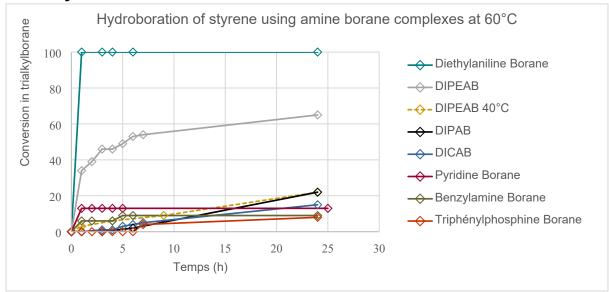
Supplementary information


In situ generation of radical initiators: Air stable Amine-borane complexes promote Atom Transfer Radical Additions of alkyl halides to alkenes

Virginie Liautard, Marine Delgado, Boris Colin, Laurent Chabaud, Guillaume Michaud, Mathieu Pucheault

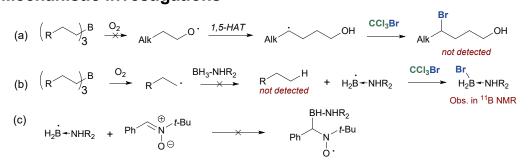
1. Generalities

All reactions were carried out in oven dried reaction vessels. NMR spectra were recorded on Bruker Avance 300 FT and Avance 400 FT spectrometers using CDCl₃ as internal reference. The chemical shifts (δ) are reported in ppm relative to residual chloroform (¹H = 7.26 or ¹³C = 77.2). Coupling constants (J) are reported in Hertz (Hz). Reaction solvents were dried using distillation over an appropriate drying agent: MTBE (Na), Hexane (CaH₂), d₆-Benzene (CaH₂). Column chromatography was carried out using 230-400 mesh silica gel. Routine TLC analysis was carried out on aluminum sheets coated with silica gel 60 F254, 0.2 mm thickness. Plates were observed using a 254 mm ultraviolet lamp or stained using a KMnO₄ solution. All other chemicals were used as purchased. NMR spectra were recorded on Bruker Avance 300 FT and Avance 400 FT spectrometers using CDCl₃ as internal reference. The chemical shifts (δ) are reported in ppm relative to residual chloroform ($^{1}H = 7.26$ or $^{13}C = 77.2$). Coupling constants (J) are reported in Hertz (Hz).¹¹B NMR spectra were recorded at 25°C and chemical shifts (δ) are given in ppm relative to BF₃.OEt₂ (internal standard). GC-MS analyses were performed on HP 6890 series GC-system equipped with a J&W Scientific DB-1701 capillary column, a HP 5973 mass selective detector (EI) using the following method: 70°C for 1 min then 20°C/min until 230°C then 6 min at 230°C. Infrared spectra (IR) were recorded on a Perkin-Elmer Paragon 1000 PC FT-IR spectrometer as neat films on NaCl windows or as solids with KBr pellets. The melting points (Mp) were recorded on a Mettler Toledo DSC1-star system using the following method: 30°C to 300°C at 10°C/min. HRMS were recorded on a Qstar ABSciex spectrometer in the electrospray ionization (ESI) mode at the CESAMO (Université de Bordeaux) or a Waters Q-TOF 2 spectrometer in the electrospray ionization (ESI) mode at the CRMPO (Université de Rennes 1).

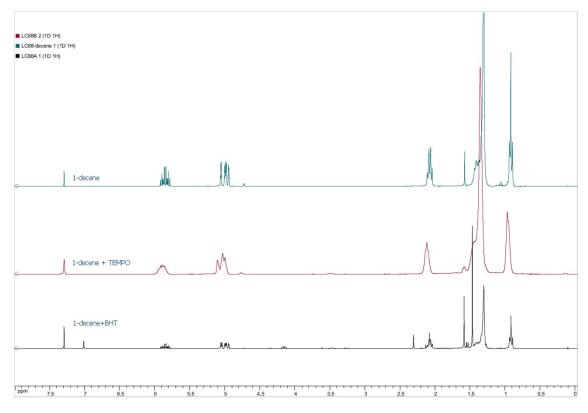
2. hydroboration kinetics

3. Reaction condition Optimization

Table 1 : Optimization of amine borane structure for ATRA reaction

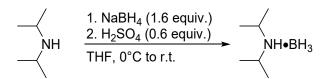

		+ X ₃ C-B		source (n mo	\rightarrow x ₃ c	n-C ₈ H ₁₇		
	<i>∽_n-</i> C ₈ H ₁₇		Solvent, T°C					
	1a)	3aa or 3ab					
Entry	Borane	R-X	Loading	Solvent	Temperature	Time	Conv ^a	
1	BEt ₃ 1M in hex	CCl₃Br	10%	C ₆ D ₆	60°C	1h	26-71%	
2	neat BEt ₃	CCl₃Br	3.3%	C_6D_6	60°C	1h	60%	
3	DIPAB	CCl ₃ Br	3.3%	C_6D_6	60°C	1h	51%	
4	DIPAB	CCl₃Br	3.3%	C_6D_6	60°C	3h	90%	
5	DICAB	CCl ₃ Br	3.3%	C_6D_6	60°C	3h	0%	
6	DICAB	CCl ₃ Br	3.3%	C_6D_6	90°C	16h	100%	
7	DICAB	CCl ₃ Br	3.3%	MTBE	90°C	3h	100%	
8	DICAB	CCl ₃ Br	3.3%	MTBE	60°C	3h	88%	
9	DIPAB	CCl ₃ Br	3.3%	MTBE	60°C	3h	100%	
10	TMP-BH ₃	CCl ₃ Br	3.3%	MTBE	60°C	3h	98%	
11	piperidine-BH ₃	CCl ₃ Br	3.3%	MTBE	60°C	3h	94%	
12	morpholine-BH ₃	CCl ₃ Br	3.3%	MTBE	60°C	3h	87%	
13	Bn ₂ NH-BH ₃	CCl ₃ Br	3.3%	MTBE	60°C	3h	57%	
14	Et ₃ N-BH ₃	CCl ₃ Br	3.3%	MTBE	60°C	3h	87%	
15	DICAB	CBr₄	1.1%	MTBE	60°C	3h	41%	
16	DIPAB	CBr ₄	1.1%	MTBE	60°C	3h	41%	
17	TMP-BH ₃	CBr ₄	1.1%	MTBE	60°C	3h	12%	
18	piperidine-BH ₃	CBr ₄	1.1%	MTBE	60°C	3h	45%	
19	morpholine-BH ₃	CBr ₄	1.1%	MTBE	60°C	3h	34%	
20	Ét ₃ N-BH ₃	CBr ₄	1.1%	MTBE	60°C	3h	0%	
^a Measured by ¹ H NMR								

^a Measured by ¹H NMR


<i>n</i> -C ₈ H ₁₇ + Cl ₃ C−Br		<i>i-</i> Pr ₂ NH-BH	3 n mol%	Cl ₃ C		
		Solvent		Br		
	1a 2a			3aa or 3al	o	
Entry	Solvent	Loading	Temperature	Time	Conv ^a	
1	C ₆ D ₆	3.3%	60°C	1h	51%	
2	C_6D_6	3.3%	60°C	3h	90%	
2 3	C_6D_6	3.3%	90°C	1h	72%	
4	C_6D_6	3.3%	90°C	3h	96%	
5	C ₆ H ₆	3.3%	60°C	1h	66%	
6	C ₆ H ₆	3.3%	60°C	3h	88%	
7	CH ₃ CN	3.3%	60°C	1h	67%	
8	CH ₃ CN	3.3%	60°C	3h	80%	
9	1,2-dichloroethane	3.3%	60°C	1h	76%	
10	1,2-dichloroethane	3.3%	60°C	3h	91%	
11	Cyclohexane	3.3%	60°C	1h	55%	
12	Cyclohexane	3.3%	60°C	3h	88%	
13	dioxane	3.3%	60°C	1h	84%	
14	dioxane	3.3%	60°C	3h	96%	
15	MTBE	3.3%	60°C	1h	80%	
16	МТВЕ	3.3%	60°C	3h	93%	
17	MTBE (0.3M)	3.3%	60°C	3h	87%	
18	MTBE	1.1%	60°C	3h	75%	
19	MTBE	1.1%	90°C	6h	100%	
20	tBuOH	1.1%	60°C	3h	62%	
21	H ₂ O	1.1%	60°C	3h	57%	

^a Measured by ¹H NMR

4. Mechanistic investigations



5. Product analysis

N,N-diisopropylamine-borane complex [105416-38-4]

To a stirred solution of diisopropylamine (70.6 mL, 0.5 mol) and NaBH₄ (30 g, 0.79 mol) in THF (500 mL) was added at 0°C over a period of 45 minutes sulfuric acid (16 mL, 0.3 mol). The mixture was allowed to warm to room temperature and stirred for 3 hours. The crude product was concentrated under vacuum and the residue was taken with CH_2CI_2 , and then filtrated to eliminate all solid residues. The filtrate was washed with water (4x100 mL). The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure to give the product obtained as a colorless oil which solidified upon cooling (50.8 g, 90%).

¹H NMR (400 MHz, CDCl₃) δ (ppm) 2.72 – 2.90 (m, 2H), 1.91 (q, *J* = 91Hz, 3H), 1.05 (d, *J* = 6.6Hz, 6H), 0.96 (d, *J* = 6.6Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 52.1, 21.1, 19.0. ¹¹B NMR (128 MHz, CDCl₃) δ (ppm) -21.3 (q, *J*_{H-B} = 91,4 Hz). m.p. 20-25 °C.

3-bromo-1,1,1-trichloroundecane (3aa). [95382-86-8] 1

Chemical Formula: C₁₁H₂₀BrCl₃ Molecular Weight: 338,54

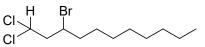
To a solution of trichlorobromomethane (3.3 mmol, 1.1 equiv., 325 μ L) in MTBE (300 μ L) was added 11 μ g of DIPAB (0.1 mmol, 3.3 mol%), followed by 1-decene (3 mmol, 1 equiv., 568 μ L). After 6h at 60°C, reaction mixture was concentrated under reduced pressure. Crude mixture was purified by chromatography on silica gel, eluting with 100% cyclohexane to give 3-bromo-1,1,1-trichloroundecane **3aa** (909 mg, 89%) as a colorless oil.

¹H NMR (300 MHz, CDCl₃) δ 4.32 (dq, *J* = 9.8, 5.1 Hz, 1H), 3.45 (dd, *J* = 15.9, 5.1 Hz, 1H), 3.22 (dd, *J* = 15.8, 5.2 Hz, 1H), 2.14-1.82 (m, 2H), 1.661.43 (m, 3H), 1.41 - 1.10 (m, 11H), 0.88 (t, *J* = 6.7 Hz, 11H).

 ^{13}C NMR (76 MHz, CDCl_3) δ 97.4, 62.8, 49.4, 47.9, 39.7, 32.0, 29.5, 29.3, 28.9, 27.4, 22.8, 19.5, 14.2.

GC: rt = 9.4 min.

1,1,1,3-tetrabromoundecane **3ab** [1123200-04-3]²


Chemical Formula: C₁₁H₂₀Br₄ Molecular Weight: 471,90

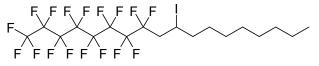
To a solution of Br₄C (3.3 mmol, 1.1 equiv., 1.09g) in MTBE (300 μ L) was added 35 μ g of DIPAB (0.3 mmol, 10 mol%), followed by 1-decene (3 mmol, 1 equiv., 568 μ L). After 3h at 90°C, reaction mixture was concentrated under reduced pressure. Crude mixture was purified by chromatography on silica gel, eluting with 100% cyclohexane to give 1,1,1,3-tetrabromoundecane **3ab** (1.45g, 93%) as a colorless oil

¹H NMR (300 MHz, CDCl₃) δ 4.23 (dq, *J* = 9.0, 4.6 Hz, 1H), 3.86 (dd, *J* = 16.2, 4.5 Hz, 1H), 3.57 (dd, *J* = 16.2, 4.9 Hz, 1H), 2.19-1.90 (m, 2H), 1.71-1.48 (m, 2H), 1.46-1.22 (m, 12H), 0.91 (t, *J* = 6.7 Hz, 3H).

 ^{13}C NMR (76 MHz, CDCl_3) δ 67.0, 52.2, 39.9, 36.5, 32.0, 29.5, 29.4, 28.9, 27.5, 22.8, 14.3. GC : rt = 9.0 min.

3-bromo-1,1-dichloroundecane 3ad

Chemical Formula: C₁₁H₂₁BrCl₂ Molecular Weight: 304,09


To a solution of dichlorobromomethane (3.3 mmol, 1.1 equiv., 273 μ L) in MTBE (300 μ L) was added 35 μ g of DIPAB (0.3 mmol, 10 mol%), followed by 1-decene (3 mmol, 1 equiv., 568 μ L). After 6h at 90°C, reaction mixture was concentrated under reduced pressure. Crude mixture was purified by chromatography on silica gel, eluting with 100% cyclohexane to give 3-bromo-1,1-dichloroundecane **3ad** (652 mg, 71%) as a colorless oil.

¹H NMR (300 MHz, CDCl₃): δ 6.02-5.97 (m, 1H), 4.17-4.08 (m, 2H), 2.62 (dd, *J* = 3.7, 4.7 Hz, 1H), 2.59 (dd, *J* = 3.2, 4.7 Hz, 1H), 2.01-1.70 (m, 2H), 1.64-1.13 (m, 14H), 0.89 (t, *J* = 6.7 Hz, 3H).

¹³C NMR (76 MHz, CDCl₃) δ 72.0, 52.6, 52.2, 38.9, 32.0, 29.5, 29.3, 29.0, 27.3, 22.8, 14.3. GC: rt = 9.0 min;

HRMS Found: [M-H] 301.0119. $C_{11}H_{20}BrCl_3$ Theo. M = 301.0125.

9-iodo-11,11,12,12,13,13,14,15,15,15,16,16,17,17,18,18,18-heptadecafluorooctadecane **3ae** [176979-17-2] ³⁻⁴

Chemical Formula: C₁₈H₂₀F₁₇I Molecular Weight: 686,24

To a solution of 1-iodoperfluorooctane (3.3 mmol, 1.1 equiv., 1.8 g) in MTBE (300 μ L) was added 11 μ g of DIPAB (0.1 mmol, 3.3 mol%), followed by 1-decene (3 mmol, 1 equiv., 568 μ L). After 6h at 60°C, reaction mixture was concentrated under reduced pressure. Crude mixture was purified by chromatography on silica gel, eluting with 98/2 cyclohexane/ethylacetate to give 9-iodo-11,11,12,12,13,13,14,15,15,16,16,17,17,18,18,18-heptadecafluoro-octadecane **3ae** (1.89 g, 92%) as a colorless oil.

¹H NMR (300 MHz, CDCl₃) δ 4.36 (tt, *J* = 8.2, 5.4 Hz, 1H), 2.65 (s, 2H), 1.98-1.70 (m, 2H), 1.66-1.17 (m, 14H), 0.91 (t, *J* = 6.7 Hz, 3H).

¹⁹F NMR (282 MHz, CDCl₃) δ -80.74 (t, *J* = 9.9 Hz), -113.15 (dd, *J* = 804.6, 260.3 Hz), -121.57 (s), -121.88 (s), -122.69 (s), -123.58 (s), -126.07 (s).

¹³C NMR (151 MHz, CDCl₃) δ 121.47 – 115.95 (m), 115.0 – 105.4 (m), 42.0 (t, *J* = 20.8 Hz), 40.6, 32.0, 29.8, 29.6, 29.4, 28.7, 22.9, 20.9, 14.1.

GC: rt = 8.1 min.

8-iodo-1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluoro-hexadecane 3ag [207122-00-7] 4-6

Chemical Formula: C₁₆H₂₀F₁₃I Molecular Weight: 586,22

To a solution of 1-iodoperfluorohexane (3.3 mmol, 1.1 equiv., 713 μ L) in MTBE (300 μ L) was added 11 μ g of DIPAB (0.1 mmol, 3.3 mol%), followed by 1-decene (3 mmol, 1 equiv., 568 μ L). After 6h at 60°C, reaction mixture was concentrated under reduced pressure. Crude mixture was purified by chromatography on silica gel, eluting with 98/2 cyclohexane/ethylacetate to give 8-iodo-1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluoro-hexadecane **3ag** (1.80 g, 89%) as a colorless oil.

¹H NMR (300 MHz, CDCl₃) δ 4.41 – 4.24 (m, 1H), 3.07 – 2.62 (m, 2H), 1.93 – 1.67 (m, 2H), 1.63 – 1.16 (m, 14H), 0.89 (t, *J* = 6.7 Hz, 3H).

¹⁹F NMR (282 MHz, CDCl₃) δ -80.78 (t, *J* = 9.9 Hz), -113.19 (ddd, *J* = 282.4, 270.2, 14.1 Hz), - 121.77 (m), -122.85 (brs), -123.61 (d, *J* = 12.5 Hz), -125.67 - -126.70 (m).

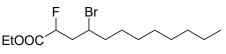
¹³C NMR (76 MHz, CDCl₃) δ 123.9 – 103.6 (m), 42.0 (t, J = 20.9 Hz), 40.6 (d, J = 1.9 Hz), 32.0, 29.8, 29.6, 29.5, 28.8, 22.9, 20.9, 14.1.

GC: rt = 7.6 min.

Ethyl 4-iodo-2,2-difluorododecanoate **3ah** [2088203-14-7]⁷

EtOO

Chemical Formula: C₁₄H₂₅F₂IO₂ Molecular Weight: 390,25


To a solution of ethyl-2-difluoro-2-iodoactetate (3.3 mmol, 1.1 equiv., 485 μ L) in MTBE (300 μ L) was added 35 μ g of DIPAB (0.3 mmol, 10 mol%), followed by 1-decene (3 mmol, 1 equiv., 568 μ L). After 6h at 90°C, reaction mixture was concentrated under reduced pressure. Crude mixture was purified by chromatography on silica gel, eluting with 98/2 cyclohexane/ethylacetate to give ethyl 4-iodo-2,2-difluorododecanoate **3ah** (1.09 g, 91%) as a colorless oil.

¹H NMR (300 MHz, CDCl₃) δ 4.37 (q, *J* = 7.2 Hz, 2H), 4.32 – 4.17 (m, 1H), 3.01 – 2.65 (m, 2H), 1.91 – 1.63 (m, 2H), 1.63 (m, 17H), 0.91 (t, *J* = 6.7 Hz, 3H).

¹⁹F NMR (282 MHz, CDCl₃) δ -102.12 (ddd, J = 262, 18.0, 12.8 Hz), -106.80 (dt, J =262, 17.0 Hz).

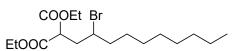
¹³C NMR (76 MHz, CDCl₃) δ 163.6 (t, *J* = 32.3 Hz), 115.3 (dd, *J* = 254.6, 253.8 Hz), 63.3, 45.5 (t, *J* = 23.2 Hz), 40.6, 31.9, 29.6, 29.4, 29.3, 28.6, 23.45 (t, *J* = 4.0 Hz), 22.8, 14.2, 14.1. GC: rt = 10.0 min.

Ethyl 4-bromo-1-fluorododecanoate 3ai

Chemical Formula: C₁₄H₂₆BrFO₂ Molecular Weight: 325,26

To a solution of ethyl-2-fluoro-2-bromoactetate (3.3 mmol, 1.1 equiv., 390 μ L) in MTBE (300 μ L) was added 35 μ g of DIPAB (0.3 mmol, 10 mol%), followed by 1-decene (3 mmol, 1 equiv., 568 μ L). After 6h at 90°C, reaction mixture was concentrated under reduced pressure. Crude mixture was purified by chromatography on silica gel, eluting with 98/2 cyclohexane/ethylacetate to give ethyl 4-bromo-1-fluorododecanoate **3ai** as mixture of diastereoisomers (667 mg, 68%) as a colorless oil.

¹H NMR (300 MHz, CDCl₃) δ 5.36 – 5.00 (m, 1H), 4.27 (q, *J* = 7.1Hz, 1H d1), 4.26 (q, *J* = 7.1Hz, 1H d2), 4.21-4.12 (m, 1H), 2.56 – 2.15 (m, 2H), 1.98 – 1.72 (m, 2H), 1.58 – 1.14 (m, 18H), 0.87 (t, *J* = 6.7 Hz, 3H).


¹⁹F NMR (282 MHz, CDCl₃) δ -190.64 (dt, *J* = 48.3, 21.6 Hz), -194.57 – -195.17 (m).

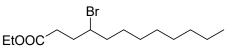
¹³C NMR (76 MHz, CDCl₃) δ 169.6 (d, *J* = 22.3 Hz), 169.3 (d, *J* = 22.3 Hz), 87.5 (d, *J* = 186.2 Hz), 87.2 (d, *J* = 186.9 Hz), 52.16, 52.13, 51.11, 51.06, 61.92, 61.88, 52.2 (d, *J* = 1.9 Hz), 51.1 (d, *J* = 4.1 Hz), 41.9 (d, *J* = 20.5 Hz), 41.5 (d, *J* = 21.3 Hz), 39.5, 38.5, 31.9, 29.5, 29.3, 29.03, 28.99, 27.6, 27.5, 22.8, 14.3, 14.2.

GC: rt = 10.0, 10.2 min

HRMS; m/z (CI+) Found: [M]⁺ 325.1179. C₁₄H₂₇BrFO₂ Theo. M = 325.1178.

Diethyl (2-bromodecyl)propandioate 3aj [156001-85-3] 8-9

Chemical Formula: C₁₇H₃₁BrO₄ Molecular Weight: 379,34


To a solution of ethyl-bromomalonate (3.3 mmol, 1.1 equiv., 563 μ L) in MTBE (300 μ L) was added 11 μ g of DIPAB (0.1 mmol, 3.3 mol%), followed by 1-decene (3 mmol, 1 equiv., 568 μ L). After 3h at 60°C, reaction mixture was concentrated under reduced pressure. Crude mixture was purified by chromatography on silica gel, eluting with 98/2 cyclohexane/ethylacetate to give 4-bromo-diethyldodecandioate **3aj** (1.035 g, 91%) as a colorless oil.

¹H NMR (300 MHz, CDCl₃) δ 4.30-4.13 (m, 4H), 4.06-3.91 (m, 1H), 3.78 (dd, *J* = 10.2, 4.3 Hz, 1H), 2.46 (ddd, *J* = 14.8, 10.2, 3.1 Hz, 1H), 2.24 (ddd, *J* = 14.9, 10.6, 4.3 Hz, 1H), 1.90-1.78 (m, 2H), 1.35-1.17 (m, 16H), 0.87 (t, *J* = 6.7 Hz, 3H).

 ^{13}C NMR (76 MHz, CDCl_3) δ 169.2, 169.0, 61.8, 61.7, 55.2, 50.8, 39.60, 38.0, 32.0, 29.5, 29.3, 29.1, 27.6, 22.8, 14.2, 14.2, 14.2.

GC: rt = 12.8 min.

Ethyl 4-bromododecanoate 3ak [156001-82-0]8

Chemical Formula: C₁₄H₂₇BrO₂ Molecular Weight: 307,27

To a solution of ethylbromoacetate (3.3 mmol, 1.1 equiv., 391 μ L) in MTBE (300 μ L) was added 35 μ g of DIPAB (0.3 mmol, 10 mol%), followed by 1-decene (3 mmol, 1 equiv., 568 μ L). After 6h at 90°C, reaction mixture was concentrated under reduced pressure. Crude mixture was purified by chromatography on silica gel, eluting with 97/3 cyclohexane/ethylacetate to give Ethyl 4-bromododecanoate **3ak** (467 mg, 51%) as a colorless oil.

¹H NMR (300 MHz, CDCl₃) δ 4.14 (q, *J* = 7.1 Hz, 2H), 4;12-3.98 (m, 1H), 2.66-2.43 (m, 2H), 2.19 (dddd, *J* = 15.4, 8.5, 6.9, 3.6 Hz, 1H), 2.31 – 2.11 (m, 1H), 2.10-1.73 (m, 2H), 1.71-1.37 (m, 2H), 1.29-1.24 (m, 15H), 0.88 (t, *J* = 6.7 Hz, 3H).

 ^{13}C NMR (76 MHz, CDCl_3) δ 173.05, 60.67, 57.48, 39.42, 34.14, 32.56, 31.99, 29.56, 29.36, 29.15, 27.68, 22.80, 14.37, 14.26.

GC: rt = 9.9 min.

1-bromo-1-(2,2,2-trichloroethyl)cyclopentane 3ba

 Cl_3 Br

Chemical Formula: C₇H₁₀BrCl₃ Molecular Weight: 280,4110

To a solution of bromotrichloromethane (3.3 mmol, 1.1 equiv., 325 μ L) in MTBE (300 μ L) was added 11 μ g of DIPAB (0.3 mmol, 3.3 mol%), followed by methylene cyclopentane (3 mmol, 1 equiv., 82 μ g). After 6h at 60°C, reaction mixture was concentrated under reduced pressure. Crude mixture was purified by chromatography on silica gel, eluting with 100% cyclohexane to give 1-bromo-1-(2,2,2-trichloroethyl)cyclopentane **3ba** (703 mg, 87%) as pale yellow solid.

 ^1H NMR (300 MHz, CDCl_3) δ 3.61 (s, 2H), 2.46-2.30 (M, 2H), 2.20-1.93 (m, 3H), 1.71 (s, 2H). ^{13}C NMR (76 MHz, CDCl_3) δ 96.6, 73.5, 64.7, 43.7, 22.6.

GC: rt = 7.8 min (2,2,2-trichloroethyl)cyclopentene observed in GC (<math>rt = 5.7min) formed upon heating in the GC oven).

1-bromo-1-(2,2,2-trichloroethyl)cyclohexane 3ca [2412926-56-6] ¹⁰

Chemical Formula: C₈H₁₂BrCl₃ Molecular Weight: 294,44

To a solution of bromotrichloromethane (3.3 mmol, 1.1 equiv., 325 μ L) in MTBE (300 μ L) was added 11 μ g of DIPAB (0.3 mmol, 3.3 mol%), followed by methylene cyclohexane (3 mmol, 1 equiv., 360 μ L). After 6h at 60°C, reaction mixture was concentrated under reduced pressure. Crude mixture was purified by chromatography on silica gel, eluting with 100% cyclohexane to give 1-bromo-1-(2,2,2-trichloroethyl)cyclohexane **3ca** (967 mg, 79%) as a colorless oil.

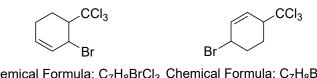
 ^1H NMR (300 MHz, CDCl_3) δ 3.61 (s, 2H), 2.30-2.14 (s, 2H), 2.06-1.62 (s, 7H), 1.33 – 1.12 (m, 1H).

¹³C NMR (76 MHz, CDCl₃) δ 96.1, 72.5, 68.0, 40.5, 25.0, 23.2.

GC: rt = 8.6 min.

HRMS m/z (CI+) Found: (M + H)⁺ 292.9266. C₈H₁₃BrCl₃ requires M, 292.9266.

trans-1-bromo-2-trichloromethylcyclohexane **3da** [17831-06-0]¹¹⁻¹³ *cis*-1-bromo-1-trichloromethylcyclohexane **3da'** [17831-07-1]^{11, 13}



Chemical Formula: C₇H₁₀BrCl₃ Chemical Formula: C₇H₁₀BrCl₃ Molecular Weight: 280,41 Molecular Weight: 280,41

To a solution of bromotrichloromethane (3.3 mmol, 1.1 equiv., 325 μ L) in MTBE (300 μ L) was added 35 μ g of DIPAB (0.3 mmol, 10 mol%), followed by cyclohexene (3 mmol, 1 equiv., 304 μ L). After 6h at 60°C, reaction mixture was concentrated under reduced pressure. Crude mixture was purified by chromatography on silica gel, eluting with 100% cyclohexane to give 2-bromo-1-trichloromethylcyclohexane **3da** (121 mg, 14%) as a colorless oil and **3da**' (105 mg, 0.37 mmol, 12%) as a colorless oil.

3da: ¹H NMR (300 MHz, CDCl₃) δ 4.50-4.42 (m, 1H), 3.06 (dd, *J* = 6, 3.6 Hz, 1H), 3.04 (dd, *J* = 6.3, 3.6 Hz, 1H), 2.46-2.25 (m, 2H), 2.09-1.74 (m, 4H), 1.70-1.49 (m, 2H). ¹³C NMR (76 MHz, CDCl₃) δ 103.0, 62.0, 50.5, 32.7, 24.9, 20.8, 20.6. GC : rt = 8.0 min.

3da': ¹H NMR (300 MHz, CDCl₃) δ 5.06-5.00 (m, 1H), 2.5 (ddd, *J* = 11.1, 2.7, 2.4 Hz, 1H), 2.36-2.10 (m, 2H), 2.08-1.79 (m, 4H), 1.70-1.53 (m, 1H), 1.53-1.34 (m, 1H). ¹³C NMR (76 MHz, CDCl₃) δ 103.0, 61.2, 51.8, 36.5, 25.6, 24.5, 20.3. GC : rt = 8.4 min. 1-bromo-2-trichloromethylcyclohex-5-ne **3ea** [1093613-07-0]¹⁴ 1-bromo-3-trichloromethylcyclohex-2-ene **3ea'** [55005-81-7]¹⁴

Chemical Formula: C₇H₈BrCl₃ Chemical Formula: C₇H₈BrCl₃ Molecular Weight: 278,40 Molecular Weight: 278,40

To a solution of bromotrichloromethane (3.3 mmol, 1.1 equiv., 325 μ L) in MTBE (300 μ L) was added 35 μ g of DIPAB (0.3 mmol, 10 mol%), followed by cyclohex-1,3-diene (3 mmol, 1 equiv., 304 μ L). After 6h at 60°C, reaction mixture was concentrated under reduced pressure. Crude mixture was purified by chromatography on silica gel, eluting with 100% cyclohexane to give a mixture of 1-bromo-2-trichloromethylcyclohex-5-ene **3ea** (123 mg, 15%) as a colorless oil and 1-bromo-3-trichloromethylcyclohex-2-ene **3ea'** (162 mg,19%) as a colorless oil.

3ea ¹H NMR (300 MHz, CDCl₃) δ 6.21 (dtd, *J* = 10.3, 2.7, 1.0 Hz, 1H), 6.02 (ddd, *J* = 10.3, 3.9, 1.7 Hz, 1H), 4.77 – 4.67 (m, 0.85H D1), 4.61 – 4.52 (m, 0.15H D2), 3.40 – 3.26 (m, 1H), 2.63-2.30 (m, 2H), 2.09 (dddd, *J* = 13.5, 11.9, 8.8, 3.1 Hz, 1H), 1.85 (dddd, *J* = 15.1, 13.7, 8.7, 3.0 Hz, 1H). ¹³C NMR (76 MHz, CDCl₃) δ 134.36 (D1), 133.99 (D2), 127.30 (D2), 127.21 (D1), 103.28, 55.92

(D2), 55.51(D2), 54.29(D1), 45.45(D2), 32.68(D1), 32.41(D2), 26.21(D1), 127.26(D2), 613.28, 55.92(D2), 55.51(D2), 54.29(D1), 45.45(D2), 32.68(D1), 32.41(D2), 26.21(D1), 25.86(D2). GC : rt = 8.0 min.

3ea' ¹H NMR (300 MHz, CDCl₃) δ 6.24 - 6.15 (m, 1H), 6.04 (dt, *J* = 10.1, 1.5 Hz, 1H), 4.85-4.80 (m, 1H), 3.46-3.33 (m, 1H), 2.42-2.01 (m, 4H).¹³C NMR (76 MHz, CDCl₃) δ 132.5 (D1), 131.5 (D2), 128.2 (D2), 127.5 (D1), 103.4 (D2), 56.8(D1), 52.8 (D2), 45.6, 31.1 (D1), 30.7 (D2), 21.6 (D1), 21.0 (D2).

GC : rt = 8.4 min.

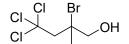
1,1,1-trichloro-3-bromoundecan-11-ol 3fa

Chemical Formula: C₁₁H₂₀BrCl₃O Molecular Weight: 354,53

To a solution of bromotrichloromethane (3.3 mmol, 1.1 equiv., 325 μ L) in MTBE (300 μ L) was added 11 μ g of DIPAB (0.1 mmol, 3.3 mol%), followed by 9-decen-1-ol (3 mmol, 1 equiv., 589 μ L). After 3h at 60°C, reaction mixture was concentrated under reduced pressure. Crude mixture was purified by chromatography on silica gel, eluting with 8/2 cyclohexane/ethylacetate to give 1,1,1-trichloro-3-bromo-undecan-11-ol **3fa** (856 mg, 81%) as a colorless oil.

¹H NMR (300 MHz, CDCl₃) δ 4.34 (dt, *J* = 9.6, 5.1 Hz, 1H), 3.66 (t, *J* = 6.6 Hz, 2H), 3.47 (dd, *J* = 15.8, 5.1 Hz, 1H), 3.24 (dd, *J* = 15.8, 5.3 Hz, 1H), 2.13-1.87 (m, 2H), 1.69-1.247 (m, 13H).

2-bromo-4,4,4-trichlorobutan-1-ol 3ga [15344-05-5]15


Chemical Formula: C₄H₆BrCl₃O Molecular Weight: 256,35

To a solution of bromotrichloromethane (3.3 mmol, 1.1 equiv., 325 μ L) in MTBE (300 μ L) was added 35 μ g of DIPAB (0.3 mmol, 10 mol%), followed by allylalcohol (3 mmol, 1 equiv., 204 μ L). After 6h at 60°C, reaction mixture was concentrated under reduced pressure. Crude mixture was purified by chromatography on silica gel, eluting with 80/20 cyclohexane/ethylacetate gave 2-bromo-4,4,4-trichlorobutan-1-ol **3ga** (274 mg, 65%) as a colorless oil.

¹H NMR (300 MHz, CDCl₃) δ 4.50-4.42 (m, 1H), 3.97 (dd, *J* = 6.6 Hz, 1H), 3.95 (dd, *J* = 6.6, 0.9 Hz, 1H), 3.39 (dq, *J* = 15.9 Hz, 5.22, 1H), 2.13 (t, *J* = 6.9 Hz, 1H).

 ^{13}C NMR (76 MHz, CDCl_3) δ 96.7, 66.8, 58.7, 50.4.

2-bromo-4,4,4-trichloro-2-methylbutan-1-ol 3ha

Chemical Formula: C₅H₈BrCl₃O Molecular Weight: 270,37

To a solution of bromotrichloromethane (3.3 mmol, 1.1 equiv., 325 μ L) in MTBE (300 μ L) was added 35 µg of DIPAB (0.3 mmol, 10 mol%), followed by 2-methylpropenol (3 mmol, 1 equiv., 252 µL). After 6h at 60°C, reaction mixture was concentrated under reduced pressure. Crude chromatography purified mixture was by on silica gel. eluting with 80/20 cyclohexane/ethylacetate to give 2-bromo-4,4,4-trichloro-2-methylbutan-1-ol 3ha (733 mg. 93%) as a colorless oil.

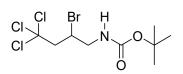
¹H NMR (300 MHz, CDCl₃) δ 3.99 (dd, *J* = 12.6, 8.2 Hz, 1H), 3.84 (dd, *J* = 12.6, 6.2 Hz, 1H), 3.69 (d, *J* = 15.9 Hz, 1H), 3.54 (d, *J* = 15.9 Hz, 1H), 2.22 (dd, *J* = 8.2, 6.3 Hz, 1H), 2.08 (s, 3H). ¹³C NMR (76 MHz, CDCl₃) δ 95.8, 71.5, 69.5, 61.6, 27.5.

1,5-dibromo-7,7,7-trichloroheptane 3ia

Chemical Formula: C₇H₁₁Br₂Cl₃ Molecular Weight: 361,32

To a solution of bromotrichloromethane (3.3 mmol, 1.1 equiv., 325 μ L) in MTBE (300 μ L) was added 11 μ g of DIPAB 3.3 mol%), followed by 1-bromohex-5-ene (3 mmol, 1 equiv., 503 μ L). After 3h at 60°C, reaction mixture was concentrated under reduced pressure. Crude mixture was purified by chromatography on silica gel, eluting with 100% cyclohexane to give 1,5-dibromo-7,7,7-trichloroheptane **3ia** (752 mg, 92%) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 4.32 (dq, *J* = 9.6, 5.1 Hz, 1H), 3.47 (dd, *J* = 15.9, 5.1 Hz, 1H), 3.41

¹H NMR (300 MHz, CDCl₃) δ 4.32 (dq, *J* = 9.6, 5.1 Hz, 1H), 3.47 (dd, *J* = 15.9, 5.1 Hz, 1H), 3.41 (t, *J* = 6.9 Hz, 2H), 3.22 (dd, *J* = 15.8, 5.4 Hz, 1H), 1.80 (s, 4H), 1.26 (s, 7H). ¹³C NMR (76 MHz, CDCl₃) δ 97.3, 62.8, 49.1, 39.5, 33.9, 32.7, 28.0, 28.0, 27.2.


GC: rt = 11.6 min

2-bromo-4,4,4-trichlorobutyl methanoate 3ja [81932-47-0] ¹⁶

Chemical Formula: C₆H₈BrCl₃O₂ Molecular Weight: 298,38

To a solution of bromotrichloromethane (3.3 mmol, 1.1 equiv., 325 µL) in MTBE (300 µL) was added 3x 11 µg of DIPAB (0.3 mmol, 10 mol%), followed by allylacetate (3 mmol, 1 equiv., 324 µL). After 3h at 60°C, reaction mixture was concentrated under reduced pressure. Crude mixture was purified by chromatography on silica gel, eluting with 96/4 cyclohexane/ethylacetate to give 2-bromo-4-trichlorobutyl methanoate **3ja** (475 mg, 53%) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 4.54 – 4.32 (m, 3H), 3.37 (d, *J* = 4.9 Hz, 2H), 2.13 (s, 3H). ¹³C NMR (76 MHz, CDCl₃) δ 170.2, 96.7, 66.9, 59.1, 42.9, 20.8. GC: rt = 7.8 min

N-tertbutoxycarbonyl-2-bromo-4,4,4-trichlorobutyl-1-amine 3ka

Chemical Formula: C₉H₁₅BrCl₃NO₂ Molecular Weight: 355,48

To a solution of bromotrichloromethane (3.3 mmol, 1.1 equiv., 325 μ L) in MTBE (300 μ L) was added 35 μ g of DIPAB (0.3 mmol, 10 mol%), followed by *tert*-butyl allylcarbamate (3 mmol, 1 equiv., 503 μ L). After 6h at 60°C, reaction mixture was concentrated under reduced pressure. Crude mixture was purified by chromatography on silica gel, eluting with 98/2 toluene/ethylacetate gave (3-bromo-1-trichlorobutyl)*tert*-butylcarbamate **3ka** (421 mg, 39%) as a white solid.

¹H NMR (300 MHz, CDCl₃) δ 5.00 (brs, 1H), 4.40 (dq, *J* = 4.9, 6.7 Hz, 1H), 3.73 (ddd, *J* = 5.1, 6.5, 14.5 Hz, 1H), 3.63-3.48 (m, 1H), 3.41-3.26 (m, 2H), 1.46 (m, 9H).

¹³C NMR (76 MHz, CDCl₃) δ 155.3, 96.9, 80.3, 56.0, 47.8, 28.2.

GC: rt = 10.2 min;

HRMS $[M - CH_3]^+$ found 339.9093. $C_8H_{12}BrCl_3NO$ Theo. M = 339.9096.

(2-bromo-4,4,4-trichlorobut-1-yl)trimethylsilane 3la [35070-72-5]¹⁷

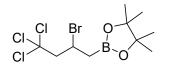
Chemical Formula: C₇H₁₄BrCl₃Si Molecular Weight: 312,53

To a solution of bromotrichloromethane (3.3 mmol, 1.1 equiv., 325 μ L) in MTBE (300 μ L) was added 11 μ g of DIPAB (0.1 mmol, 3.3 mol%), followed by allyltrimethylsilane (3 mmol, 1 equiv., 503 μ L). After 3h at 60°C, reaction mixture was concentrated under reduced pressure. Crude mixture was purified by chromatography on silica gel, eluting with 100% cyclohexane to give (2-bromo-4,4,4-trichlorobut-1-yl)trimethylsilane **3la** (814 mg, 87%) as a pale yellow solid.

¹H NMR (300 MHz, CDCl₃) δ 4.50 (dtd, J = 9.2, 5.7, 4.9 Hz, 1H), 3.49 (dd, J = 15.8, 5.6 Hz,1), 3.21 (dd, J = 15.8, 4.9 Hz, 1H), 1.68 (dd, J = 15.0, 5.8 Hz, 1H), 1.54 (dd, J = 15.0, 9.2 Hz, 1H), 0.20 – 0.04 (m, 9H).

¹³C NMR (76 MHz, CDCl₃) δ 97.2, 65.5, 46.2, 30.8, -0.7.

(2-bromo-4,4,4-trichlorobut-1-yl)trimethoxysilane 3ma


CI Br Si(OMe)₃

Chemical Formula: C₇H₁₄BrCl₃O₃Si Molecular Weight: 360,53

To a solution of bromotrichloromethane (3.3 mmol, 1.1 equiv., 325 µL) in MTBE (300 µL) was added 11 µg of DIPAB (0.1 mmol, 3.3 mol%), followed by allyltrimethoxysilane (3 mmol, 1 equiv., 507 µL). After 3h at 60°C, reaction mixture was concentrated under reduced pressure. Crude mixture was purified by chromatography on silica gel, eluting with 100% cyclohexane to give (2-bromo-4,4,4-trichlorobut-1-yl)trimethoxysilane **3ma** (1.05 g, 98%) as a pale yellow solid. ¹H NMR (300 MHz, CDCl₃) δ 4.64 – 4.52 (m, 1H), 3.64 (s, 9H), 3.44 (d, *J* = 0.9 Hz, 1H), 3.42 (s, 1H), 1.72 (qd, *J* = 15.4, 7.3 Hz, 2H).

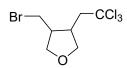
¹³C NMR (76 MHz, CDCl₃) δ 97.2, 63.8, 50.9, 43.5, 24.2.

1-(4,4,5,5-tetramethyl-1,3-dioxabor-2-yl)-2-bromo-4,4,4-trichlorobutane

Chemical Formula: C₁₀H₁₇BBrCl₃O₂ Molecular Weight: 366,31

To a solution of bromotrichloromethane (3.3 mmol, 1.1 equiv., 325 μ L) in MTBE (300 μ L) was added 11 μ g of DIPAB (0.1 mmol, 3.3 mol%), followed by allylpinacol borane (3 mmol, 1 equiv., 562 μ L). After 6h at 60°C, reaction mixture was concentrated under reduced pressure. Crude mixture was purified by chromatography on silica gel, eluting with 100% cyclohexane to give 1-(4,4,5,5-tetramethyl-1,3-dioxabor-2-yl)-2-bromo-4,4,4-trichlorobutane **3na** (1.02 g, 2.8 mmol, 93%) as a pale yellow solid.

¹H NMR (300 MHz, CDCl₃) δ 4.60 (dq, *J* = 8.4, 5.5 Hz, 1H), 3.48 (dd, *J* = 15.8, 5.4 Hz, 1H), 3.33 (dd, *J* = 15.8, 5.7 Hz, 1H), 1.91 (dd, *J* = 15.9, 5.3 Hz, 1H), 1.77 (dd, *J* = 15.9, 8.4 Hz, 1H), 1.28 (s, 12H).

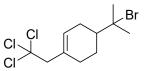

¹¹B NMR (96 MHz, CDCl₃) δ 32.5.

¹³C NMR (76 MHz, CDCl₃) δ 97.2, 83.9, 63.7, 44.8, 25.0, 24.8.

GC: 9.3 min;

HRMS m/z (CI+) Found: [M]⁺ 364.9586. C₁₃H₁₇BBrCl₃O₂ Theo. M = 364.9586.

3-(bromomethyl)-4-(2,2,2-trichloroethyl)tetrahydrofuran [54711-89-6] ¹⁶ Cis isomer **3oa** [172091-12-2]¹⁸ trans isomer **3oa**' [138972-07-3]¹⁹

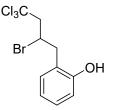

Chemical Formula: C₇H₁₀BrCl₃O Molecular Weight: 296,41

To a solution of bromotrichloromethane (3.3 mmol, 1.1 equiv., 325 μ L) in MTBE (300 μ L) was added 5 x 3 μ g of DIPAB (0.15 mmol, 5 mol%), followed by diallylether (3 mmol, 1 equiv., 405 μ L). After 6h at 60°C, reaction mixture was concentrated under reduced pressure. Crude mixture was purified by chromatography on silica gel, eluting with 100% cyclohexane to 9/1 cyclohexane/ethylacetate gave 3-(bromomethyl)-4-(2,2,2-trichloroethyl)tetrahydrofuran **30a** (518 mg, 68%) as a colorless oily mixture of cis/trans diastereoisomers (60/40). Cis isomer **30a** [172091-12-2]¹⁸ trans isomer **30a**' [138972-07-3]¹⁹

¹H NMR (300 MHz, CDCl₃) δ 4.29 (dd, J = 9.1, 7.1 Hz, 0.4H d1), 4.16 (dd, J = 8.7, 7.4 Hz, 0.6H d2), 4.02-3.94 (m, 1H d1d2), 3.88 (dd, J = 9.1, 3.5 Hz, 0.6H d2), 3.75-3.61 (m, 1.6H d1d2), 3.61-3.48 (m, 1H d1d2), 3.41 (dd, J = 10.2, 8.0 Hz, 0.4H d1), 3.33 (t, J = 9.9 Hz, 0.6H d2), 3.06 (dd, J = 4.8, 3.3 Hz, 0.4H d1), 3.01 (dd, J = 3.7, 3.3 Hz, 0.6H d2), 2.94– 2.79 (m, 1.4H d1d2), 2.74 (dd, J = 14.4, 7.7 Hz, 0.6H d2) 2.55-2.38 (m, 0.8H d1).

¹³C NMR (76 MHz, CDCl₃) δ 98.8 (d2), 98.6 (d1), 74.6 (d1), 72.1 (d1), 72.03 (d2), 71.99 (d2), 58.6 (d1), 53.0(d2), 48.0 (d1), 44.8 (d2), 43.0 (d1), 40.8 (d2), 33.9 (d1), 31.3 (d2). GC: rt = 9.228, 9.432 min.

4-(1-bromo-1-methylethyl)-1-(2,2,2-trichloroethyl)cyclohex-1-ene 3pa [19876-32-5]²⁰


Chemical Formula: C₁₁H₁₆BrCl₃ Molecular Weight: 334,50

To a solution of bromotrichloromethane (3.3 mmol, 1.1 equiv., 325 μ L) in MTBE (300 μ L) was added 35 μ g of DIPAB (0.1 mmol, 3.3 mol%), followed by β -pinene (3 mmol, 1 equiv., 568 μ L). After 3h at 60°C, reaction mixture was concentrated under reduced pressure. Crude mixture was purified by chromatography on silica gel, eluting with 100% cyclohexane to give 4-(1-bromo-1-methylethyl)-1-(2,2,2-trichloroethyl)cyclohex-1-ene **3pa** (967 mg, 96%) as a colorless oil.

¹H NMR (300 MHz, CDCl₃) δ 5.85 – 5.74 (m, 1H), 3.35 (s, 2H), 2.50 – 2.23 (m, 3H), 2.15 – 1.99 (m, 2H), 1.78 (d, *J* = 15.0 Hz, 6H), 1.74 – 1.60 (m, 1H), 1.50-1.34 (m, 1H).

 ^{13}C NMR (76 MHz, CDCl_3) δ 131.4, 130.7, 99.2, 72.7, 62.0, 47.0, 32.6, 31.9, 30.7, 28.8, 26.1. GC : rt = 8.32 min.

2-(2-bromo-3,3,3-trichlorobutyl)phenol 3qa

Chemical Formula: C₁₀H₁₀BrCl₃O Molecular Weight: 332,44

To a solution of bromotrichloromethane (3.3 mmol, 1.1 equiv., 325 μ L) in MTBE (300 μ L) was added 35 μ g of DIPAB (0.3 mmol, 10 mol%), followed by allyl phenol (3 mmol, 1 equiv., 392 μ L). After 6h at 60°C, reaction mixture was concentrated under reduced pressure. Crude mixture was purified by chromatography on silica gel, eluting with 100% cyclohexane to 98/2 toluene/ethylacetate to give 2-(2-bromo-3,3,3-trichlorobutyl)phenol **3qa** (283 mg, 28%) as a colorless oil.

¹H NMR (300 MHz, CDCl₃) δ 7.22 – 7.07 (m, 2H), 6.92 (td, *J* = 7.4, 1.2 Hz, 1H), 6.75 (dd, *J* = 10.5, 5.0 Hz, 1H), 5.03 (s, 1H), 4.76 – 4.63 (m, 1H), 3.53 – 3.12 (m, 4H).

 ^{13}C NMR (76 MHz, CDCl_3) δ 153.8, 132.0, 128.8, 124.2, 121.1, 115.7, 97.3, 61.9, 47.5, 41.2. GC: 9.117 min;

HRMS m/z (EI+) Found: [M] 329.8981. C₁₀H₁₀BrCl₃O Found M = 329.8981.

6. References for already described products

- 1. Heintz, M.; Le Ny, G.; Nedelec, J. Y., *Tetrahedron Lett.* **1984**, *25*, 5767-8.
- 2. Matsuo, K.; Yamaguchi, E.; Itoh, A., J. Org. Chem. 2020, 85 (16), 10574-10583.

3. Morita, M.; Kubo, M.; Matsumoto, M., *Colloids Surf., A* **1996**, *109*, 183-94.

4. Yajima, T.; Murase, M.; Kagawa, T. Method for preparation of fluorine-containing compounds by radical addition reaction of perfluoroalkyl iodide with olefins or α -alkynes. JP2020125268A, 2020.

5. Guo, X.-C.; Chen, Q.-Y., J. Fluor. Chem. 1998, 88 (1), 63-70.

- 6. Yajima, T.; Murase, M.; Ofuji, Y., *Eur. J. Org. Chem.* **2020**, 2020 (25), 3808-3811.
- 7. Kharasch, M. S.; Engelmann, H.; Mayo, F. R., *J. Org. Chem.* **1937**, *02* (3), 288-302.
- 8. Baciocchi, E.; Muraglia, E., Tetrahedron Lett. 1994, 35 (17), 2763-2766.
- 9. Arceo, E.; Montroni, E.; Melchiorre, P., Angew. Chem., Int. Ed. 2014, 53, 12064.

10. Tejeda-Serrano, M.; Lloret, V.; Márkus, B. G.; Simon, F.; Hauke, F.; Hirsch, A.; Doménech-Carbó, A.; Abellán, G.; Leyva-Pérez, A., *ChemCatChem* **2020**, *12* (8), 2226-2232.

11. Dneprovskii, A. S.; Ermoshkin, A. A.; Kasatochkin, A. N.; Boyarskii, V. P., *Russ. J. Org. Chem.* **2003**, *39* (7), 933-946.

- 12. Tryanham, J. G.; Lane, A. G.; Bhacca, N. S., J. Org. Chem. 1969, 34 (5), 1302-1307.
- 13. Laihia, K.; Kolehmainen, E.; Nevalainen, T.; Kauppinen, R.; Vasilieva, T. T.; Terentiev, A.

B., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy **2000**, 56 (3), 541-546.

- 14. Kharasch, M. S.; Friedlander, H. N., J. Org. Chem. 1949, 14, 239-47.
- 15. Le Coq, A., Ann. Chim. (Paris) 1968, [14]3 (6), 529-41.
- 16. Nakamura, T.; Yorimitsu, H.; Shinokubo, H.; Oshima, K., Synlett **1998**, 1351-1352.

17. Motoda, D.; Kinoshita, H.; Shinokubo, H.; Oshima, K., *Adv. Synth. Catal.* **2002,** *344*, 261-265.

18. Díaz-Álvarez, A. E.; Crochet, P.; Zablocka, M.; Duhayon, C.; Cadierno, V.; Majoral, J.-P., *Eur. J. Inorg. Chem.* **2008**, 2008 (5), 786-794.

19. Lachaise, I.; Nohair, K.; Hakiki, M.; Nédélec, J. Y., Synthetic Commun. **1995**, 25 (22), 3529-3536.

20. Tarama, K.; Funabiki, T., *Nippon Kagaku Zasshi* **1968**, *89*, 88-92.