data] Largest diff. peak/hole / e Å ⁻³	$\begin{aligned} R_1 &= 0.0714, \ wR_2 &= 0.2003 \\ R_1 &= 0.0855, \ wR_2 &= 0.2200 \\ &0.46/\text{-}0.30 \end{aligned}$

ORTEP of **8b** (at 50% level)

Identification code	8b
Empirical formula	$C_{38}H_{29}FN_2O_5S$
Formula weight	644.69
Temperature/K	293(2)
Crystal system	monoclinic
Space group	P21
a/Å	12.9471(4)
b/Å	19.2285(4)
c/Å	13.9330(4)
α/°	90
β/°	111.418(4)
γ/°	90
Volume/Å ³	3229.15(17)

Z	4
$\rho_{calc}g/cm^3$	1.326
µ/mm ⁻¹	1.334
F(000)	1344.0
Crystal size/mm ³	0.15 imes 0.11 imes 0.1
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	7.334 to 142.378
Index ranges	$-15 \le h \le 15, -23 \le k \le 23, -10 \le l \le 16$
Reflections collected	25310
Independent reflections	12147 [$R_{int} = 0.0351$, $R_{sigma} = 0.0478$]
Data/restraints/parameters	12147/1/858
Goodness-of-fit on F ²	1.030
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0482, wR_2 = 0.1233$
Final R indexes [all data]	$R_1 = 0.0645, \ wR_2 = 0.1406$
Largest diff. peak/hole / e Å ⁻³	0.19/-0.18
Flack parameter	0.011(10)

Based on the experimental results and the related literature reports, $^{1-3}$ possible transition states were proposed to rationalize the formation of each type of cycloadducts with specific configurations, respectively (Figure 1). Catalyst **C** plays a bifunctional nature to simultaneously activate the electronic dipoles and nucleophilic dienophiles. 1-thioaurones

and 1-azaaurones could be oriented and activated by the dual H-bonding from the squaramide NHs to the carbonyl groups, while the γ -deconjugated butenolides and azlactones could be enolized and activated by the tertiary amine of the quinuclidine moiety via deprotonation. And then, under the stereoselective induction of catalyst **C**, the α -position of enolized butenolides attacks the 1-thioaurones in a *Si-Si* fashion (**TS-A**) to construct (*C9S, C10R*)-configuration chiral stereocenters, the subsequent intramolecular transesterification delivers the cycloadduct **3**. Likewise, the addition of enolized azlactones to 1-thioaurones in a *Si-Si* fashion (**TS-B**) generates the (*C9R, C10S*)-configuration chiral stereocenters and further intramolecular transesterification leads to the formation of **5**. In the same manner, the *Re-Re* fashion addition (**TS-C**) and (**TS-D**) involving 1-azaaurones, and the subsequent intramolecular transesterification also results in the formation of products **7** and **8** with (*C9R, C10S*)- and (*C9S, C10R*)-configuration, respectively (Figure 1, below). Notably, the aromatizing trend for the formation of heteroaromatic benzothiophene and indole moieties can be regarded as crucial for the IED [4+2] cycloaddition.

Reference:

- (a) A. Skrzyńska, A. Albrecht and Ł. Albrecht, *Adv. Synth. Catal.*, 2016, **358**, 2838; (b) M. Saktura, B. Joachim, P. Grzelak and Ł. Albrecht, *Eur. J. Org. Chem.*, 2019, 6592.
- (a) L. Yang, W. Huang, X.-H. He, M.-C. Yang, X. Li, G. He, C. Peng and B. Han, *Adv. Synth. Catal.*, 2016, **358**, 2970; (b) J. Zhou, B. Wang, X.-H. He, L. Liu, J. Wu, J. Lu, C. Peng, C.-L. Rao and B. Han, *J. Org. Chem.*, 2019, **84**, 5450.
- (a) B. Wu, Z.-Y. Yu, X. Gao, Y. Lan and Y.-G. Zhou, *Angew. Chem., Int. Ed.*, 2017, 56, 4006; (b) Y.-N. Wang, Q. Xiong, L.-Q. Lu, Q.-L. Zhang, Y. Wang, Y. Lan and W.-J. Xiao, *Angew. Chem., Int. Ed.*, 2019, 58, 11013; (c) Y.-W. Xu and X.-P. Hu, *Org. Lett.*, 2019, 21, 8091.

10. The copies of ¹H NMR, ¹³C NMR and HPLC spectra for compounds 3, 5, 7-11 ¹H NMR (300 MHz, CDCl₃) and ¹³C NMR (75 MHz, CDCl₃) of 3a

1 Det.A Ch1/254nm

PeakTable

	Detector A	Ch1 254nm			
	Peak#	Ret. Time	Area	Height	Area %
	1	13.494	12045338	624446	26.346
	2	16.650	12219180	524842	26.726
	3	18.331	10821857	420490	23.670
	4	20.027	10633126	399730	23.257
	Total		45719502		100.000

1 Det.A Ch1/254nm

PeakTable

Detector A Ch1 254nm					
Peak#	Ret. Time	Area	Height	Area %	
1	13.268	1940803	112144	8.941	
2	16.254	416497	20791	1.919	
3	17.895	19279552	781807	88.822	
4	19.719	68913	3101	0.317	
Total		21705764		100.000	

 1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (101 MHz, CDCl_3) of 3b

1 Det.A Ch1/254nm

PeakTable

Detector A Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area %		
1	13.579	28670172	1014151	49.608		
2	22.584	29122919	694749	50.392		
Total		57793090		100.000		

PeakTable

		1 Cak I au					
Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %			
1	13.508	91053152	2175178	99.465			
2	22.997	489506	15890	0.535			
Total		91542658		100.000			

0.0400000000000000000000000000000000000	P 4 0 0 1 0 0 8 0 0 0 8 0 m 0 0 4 1
000000000000000000000000000000000000000	11100000000000000000000
00000704000004040000000000000000000000	000000000000000000000000000000000000000
× × × × × × × × × × × × × × × × × × ×	NN800000000440000
	44000000000000000000000000

D				
Daa	1	O.	h	0
гса	ĸ	a		
			~ .	

		I Cult I uo		
Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	13.377	42726381	1989264	49.242
2	20.818	44040929	1473528	50.758
Total		86767310		100.000

Peal	kТ	a	bl	le

Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	12.905	61382590	2168266	98.998
2	20.504	621495	24087	1.002
Total		62004084		100.000

		I cun I uo.	10	
Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	11.194	14582131	896990	49.764
2	17.951	14720157	593659	50.236
Total		29302287		100.000

1 Det.A Ch1/254nm

Б

Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	11.139	27069552	1599192	99.438
2	18.011	153083	6596	0.562
Total		27222635		100.000

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (101 MHz, CDCl_3) of 3e

7,8494 7,76664 7,76664 7,76664 7,76664 7,76664 7,74455 7,74455 7,74455 7,74455 7,74455 7,74455 7,74455 7,74455 7,74455 7,73701 7,74701 7,7470 7,747010

PeakTable

Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	12.099	22529980	1194889	49.166
2	15.266	23294644	1046537	50.834
Total		45824625		100.000

1 Det.A Ch1/254nm

		1 cun 1 uo	10	
Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	11.927	41428150	1959131	99.397
2	15.147	251175	12398	0.603
Total		41679324		100.000

7.8748 7.8448 7.8448 7.7.8448 7.7.8530 7.7.6530 7.7.6530 7.7.8530 7.7.4532 7.7.4432 7.7.4432 7.7.4432 7.7.4432 7.7.3708 7.7.3708 6.9154 6.9154 6.9154 6.9154 6.9154 6.31545 7.33854 6.33854 6.33854 6.337655 7.3376557 7.3376557 7.3376557 7.3376557 7.3376557 7.3376577 7.3376577 7.33765777777777777777777777777777777777

PeakTable

		I Cak I au		
Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	18.404	1689527	60437	50.085
2	22.564	1683798	52255	49.915
Total		3373325		100.000

PeakTable

		1 Car I au		
Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	18.218	35490490	1289077	98.914
2	22.583	389648	13572	1.086
Total		35880138		100.000

1H NMR (300 MHz, CDCl_3) and ^{13}C NMR (75 MHz, CDCl_3) of 3g

		PeakTab	le	
Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	12.716	3197451	166559	49.660
2	16.620	3241279	137159	50.340
Total		6438730		100.000

PeakTable

Detector A Chi 234nm						
Peak#	Ret. Time	Area	Height	Area %		
1	12.397	17948208	841161	99.584		
2	16.296	75048	3717	0.416		
Total		18023255		100.000		

A CI 1 254

.

 ^1H NMR (300 MHz, CDCl_3) and ^{13}C NMR (101 MHz, CDCl_3) of 3h

205.43 205.44 (69.15) (169.15) (169.15) (169.15) (169.15) (169.15) (169.15) (169.15) (169.15) (171.16) (172.864 (172.864) (

HPLC spectra of 3h

PeakTable

		1 Curt 1 uO		
Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	10.707	3023317	166516	21.086
2	12.495	3006277	157605	20.967
3	14.039	4160923	186100	29.020
4	15.825	4147576	183639	28.927
Total		14338093		100.000

1 Det.A Ch1/254nm

		1 cur 1 uo		
Detector A	A Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	9.204	10435826	712592	46.481
2	10.164	550070	33889	2.450
3	11.513	10996159	640675	48.977
4	12.709	469672	18109	2.092
Total		22451728		100.000

PeakTable

Detector A Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area %		
1	13.337	15338507	767052	49.700		
2	15.616	15523949	682913	50.300		
Total		30862456		100.000		

1 Det.A Ch1/254nm

PeakTable

Detector A Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area %		
1	13.359	12429805	610230	99.651		
2	15.706	43545	1759	0.349		
Total		12473349		100.000		

~ - .

PeakTable

Detector A Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area %		
1	13.014	11937485	641576	50.106		
2	14.410	11886875	575637	49.894		
Total		23824360		100.000		

PeakTable

Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	12.937	40607884	1921424	99.556
2	14.423	181180	11168	0.444
Total		40789064		100.000

 ^1H NMR (300 MHz, CDCl_3) and ^{13}C NMR (101 MHz, CDCl_3) of 3k

77.9246 77.9009 77.9009 77.9009 77.9009 77.9009 77.9059 77.7059 77.75763 77.75763 77.74506 77.74506 77.74264 77.772664 77.772664 77.772664 77.7727664 77.77277664 77.77277664 77.772776777777777777777777777777777777	455954 45590 37560 37550 37550 37731 34733 34734
--	--

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

PeakTable Detector A Ch1 254nm Height 1210250 Peak# Ret. Time Area Area % 13.791 26633974 49.860 1 16.392 1080030 2 26783526 50.140 53417499 100.000 Total

		1 Cult I GO		
Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	13.817	10531901	510411	99.623
2	16.460	39819	2004	0.377
Total		10571721		100.000

1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (101 MHz, CDCl_3) of 31

1 Det.A Ch1/254nm

CI 1 2 7 4

PeakTable

Detector A Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area %		
1	9.065	6754905	357340	49.776		
2	12.066	6815701	282834	50.224		
Total		13570606		100.000		

1 Det.A Ch1/254nm

		I Cak I au		
Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	9.058	40480377	1882159	98.421
2	12.064	649615	27051	1.579
Total		41129991		100.000

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (101 MHz, CDCl_3) of 3m

PeakTable

Detector A	Detector A Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area %			
1	12.008	16845620	941347	49.761			
2	14.038	17007348	830290	50.239			
Total		33852968		100.000			

1 Det.A Ch1/254nm

Detector A Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area %		
1	11.306	38106474	1952505	99.564		
2	13.216	166946	10165	0.436		
Total		38273419		100.000		

 1H NMR (300 MHz, CDCl₃) and ^{13}C NMR (75 MHz, CDCl₃) of 3n

PeakTable

Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	16.570	8364986	343766	49.733
2	18.992	8454933	314617	50.267
Total		16819919		100.000

PeakTable

		I van I ao	10	
Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	17.081	53738096	1779074	99.077
2	19.936	500470	19034	0.923
Total		54238566		100.000

1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (101 MHz, CDCl_3) of 30

7,9251 7,79251 7,82040 7,75579 7,75579 7,75579 7,75579 7,75579 7,75579 7,75579 7,75579 7,75579 7,75579 7,75579 7,75579 7,75579 7,75579 7,75579 7,75579 7,75579 7,75579 7,75579 7,7579 7,

1 Det.A Ch1/254nm

		PeakTabl	le	
Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	13.490	3650379	142878	50.032
2	15.319	3645672	138672	49.968
Total		7296051		100 000

1 Det.A Ch1/254nm

		1 Cur I uo		
Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	13.257	39356719	1336143	99.308
2	15.432	274297	9416	0.692
Total		39631016		100.000

1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (101 MHz, CDCl_3) of 3p

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

PeakTable

Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	15.224	2962293	144720	50.177
2	16.615	2941393	133927	49.823
Total		5903686		100.000

		1 00001 000		
Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	14.568	18093110	856859	96.932
2	16.037	572747	27962	3.068
Total		18665857		100.000

 $^1\mathrm{H}$ NMR (300 MHz, DMSO- $d_6)$ and $^{13}\mathrm{C}$ NMR (75 MHz, DMSO- $d_6)$ of 3q

PeakTable

Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	10.929	4349125	211072	50.060
2	13.253	4338645	179880	49.940
Total		8687769		100.000

1 Det.A Ch1/254nm

Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	10.482	31132246	1414701	99.820
2	12.687	56140	2623	0.180
Total		31188386		100.000

 $^1\mathrm{H}$ NMR (300 MHz, CDCl_3) and $^{13}\mathrm{C}$ NMR (75 MHz, CDCl_3) of 3r

110 100 f1 (ppm) 140 130 120

1 Det.A Ch1/254nm

PeakTable

Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	11.376	4338540	275611	27.396
2	13.364	4370141	241835	27.596
3	14.484	3534034	183083	22.316
4	17.030	3593497	156086	22.692
Total		15836212		100.000

1 Det.A Ch1/254nm

Ch1 254nm			
Ret. Time	Area	Height	Area %
11.378	5924481	358233	61.585
13.402	510775	28019	5.310
14.535	760242	40560	7.903
17.014	2424525	104026	25.203
	9620022		100.000
	Ch1 254nm Ret. Time 11.378 13.402 14.535 17.014	Ret. Time Area 11.378 5924481 13.402 510775 14.535 760242 17.014 2424525 9620022	Ch1 254nm Ret. Time Area Height 11.378 5924481 358233 13.402 510775 28019 14.535 760242 40560 17.014 2424525 104026 9620022 40500 104026

		PeakTab	le		
Detector A Ch1 254nm					
Peak#	Ret. Time	Area	Height	Area %	
1	16.007	2380985	95719	50.538	
2	17.892	2330268	89248	49.462	
Total		4711253		100.000	

PeakTable

Detector A Ch1 254nm								
Detector A Ch1 254nm								
Peak#	Ret. Time	Area	Height	Area %				
1	15.758	70424601	2128970	99.676				
2	17.916	229197	11171	0.324				
Total		70653798		100.000				

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

PeakTable

1 Cak I dole								
Detector A Ch1 254nm								
Peak#	Ret. Time	Area	Height	Area %				
1	10.187	8093273	457039	49.980				
2	13.045	8099618	399715	50.020				
Total		16192891		100.000				

I Cak I dole								
Detector A Ch1 254nm								
Peak#	Ret. Time	Area	Height	Area %				
1	10.015	27318507	1514240	99.692				
2	12.990	84375	5395	0.308				
Total		27402882		100.000				

1H NMR (300 MHz, CDCl_3) and ^{13}C NMR (101 MHz, CDCl_3) of 3u

7,9274 7,79234 7,7058 7,7,7595 7,7,6791 7,7,5830 7,7,5733 7,7,5733 7,7,5733 7,7,5733 7,7,5733 7,7,5733 7,7,53333 7,7,53333 7,7,53333 7,7,53333 7,7,53333 7,7

S71

1 Det.A Ch1/254nm

D				
Dool	× 1	CO.	h	
	ĸı	0		IC.
			~	

Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	11.055	3484187	218695	49.762
2	11.916	3517549	206450	50.238
Total		7001735		100.000

1 Det.A Ch1/254nm

Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	11.028	19579363	1163108	99.812
2	11.912	36925	2229	0.188
Total		19616288		100.000

1H NMR (300 MHz, CDCl_3) and ^{13}C NMR (75 MHz, CDCl_3) of 5a

1 Det.A Ch1/254nm

PeakTable

		1 cuit 1 uo		
Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	7.219	33236113	1680440	49.703
2	12.853	33633657	905325	50.297
Total		66869770		100.000

1 Det.A Ch1/254nm

		1 cur 1 uo	10	
Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	7.445	1998960	128098	3.368
2	13.303	57357314	1277525	96.632
Total		59356274		100.000

1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (101 MHz, CDCl_3) of 5b

PeakTable

Detector A Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area %		
1	8.440	12288384	614822	50.010		
2	11.420	12283284	427864	49.990		
Total		24571668		100.000		

PeakTable

		1 00011100			
Detector A	Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	1
1	8.527	351465	21382	1.625	1
2	11.491	21277643	697767	98.375	1
Total		21629108		100.000	1

1 Det.A Ch1/254nm

D	1 7	1 1	1
Pea	κI	at	ble

Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	7.515	18102447	1014337	49.963
2	21.094	18129107	225466	50.037
Total		36231554		100.000

PeakTable

		1 van 1 uo		
Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	7.578	926274	60519	2.238
2	21.088	40454123	436244	97.762
Total		41380397		100.000

 1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (101 MHz, CDCl_3) of 5d

PeakTable

Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	6.773	6939470	504785	49.806
2	13.826	6993625	213501	50.194
Total		13933094		100.000

1 Det.A Ch1/254nm

		1 Cult I WO	10	
Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	6.762	462956	39619	1.492
2	13.681	30565962	847897	98.508
Total		31028918		100.000

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (101 MHz, CDCl_3) of 5e

PeakTable

Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	7.340	2220039	141486	50.054
2	12.549	2215229	74745	49.946
Total		4435268		100.000

PeakTable

		1 Van 1 uo		
Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	7.327	491655	37044	2.883
2	12.591	16564033	535882	97.117
Total		17055688		100.000

 $^{1}\mathrm{H}$ NMR (400 MHz, DMSO- $d_{6})$ and $^{13}\mathrm{C}$ NMR (151 MHz, CDCl_3) of 5f

Detecto	or A Ch1 254nm			
Peak	# Ret. Time	Area	Height	Area %
1	17.190	1561224	27290	50.090
2	39.609	1555614	10978	49.910
Tota	ıl	3116838		100.000

		1 Cak I au		
Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	17.212	156968	3203	0.681
2	39.138	22907184	148120	99.319
Total		23064152		100.000

 1H NMR (400 MHz, DMSO- $d_6)$ and ^{13}C NMR (151 MHz, CDCl_3) of 5g

PeakTable

Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	7.907	18517733	746260	49.961
2	11.362	18546774	497014	50.039
Total		37064507		100.000

1 Det.A Ch1/254nm

			I Cuk I uo		
I	Detector A	Ch1 254nm			
	Peak#	Ret. Time	Area	Height	Area %
	1	7.917	231740	12928	0.846
	2	11.353	27148350	700872	99.154
	Total		27380090		100.000

1 Det.A Ch1/254nm

PeakTable

I	Detector A	Ch1 254nm			
	Peak#	Ret. Time	Area	Height	Area %
Γ	1	6.369	10773736	752137	49.968
Γ	2	7.799	10787561	570302	50.032
	Total		21561297		100.000

1 Det.A Ch1/254nm

Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	6.395	264014	24481	1.799
2	7.805	14411275	743813	98.201
Total		14675289		100.000

PeakTable

]	Detector A	Ch1 254nm			
	Peak#	Ret. Time	Area	Height	Area %
	1	8.603	4173134	212279	50.363
	2	12.427	4113029	151168	49.637
ſ	Total		8286164		100.000

Detector A Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area %		
1	8.673	411185	27384	3.183		
2	12.465	12506441	453138	96.817		
Total		12917626		100.000		

1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (101 MHz, CDCl_3) of 5j

1 Det.A Ch1/254nm

-		-		
Dag	1	Ľ o	h	
I Ua	N	l a	U	IU

		I Cak I ao		
Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	10.403	7202891	297661	50.773
2	14.620	6983477	236734	49.227
Total		14186367		100.000

1 Det.A Ch1/254nm

PeakTable

		1 Van 1 uo	10	
Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	10.548	520791	27326	2.209
2	14.652	23050745	696649	97.791
Total		23571536		100.000

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (101 MHz, CDCl_3) of 5k

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

1 Det.A Ch1/220nm

PeakTable

Detector A Ch1 220nm									
Peak#	Ret. Time	Area	Height	Area %					
1	7.628	11243034	619446	49.036					
2	11.204	11685094	475131	50.964					
Total		22928129		100.000					

1 Det.A Ch1/220nm

		I Cult I UC		
Detector A	Ch1 220nm			
Peak#	Ret. Time	Area	Height	Area %
1	7.641	301532	19675	2.227
2	11.182	13236296	538751	97.773
Total		13537828		100.000

1H NMR (600 MHz, CDCl_3) and ^{13}C NMR (151 MHz, CDCl_3) of 7a

 $\begin{array}{c} & \left\{ \begin{array}{c} 8.2368 \\ 8.2328 \\ 7.26028 \\ 7.76028 \\ 7.76928 \\ 7.76928 \\ 7.74439 \\ 7.74439 \\ 7.74439 \\ 7.74439 \\ 7.74439 \\ 7.74439 \\ 7.74439 \\ 7.74439 \\ 7.738749 \\ 7.728749 \\$

S95

1 Det.A Ch1 / 254nm

Detector A Ch1 254nm										
Peak#	Ret. Time	Area	Height	Area %	Height %					
1	10.400	5932062	252570	49.147	61.620					
2	14.745	6137912	157316	50.853	38.380					
Total		12069974	409886	100.000	100.000					

1 Det.A Ch1 / 254nm

Detector A	Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	10.590	36541004	1410004	99.425	99.684
2	15.116	211440	4474	0.575	0.316
Total		36752444	1414478	100.000	100.000

^1H NMR (300 MHz, CDCl_3) and ^{13}C NMR (151 MHz, CDCl_3) of 7b

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

1 Det.A Ch1 / 254nm

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	9.665	23771688	1070349	49.882	59.920				
2	13.428	23883805	715959	50.118	40.080				
Total		47655493	1786309	100.000	100.000				

1 Det.A Ch1 / 254nm

]	Detector A Ch1 254nm										
ſ	Peak#	Ret. Time	Area	Height	Area %	Height %					
Γ	1	9.720	40980112	1616703	99.437	99.516					
Γ	2	13.658	231975	7866	0.563	0.484					
	Total		41212087	1624568	100.000	100.000					

^1H NMR (300 MHz, CDCl_3) and ^{13}C NMR (75 MHz, CDCl_3) of 7c

HPLC spectra of 7c

1 Det.A Ch1 / 254nm

Detector A	Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.643	16538489	575710	49.887	57.043
2	14.943	16613293	433538	50.113	42.957
Total		33151782	1009248	100.000	100.000

1 Det.A Ch1 / 254nm

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	12.680	62247283	1675449	99.893	99.837				
2	15.131	66918	2733	0.107	0.163				
Total		62314201	1678182	100.000	100.000				

1H NMR (300 MHz, CDCl_3) and ^{13}C NMR (75 MHz, CDCl_3) of 7d

1 Det.A Ch1 / 254nm

- - .

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	19.704	33700458	793264	49.891	58.067				
2	23.610	33847216	572846	50.109	41.933				
Total		67547673	1366110	100.000	100.000				
		0,0,10,0							

1 Det.A Ch1 / 254nm

Detect	Detector A Ch1 254nm										
Peal	k#	Ret. Time	Area	Height	Area %	Height %					
	1	19.971	99362	2455	0.100	0.144					
	2	23.659	99600453	1701073	99.900	99.856					
]	Fotal		99699815	1703528	100.000	100.000					

D	etector A	Ch1 254nm				
	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	26.815	2332904	45553	50.260	63.883
	2	37.368	2308755	25753	49.740	36.117
	Total		4641659	71306	100.000	100.000

1 Det.A Ch1 / 254nm

Detector A	Ch1	254nm
------------	-----	-------

Peak#	Ret. Time	Area	Height	Area %	Height %
1	26.863	131708238	1762044	99.414	99.441
2	37.952	776347	9907	0.586	0.559
Total		132484585	1771950	100.000	100.000

150 140 130 120 110 100 90 fl (ppm) -10 ò

1 Det.A Ch1 / 254nm

Detector A Ch1 254nm					
Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.623	4612633	151831	50.028	60.639
2	17.233	4607475	98554	49.972	39.361
Total		9220108	250385	100.000	100.000

Detector A	Ch1 254nm	
D 1 //	D (T	

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.936	36148375	1127383	99.276	99.288
2	17.820	263648	8085	0.724	0.712
Total		36412023	1135468	100.000	100.000

PeakTable

Detector A	Detector A Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area %			
1	20.655	4851060	92248	49.978			
2	25.994	4855300	72983	50.022			
Total		9706360		100.000			

1 Det.A Ch1/254nm

Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	20.417	37846293	738805	99.925
2	25.838	28251	640	0.075
Total		37874544		100.000

S109

PeakTable

Detector A Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area %		
1	7.071	2880865	217832	49.827		
2	16.861	2900827	72944	50.173		
Total		5781692		100.000		

Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	7.022	20561716	1298538	99.751
2	16.770	51365	1713	0.249
Total		20613081		100.000

$^1\mathrm{H}$ NMR (300 MHz, DMSO-d_6) and $^{13}\mathrm{C}$ NMR (75 MHz, CDCl_3) of 8b

PeakTable

Detector A	Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	
1	7.304	3096006	217613	49.878	
2	20.298	3111132	57738	50.122	
Total		6207139		100.000	

PeakTable

		I cult I uo	10	
Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	7.289	24862480	1563135	99.475
2	20.075	131182	3644	0.525
Total		24993662		100.000

90 80 f1 (ppm) -10

1 Det.A Ch1/254nm

Pea	kТ	` al	hl	e
rea	ΓI	a	U	C

Detector A	Detector A Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area %			
1	8.730	2372750	149374	50.328			
2	22.306	2341810	47206	49.672			
Total		4714560		100.000			

1 Det.A Ch1/254nm

Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	8.706	20808960	1154635	99.764
2	22.249	49143	1299	0.236
Total		20858103		100.000

^1H NMR (600 MHz, CDCl_3) and ^{13}C NMR (151 MHz, CDCl_3) of 8d

PeakTable

]	Detector A Ch1 254nm							
ſ	Peak#	Ret. Time	Area	Height	Area %			
	1	8.465	5952757	374521	50.021			
ſ	2	20.449	5947730	130652	49.979			
I	Total		11900487		100.000			

Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	8.430	22541409	1369085	99.773
2	20.265	51303	1295	0.227
Total		22592712		100.000

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (151 MHz, CDCl₃) of 8e ⁰⁸⁰⁷⁸ ⁰⁸⁰⁷⁸ ⁰⁸⁰⁸⁷¹ ⁰⁸⁰⁷¹¹ ⁰⁸⁰⁷¹¹

PeakTable

Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %			
1	7.802	4902039	320579	50.010			
2	15.649	4900028	115318	49.990			
Total		9802068		100.000			

PeakTable

1 vali i aciv					
Detector A Ch1 254nm					
Peak#	Ret. Time	Area	Height	Area %	
1	7.784	20047673	1260525	99.662	
2	15.420	67942	2018	0.338	
Total		20115614		100.000	

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (101 MHz, CDCl₃) of 9

PeakTable

Detector A Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area %		
1	39.019	3986223	31320	50.086		
2	50.144	3972582	26102	49.914		
Total		7958804		100.000		

1 Det.A Ch1/254nm

1 curi i uore					
Detector A	Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	
1	39.510	23234	258	0.133	
2	50.066	17452194	108220	99.867	
Total		17475427		100.000	

¹H NMR (300 MHz, CDCl₃) and ¹³C NMR (101 MHz, CDCl₃) of 10

HPLC spectra of 11

PeakTable

1 cultituole					
Detector A Ch1 254nm					
Peak#	Ret. Time	Area	Height	Area %	
1	14.930	11519768	495683	43.565	
2	15.862	11707522	525653	44.275	
3	18.095	1624385	58852	6.143	
4	20.381	1591012	44172	6.017	
Total		26442687		100.000	

1 Det.A Ch1/254nm

PeakTable

Detector A	Ch1 254nm			
Peak#	Ret. Time	Area	Height	Area %
1	15.254	31041	1885	0.050
2	16.301	54596209	1593112	87.632
3	18.135	7272798	252734	11.674
4	20.493	401407	14095	0.644
Total		62301455		100.000