Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Supporting information

Concise total syntheses of ericifolione and its analogues enabled by a biomimetic inverse-electron-demand Diels-Alder reaction

Tingting Zhou,^{ad} Anquan Zheng,^{ad} Luqiong Huo,^d Changgeng Li,^a Haibo Tan,^d Sasa Wang*^{bd} and Huiyu Chen*^{ac}

^aSchool of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China

^bGuangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Centre for Chemistry and

Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, People's Republic of China

^c School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China

^dKey Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China

Table of contents	
Abbreviations	S2
Materials and methods	S2
The synthetic procedures	S2
The comparison of ¹ H and ¹³ C NMR data of natural and synthetic ericifolione	S3
Reference	S4
¹ H NMR and ¹³ C NMR spectra data of compounds 1a-1f and 1h	S5
Copies of ¹ H NMR and ¹³ C NMR spectra	S8
NOESY spectrum (CDCl ₃) of ericifolione	S15

Abbreviations

TLC	thin-layer chromatography		
NMR	nuclear magnetic resonance		
HRMS	high resolution mass spectroscopy		
ESI	electron spray ionization		
THF	tetrahydrofuran		
EtOAc	ethyl acetate		
NaOAc	sodium acetate		
iPr	isopropyl		
DCM	dichloromethane		
TFA	trifluoroacetic acid		
PTSA	p-toluenesulfonic acid		
IEDDA	inverse electron demand diels-alder		
PPPs	polycyclic polymethylated phloroglucinols		

Materials and methods

All reactions were conducted in a nitrogen atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. Reagents were purchased at high commercial quality, and used without further purification. Thinlayer chromatography (TLC) was conducted with 0.25 mm Tsingdao silica gel plates (60F-254) and visualized by exposure to UV light (254 nm) or stained with potassium permanganate. Silica gel (ZCX-II, 200-300 mesh) used for flash column chromatography was purchased from Qing Dao Hai Yang Chemical Industry Co. of China. ¹H NMR and ¹³C NMR spectra were recorded on a Brüker Advance 500 (¹H: 500 MHz, ¹³C: 126 MHz). Chemical shifts reported in parts per million relative to CDCl₃ (¹H NMR: 7.26 ppm, ¹³C NMR: 77.16 ppm) or TMS (0.00 ppm). Mass spectrometric data were obtained using ABI-Q Star Elite high resolution mass spectrometer. The oil bath was used for the reactions that require heating. The ice bath was used for the reactions in 0 °C. Yields referred to chromatographically purified products unless otherwise stated. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad singlet.

The synthetic procedures

1. Preparation of syncarpic acid 9 or 9'

4-Acetyl-5-hydroxy-2,2,6,6-tetramethylcyclohex-4-ene-1,3-dione 12. Preparation of syncarpic acid **9** or **9**' is following a known procedure [1]. Sodium methoxide (7.18 g, 133 mmol) was slowly dissolved in anhydrous methanol (60 mL) at 0 °C. To this clear solution, acetylphloroglucinol **11** (2.77 g, 16.5 mmol) was added carefully and stirred for 10 min under nitrogen atmosphere. Then methyl iodide (32.1 g, 14.1 mL, 228 mmol) was slowly added. After finishing addition, the ice bath was removed and the mixture was stirred at room temperature for 24 h. The crude mixture was quenched with 2

N HCl (60 mL) and MeOH was removed under reduced pressure. The residue was extracted with CH_2Cl_2 (5 × 60 mL) and the combined organic layers were washed with brine, dried over Na_2SO_4 and concentrated *in vacuo*. The resultant crude ketone (3.40 g, 92%, yellow or brown solid) was used directly in the next step.

Syncarpic acid 9'. A 100 mL flask was charged with 6 N HCl (30 mL) and 12 (3.18 g, 14.2 mmol). The reaction mixture was stirred vigorously and refluxed for 24 h. The mixture was cooled to room temperature and extracted with EtOAc (5 × 50 mL). The combined organic layers were washed with brine (30 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The resultant crude product was purified by a short flash column chromatography (silica gel, hexane: EtOAc = 1: l) to afford 9 and 9' (2.07 g, 80% yield, yellow or brown solid).

2. Preparations of ericifolione and analogues

General procedure:

To a 25 mL round-bottom flask equipped with a stir bar was added syncarpic acid **9'** (55 mg, 0.3 mmol) and CH₂Cl₂ (3 mL). The flask was placed under nitrogen before aldehydes **10** (10 equiv.) and L-proline (4 mg, 0.1 equiv.) were added. The reaction mixture was stirred at $5\sim10$ °C for 30 minutes, then purified by a 3 cm long flash chromatography (silica gel, CH₂Cl₂) to afford the desired unsaturated triketone **7** as colorless oil. The unsaturated triketone was dissolved in THF (3 mL) immediately and stirred at $20\sim25$ °C for $3\sim12$ hours under argon atmosphere after addition of NaOAc (49 mg, 2 equiv. based on syncarpic acid **9'**). The solvent was removed in *vacuo* and resultant residue was purified by flash chromatography on silica gel (Hexanes/EtOAc = 50:1 to 20:1) to afford the desired product in 39-89% yields for 2 steps.

The Comparison of ¹H and ¹³C NMR Data of Natural and Synthetic ericifolione

ericifolione (1a)

¹ H chemical shift/δ ppm	¹ H Chemical shift /δ	$\Delta \delta/ppm^a$	¹³ C chemical shift/δ	¹³ C Chemical shift /δ	$\Delta \delta/ppm^a$
(Natural sample, 400	ppm (Synthetic		ppm (Natural sample,	ppm (Synthetic sample,	
MHz) ^a	sample, 500 MHz) ^b		100 MHz) ^a	126 MHz) ^b	
9.01 (1H, s, OH)	δ 9.00 (s, 1H)	-0.01	212.0 (s, C-3)	212.0	0.0
5.55 (1H, d, <i>J</i> = 2.5 Hz,	5.55 (d, <i>J</i> = 2.4 Hz,	0.00	211.4 (s, C-13)	211.4	0.0
H-9)	1H)				

2.81 (1H, dd, $J = 8.3$,	2.82 (dd, J = 10.2, 1.5	+0.01	197.8 (s, C-5)	197.8	0.0
1.4 Hz, H-7)	Hz, 1H)				
1.87 (2H, m, H-8, H-24)	1.95 – 1.80 (m, 2H)	+0.01	196.9 (s, C-11)	197.0	+0.1
1.74 (1H, m, H-21)	1.78-1.70 (m, 1H)	0.00	175.0 (s, C-15)	175.0	0.0
1.52 (6H, s, H-18, H-29)	1.51 (s, 6H)	-0.01	167.4 (s, C-1)	167.4	0.0
1.44 (3H, s, H-17)	1.44 (s, 3H)	0.00	116.7 (s, C-6)	116.8	+0.1
1.40 (3H, s, H-28)	1.39 (s, 3H)	-0.01	107.1 (s, C-10)	107.3	+0.2
1.39 (6H, s, H-19, H-30)	1.38 (s, 6H)	-0.01	79.4 (d, C-9)	79.5	+0.1
1.35-1.40 (2H, m, <i>J</i> =	1.37 – 1.40 (m, 1H)		56.2 (s, C-12)	56.3	+0.1
6.8 Hz, H-20)	1.27-1.30 (m, 1H)				
1.35 (3H, s, H-27)	1.35 (s, 3H)	0.00	55.2 (s, C-4)	55.3	+0.1
1.34 (3H, s, H-16)	1.34 (s, 3H)	_	48.6 (s, C-14)	48.7	+0.1
(not assigned)					
1.07 (3H, d, <i>J</i> = 6.4 Hz,	1.06 (d, J = 6.5 Hz,	-0.01	47.3 (s, C-2)	47.4	+0.1
H-23)	3H)				
0.99 (3H, d, <i>J</i> = 6.8 Hz,	0.99 (d, <i>J</i> = 6.6 Hz,	0.00	44.7 (t, C-20)	44.9	+0.2
H-22)	3H)				
0.95 (3H, d, <i>J</i> = 6.8 Hz,	0.94 (d, <i>J</i> = 6.8 Hz,	-0.01	41.4 (d, C-8)	41.6	+0.2
H-25)	3H)				
0.75 (3H, d, <i>J</i> = 6.8 Hz,	0.75 (d, $J = 6.8$ Hz,	0.00	27.2 (d, C-7)	27.4	+0.2
H-26)	3H)				
			26.7 (d, C-24)	26.7 (2C)	0.0
			26.7 (s, C-28)		0.0
			25.4 (s, C-17)	25.5	+0.1
			25.3 (d, C-21)	25.5	+0.2
			25.1 (s, C-29)	25.2	+0.1
			25.0 (d, C-18)	25.1	+0.1
			24.9 (s, C-27)	25.0	+0.1
			24.5 (s, C-19)	24.6	+0.1
			24.3 (s, C-22)	24.4	+0.1
			23.8 (s, C-25)	23.9	+0.1
			23.7 (s) (C-30 or C-	23.8	+0.1
			16)		
			21.3 (s) (C-30 or C-	21.5	+0.2
			16)		
			21.0 (s, C-23)	21.2	+0.2
			19.6 (s, C-26)	19.7	+0.1

 $^{a}\Delta\delta$ /ppm refers to the relative difference of each signal between the synthetic and natural samples.

Reference

[1] H.X. Liu, K. Chen, Y. Yuan, et al., Org. Biomol. Chem. 14 (2016) 7354-7360.

¹H NMR and ¹³C NMR spectra data of compounds 1a-1f

ericifolione (1a): 72% yield for 2 steps, 54 mg, yellowish oil. ¹H NMR (500 MHz, CDCl₃) δ 9.00 (s, 1H), 5.55 (d, J = 2.4 Hz, 1H), 2.82 (dd, J = 10.2, 1.5 Hz, 1H), 1.95 – 1.80 (m, 2H), 1.78-1.70 (m, 1H), 1.51 (s, 6H), 1.44 (s, 3H), 1.39 (s, 3H), 1.38 (s, 6H), 1.37 – 1.40 (m, 1H), 1.35 (s, 3H), 1.34 (s, 3H), 1.27-1.30 (m, 1H), 1.06 (d, J = 6.5 Hz, 3H), 0.99 (d, J = 6.6 Hz, 3H), 0.94 (d, J = 6.8 Hz, 3H), 0.75 (d, J = 6.8 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 212.0, 211.4, 197.8, 197.0, 175.0, 167.4, 116.8, 107.3, 79.5, 56.3, 55.3, 48.7, 47.4, 44.9, 41.6, 27.4, 26.7 (2C), 25.5, 25.5, 25.2, 25.1, 25.0, 24.6, 24.4, 23.9, 23.8, 21.5, 21.2, 19.7. HRMS calculated for C₃₀H₄₅O₆ (M + H⁺): 501.3216, found: 501.3232.

4-ethyl-2-(2-hydroxy-3,3,5,5-tetramethyl-4,6-dioxocyclohex-1-en-1-yl)-3,6,6,8,8-pentamethyl-2,3,4,8-tetrahydro-5H-chromene-5,7(6H)-dione (1b): 39% yield for 3 steps, 26 mg, pale solid. ¹H NMR (500 MHz, CDCl₃) δ 8.85 (s, 1H), 5.45 (d, J = 1.7 Hz, 1H), 2.47 (dd, J = 9.8, 3.1 Hz, 1H), 2.21 (q, J = 7.1 Hz, 1H), 1.75 – 1.64 (m, 1H), 1.50 (s, 3H), 1.49 (s, 3H), 1.47 (s, 3H), 1.44 (s, 3H), 1.42 (dd, J = 7.0, 2.9 Hz, 1H), 1.38 (s, 6H), 1.35 (s, 3H), 1.34 (s, 3H), 1.05 (t, J = 7.4 Hz, 3H), 0.84 (d, J = 7.2 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 212.0, 211.3, 198.6, 197.4, 175.3, 167.2, 114.2, 107.2, 78.5, 56.4, 55.3, 48.7, 47.5, 38.4, 31.3, 27.8, 27.4, 25.6, 25.4, 25.1, 24.9, 24.6, 21.2, 13.0, 12.2. HRMS calculated for C₂₆H₃₇O₆ (M +H⁺): 445.2590, found: 445.2588.

3-ethyl-2-(2-hydroxy-3,3,5,5-tetramethyl-4,6-dioxocyclohex-1-en-1-yl)-6,6,8,8-tetramethyl-4-propyl-2,3,4,8-tetrahydro-5*H***-chromene-5,7(6***H***)-dione (1c):** 58% yield for 2 steps, 41 mg, yellowish oil. ¹**H NMR** (500 MHz, CDCl₃) δ 8.87 (s, 1H), 5.48 (d, J = 1.4 Hz, 1H), 2.78 (d, J = 7.6 Hz, 1H), 1.83 (d, J = 9.3 Hz, 1H), 1.61-1.54 (m, 2H), 1.49 (s, 3H), 1.49 (s, 3H), 1.45 (s, 3H), 1.40 (s, 3H), 1.38 (s, 3H), 1.37 (s, 3H), 1.34 (s, 3H), 1.33 (s, 3H), 1.32-1.42 (m, 3H), 0.98 (t, J = 6.5 Hz, 3H), 0.86-0.94 (m, 4H). ¹³**C NMR** (125 MHz, CDCl₃) δ 212.0, 211.3, 198.5, 197.3, 175.2, 167.5, 114.4, 107.2, 78.9, 56.4, 55.4, 48.7, 47.5, 39.2, 36.8, 32.2, 27.5, 25.4, 25.2, 25.1, 24.8, 24.1, 21.0, 20.6, 19.0, 14.1, 12.5. **HRMS** calculated for C₂₈H₄₁O₆ (M + H⁺): 473.2903, found: 473.2902.

4-butyl-2-(2-hydroxy-3,3,5,5-tetramethyl-4,6-dioxocyclohex-1-en-1-yl)-6,6,8,8-tetramethyl-3-propyl-2,3,4,8-tetrahydro-5*H***-chromene-5,7(6***H***)-dione (1d):** 84% yield for 2 steps, 63 mg, yellowish oil. ¹**H** NMR (500 MHz, CDCl₃) δ 8.91 (s, 1H), 5.48 (d, J = 1.9 Hz, 1H), 2.70 (dd, J = 7.0, 2.5 Hz, 1H), 1.95 (d, J = 10.7 Hz, 1H), 1.50 (s, 3H), 1.50 (s, 3H), 1.45 (s, 3H), 1.42 (s, 3H), 1.38 (s, 3H), 1.35 (s, 3H), 1.34 (s, 3H), 1.30 – 1.50 (m, 7H), 1.24 – 1.14 (m, 2H), 0.94 0.92-1.00 (m, 1H), (t, J = 7.0 Hz, 3H), 0.82 (t, J = 7.2 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 212.1, 211.3, 198.5, 197.2, 175.2, 167.6, 114.5, 107.3, 79.1, 56.5, 55.4, 48.8, 47.5, 36.8, 34.4, 33.3, 29.7, 28.3, 27.5, 25.6, 25.4, 25.2, 25.0 (2C), 24.1, 22.7, 21.0, 20.7, 14.2 (2C). HRMS calculated for C₃₀H₄₅O₆ (M + H⁺): 501.3216, found: 501.3226.

3-butyl-2-(2-hydroxy-3,3,5,5-tetramethyl-4,6-dioxocyclohex-1-en-1-yl)-6,6,8,8-tetramethyl-4-pentyl-2,3,4,8tetrahydro-5*H***-chromene-5,7(6***H***)-dione (1e): 51% yield for 2 steps, 41 mg, yellowish oil. ¹H NMR (500 MHz, CDCl₃) δ 8.89 (s, 1H), 5.47 (d,** *J* **= 1.6 Hz, 1H), 2.78 – 2.66 (dd,** *J* **= 7.8, 2.5 Hz, 1H), 1.92 (d,** *J* **= 10.9 Hz, 1H), 1.61 – 1.51 (m, 2H), 1.49 (s, 3H), 1.49 (s, 3H), 1.45 (s, 3H), 1.41 (s, 3H), 1.38 (s, 3H), 1.37 (s, 3H), 1.34 (s, 3H), 1.43 (s, 3H), 1.43-1.31 (m, 6H), 1.31 – 1.08 (m, 5H), 0.96-0.87 (m, 4H), 0.82 (t,** *J* **= 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 212.1, 211.3, 198.5, 197.2, 175.2, 167.5, 114.5, 107.2, 79.0, 56.5, 55.3, 48.7, 47.5, 37.1, 34.6, 33.2, 31.8, 29.7, 27.5, 27.1, 25.6, 25.5, 25.4, 25.2, 24.9, 24.8, 24.2, 22.7, 22.7, 21.0, 14.2, 13.9. HRMS calculated for C₃₂H₄₉O₆ (M +H⁺): 529.3529, found: 529.3538.**

3-benzyl-2-(2-hydroxy-3,3,5,5-tetramethyl-4,6-dioxocyclohex-1-en-1-yl)-6,6,8,8-tetramethyl-4-phenethyl-2,3,4,8-tetrahydro-5H-chromene-5,7(6H)-dione (1f): 89% yield for 2 steps, 79 mg, yellowish oil. ¹**H NMR** (500 MHz, CDCl₃) δ 9.00 (s, 1H), 7.32 – 7.15 (m, 5H), 7.14 – 7.07 (m, 3H), 6.93 (d, *J* = 6.9 Hz, 2H), 5.67 (d, *J* = 1.7 Hz, 1H), 2.76 – 2.71

(m, 2H), 2.71 - 2.62 (m, 1H), 2.47 (d, J = 11.1 Hz, 1H), 2.37 - 2.30 (m, 1H), 2.14 (dd, J = 13.4, 11.2 Hz, 1H), 1.93 - 1.84 (m, 1H), 1.73 - 1.62 (m, 1H), 1.53 (s, 3H), 1.51 (s, 3H), 1.49 (s, 6H), 1.43 (s, 3H), 1.41 (s, 3H), 1.38 (s, 3H), 1.37 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 212.0, 211.1, 198.0, 197.2, 175.3, 167.7, 141.7, 138.8, 128.9, 128.9, 128.7, 128.4, 126.7, 125.8, 114.0, 107.0, 78.8, 56.5, 55.4, 48.8, 47.6, 38.9, 36.5, 33.4, 32.9, 32.5, 27.1, 25.5, 25.5, 25.5, 25.3, 25.3, 23.8, 21.4. HRMS calculated for C₃₈H₄₅O₆ (M + H⁺): 597.3216, found: 597.3224.

Methyl 3-((2R,3S,4S)-2-(2-hydroxy-3,3,5,5-tetramethyl-4,6-dioxocyclohex-1-en-1-yl)-3-(2-methoxy-2-oxoethyl)-6,6,8 ,8-tetramethyl-5,7-dioxo-3,4,5,6,7,8-hexahydro-2H-chromen-4-yl)propanoate (1h): 63% yield for 2 steps, 53 mg, yellowish oil. ¹H NMR (500 MHz, CDCl₃) δ 8.90 (s, 1H), 5.51 (d, J = 1.9 Hz, 1H), 3.70 (s, 3H), 3.64 (s, 3 H), 2.69 (ddd, J = 16.0, 8.2, 3.9 Hz, 2H), 2.58 (d, J = 9.9 Hz, 1H), 2.48 (ddd, J = 16.1, 9.9, 6.1 Hz, 1H), 2.2 9 (dd, J = 15.9, 3.4 Hz, 1H), 2.07 – 1.97 (m, 2H), 1.81 – 1.71 (m, 1H), 1.51 (s, 3H), 1.48 (s, 3H), 1.47 (s, 3H), 1.44 (s, 3H), 1.39 (s, 3H), 1.38 (s, 3H), 1.35 (s, 3H), 1.34 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 211. 57, 210.78, 197.83, 197.09, 175.30, 173.48, 171.95, 167.94, 112.97, 106.24, 77.54, 56.32, 55.23, 52.14, 51.66, 48.69, 47.41, 33.94, 33.76, 32.06, 31.74, 29.61, 27.22, 25.52, 25.22, 24.97, 24.79, 24.43, 24.33, 21.04. HRMS calculated for C₃₀H₄₁O₁₀ (M + H⁺): 561.2700, found: 561.2712.

Copies of ¹H NMR and ¹³C NMR spectra

. 9

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 f2 (ppm)